JPH01100489A - Ultrasonic range finder - Google Patents

Ultrasonic range finder

Info

Publication number
JPH01100489A
JPH01100489A JP25725287A JP25725287A JPH01100489A JP H01100489 A JPH01100489 A JP H01100489A JP 25725287 A JP25725287 A JP 25725287A JP 25725287 A JP25725287 A JP 25725287A JP H01100489 A JPH01100489 A JP H01100489A
Authority
JP
Japan
Prior art keywords
received
ultrasonic
wave
signal
received wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25725287A
Other languages
Japanese (ja)
Inventor
Yukio Yoshida
幸男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP25725287A priority Critical patent/JPH01100489A/en
Publication of JPH01100489A publication Critical patent/JPH01100489A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable and accurate measurement of a distance regardless of changes in the level of a received wave, by controlling a gain of an amplifying means by a reference signal with the size thereof proportional to amplitude of the received signal. CONSTITUTION:An ultrasonic wave signal is transmitted to an object to be measured from an ultrasonic wave transmitter 4. The reflected ultrasonic wave signal from the object being measured is received with ultrasonic wave receivers 5 and 6. The ultrasonic wave receiver 6 receives the ultrasonic wave signal earlier by a specified time than the ultrasonic wave receiver 5. An output of the ultrasonic wave receiver 6 is applied to a variable gain amplification circuit 7 as control signal through a receiving amplification circuit 8 and a peak holding circuit 9. An output of the ultrasonic wave receiver 5 is applied to voltage comparators 10 and 11 through the variable gain amplification circuit 7. Outputs of the voltage comparators 10 and 11 trigger monostable multivibrators 12 and 13 to reset a flip-flop 15 by the outputs thereof through an AND gate 14. Counts of a counter 17 present a distance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超音波を利用して測定対象物までの距離を測定
する超音波距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic distance measuring device that uses ultrasonic waves to measure the distance to an object to be measured.

[従来の技術] 従来から測定対象物に向けて超音波を送波してから超音
波が測定対象物で反射して戻ってくるまで時間を測定す
ることにより、測定対象物までの距離を測定する超音波
距離測定装置が知られている。このような超音波距離測
定装置においては、超音波送波器から送波され、測定対
象物から反射してきた超音波を超音波受波器で電圧信号
に変換し、この電圧信号を増幅器で所定のレベルまで増
幅した後、予め設定した基準電圧(以下、トリガレベル
という)と比較し、超音波に対応する電圧信号がトリガ
レベルを越えた時点又は超音波に対応する電圧信号がト
リがレベルを越えた直後のゼロクロス点(電圧信号がO
vになる点)をもって超音波が到達したものとしていた
[Conventional technology] Conventionally, the distance to the object to be measured has been measured by measuring the time from when ultrasonic waves are transmitted toward the object to be measured until the ultrasonic waves are reflected by the object and returned. Ultrasonic distance measuring devices are known. In such an ultrasonic distance measuring device, an ultrasonic receiver converts ultrasonic waves transmitted from an ultrasonic transmitter and reflected from an object to be measured into a voltage signal, and this voltage signal is converted to a predetermined voltage signal by an amplifier. After the amplification to the level of The zero-crossing point immediately after crossing (the voltage signal is O
It was assumed that the ultrasonic wave had arrived at the point at which the ultrasonic wave reached V.

しかしながら、媒質中を伝搬する超音波は媒質の成分、
媒質の温度、媒質中の挟雑物等によりその減衰量が異な
り、又、温度分布その他の媒質の不均一性により伝搬経
路上で反射、屈折等が行なわれるので、超音波受波器で
受波した超音波のレベルは著しく変動する。特に、媒質
が気体である場合には、液体に比べて大きな影響を受け
る。
However, ultrasonic waves propagating in a medium are composed of components of the medium.
The amount of attenuation varies depending on the temperature of the medium, impurities in the medium, etc., and reflection, refraction, etc. occur on the propagation path due to temperature distribution and other non-uniformity of the medium, so it is difficult to receive it with an ultrasonic receiver. The level of the transmitted ultrasound waves varies significantly. In particular, when the medium is gas, it is more affected than when it is a liquid.

第4図は超音波レベルが変動する状況を説明する図であ
る。第4図において、Aは超音波送波器から送波した超
音波信号(以下、送信波という)Bは超音波受波器で受
波した超音波信号(以下、受信波という)、Cは受信波
がトリガレベルVthをよぎった後に、最初のゼロクロ
ス点をよぎったときに出力されるゼロクロスパルスであ
る。なお受信波Bは時間軸を拡大して示しである。第4
図に示すように、受信波B1に対応するゼロクロスパル
スはCであるが、受信波B2に対応するゼエ ロクロスパルスはC2になり、伝搬時間はt2からt3
に変動したように測定される。
FIG. 4 is a diagram illustrating a situation in which the ultrasonic level changes. In Fig. 4, A is an ultrasonic signal transmitted from an ultrasonic transmitter (hereinafter referred to as a transmitted wave), B is an ultrasonic signal received by an ultrasonic receiver (hereinafter referred to as a received wave), and C is an ultrasonic signal received by an ultrasonic receiver (hereinafter referred to as a received wave). This is a zero-cross pulse that is output when the received wave crosses the first zero-cross point after crossing the trigger level Vth. Note that the received wave B is shown with the time axis expanded. Fourth
As shown in the figure, the zero cross pulse corresponding to the received wave B1 is C, but the zero cross pulse corresponding to the received wave B2 is C2, and the propagation time is from t2 to t3.
It is measured as if it fluctuated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、受信波を安定して捉えるため、従来から受信
波の増幅回路にAGC(自動利得制御)を施し、受信波
レベルを一定にして、トリガレベルと比較する手段が用
いられていた。
By the way, in order to capture the received wave stably, a conventional method has been used in which AGC (automatic gain control) is applied to the received wave amplification circuit to keep the level of the received wave constant and then compared with the trigger level.

しかし、受信波(又は受信波に対応する電圧信号)の増
幅回路に施されるAGCは、AGCが施される以前の受
信波レベルによって決定されるものである。従って、受
信波の増幅回路にAGCを施しても、これから受波する
受信波レベルを予測するものではないので、受信波レベ
ルの変動が遅い場合には効果があるが、受信波レベルの
変動が激しい(受信波レベルの変動が速い)場合には何
等の効果がないばかりか、かえって逆効果を招く恐れす
らあった。(少なくとも測定対象物に向けて送信波を送
波する間隔だけ時間がおいているので、この間に受信波
レベルが変動してしまう場合がある。)従って、超音波
の伝搬媒体の温度むらゆらぎ等があると受信波レベルが
変動するので、測定値に大きなアバレ乃至誤差を生じる
ことになる。
However, the AGC applied to the amplification circuit of the received wave (or the voltage signal corresponding to the received wave) is determined by the level of the received wave before the AGC is applied. Therefore, even if AGC is applied to the received wave amplification circuit, it does not predict the level of the received wave that will be received in the future, so it is effective when the fluctuation of the received wave level is slow, but it is effective when the fluctuation of the received wave level is slow. In the case of severe fluctuations (fast fluctuations in the received wave level), not only would there be no effect, but there was a risk that it would even have the opposite effect. (Since there is at least the time interval between transmitting the transmitting waves toward the object to be measured, the level of the received waves may fluctuate during this time.) Therefore, fluctuations in the temperature of the ultrasonic propagation medium, etc. If this occurs, the received wave level will fluctuate, resulting in large errors in measurement values.

本発明は係る問題点を解決するためになされたものであ
り、受信波レベルが変動しても安定かつ高い測定精度で
、距離を測定できる超音波距離nj定装置を提供するこ
とを目的とするものである。
The present invention has been made to solve such problems, and an object of the present invention is to provide an ultrasonic distance nj determination device that can measure distance stably and with high measurement accuracy even when the received wave level fluctuates. It is something.

[問題点を解決子るための手段] 本発明に係る超音波路fi#J定装置は、測定対象物ま
での距離を測定するための第1の受信波の検出よりも所
定時間だけ早く、第1の受信波と略同一波形の第2の受
信波の振幅に比例する大きさの基準信号を出力する基準
信号出力手段と、基準信号により利得制御され、第1の
受信波を増幅する増幅手段と、増幅手段により増幅され
た第1の受信波が予め設定された第2の基準信号より大
きくなったときに受波信号を出力する比較手段とを備え
ている。
[Means for solving the problem] The ultrasonic path fi#J determination device according to the present invention detects the first received wave for measuring the distance to the object by a predetermined time, a reference signal output means for outputting a reference signal having a magnitude proportional to the amplitude of a second received wave having substantially the same waveform as the first received wave; and an amplifier whose gain is controlled by the reference signal to amplify the first received wave. and a comparing means for outputting a received signal when the first received wave amplified by the amplifying means becomes larger than a preset second reference signal.

[作用] 本発明においては、基準信号出力手段が第2の受信波の
振幅に比例する大きさの基準信号を出力し、増幅手段が
第1の基準信号により利得制御され、第1の受信波を増
幅し、比較手段が第1の受信波が第2の基準信号より大
きくなったときに、受渡信号を出力する。
[Function] In the present invention, the reference signal output means outputs a reference signal having a magnitude proportional to the amplitude of the second received wave, and the amplification means is gain-controlled by the first reference signal, so that the first received wave and the comparison means outputs a transfer signal when the first received wave becomes larger than the second reference signal.

[実施例] 第1図は本発明の一実施例に係る超音波距離測定装置の
回路ブロック図である。第1図において、1は所定周波
数のクロックパルスCPを出力するクロックパルス発生
回路、2はクロックパルス発生回路1のクロッグパルス
CPを適当に分周し、この装置の動作に必要なタイミン
グパルスTを出力するタイミング回路、3はタイミング
回路2から出力される送信指令信号Aにより、送信信号
Bを出力する送信回路、4は送信信号Bを超音波信号に
変換して、変換した超音波信号を測定対象物に向けて送
波する超音波送波器、5及び6は測定対象物で反射され
た超音波信号を受波し、電気信号に変換する超音波受波
器である。超音波送波器4、超音波受波器5は測定対象
物に対して等しい距離h1に近接配置されており、超音
波受波器6は超音波送波器4、超音波受波器5から距離
h2だけ離れた位置に近接配置されている。
[Embodiment] FIG. 1 is a circuit block diagram of an ultrasonic distance measuring device according to an embodiment of the present invention. In FIG. 1, 1 is a clock pulse generation circuit that outputs a clock pulse CP of a predetermined frequency, and 2 is a clock pulse generation circuit that appropriately divides the clock pulse CP of the clock pulse generation circuit 1 to generate a timing pulse T necessary for the operation of this device. A timing circuit 3 outputs a transmission signal B according to a transmission command signal A output from the timing circuit 2. A transmission circuit 4 converts the transmission signal B into an ultrasonic signal and measures the converted ultrasonic signal. The ultrasonic transmitters 5 and 6 that transmit waves toward the object are ultrasonic receivers that receive ultrasonic signals reflected by the object to be measured and convert them into electrical signals. The ultrasonic transmitter 4 and the ultrasonic receiver 5 are arranged close to the object to be measured at an equal distance h1, and the ultrasonic receiver 6 is arranged close to the object to be measured at an equal distance h1. It is placed in close proximity at a distance h2 from .

又、7は超音波受波器5が受波した受信波に対応する電
圧信号Cを出力する可変利得増幅回路、8は超音波受波
器6が受波した受信波に対応する電圧信号りを出力する
受信増幅回路、9は電圧信号りの最大値D  を検出し
、保持するピークホ1aX −ルド回路、10は電圧信号Cを基準電圧V  とre
「 比較し、電圧信号Cが基準電圧V  より大きいef ときはハイレベル「1」の比較信号を出力する電圧比較
器、11は電圧信号Cを通常Ovに設定されている基準
電圧VRと比較し、電圧信号Cが基準電圧VRをよぎっ
たときハイレベル「1」の比較信号を出力する電圧比較
器、12は電圧比較器10からハイレベル「1」の比較
信号が出力されると、電圧信号りの略1周期に相当する
幅のパルス信号Fを…力するモノステーブルマルチバイ
ブレーク、13は電圧比較器11からハイレベル「1」
の比較信号が出力されると、所定のパルス幅のゼロクロ
スパルスを出力するモノステーブルマルチバイブレータ
、14はモノステーブルマルチバイブレータ12及び1
3の出力がともに「1」のときにゼロクロスパルスGを
出力するアンドゲート、15はセット端子Sに送信指令
信号Aが、リセット端子RにゼロクロスパルスGが入力
され、出力端子Qからハイレベル「1」又はローレベル
rOJの信号Hを出力するフリップフロップ、1Bはフ
リップフロップ15の出力信号Hがハイレベル「1」の
間だケ、クロックパルスCPを出力するアンドゲート、
17はフリップフロップ15の出力信号Hがハイレベル
「1」である時間に対応するクロックパルスCPのパル
ス数をカウントするカウンタである。
Further, 7 is a variable gain amplifier circuit that outputs a voltage signal C corresponding to the received wave received by the ultrasonic receiver 5, and 8 is a voltage signal C corresponding to the received wave received by the ultrasonic receiver 6. 9 is a peak hold circuit that detects and holds the maximum value D of the voltage signal; 10 is a peak hold circuit that outputs the voltage signal C with reference voltage V;
11 compares the voltage signal C with the reference voltage VR which is normally set to Ov, and outputs a comparison signal of high level "1" when the voltage signal C is larger than the reference voltage V. , a voltage comparator that outputs a comparison signal of high level "1" when the voltage signal C crosses the reference voltage VR, and 12 outputs a comparison signal of high level "1" when the voltage signal C crosses the reference voltage VR; 13 is a monostable multi-by-break that outputs a pulse signal F with a width corresponding to approximately one cycle of the voltage, and 13 is a high level "1" from the voltage comparator 11.
14 is a monostable multivibrator that outputs a zero-cross pulse of a predetermined pulse width when a comparison signal of
15 is an AND gate that outputs a zero-cross pulse G when both outputs of 3 are "1", and a transmission command signal A is input to the set terminal S and a zero-cross pulse G is input to the reset terminal R of the AND gate 15, and a high level "1" or a flip-flop that outputs a signal H at a low level rOJ; 1B is an AND gate that outputs a clock pulse CP when the output signal H of the flip-flop 15 is between a high level "1";
A counter 17 counts the number of clock pulses CP corresponding to the time when the output signal H of the flip-flop 15 is at a high level "1".

上記のように構成した超音波距離測定装置の動作を第2
図に示したタイミングチャートに基いて説明する。第2
図において記号AからHで示した波形は第1図に示した
回路図の要部における出力波形を示す。
The operation of the ultrasonic distance measuring device configured as described above is explained in the second section.
This will be explained based on the timing chart shown in the figure. Second
In the figure, waveforms indicated by symbols A to H indicate output waveforms in the main parts of the circuit diagram shown in FIG.

送信回路3はタイミング回路2から送信指令信号Aが出
力されると(第2図(a)参照)、送信信号Bを出力す
る(第2図(b)参照)。又、送信指令信号Aの出力に
より、ピークホールド回路9はリセットされる。さらに
、フリップフロップ15が送信指令信号Aの出力により
セットされて、ハイレベル「1」の信号Hを出力するの
で、カウンタ17はクロックパルス発生回路1が出力す
るクロックパルスCPのパルス数を計数し始める。
When the transmitting circuit 3 receives the transmitting command signal A from the timing circuit 2 (see FIG. 2(a)), it outputs the transmitting signal B (see FIG. 2(b)). Furthermore, the peak hold circuit 9 is reset by the output of the transmission command signal A. Furthermore, since the flip-flop 15 is set by the output of the transmission command signal A and outputs a signal H of high level "1", the counter 17 counts the number of clock pulses CP output by the clock pulse generation circuit 1. start.

超音波送波器4は送信信号Bが入力されると、この送信
信号Bを超音波信号に変換して、送信波としてa−1定
対象物に向けて送波する。超音波受波器5及び6はそれ
ぞれ測定対象物で反射された超音波信号を受波し、電圧
信号に変換する。受信増幅回路8は超音波受波器6が出
力する電圧信号を増幅し、受信波に対応する大きさの電
圧信号りをピークホールド回路9に出力する(第2図(
d)参照)。
When the ultrasonic wave transmitter 4 receives the transmission signal B, it converts the transmission signal B into an ultrasonic signal and transmits it as a transmission wave toward the a-1 constant target object. The ultrasonic receivers 5 and 6 each receive an ultrasonic signal reflected by the object to be measured and convert it into a voltage signal. The reception amplification circuit 8 amplifies the voltage signal output from the ultrasonic receiver 6 and outputs a voltage signal corresponding to the received wave to the peak hold circuit 9 (see FIG. 2).
d)).

ピークホールド回路9は電圧信号りのピーク値を保持す
る。(第2図(e)参照)。
The peak hold circuit 9 holds the peak value of the voltage signal. (See Figure 2(e)).

一方、可変利得増幅回路7は超音波受波器5が出力する
電圧信号を増幅し、受信波に対応する大きさの電圧信号
Cを電圧比較器10及び11に出力する(第2図(c)
 、(d)参照)。この可変利得増幅回路7は電圧信号
Eが大きくなるのに反比例して、増幅利得が小さくなる
ようなフィードフォワードAGCが施されている。
On the other hand, the variable gain amplification circuit 7 amplifies the voltage signal output from the ultrasonic receiver 5 and outputs a voltage signal C having a magnitude corresponding to the received wave to the voltage comparators 10 and 11 (Fig. 2(c) )
, (d)). This variable gain amplifier circuit 7 is provided with feedforward AGC so that the amplification gain decreases in inverse proportion to the increase in the voltage signal E.

電圧比較器10は超音波受波器6に到達した超音波信号
に対応する電圧信号りよりも所定時間(h2/音速C)
だけ遅れて超音波受波器5に到達した超音波信号に対応
する電圧信号Cをトリガレベルとしての電圧信号V  
と比較しており、ef 電圧信号Cが電圧i信号V  より大きくなると、re
f’ ハイレベル「1」の比較信号を出力する。モノステーブ
ルマルチバイブレーク12は電圧比較器10がハイレベ
ル「1」の比較信号を出力すると、電圧信号りの略1周
期に相当する幅のパルス信号Fを出力する(第2図(f
’)参照)。
The voltage comparator 10 compares the voltage signal corresponding to the ultrasonic signal reaching the ultrasonic receiver 6 for a predetermined time (h2/sonic speed C).
A voltage signal V with the voltage signal C corresponding to the ultrasonic signal that has arrived at the ultrasonic receiver 5 with a delay of
, and when ef voltage signal C becomes larger than voltage i signal V, re
f' Outputs a high level "1" comparison signal. When the voltage comparator 10 outputs a comparison signal of high level "1", the monostable multi-by-break 12 outputs a pulse signal F with a width corresponding to approximately one period of the voltage signal (see Fig. 2 (f)
')reference).

ところで、受信増幅回路8が出力する電圧信号りは常に
受信増幅回路7が出力する電圧信号Cより時間(h2/
音速C)だけ早く到達する。
By the way, the voltage signal C output by the reception amplifier circuit 8 is always shorter than the voltage signal C output by the reception amplifier circuit 7 (h2/
It will arrive at the speed of sound C) faster.

又、超音波送波器4、超音波受波器5及び6を近接して
設置しているので、超音波受波器5及び6に対する超音
波の伝搬経路はほぼ同じであると見做せるので、媒質の
温度ムラ、その他の外乱により受信信号CとDとはほぼ
同様な変動をする。
Furthermore, since the ultrasonic transmitter 4 and the ultrasonic receivers 5 and 6 are installed close to each other, it can be assumed that the propagation paths of the ultrasonic waves to the ultrasonic receivers 5 and 6 are almost the same. Therefore, the received signals C and D fluctuate in almost the same way due to temperature irregularities in the medium and other disturbances.

さらに、可変利得増幅回路7の増幅利得は電圧信号Eが
大きくなるのに反比例して、増幅利得が小さくなるよう
なフィードフォワードAGCが施されているので、一定
の電圧信号Cを出力することになる。
Furthermore, since the amplification gain of the variable gain amplifier circuit 7 is subjected to feedforward AGC in which the amplification gain decreases in inverse proportion to the increase in the voltage signal E, it is possible to output a constant voltage signal C. Become.

従って、超音波受波器5が受波する超音波信号がどのよ
うに変動しても、電圧比較器10は一定の大きさの電圧
信号Cが基準電圧V  を越えた時ref’ 点でハイレベル「1」の比較信号を出力する。換言する
と、電圧比較器10は電圧信号Cが0から次第に増加し
ていき、例えば電圧信号Cの第3番目の山で基準電圧V
  を越えると、ハイレベルef 「1」の比較信号を出力することになる。
Therefore, no matter how the ultrasonic signal received by the ultrasonic receiver 5 fluctuates, the voltage comparator 10 will go high at the point ref' when the voltage signal C of a constant magnitude exceeds the reference voltage V. A comparison signal of level "1" is output. In other words, the voltage comparator 10 gradually increases the voltage signal C from 0, and for example, at the third peak of the voltage signal C, the reference voltage V is reached.
If it exceeds ef, a comparison signal of high level ef "1" will be output.

一方、電圧比較器11は電圧信号Cが基準電圧■Rをよ
ぎった時点(本実施例では正値から負値によぎった時点
)に、電圧信号Cに対応する受信波を受波した旨を示す
ハイレベル「1」の比較信号を出力する。モノステーブ
ルマルチバイブレータ13は電圧比較器11からハイレ
ベルrlJの比較信号が出力されると、電圧信号Cの略
1/2周期以下に相当するパルス幅のゼロクロスパルス
を出力する(第2図(g)参照)。
On the other hand, the voltage comparator 11 indicates that the received wave corresponding to the voltage signal C has been received at the time when the voltage signal C crosses the reference voltage ■R (in this embodiment, the time when the voltage signal C crosses from a positive value to a negative value). A comparison signal of high level "1" is output. When the voltage comparator 11 outputs the high level rlJ comparison signal, the monostable multivibrator 13 outputs a zero-cross pulse with a pulse width equivalent to approximately 1/2 cycle or less of the voltage signal C (see Fig. 2 (g)). )reference).

アンドゲート14はモノステーブルマルチバイブレータ
12及び13の出力の論理積をとり、電圧信号Cの特定
の山(例えば、電圧信号Cの第3番目の山)の直後のゼ
ロクロス点に対応するゼロクロスパルスGを出力する。
The AND gate 14 takes the AND of the outputs of the monostable multivibrators 12 and 13, and generates a zero-cross pulse G corresponding to the zero-cross point immediately after a specific peak of the voltage signal C (for example, the third peak of the voltage signal C). Output.

送信指令信号Aの出力によりセットされたフリップフロ
ップ15は、アンドゲート14のゼロクロスパルスGに
よりリセットされる。なお、電圧比較器11は電圧信号
Cがゼロクロス点をよぎる度毎にパルス信号を出力する
が、電圧信号Cが電圧信号V  を越えない限り、電圧
比較器10がハイレベrel’ ル「1」の比較信号を出力しないので、フリップフロッ
プ15はリセットされない。
The flip-flop 15 set by the output of the transmission command signal A is reset by the zero-cross pulse G of the AND gate 14. Note that the voltage comparator 11 outputs a pulse signal every time the voltage signal C crosses the zero-crossing point, but as long as the voltage signal C does not exceed the voltage signal V, the voltage comparator 10 outputs a pulse signal when the voltage signal C crosses the zero cross point. Since no comparison signal is output, the flip-flop 15 is not reset.

カウンタ■7はフリップフロップ15のリセットにより
、クロックパルスCPのパルス数の計数を停止する。従
って、カウンタ17は超音波の伝搬時間に相当する時開
t1及びトリガ遅延時間t2との和の時間だけ、クロッ
クパルスCPのパルス数の計数をすることになる(第2
図(h)参照)。トリガ遅延時間12は一定に保てるの
で、音速Cが既知で゛あれば、カウンタ17の計数値か
ら測定対象物までの距離を算出できることになる。
The counter 7 stops counting the number of clock pulses CP by resetting the flip-flop 15. Therefore, the counter 17 counts the number of clock pulses CP for the sum of the time opening t1 corresponding to the propagation time of the ultrasonic wave and the trigger delay time t2 (the second
(See figure (h)). Since the trigger delay time 12 can be kept constant, if the sound speed C is known, the distance to the object to be measured can be calculated from the count value of the counter 17.

なお、本実施例ではピークホールド回路9は受信増幅回
路8が出力する電圧信号りをそのまま、即ちキャリアの
段階でピークホールドするようにしたが、受信増幅回路
8が出力する電圧信号りを検波した後に、ピークホール
ド回路9に入力しても同様な効果が得られる。− 次に、第3図は本発明の一実施例に係る超音波距離n1
定装置の他の実施例の回路ブロック図である。なお、第
3図において第1図と同様な機能を果たす部分について
は同一の符号を付し、その説明は省略する。上記実施例
では超音波受波器を2個設け、先に受波した受信波に基
づいて、後に受波した受信波に対応する電圧信号の増幅
利得を制御していたが、本実施例では超音波受波器5を
一個だけ設け、受信波に対応する電圧信号りをピークホ
ールド回路9で保持するとともに、遅延回路18によっ
て所定時間だけ遅延させた電圧信号Cをを得ている。本
実施例の他の動作は第1図に示した実施例と全く同様で
あり、測定対象物までの距離に対応した計数値が得られ
る。本実施例においては、安定動作する遅延素子を使用
し、かつ遅延時間t、を既知の値に設定し、前述の如く
遅延時間t を一定に保ち、伝搬時間t1を 算 出 
する。
In this embodiment, the peak hold circuit 9 peak-holds the voltage signal output from the reception amplifier circuit 8 as it is, that is, at the carrier stage; however, the voltage signal output from the reception amplifier circuit 8 is detected. A similar effect can be obtained by inputting the signal to the peak hold circuit 9 later. - Next, FIG. 3 shows an ultrasonic distance n1 according to an embodiment of the present invention.
FIG. 3 is a circuit block diagram of another embodiment of the device. Note that in FIG. 3, parts that perform the same functions as those in FIG. 1 are designated by the same reference numerals, and a description thereof will be omitted. In the above embodiment, two ultrasonic receivers were provided, and the amplification gain of the voltage signal corresponding to the received wave received later was controlled based on the received wave received first, but in this example Only one ultrasonic receiver 5 is provided, a peak hold circuit 9 holds a voltage signal corresponding to the received wave, and a delay circuit 18 obtains a voltage signal C delayed by a predetermined time. The other operations of this embodiment are exactly the same as the embodiment shown in FIG. 1, and a count value corresponding to the distance to the object to be measured can be obtained. In this example, a delay element that operates stably is used, the delay time t is set to a known value, the delay time t is kept constant as described above, and the propagation time t1 is calculated.
do.

なお、遅延回路18は通常アナログ遅延素子が用いられ
るが、測定条件によってはCOD等のサンプリング型の
遅延素子を使うことも可能である。例えば、空中で測定
する場合に測定誤差を1!111以下にしようとすれば
、サンプリングクロックを1,7MHz以上で動作させ
れば、十分である。
Note that although an analog delay element is normally used as the delay circuit 18, a sampling type delay element such as a COD may also be used depending on the measurement conditions. For example, if you want to reduce the measurement error to 1!111 or less when measuring in the air, it is sufficient to operate the sampling clock at 1.7 MHz or higher.

このように、本実施例は受信信号として超音波受波器5
の出力のみを用いているので、変動が全く一致している
電圧信号り及びCを得ることができる上に、超音波送波
器4及び超音波受波器5の取り付は上の制約が軽減され
るという効果がある。
In this way, this embodiment uses the ultrasonic receiver 5 as a received signal.
Because only the output of It has the effect of being reduced.

[発明の効果] 本発明は以上説明したように、基準信号出力手段により
第2の受信波の振幅に比例する大きさの基準信号を出力
し、基準信号により利得制御される増幅手段により第1
の受信波を増幅し、第1の受信波と基準信号との相対関
係を常に一定に保った上で、比較手段が増幅された第1
の受信波が予め設定された第2の基準信号より大きくな
ったときに、受波信号を出力するので、受信波レベルの
変動の影響を受けずに、安定かつ正確に測定対象物まで
の距離を測定することができる超音波距離測定装置を得
ることができる。
[Effects of the Invention] As explained above, the present invention allows the reference signal output means to output a reference signal having a magnitude proportional to the amplitude of the second received wave, and the amplification means whose gain is controlled by the reference signal to output the first reference signal.
After amplifying the received wave of the first received wave and keeping the relative relationship between the first received wave and the reference signal constant, the comparing means
Since the received signal is output when the received wave becomes larger than the preset second reference signal, it is possible to stably and accurately measure the distance to the object without being affected by fluctuations in the received wave level. It is possible to obtain an ultrasonic distance measuring device that can measure .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超音波距離測定装置の回路ブロッ
ク図、第2図は上記ブロック図の各部の波形を示す波形
図、第3図は本発明の他の実施例に係る超音波距離測定
装置の回路プロ・ツク図、第4図は超音波のレベルが変
動する状況の説明図である。 1・・・クロックパルス発生回路、2・・・タイミング
回路、3・・・送信回路、4・・・超音波送波器、5.
6・・・超音波受波器、7・・・可変利得増幅回路、8
・・・受信増幅回路、9・・・ピークホールド回路、1
0.11・・・電圧比較器、12. ia・・・モノス
テーブルマルチバイブレータ、14.16・・・アンド
ゲート、15・・・フリップフロップ、17・・・カウ
ンタ、18・・・遅延回路。
FIG. 1 is a circuit block diagram of an ultrasonic distance measuring device according to the present invention, FIG. 2 is a waveform diagram showing waveforms of each part of the above block diagram, and FIG. 3 is an ultrasonic distance measuring device according to another embodiment of the present invention. FIG. 4, a circuit diagram of the measuring device, is an explanatory diagram of a situation in which the level of ultrasonic waves fluctuates. 1... Clock pulse generation circuit, 2... Timing circuit, 3... Transmission circuit, 4... Ultrasonic transmitter, 5.
6... Ultrasonic receiver, 7... Variable gain amplifier circuit, 8
...Reception amplifier circuit, 9...Peak hold circuit, 1
0.11... Voltage comparator, 12. ia... Monostable multivibrator, 14.16... AND gate, 15... Flip-flop, 17... Counter, 18... Delay circuit.

Claims (5)

【特許請求の範囲】[Claims] (1)測定対象物に向けて送信波を送波してから該測定
対象物で反射してきた受信波を受波するまでの超音波の
伝搬時間に基づいて、該測定対象物までの距離を測定す
る超音波距離測定装置において、前記測定対象物までの
距離を測定するための第1の受信波の検出よりも所定時
間だけ早く、該第1の受信波と略同一波形の第2の受信
波の振幅に対応する大きさの第1の基準信号を出力する
基準信号出力手段と、前記第1の基準信号により利得制
御され、前記第1の受信波を増幅する増幅手段と、前記
増幅手段により増幅された第1の受信波が予め設定され
た第2の基準信号より大きくなったときに、受波信号を
出力する比較手段と、を備えたことを特徴とする超音波
距離測定装置。
(1) Calculate the distance to the object to be measured based on the propagation time of the ultrasonic wave from when the transmitting wave is sent toward the object to when the received wave reflected by the object is received. In the ultrasonic distance measuring device to be measured, a second reception wave having substantially the same waveform as the first reception wave is received a predetermined time earlier than the detection of the first reception wave for measuring the distance to the object to be measured. a reference signal output means for outputting a first reference signal having a magnitude corresponding to the amplitude of the wave; an amplification means whose gain is controlled by the first reference signal and amplifies the first received wave; and the amplification means. 1. An ultrasonic distance measuring device comprising: comparison means for outputting a received signal when the first received wave amplified by the second reference signal becomes larger than a preset second reference signal.
(2)基準信号出力手段は、前記第1の受信波を受信す
る第1の超音波受波器に近い位置であって該第1の超音
波受波器よりも前記測定対象物に近い位置に設けられ、
前記第2の受信波を受信する第2の超音波受波器と、該
第2の受信波の最大値を検出し、保持するピークホール
ド回路とから構成されている特許請求の範囲第1項記載
の超音波距離測定装置。
(2) The reference signal output means is located at a position close to a first ultrasonic receiver that receives the first received wave and closer to the object to be measured than the first ultrasonic receiver. established in
Claim 1, comprising: a second ultrasonic receiver that receives the second received wave; and a peak hold circuit that detects and holds the maximum value of the second received wave. The ultrasonic distance measuring device described.
(3)基準信号出力手段は、前記第1の受信波を所定時
間遅延させる遅延回路と、該第1の受信波の最大値を検
出し、保持して、該第1の受信波の最大値を出力するピ
ークホールド回路とから構成されている特許請求の範囲
第1項記載の超音波距離測定装置。
(3) The reference signal output means includes a delay circuit that delays the first received wave for a predetermined time, detects and holds a maximum value of the first received wave, and detects and holds the maximum value of the first received wave. The ultrasonic distance measuring device according to claim 1, comprising a peak hold circuit that outputs a peak hold circuit.
(4)増幅手段は、前記基準信号に反比例するように増
幅利得を変化させる利得制御が行なわれる特許請求の範
囲第1項、第2項又は第3項のいずれかに記載の超音波
距離測定装置。
(4) The ultrasonic distance measurement according to claim 1, 2 or 3, wherein the amplification means performs gain control to change the amplification gain so as to be inversely proportional to the reference signal. Device.
(5)比較手段は、前記第1の受信波が前記基準信号よ
り大きくなった後に、該第1の受信波がゼロクロス点を
よぎったときに、前記受波信号を出力する特許請求の範
囲第1項、第2項、第3項又は第4項のいずれかに記載
の超音波距離測定装置。
(5) The comparison means outputs the received signal when the first received wave crosses a zero cross point after the first received wave becomes larger than the reference signal. The ultrasonic distance measuring device according to any one of Items 1, 2, 3, and 4.
JP25725287A 1987-10-14 1987-10-14 Ultrasonic range finder Pending JPH01100489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25725287A JPH01100489A (en) 1987-10-14 1987-10-14 Ultrasonic range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25725287A JPH01100489A (en) 1987-10-14 1987-10-14 Ultrasonic range finder

Publications (1)

Publication Number Publication Date
JPH01100489A true JPH01100489A (en) 1989-04-18

Family

ID=17303803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25725287A Pending JPH01100489A (en) 1987-10-14 1987-10-14 Ultrasonic range finder

Country Status (1)

Country Link
JP (1) JPH01100489A (en)

Similar Documents

Publication Publication Date Title
US4515021A (en) Intervalometer time measurement apparatus and method
US20180010943A1 (en) Ultrasonic gas flow meter based on fpga and dsp
EP3447534A1 (en) Laser ranging system and method employing time domain waveform matching technique
US20060247526A1 (en) Distance measurement method and device using ultrasonic waves
WO1998026309A1 (en) Method and device for ultrasonic ranging
CN101915923A (en) Supersonic sounding in the near region
CN109186693B (en) Self-adaptive ultrasonic echo signal detection circuit
WO2017181939A1 (en) Method of calibrating ultrasound transmission time for ultrasound flowmeter, system, and flowmeter
CN112162291A (en) Laser radar signal processing circuit and laser radar
US5436580A (en) Method and circuitry for determining the beginning of echo pulses
US3721986A (en) Range measuring system
JPH01100489A (en) Ultrasonic range finder
CN109073430B (en) Flow rate measuring device
JPH0810151B2 (en) Ultrasonic velocity measuring device
JPH01100490A (en) Ultrasonic range finder
JPH01100488A (en) Ultrasonic range finder
US3887871A (en) Variable quantity measuring devices
JP2539749B2 (en) Distance correction method for radar range finder
US3207988A (en) Pulse radar receiver
JPS58120119A (en) Ultrasonic wave flowmeter
JP2856042B2 (en) Radar equipment for vehicles
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
Kostina et al. Inaccuracy of acoustic measurements in dual-frequence method of sounding
JPS63298125A (en) Light receiver
JPS6394184A (en) Ultrasonic wave displacement detecting device