JPH01100499A - Device for prevention of vapor deposition of liquid metal - Google Patents

Device for prevention of vapor deposition of liquid metal

Info

Publication number
JPH01100499A
JPH01100499A JP62257361A JP25736187A JPH01100499A JP H01100499 A JPH01100499 A JP H01100499A JP 62257361 A JP62257361 A JP 62257361A JP 25736187 A JP25736187 A JP 25736187A JP H01100499 A JPH01100499 A JP H01100499A
Authority
JP
Japan
Prior art keywords
liquid metal
gas
vapor deposition
gap
prevention device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62257361A
Other languages
Japanese (ja)
Inventor
Sho Imayoshi
今吉 祥
Yoshiro Kamishima
吉郎 神島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP62257361A priority Critical patent/JPH01100499A/en
Publication of JPH01100499A publication Critical patent/JPH01100499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To achieve an inexpensive and highly reliable prevention of deposition, by supplying an He gas to a circular gap of a shielding section. CONSTITUTION:A gutter comprising a cylindrical partition 17, a cylinder 16' and a sole 16 is mounted at an lower portion of a rotary gap between a shielding section 3 and a large rotary shield plug 4 and a sensor 18 is set to detect the density of Na vapor or He. By a detection signal, a control valve 20 is opened to inject He into the gap 10. This allows the maintaining of a gas interface due to a density difference between the He and Na below the sensor 18 thereby enabling an inexpensive and highly reliable prevention of vapor deposition of a liquid metal.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は液体金属を冷却材として用いた原子炉の液体
金属蒸着防止装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid metal deposition prevention device for a nuclear reactor using liquid metal as a coolant.

[従来の技術] 第1図は従来及びこの発明における液体金属を冷却材と
して用いた高速増殖炉(以下FBRという)の原子炉の
一例を示す断面図である。
[Prior Art] FIG. 1 is a sectional view showing an example of a fast breeder reactor (hereinafter referred to as FBR) using liquid metal as a coolant in the prior art and in the present invention.

第1図において、lは炉心、2は原子炉容器、3は上部
の遮蔽部である。そして遮蔽部3には炉心lの燃料を交
換する目的て、回転可能な大回転遮蔽プラグ4と、この
大回転遮蔽プラグ4に取付けられて回転可能な小回転遮
蔽プラグ5及び燃料交換機6が取付けられ、夫々各回転
遮蔽プラグは単独に回転することかできる構造である。
In FIG. 1, l is the reactor core, 2 is the reactor vessel, and 3 is the upper shielding part. A rotatable large-rotation shielding plug 4, a rotatable small-rotation shielding plug 5 attached to the large-rotation shielding plug 4, and a fuel exchanger 6 are attached to the shielding part 3 for the purpose of exchanging fuel in the core l. Each rotary shielding plug has a structure that allows it to rotate independently.

また、7は制御棒駆動軸13を駆動する制御棒駆動機構
で、小回転遮蔽プラク5を貫通して取り付けられる。ま
た、炉心lは液体金属ナトリウムを用いた冷却材8で強
制的に冷却されているか、この冷却材8は液面8′を有
しており、この液面8′の上部にはカバーガス9が張ら
れており、このカバーガス9にはアルゴンガスか用いら
れる。
Further, 7 is a control rod drive mechanism that drives the control rod drive shaft 13, and is installed through the small rotation shielding plaque 5. In addition, the core l is forcibly cooled by a coolant 8 using liquid metal sodium, or this coolant 8 has a liquid level 8', and above this liquid level 8' there is a cover gas 9. The cover gas 9 is filled with argon gas.

第1図に示した原子炉に置いて、原子炉運転状態では冷
却材8の液体ナトリウムの温度が500°C〜550°
Cになり、そのため液面8′の表面では液体ナトリウム
か蒸発している。一方、遮蔽部3゜大回転遮蔽プラグ4
及び小回転遮蔽プラグ5の上面はほぼ室温に維持されて
いるので、自然対流等によって、液面8′の表面で発生
したナトリウム蒸気か大小の回転遮蔽プラグ4.5の回
転の隙間10.11及び燃料交換機6の回転の隙間12
及び制御棒駆動機構7の制御棒駆動軸13とその案内管
13′との駆動隙間に運ばれて低温部分に蒸着し、回転
駆動または上下駆動に不具合を生じさせるという現象が
発生していた。この対策として、従来は各隙間10,1
1.12の下部に機械的に蓋をする手段とか、各隙間1
0,11.12の上部より、アルゴンガスを逆ブローす
ることによって各隙間にナトリウム蒸気が侵入すること
を防止する手段とか、またはこの両者の手段を組み合わ
せるとかが用いられていた。
In the reactor shown in Fig. 1, the temperature of liquid sodium as the coolant 8 is 500°C to 550°C in the reactor operating state.
C, and therefore liquid sodium is evaporated on the surface of liquid level 8'. On the other hand, the shielding part 3° large rotation shielding plug 4
Since the upper surface of the small rotating shielding plug 5 is maintained at approximately room temperature, the sodium vapor generated on the surface of the liquid level 8' due to natural convection, etc., or the rotation gap 10.11 of the large and small rotating shielding plugs 4.5. and the rotation gap 12 of the fuel exchanger 6
The particles are carried to the drive gap between the control rod drive shaft 13 of the control rod drive mechanism 7 and its guide tube 13', and are deposited on low-temperature parts, causing problems in rotational drive or vertical drive. As a countermeasure for this, conventionally each gap 10, 1
1. Means to mechanically cover the bottom of 12, each gap 1
A method of preventing sodium vapor from entering each gap by back-blowing argon gas from the upper part of the 0.0, 11.12, or a combination of both methods was used.

[発明が解決しようとする問題点] 上記のように、従来の装置においては、液体金属の蒸着
を防止するためには様々な手段か講じられており、その
中でもアルゴンガスな逆ブローすることにより各隙間に
ナトリウム蒸気を入れない方法が最も効果的であるとさ
れていた。しかしながら、このような方法による従来の
装置では注入するアルゴンガスの流速を1−へee程度
にしないと効果か薄いので、大量のアルゴンガスを吹き
込む必要があり、そのためにアルゴンガス供給設備およ
びアルゴンガスとナトリウムガスを分離する浄化設備を
設けなければならず、その設備容量が大型化し、大変コ
スト高になるという問題があった。
[Problems to be Solved by the Invention] As mentioned above, in conventional equipment, various measures have been taken to prevent the deposition of liquid metal. It was believed that the most effective method was to prevent sodium vapor from entering the gaps. However, with conventional equipment using this method, the effect is low unless the flow rate of the argon gas to be injected is about 1-ee, so it is necessary to inject a large amount of argon gas, which requires argon gas supply equipment and argon gas Purification equipment must be installed to separate sodium and sodium gas, which increases the capacity of the equipment and increases costs.

また、従来の各隙間下部に蓋をする場合は、回転に先立
ち蓋を外す必要かあり、この為プラグ持上装置を用いる
ことか考えられるが、これは400トン近くのプラグを
気密に保ちつつ持ち上げる必要があり、高価な設備とな
るという問題がある。
In addition, when conventionally placing a lid on the bottom of each gap, it is necessary to remove the lid before rotation, and for this reason, it is possible to use a plug lifting device, but this is possible while keeping the nearly 400 ton plug airtight. There is a problem in that it needs to be lifted and becomes an expensive piece of equipment.

また簡易な方法として、回転遮蔽プラグの回転中は温度
を下げて用いることを利用し、バイメタルとか形状記憶
合金を用いて隙間に蓋をすることが考えられているが、
信頼性が未確認であるため実用化できていない。
Another simple method is to lower the temperature of the rotating shielding plug while it is rotating, and to cover the gap with bimetal or shape memory alloy.
It has not been put into practical use because its reliability has not been confirmed.

この発明はかかる問題点を解決するためになされたもの
で、安価な装置で、かつ信頼性の高い液体金属蒸着防止
装置を提供することを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide an inexpensive and highly reliable liquid metal vapor deposition prevention device.

[問題点を解決するための手段] 上記の目的を達成するために、この発明の液体金属蒸着
防止装置は上部の遮蔽部における環状隙間部に対して、
この環状隙間部の上方よりヘリウムガスを供給する供給
手段と、前記環状隙間部の下部でセンサを用いて気化し
た液体金属の蒸気もしくはヘリウムガスの濃度を検出す
る検出手段とを備え、この供給手段と検出手段とにより
冷却材の蒸気とヘリウムの密度差によるガス界面を前記
環状隙間の下部に設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the liquid metal evaporation prevention device of the present invention provides the following:
The supply means includes a supply means for supplying helium gas from above the annular gap, and a detection means for detecting the concentration of vaporized liquid metal vapor or helium gas using a sensor at the bottom of the annular gap. and a detection means, a gas interface is provided at the bottom of the annular gap due to the density difference between the coolant vapor and helium.

[作用] 上記構成を有することにより、上記の遮蔽部を貫通する
環状の隙間に比重の軽いヘリウムを張り、冷却材として
の金属蒸気とヘリウムの密度差による界面を隙間下部の
高温部に形成せしめ、金属蒸気の低温部への移動を防止
する。
[Function] With the above configuration, the annular gap penetrating the shielding part is filled with helium, which has a light specific gravity, and an interface due to the density difference between metal vapor as a coolant and helium is formed in the high temperature part at the bottom of the gap. , preventing the movement of metal vapor to cold parts.

[実施例] 第2図は本発明の液体金属蒸着防止装置の一実施例の主
要部の概略を示した図で、本実施例は、上部の遮蔽部3
と大回転遮蔽プラグ4の回転隙間10に適用したもので
1回転隙間lOの下部に円筒状の仕切板17と、円筒1
6′と、ソール16より成る樋か取り付けられ、ガスロ
ックの機構を構成している。これらガスロックの適当な
位置にナトリウム蒸気(ナトリウムイオン)またはヘリ
ウム濃度を検出するセンサ18が設置されており、これ
は変換器19で弁作動をもたらす電気信号に変えられて
、ヘリウム供給用の制御弁20で開閉するようなってい
る。
[Example] Fig. 2 is a diagram schematically showing the main parts of an example of the liquid metal vapor deposition prevention device of the present invention.
This is applied to the rotation gap 10 of the large rotation shielding plug 4, and a cylindrical partition plate 17 is provided at the bottom of the one rotation gap lO, and a cylinder 1
6' and a gutter consisting of sole 16 are attached to constitute a gas lock mechanism. Sensors 18 that detect sodium vapor (sodium ions) or helium concentration are installed at appropriate positions in these gas locks, and this is converted into an electrical signal that causes valve operation by a converter 19 to control the helium supply. It is opened and closed by a valve 20.

すなわち、センサ18かナトリウムを検出するか又は、
ヘリウム濃度が低下したのを検出すると制御弁20を開
きヘリウムを隙間10へ注入するようになっ”ている。
That is, sensor 18 detects sodium or
When it is detected that the helium concentration has decreased, the control valve 20 is opened and helium is injected into the gap 10.

そして、この際、単にヘリウムを対人しただけでは、拡
散とか、サーモサイフオン現象により、長期に渡り安定
したガス界面が保たれないので、各隙間to、ii、1
2の下部にガスロック機構または絞りを設けるとともに
、断続的に又は連続的に上部よりヘリウムを補給する。
At this time, if helium is simply applied, a stable gas interface cannot be maintained for a long time due to diffusion or thermosiphon phenomenon, so each gap to, ii, 1
A gas lock mechanism or a restriction is provided at the bottom of 2, and helium is intermittently or continuously replenished from the top.

これにより、ヘリウムとナトリウムの密度差によるガス
界面をセンサ18より下方に維持することができる。
Thereby, the gas interface due to the density difference between helium and sodium can be maintained below the sensor 18.

尚、14及び15は」二部の遮蔽部3及び大回転遮蔽プ
ラグ4の冷却層であり、この部分より」二部は100°
C以下に保たれるが、下部は100°C〜500°C程
度の温度となる。従ってセンサ18の近傍てナトリウム
が凝縮しても、壁に固着することはなく、原子炉内に流
れ落ちる。
Furthermore, 14 and 15 are the cooling layers of the second part of the shielding part 3 and the large rotation shielding plug 4, and from this part the second part is 100°.
The temperature at the bottom is kept at 100°C to 500°C. Therefore, even if sodium condenses near the sensor 18, it will not stick to the walls and will flow down into the reactor.

又、サーモサイフオンにより、ナトリウム蒸気を含んだ
アルゴンガスが隙間10へ吹き上げられる恐れがあるか
、これは仕切板17によりくい止められる。すなわち、
サーモサイフオン堪動力は下部の温度が高く、上部の温
度が低い時に上方に向かって生じるが、仕切板17を取
り付けることにより、カバーガス9から隙間lOに通じ
る迂回路21ては、流れ方向が逆になっているため、サ
ーモサイフオン駆動か打ち消される。
Furthermore, there is a possibility that argon gas containing sodium vapor may be blown up into the gap 10 by the thermosiphon, but this is blocked by the partition plate 17. That is,
The thermosiphon resistance force occurs upward when the temperature of the lower part is high and the temperature of the upper part is low, but by installing the partition plate 17, the flow direction is changed by the detour 21 leading from the cover gas 9 to the gap lO. Since it is reversed, the thermosiphon drive is canceled out.

[発明の効果] 以上説明した通り、炉上部の遮蔽部における環状隙間部
に対して、この環状隙間部の上方よりヘリウムガスを供
給する供給手段と、前記環状隙間部の下部でセンサを用
いて気化した液体金属の蒸気もしくはヘリウムガスの濃
度を検出する検出手段とを備え、この供給手段と検出手
段とにより冷却材の蒸気とヘリウムの密度差によるガス
界面を前記環状隙間の下部に設けた構成を有するので、
簡単な構成で信頼性の高い装置が得られる。
[Effects of the Invention] As explained above, by using a supply means for supplying helium gas from above the annular gap to the annular gap in the shielding part in the upper part of the furnace, and a sensor at the bottom of the annular gap, and a detection means for detecting the concentration of vaporized liquid metal vapor or helium gas, and the supply means and the detection means provide a gas interface at the bottom of the annular gap due to a density difference between the coolant vapor and helium. Since we have
A highly reliable device can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来及びこの発明における液体金属を冷却材と
して用いた高速増殖炉の原子炉の一例を示す断面図、第
2図は本発明の液体金属蒸着防止装置の一実施例の主要
部の概略を示した図である。 図中。 1:炉心    2:原子炉合奏 3:遮蔽部   4:大回転遮蔽プラグ5:小回転遮蔽
プラグ 6:燃料交換機 8:冷却材 9:アルゴン  10,11,12:隙間18:センサ
  19:変換器 20:制御弁 代理人 弁理士 1)北 嵩 晴 第1図
FIG. 1 is a sectional view showing an example of a fast breeder reactor using liquid metal as a coolant according to the conventional technology and the present invention, and FIG. 2 shows the main parts of an embodiment of the liquid metal deposition prevention device of the present invention. It is a diagram showing an outline. In the figure. 1: Reactor core 2: Reactor ensemble 3: Shielding part 4: Large rotation shielding plug 5: Small rotation shielding plug 6: Fuel exchanger 8: Coolant 9: Argon 10, 11, 12: Gap 18: Sensor 19: Converter 20: Control valve agent Patent attorney 1) Haru Kitatake Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)液体金属からなる冷却材による自由液面と、この
自由液面の上部にアルゴンからなるカバーガスとを有し
、炉心上部の遮蔽部を貫通する少なくとも1つの回転遮
蔽プラグを具備した原子炉の液体金属蒸着防止装置にお
いて、前記上部の遮蔽部における環状隙間部に対して、
この環状隙間部の上方よりヘリウムガスを供給する供給
手段と、前記環状隙間部の下部でセンサを用いて気化し
た液体金属の蒸気もしくはヘリウムガスの濃度を検出す
る検出手段とを備え、前記供給手段と検出手段とにより
冷却材の蒸気とヘリウムの密度差によるガス界面を前記
環状隙間の下部に設けたことを特徴とする液体金属蒸着
防止装置。
(1) An atom having a free liquid surface made of a coolant made of liquid metal, a cover gas made of argon above the free liquid surface, and equipped with at least one rotating shielding plug penetrating the shielding part in the upper part of the core. In the liquid metal vapor deposition prevention device for a furnace, with respect to the annular gap in the upper shielding part,
A supply means for supplying helium gas from above the annular gap, and a detection means for detecting the concentration of vaporized liquid metal vapor or helium gas using a sensor at the bottom of the annular gap, the supply means A liquid metal evaporation prevention device characterized in that a gas interface is provided at the lower part of the annular gap by a density difference between coolant vapor and helium by means of and a detection means.
(2)冷却材としての液体金属はナトリウムであること
を特徴とする特許請求の範囲第(1)項記載の液体金属
蒸着防止装置。
(2) The liquid metal vapor deposition prevention device according to claim (1), wherein the liquid metal used as the coolant is sodium.
(3)ガス界面は仕切板と樋を互いに接触することなく
配置して形成されるガスロックの中に位置せしめること
を特徴とする特許請求の範囲第(1)項もしくは第(2
)項記載の液体金属蒸着防止装置。
(3) The gas interface is located in a gas lock formed by arranging the partition plate and the gutter without contacting each other.
Liquid metal vapor deposition prevention device described in ).
(4)センサは仕切板と樋を互いに接触することなく配
置して形成されるガスロック内に設けられることを特徴
とする特許請求の範囲第(1)項もしくは第(2)項も
しくは第(3)項記載の液体金属蒸着防止装置。
(4) The sensor is provided in a gas lock formed by arranging a partition plate and a gutter without contacting each other. 3) The liquid metal vapor deposition prevention device described in section 3).
JP62257361A 1987-10-14 1987-10-14 Device for prevention of vapor deposition of liquid metal Pending JPH01100499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257361A JPH01100499A (en) 1987-10-14 1987-10-14 Device for prevention of vapor deposition of liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257361A JPH01100499A (en) 1987-10-14 1987-10-14 Device for prevention of vapor deposition of liquid metal

Publications (1)

Publication Number Publication Date
JPH01100499A true JPH01100499A (en) 1989-04-18

Family

ID=17305316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257361A Pending JPH01100499A (en) 1987-10-14 1987-10-14 Device for prevention of vapor deposition of liquid metal

Country Status (1)

Country Link
JP (1) JPH01100499A (en)

Similar Documents

Publication Publication Date Title
US4040480A (en) Storage of radioactive material
JPH01100499A (en) Device for prevention of vapor deposition of liquid metal
US4713941A (en) Cryogenic vessel
US4293383A (en) Nuclear reactor with equipment for preventing convection of metal vapors
JPH0745970Y2 (en) Cryostat
JP2511942B2 (en) Cryostat
JPH0815482A (en) Spent fuel storage pool equipment
JPS587173Y2 (en) Liquid metal adhesion prevention device
Emmoth et al. Particle collection at the plasma edge by a fast reciprocating probe at the TEXTOR tokamak
CN209310948U (en) A kind of temperature measuring device
JPS6246290A (en) Core upper mechanism
JPS63119208A (en) Cryostat
Kockelmann et al. A charcoal-pumped 3He cryostat for neutron diffraction
JPH031632B2 (en)
JPH0510370Y2 (en)
JP2002344037A (en) Cryogenic housing vessel and biomagnetism measuring apparatus using the same
JPH0782111B2 (en) Refueling method in reactor
C Hotchkiss et al. Sodium deposition from fast reactor gas blankets-factors influencing the choice of argon or helium cover gas
JPH0118552Y2 (en)
JP2624866B2 (en) Reactor shielding device
JPS5987393A (en) Device for controlling humidity in reactor container
JPS62229886A (en) Crtostat
JPS6046675B2 (en) control rod storage device
JPS60205287A (en) Shielding plug for nuclear reactor
JP2701517B2 (en) Cryogenic equipment for superconducting coils