JPH01100443A - Method and apparatus for manufacturing sample for gamma-rays transmission measurement - Google Patents

Method and apparatus for manufacturing sample for gamma-rays transmission measurement

Info

Publication number
JPH01100443A
JPH01100443A JP62258093A JP25809387A JPH01100443A JP H01100443 A JPH01100443 A JP H01100443A JP 62258093 A JP62258093 A JP 62258093A JP 25809387 A JP25809387 A JP 25809387A JP H01100443 A JPH01100443 A JP H01100443A
Authority
JP
Japan
Prior art keywords
sample
measured
vacuum pump
circular
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62258093A
Other languages
Japanese (ja)
Inventor
Yoko Kitano
北野 葉子
Yoshihisa Kono
吉久 河野
Masato Shimizu
真人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62258093A priority Critical patent/JPH01100443A/en
Publication of JPH01100443A publication Critical patent/JPH01100443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sample for measurement with a better S/N of spectrum irrelevant to the size and unevenness of a powder sample to be measured, by repeating an operation of evacuating and returning the pressure to amt. within a circular frame. CONSTITUTION:A circular frame 12 into which a specified amount of a mixed liquid 11 flows as obtained by mixing a solution having a thermoplastic resin dissolved in an organic solvent with a powder sample to be measured is provided in a closed container 13, which is connected to a piping 17 and an air piping 16 to a vacuum pump 15 through a three-way changeover valve 14. The tree-way changeover value 14 is opened on the side of the vacuum pump 15 and the vacuum pump 15 is driven to evacuate inside the circular frame 12. Then, the vacuum pump 15 is stopped and the three-way changeover valve 14 switched to return the pressure in the cylindrical frame 12 to atm. By repeating the operation of evacuating and returning the pressure to atm., gas generated is reduced gradually thereby enabling the obtaining of a bubble-free dry sample being measured.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はメスバウアー分光法等のγ線透過測定用試料の
製造方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method and apparatus for producing a sample for measuring gamma ray transmission in methods such as Mössbauer spectroscopy.

「従来の技術」 メスバウアー分光法は、原子核のエネルギー準位が原子
配列、核周囲の電子雲の位置で変化することを利用して
、γ線のエネルギーをドツプラー効果でわずかに変化さ
せながら測定用試料に照射し、原子核に共鳴吸収させて
(メスバウアー効果)エネルギー準位の変化を正確に検
知し、イオン化や結晶状態、磁気特性等を知る方法であ
り、化学分野や物性分野、金属学の分野等で利用され、
特に強磁性体の分野では内部磁場の大きさや磁気モーメ
ントの向き、磁気転移や緩和現象の解明に重要な働きを
している。
"Conventional technology" Mössbauer spectroscopy uses the fact that the energy level of an atomic nucleus changes depending on the atomic arrangement and the position of the electron cloud around the nucleus, and measures the energy of gamma rays while slightly changing them due to the Doppler effect. It is a method that accurately detects changes in energy levels by irradiating a sample and causing resonance absorption in the atomic nuclei (Mössbauer effect), and determining ionization, crystalline state, magnetic properties, etc. It is used in the fields of
Particularly in the field of ferromagnets, it plays an important role in elucidating the magnitude of internal magnetic fields, the direction of magnetic moments, magnetic transitions, and relaxation phenomena.

スペクトル測定方法は、数通りあるが、γ線照射後、測
定用試料後方に設けた検出器で、試料を通過したγ線を
測定する透過法と、試料前方に設けた検出器で、二次的
に引き起こされた電子、X線や再放出したγ線を測定す
る反射法とに大別される。特に透過法は試料全体から情
報を得ることができ、試料の平均的特徴を得るために優
れている。
There are several methods for spectrum measurement, including the transmission method, which measures the gamma rays that have passed through the sample with a detector placed behind the measurement sample after irradiation with gamma rays, and the secondary method, which uses a detector placed in front of the sample. It is broadly divided into two types: reflection methods, which measure electrons, X-rays, and re-emitted gamma rays caused by In particular, the transmission method can obtain information from the entire sample and is excellent for obtaining the average characteristics of the sample.

測定用試料の形状は、薄板や粉末がほとんどで、特に粉
末は作成し易いなどの理由から広く用いられているが、
透過法の場合には、粉末を固めて薄い箔に成形する必要
がある。このような測定用試料の製造方法として、セロ
ハンテープや粘着シート等に被測定用の粉末試料をふり
かけて決む方法と、発泡スチロールを溶かした溶液に被
測定用の粉末試料を混合したのち得られた混合液を、第
8図及び第9図に示す表面が水平な底壁となる台座1上
に円筒2を付設した円形型枠に流し込んで自然乾燥する
方法がよく知られている。
Most measurement samples are in the form of thin plates or powders, and powders are widely used because they are easy to prepare.
In the case of the transmission method, the powder must be consolidated and formed into a thin foil. There are two methods for producing such measurement samples: one is to sprinkle the powder sample to be measured on cellophane tape or an adhesive sheet, and the other is to mix the powder sample to be measured in a solution containing styrofoam. A well-known method is to pour the mixed liquid into a circular mold having a cylinder 2 attached to a pedestal 1 with a horizontal bottom wall as shown in FIGS. 8 and 9, and then air dry it.

「発明が解決しようとする問題点」 γ線透過測定用試料として必要なことは、(1)γ線の
減衰が少ないように、できるだけ薄く、理想的には20
μ−以下にすること、(2)γ線がメスバウアー効果を
起こさずに試料を通り抜はバックグラウンドをあげる要
因となるすき間を作らないこと、(3)厚みを均一にす
ること、(4)検出器の窓より大きい面積に作ること、
(5)測定用試料を垂直にして使う構成の装置が多く、
かつ数日間にわたる測定もあるため、その間に変化した
り、崩れたりしないことなどである。
"Problems to be Solved by the Invention" A sample for measuring gamma ray transmission must be (1) as thin as possible to minimize attenuation of gamma rays, ideally with a
μ- or less, (2) γ-rays should pass through the sample without causing the Mössbauer effect without creating gaps that would increase the background, (3) The thickness should be uniform, (4) ) be made in an area larger than the detector window;
(5) Many devices have a configuration in which the measurement sample is held vertically.
Moreover, since measurements are sometimes carried out over several days, it is important that the material does not change or collapse during that time.

ところで、上記セロハンテープ等にふりかける方法は、
すき間がなく、かつ厚みを均一に作成するのが難しいと
いう問題点がある。即ち、均一な厚みにするためには、
被測定用の粉末試料をふりかけたのち余分な試料を払い
落とす必要があるが、細かい粒子の場合には必要量の試
料が接着せず、又、粗い粒子の場合にはすき間ができ、
不ぞろいの場合はその両方が起こり、いずれも対応でき
ない欠点を生じる。
By the way, the method of sprinkling it on the cellophane tape etc. mentioned above is as follows.
There are problems in that it is difficult to create a uniform thickness without any gaps. That is, in order to make the thickness uniform,
After sprinkling the powder sample to be measured, it is necessary to shake off the excess sample, but if the particles are fine, the required amount of sample may not adhere, and if the particles are coarse, gaps may be created.
If they are not aligned, both of these will occur, resulting in defects that cannot be addressed in either case.

上記自然乾燥する方法は、被測定用の粉末試料の量が多
い場合には混合する溶液の量も多くなり、円形型枠に混
合液を入れたときの液深が増して乾燥し難くなり、乾燥
の途中で表面に薄膜を生じ、新たに内部から発生した溶
媒の気泡が閉じこめられ、その部分だけ異なるγ線減衰
になるという問題点がある0例えば、被測定用の粉末試
料が100喀で円筒の内径が50mの円形型枠を用いた
場合に混合液として約”1mJ以上ないと乾燥したとき
に熱可塑性プラスチックによる支持膜が粉末試料を保持
できず崩れるので、これを防ぐために液量を増加すると
その深さが1■を越えることになる。
In the above-mentioned method of natural drying, when the amount of powder sample to be measured is large, the amount of solution to be mixed will also be large, and the depth of the mixed solution will increase when poured into the circular mold, making it difficult to dry. There is a problem that a thin film is formed on the surface during drying, and the bubbles of the solvent newly generated from inside are trapped, resulting in different gamma ray attenuation in that part.For example, if the powder sample to be measured is 100 ml, When using a circular formwork with a cylindrical inner diameter of 50 m, if the mixed liquid does not exceed approximately 1 mJ, the thermoplastic support film will not be able to hold the powder sample and will collapse when it dries. To prevent this, the liquid volume should be reduced. If it increases, the depth will exceed 1■.

又、大きな気泡を生じた場合は、測定用試料中にすき間
ができるため、メスバウアースペクトルのS/Nが低下
するという問題点がある。
Furthermore, when large bubbles are generated, gaps are created in the measurement sample, resulting in a problem that the S/N of the Mössbauer spectrum is reduced.

更に、混合液の液量が多い場合には自然乾燥する間に円
筒2に沿って混合物が残るため表面の平坦な測定用試料
が作れない、そのため、台itの表面を時針皿状の曲率
のある面にした円形型枠も用いられるが、その場合には
測定用試料の大きさ及び厚みの制御が困難であるという
問題点がある。
Furthermore, if the amount of the mixed liquid is large, the mixture will remain along the cylinder 2 during air drying, making it impossible to prepare a measurement sample with a flat surface. A circular mold with a certain surface is also used, but in that case there is a problem in that it is difficult to control the size and thickness of the measurement sample.

本発明は上記問題点を除去したγ線透過測定用試料の製
造方法とその装置を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a sample for gamma-ray transmission measurement and an apparatus therefor, which eliminates the above-mentioned problems.

「問題点を解決するための手段」 本発明の第1発明は、熱可塑性プラスチックを有機溶媒
にて溶解した溶液と、被測定用の粉末試量とを混合して
得られた混合液を円形型枠に流し込み、次いで該円形型
枠中で真空引きと大気圧戻しを複数回繰り返すことによ
ってγ線透過測定用試料を製造方法である。
"Means for Solving the Problems" The first aspect of the present invention is to mix a solution obtained by dissolving a thermoplastic plastic in an organic solvent and a sample amount of powder to be measured, and to form a mixed solution in a circular shape. This is a method for producing a sample for gamma ray transmission measurement by pouring into a mold, and then repeating evacuation and return to atmospheric pressure multiple times in the circular mold.

又、本発明の第2発明は、切換弁を介して真空吸引手段
への配管と大気配管とを有する密閉容器と、該密閉容器
内に設置され、熱可塑性プラスチックを有機溶媒にて溶
解した溶液と被測定用の粉末試料とを混合して得られた
混合液を流し込むための円形型枠とからなり、該円形型
枠を、底壁となる台座と、該台座上に固設され上下二面
が水平な柱伏又は截u!!形状の中子と、該中子上面の
外周縁において1龍以下のクリアランスを存して付設さ
れて周壁となる円筒とで形成されるγ線透過測定用試料
の製造装置である。
Further, a second aspect of the present invention provides a closed container having piping to a vacuum suction means and atmospheric piping via a switching valve, and a solution dissolving a thermoplastic plastic in an organic solvent installed in the sealed container. The circular mold consists of a pedestal serving as a bottom wall, and two upper and lower parts fixed on the pedestal. A pillar with a horizontal surface or a cut u! ! This is an apparatus for producing a sample for gamma ray transmission measurement, which is formed by a core having the same shape and a cylinder that is attached to the outer peripheral edge of the upper surface of the core and serves as a peripheral wall with a clearance of one dragon or less.

本発明において用いる熱可塑性プラスチックは、発泡ス
チロール、塩化ビニル等軽い元素で構成され密度が小さ
くγ線減衰の小さいものが好ましい。
The thermoplastic plastic used in the present invention is preferably one composed of a light element such as expanded polystyrene or vinyl chloride, and has a low density and low gamma ray attenuation.

本発明において用いる有機溶媒は、テトラヒドロフラン
、アセトン、エタノール、メタノール、ジクロルエチレ
ン等上記熱可塑性プラスチックに対する溶解炭が大きく
、かつ蒸発の速いものが好ましい。
The organic solvent used in the present invention is preferably one that has a large amount of dissolved carbon in the thermoplastic plastic and evaporates quickly, such as tetrahydrofuran, acetone, ethanol, methanol, and dichloroethylene.

被測定用の粉末試料の粒度は、特に限定しない。The particle size of the powder sample to be measured is not particularly limited.

本発明において用いる円形型枠は第8図に示すもののほ
か後述する第2図〜第7図のものを用いることができる
As the circular formwork used in the present invention, in addition to the one shown in FIG. 8, those shown in FIGS. 2 to 7, which will be described later, can be used.

次に、第1図によって本発明の製造方法の一例を説明す
る。
Next, an example of the manufacturing method of the present invention will be explained with reference to FIG.

先ず熱可塑性プラスチックを有機溶媒にて溶解した溶液
と、被測定用の粉末試料とを混合して得られた混合液1
1の所定量を流し込んだ円形型枠12を、密閉容器13
として例えば真空ペルジャーの中に設け、該真空ペルジ
ャーを三方切換弁14を介して真空ポンプ15への配管
及び大気配管16に接続する。 17は管である。三方
切換弁14を真空ポンプ15側に開き、真空ポンプ15
を駆動させて円形型枠12内を真空引きする。真空度は
特に限定しない。
First, a mixed solution 1 obtained by mixing a solution of thermoplastic plastic dissolved in an organic solvent and a powder sample to be measured.
A circular mold 12 into which a predetermined amount of 1 is poured is placed in an airtight container 13.
For example, it is installed in a vacuum pelger, and the vacuum pelger is connected to a pipe to a vacuum pump 15 and an atmospheric pipe 16 via a three-way switching valve 14. 17 is a tube. Open the three-way switching valve 14 to the vacuum pump 15 side, and
is driven to evacuate the inside of the circular formwork 12. The degree of vacuum is not particularly limited.

次に真空ポンプ15を止め三方切換弁14を切換えて円
形型枠12内を大気圧に戻す、この真空引きと大気圧戻
しの間かくは特に限定しない。
Next, the vacuum pump 15 is stopped and the three-way switching valve 14 is switched to return the inside of the circular formwork 12 to atmospheric pressure. The time between evacuation and return to atmospheric pressure is not particularly limited.

上記真空引きと大気圧戻しを繰り返すことにより次第に
発生ガスが減り膜のふくらみが小さくなり遂には平坦な
表面に収束し、気泡のない乾燥した測定用試料を得るこ
とができる。上記方法により時計皿状の台座を用いるこ
とな(、厚みの均一な平らな測定用試料が得られる。
By repeating the above evacuation and return to atmospheric pressure, the gas generated gradually decreases and the bulge of the membrane becomes smaller until it finally converges to a flat surface, making it possible to obtain a dry measurement sample free of bubbles. By the above method, a flat measurement sample with a uniform thickness can be obtained without using a watch glass-shaped pedestal.

なお、上記円形型枠12としては、第8図に示すものの
ほか、底壁となる台座と、該台座上に固設され上下二面
が水平な、柱状又は截M錐形状の中子と、該中子上面の
外周縁においてl +ia以下のクリアランスを存して
付設されて周壁となる円筒とで形成される円形型枠12
を用いることができる。
In addition to the one shown in FIG. 8, the circular formwork 12 includes a pedestal serving as a bottom wall, and a columnar or M-cone-shaped core that is fixed on the pedestal and whose upper and lower surfaces are horizontal. A circular formwork 12 formed by a cylinder attached to the outer peripheral edge of the upper surface of the core with a clearance of less than l+ia and serving as a peripheral wall.
can be used.

第2図〜第7図はその一例で、18は中子である。FIGS. 2 to 7 are examples, and 18 is a core.

これらはいずれも中子と台座を一体に加工したものであ
ってもよい、これらの円形型枠は、特に混合液の液量が
多い場合に混合液が円筒の内壁面に沿って立ち上がるの
を防止するようにしたものである。即ち、立ち上がり現
象は、立ち上がった部分の全重量とぬれの力とのバラン
スで決まるものであるから、上記円形型枠に混合液を流
し込むと、混合液は中子18上面の外周縁での立ち上が
りが上記クリアランス分だけ中子18上面の外周縁から
外方へせり出すため、ぬれの力で立ち上がり部分の重量
を支えられず、立ち上がり高さが低くなり立ち上がり部
分の重量は減少する。立ち上がり高さが低くなるとぬれ
の力が弱くなって更に高さが低くなり、立ち上がり部分
の全重量とぬれの力が均衡するまで高さが低くなって王
冠形状を解消することができる。ただし、上記クリアラ
ンスをあまり大きくすると混合液の落ち込みが著しくな
るので1鶴以下がよい、又、混合液の粘度に応じて適宜
の形状の中子を選択することができる。
All of these may be made by processing the core and the pedestal as one unit.These circular forms prevent the mixed liquid from rising along the inner wall surface of the cylinder, especially when the amount of the mixed liquid is large. It is designed to prevent this. That is, the rising phenomenon is determined by the balance between the total weight of the rising part and the wetting force, so when the mixed liquid is poured into the circular form, the mixed liquid rises at the outer periphery of the upper surface of the core 18. protrudes outward from the outer periphery of the upper surface of the core 18 by the above-mentioned clearance, so the weight of the rising portion cannot be supported by the force of wetting, and the rising height becomes low and the weight of the rising portion decreases. When the rising height becomes lower, the wetting force becomes weaker and the height becomes further lower, and the height becomes lower until the total weight of the rising part and the wetting force are balanced, and the crown shape can be eliminated. However, if the above-mentioned clearance is made too large, the drop of the mixed liquid becomes significant, so it is preferable that the clearance is 1 crane or less, and a core of an appropriate shape can be selected depending on the viscosity of the mixed liquid.

「作用」 混合液の表層が固まらないうちに円形型枠内を真空引き
することにより、溶媒ガスの蒸発速度をはやめ気泡が強
制排気される。それでも混合液表面に薄膜ができるが、
大気圧戻しをすることにより流入する空気の圧力で薄膜
が破られる。この真空引きと大気圧戻しを繰り返すこと
により次第に乾燥と朧気が行われる。
``Operation'' By evacuating the inside of the circular mold before the surface layer of the liquid mixture hardens, the evaporation rate of the solvent gas is slowed and air bubbles are forcibly exhausted. Although a thin film still forms on the surface of the mixture,
By returning to atmospheric pressure, the thin film is ruptured by the pressure of the inflowing air. By repeating this evacuation and return to atmospheric pressure, drying and hazy air are gradually carried out.

又、円形型枠内に中子を設け、咳中子上面の外周縁にお
いてクリアランスを存して円筒を付設することにより混
合液の立ち上がりを防止することができる。
Further, by providing the core in a circular mold and attaching a cylinder with a clearance at the outer periphery of the upper surface of the cough core, it is possible to prevent the liquid mixture from rising.

「実施例コ 市販の発泡スチロール400■を市販のテトラヒドロフ
ラン4mlにてf4解した溶液と、直径が1〜IOμm
の不均一なマグネタイト粉末150■とを混合して得ら
れた混合液を、内径5oIjの円筒を有する第7図に示
す円形型で中子上面のり1周縁において0.1龍のクリ
アランスを有する枠に流し込み、これを真空ペルジャー
に入れアスピレータ−で約0、ITorrに真空引きし
たのち、ペルジャーのコックを開き大気圧に戻した。こ
の真空引きと大気圧戻しを5回繰り返して平坦な測定用
試料を得た。
``Example - A solution of commercially available expanded polystyrene 400 mm dissolved in f4 in 4 ml of commercially available tetrahydrofuran, and a diameter of 1 to IO μm.
The mixed liquid obtained by mixing 150 cm of non-uniform magnetite powder was placed in a circular frame shown in FIG. The mixture was poured into a vacuum Pel jar and evacuated to approximately 0 and IT Torr using an aspirator, and the cock of the Pel jar was opened to return the pressure to atmospheric pressure. This evacuation and return to atmospheric pressure were repeated five times to obtain a flat measurement sample.

この試料を18.4mC1の1coをγ線の線源に用い
て3時間積算しメスバウアースペクトルを得た。このス
ペクトルのS/Nは良好なものであった。
This sample was integrated for 3 hours using 1co of 18.4 mC1 as a gamma ray source to obtain a Mössbauer spectrum. The S/N of this spectrum was good.

「発明の効果」 以上述べた如く、本発明のT線透過測定用試料の製造方
法によれば、円形型枠内で真空引きと大気圧戻しを繰り
返すという簡単な方法で、被測定用の粉末試料の大きさ
や不均一さに関係なくスペクトルのS/Nの良好な測定
用試料を得ることができ、磁石や磁気テープ等の材料で
あるフェライト粒子の特性評価が精密にできる。又、最
近開発の進んでいるMi微粒子や鉄粉等の特性評価もよ
り精密にできる。更に、化学分野においても被−j走用
の粉末試料の粒径をそろえる必要がなく、そのままの状
態で測定用試料が作れるため、反応性の高い試料の測定
が容易になる。
"Effects of the Invention" As described above, according to the method of manufacturing a sample for T-ray transmission measurement of the present invention, the powder to be measured can be prepared by a simple method of repeatedly evacuation and return to atmospheric pressure in a circular mold. A measurement sample with a good spectrum S/N ratio can be obtained regardless of sample size or non-uniformity, and characteristics of ferrite particles, which are materials for magnets, magnetic tapes, etc., can be precisely evaluated. Furthermore, the characteristics of Mi particles, iron powder, etc., which have been recently developed, can be evaluated more precisely. Furthermore, in the chemical field, there is no need to make the particle sizes of powder samples for running parallel to each other, and samples for measurement can be prepared as they are, making it easy to measure highly reactive samples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る製造装置の一例を示すフロー図、
第2図及び第4図〜第7図は中子を有する円形型枠の一
例を示す縦断面図、第3図は第2図の円形型枠の平面図
、第8図は従来例の円形型枠の縦断面図、第9図は同平
面図である。
FIG. 1 is a flow diagram showing an example of a manufacturing apparatus according to the present invention;
Figures 2 and 4 to 7 are longitudinal sectional views showing an example of a circular formwork having a core, Figure 3 is a plan view of the circular formwork shown in Figure 2, and Figure 8 is a conventional circular formwork. A vertical cross-sectional view of the formwork and FIG. 9 are plan views thereof.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性プラスチックを有機溶媒にて溶解した溶
液と、被測定用の粉末試料とを混合して得られた混合液
を円形型枠に流し込み、次いで該円形型枠中で真空引き
と大気圧戻しを複数回繰り返すことを特徴とするγ線透
過測定用試料の製造方法。
(1) Pour the mixed solution obtained by mixing a solution of thermoplastic plastic in an organic solvent and a powder sample to be measured into a circular mold, and then vacuum the same in the circular mold. A method for producing a sample for gamma ray transmission measurement, characterized by repeating atmospheric pressure return multiple times.
(2)切換弁を介して真空吸引手段への配管と大気配管
とを有する密閉容器と、該密閉容器内に設置され、熱可
塑性プラスチックを有機溶媒にて溶解した溶液と被測定
用の粉末試料とを混合して得られた混合液を流し込むた
めの円形型枠とからなり、該円形型枠を、底壁となる台
座と、該台座上に固設され上下二面が水平な柱状又は截
頭錐形状の中子と、該中子上面の外周縁において1mm
以下のクリアランスを存して付設されて周壁となる円筒
とで形成されることを特徴とするγ線透過測定用試料の
製造装置。
(2) A closed container that has piping to a vacuum suction means and atmospheric piping via a switching valve, and a solution containing a thermoplastic plastic dissolved in an organic solvent and a powder sample to be measured, which are installed inside the closed container. It consists of a circular formwork for pouring the mixed liquid obtained by mixing the above, and a pedestal serving as a bottom wall, and a columnar or cut-out shape fixed on the pedestal and having two horizontal sides, the top and the bottom. A cone-shaped core and a 1mm diameter at the outer periphery of the upper surface of the core.
1. An apparatus for manufacturing a sample for gamma-ray transmission measurement, characterized in that it is formed of a cylinder that is attached with the following clearance and serves as a peripheral wall.
JP62258093A 1987-10-13 1987-10-13 Method and apparatus for manufacturing sample for gamma-rays transmission measurement Pending JPH01100443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258093A JPH01100443A (en) 1987-10-13 1987-10-13 Method and apparatus for manufacturing sample for gamma-rays transmission measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258093A JPH01100443A (en) 1987-10-13 1987-10-13 Method and apparatus for manufacturing sample for gamma-rays transmission measurement

Publications (1)

Publication Number Publication Date
JPH01100443A true JPH01100443A (en) 1989-04-18

Family

ID=17315412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258093A Pending JPH01100443A (en) 1987-10-13 1987-10-13 Method and apparatus for manufacturing sample for gamma-rays transmission measurement

Country Status (1)

Country Link
JP (1) JPH01100443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193288B2 (en) 2002-04-19 2007-03-20 Asahi Kasei Electronics Co., Ltd. Magnetoelectric transducer and its manufacturing method
JP2007285709A (en) * 2006-04-12 2007-11-01 Canon Inc Method for manufacturing radiation imaging apparatus and radiation imaging system
US7567078B2 (en) 2004-12-28 2009-07-28 Asahi Kasei Emd Corporation Magnetic rotation-angle sensor and angle-information processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193288B2 (en) 2002-04-19 2007-03-20 Asahi Kasei Electronics Co., Ltd. Magnetoelectric transducer and its manufacturing method
US7567078B2 (en) 2004-12-28 2009-07-28 Asahi Kasei Emd Corporation Magnetic rotation-angle sensor and angle-information processing device
JP2007285709A (en) * 2006-04-12 2007-11-01 Canon Inc Method for manufacturing radiation imaging apparatus and radiation imaging system

Similar Documents

Publication Publication Date Title
Lee et al. Absorption of impinging water droplet in porous stones
Salley et al. Measurement of the adsorption of surface-active agents at a solution/air interface by a radiotracer method
FI922789A (en) PROCEDURE FOR THE FRAMEWORK OF ARTICLES AV ETT COMPOSITICAL MATERIAL WITH ALUMINUM OXIDE MATRIX
JPH01100443A (en) Method and apparatus for manufacturing sample for gamma-rays transmission measurement
US4350607A (en) Detector and dosimeter for neutrons and other radiation
US3732736A (en) System for adsorption measurement
US4143274A (en) Detector and dosimeter for neutrons and other radiation
Dittrich et al. Mini-columns for conducting breakthrough experiments: Design and construction
CN102944567B (en) X-ray radiography detecting method for plastic package electron components
Aruev et al. Gas samples with a mixture of hydrogen isotopes and 3 He for NMR spectroscopy and estimation of the magnetic moment of the 3 He nucleus
Williamson et al. Thin films for x− ray astronomy
CN109085639B (en) A kind of133Preparation of Xe simulation gas source and detection efficiency correction method
Fry An ultrasonic projector design for a wide range of research applications
Goldberg et al. Method for determining dissolution rates of multiparticulate systems
CN108957519A (en) A kind of preparation method in radgas mock standard source
JPS6039803Y2 (en) Liquid sample container for fluorescence X-ray analysis
Radjy et al. Internal friction peaks due to adsorbed and capillary water in microporous substances
Verdingh The preparation of powder samples
CN218271311U (en) PET film shock resistance check out test set
CN108195685A (en) A kind of fine add load control of static pressure bubble test and its application method
JP2001033404A (en) Moisture ratio measuring method
Moh’d Predicting Mercury Intrusion-Derived Pore Structural Elements of Limestone From Routinely Measured Petrophysical Properties
Snel A simple, inexpensive microvolumeter for the determination of the apparent density of fine, highly porous particles in a powder
Reichard et al. Preparation of Nonmetallurgical Specimens for Electron-Probe Microanalysis.
El Tabbal Drying behavior of concrete: application to nuclear waste packages