JPH01100332A - Feed air flow control device - Google Patents

Feed air flow control device

Info

Publication number
JPH01100332A
JPH01100332A JP62254551A JP25455187A JPH01100332A JP H01100332 A JPH01100332 A JP H01100332A JP 62254551 A JP62254551 A JP 62254551A JP 25455187 A JP25455187 A JP 25455187A JP H01100332 A JPH01100332 A JP H01100332A
Authority
JP
Japan
Prior art keywords
valve
valve body
air flow
flow control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62254551A
Other languages
Japanese (ja)
Inventor
Hideki Honma
英樹 本間
Hajime Seki
関 源
Koichiro Yamada
浩一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP62254551A priority Critical patent/JPH01100332A/en
Publication of JPH01100332A publication Critical patent/JPH01100332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To improve the control precision by arranging an air flow control section constituted of a thermo-sensitive valve and the electrically controlled second air flow control section face to face and mutually interlocking them in an air flow control valve opening or closing a bypass passage detouring a throttle valve in response to the operation state. CONSTITUTION:In an air flow control valve provided on a bypass passage detouring the throttle valve of an intake passage, a solenoid 1 is arranged on one end of a casing provided with an outflow port 2 and an inflow port 3 of air, a plunger 17 is made movable to the left against a spring body 13 by its excitation. A diaphragm 6 is connected to a hollow shaft body 19 brought into contact with the smooth surface 22 of this plunger 18 to form a pressure adjusting chamber 18, and the first valve body 9 is arranged on this shaft body 19. The other end of the shaft body 19 is slidably inserted into the hollow section 11 of the second valve body 10 facing the first valve body 9, and this second valve body 10 is supported by a thermo-sensitive section 12 arranged with a movable section 15 responding to the temperature of the cooling water via a spring body 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料噴射式エンジンにおける吸入空気量を制
御する空気流量制御弁に関し、吸気通路のスロットル弁
をバイパスするバイパス通路をエンジン温度、運転状態
に応じてそれぞれ開閉する機能を有するものに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an air flow control valve that controls the amount of intake air in a fuel injection engine. It relates to something that has the function of opening and closing depending on the state.

〔従来の技術〕[Conventional technology]

従来、燃料噴射式エンジンにおいて、吸気通路のスロッ
トル弁をバイパスするバイパス通路に、特開昭59−8
0584にみられるようにエンジン冷却水温に応じて応
動する感温バルブを設けたものや、一方特願昭61−8
8009に示されるようにエンジンの運転状態に応じて
開閉する電磁バルブを設けた空気流量制御弁が知られて
いる。
Conventionally, in a fuel-injected engine, a bypass passage that bypasses a throttle valve in an intake passage is provided with the
0584, which is equipped with a temperature-sensitive valve that responds to the engine cooling water temperature;
As shown in No. 8009, an air flow control valve is known which is provided with a solenoid valve that opens and closes depending on the operating state of the engine.

時開59−134360においては、空気流量の冷却水
温に対する特性の変動が大きく、精度上生産性が低い。
In the case of time opening 59-134360, the characteristics of the air flow rate with respect to the cooling water temperature fluctuate greatly, and the productivity is low in terms of accuracy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術において、前者においては温度にのみ依存
するため、応答性も悪くエンジンの運転状態に応じたき
め細かな制御が不可能であり、また後者においては、比
較的応答性の良い制御ができても、電気的なトラブル等
で暴走あるいは全機能を停止するなど不安全な構成とな
り、第三の例では、生産性が煩る悪いなどの問題を有し
ている。
In the above-mentioned conventional technologies, the former depends only on temperature and has poor responsiveness, making it impossible to perform fine control according to the operating state of the engine, while the latter does not allow for control with relatively good responsiveness. In the third example, there are problems such as problems such as running out of control or stopping all functions due to electrical troubles, etc., and in the third example, productivity is hindered.

本発明の目的は、こうした二つの欠点を補い、かつ簡略
で、廉価で生産性あり、小形でコンパクトな空気流量制
御装置弁を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome these two drawbacks and to provide an air flow control device valve that is simple, inexpensive, productive, small, and compact.

〔問題点を解決するための手段〕[Means for solving problems]

′   上記目的は、従来の感温バルブより構成する第
一の空気流量制御部と、電磁バルブ等を配設して電気的
に応動する第二の空気流量制御部とを対向して配設し、
第二の空気流量制御部のバルブ弁体と第一の空気流量制
御部のバルブ弁体を対向して互いに当接して、第二のバ
ルブ弁体とバルブシートの開閉による第二の流路の開閉
弁部形成し、第一のバルブ弁体と第二のバルブ弁体との
開閉による第一の流路の開閉弁部形成した。
' The above purpose is to arrange a first air flow control section consisting of a conventional temperature-sensitive valve and a second air flow control section that is electrically responsive by disposing a solenoid valve etc. to face each other. ,
The valve body of the second air flow control unit and the valve body of the first air flow rate control unit are opposed to each other and in contact with each other, and the second flow path is controlled by opening and closing the second valve body and the valve seat. An on-off valve section was formed, and an on-off valve section for the first flow path was formed by opening and closing the first valve body and the second valve body.

〔作用〕[Effect]

第一の流量制御部は冷却温度に応じて応答性は悪いが、
確実に動作し電気的トラブルに伴う流量の急変などに影
響を受は難しく他方で第二の流量制御部で第一の応答性
の悪い部分を補い、かつ、これらを対向してバルブ弁体
を当接して構成することにより、小形な簡略な構成を得
ることができる。
The first flow control section has poor responsiveness depending on the cooling temperature, but
It operates reliably and is difficult to be affected by sudden changes in flow rate due to electrical troubles.On the other hand, the second flow control section compensates for the poor response of the first, and the valve body is placed opposite the second flow control section. By configuring them in contact with each other, a compact and simple configuration can be obtained.

また、冷却温度に応動して開閉する第二の弁部と電磁弁
により開閉する第一の弁部の流路を各々独立して形成す
ることで、所望の特性を得んとするものである。
In addition, desired characteristics can be obtained by independently forming the flow paths of the second valve section that opens and closes in response to the cooling temperature and the first valve section that opens and closes using a solenoid valve. .

〔実施例〕〔Example〕

本発明の実施例を第1図に示す。 An embodiment of the invention is shown in FIG.

1はソレノイド、2は通気の流出口、3は流入口、4は
バルブシート5を有する隔壁、左端はダイアフラム6を
蓋体7で圧力調整室23を形成し、ハウジング8に結合
されている。ソレノイド1にヨーク、一端に平滑面22
を有するプランジャー17とバネ体13を配設して構成
する。ダイアフラム6には一端をプランジャー17の平
滑面22と当接する中空部11を有する軸体19を接続
し、第一の弁体9を配設する。軸体19の他端は、第一
の弁体と対向して第二の弁体10の形成する中空部11
と導通して摺動自在に配設される。第二の弁体10は冷
却水の温度に対応し応動して変位する可動部15を配設
した感温部12に対してバネ体14に支持された案内部
と案内部にバネ体を介在して弾性的に第二の弁体が支承
されている。
1 is a solenoid, 2 is an air outlet, 3 is an inlet, 4 is a partition having a valve seat 5, and the left end is a diaphragm 6 with a lid 7 forming a pressure adjustment chamber 23, which is connected to a housing 8. Yoke on solenoid 1, smooth surface 22 on one end
The plunger 17 and the spring body 13 are arranged. A shaft body 19 having a hollow portion 11 that contacts the smooth surface 22 of the plunger 17 at one end is connected to the diaphragm 6, and a first valve body 9 is disposed therein. The other end of the shaft body 19 faces the first valve body and has a hollow portion 11 formed by the second valve body 10.
It is slidably arranged in electrical conduction with the The second valve body 10 has a guide part supported by a spring body 14 and a spring body interposed between the guide part and the temperature sensing part 12 which is provided with a movable part 15 that is displaced in response to the temperature of the cooling water. The second valve body is elastically supported.

第二の弁体は、案内部と係合して所定の領域で可動な構
成となし、感温部12内のワックスが膨張して可動部1
5が変位して、バルブシート5aと当接する。かくして
、流入口3からの流れは第二の弁体によって閉じられる
。次に、第二の弁体10には、環状突出部56を形成し
、第一の弁体9と当接し、流路21、によって流出口2
と接続する。
The second valve body is configured to be movable in a predetermined area by engaging with the guide part, and the wax in the temperature sensing part 12 expands to cause the movable part 1 to move.
5 is displaced and comes into contact with the valve seat 5a. The flow from the inlet 3 is thus closed by the second valve body. Next, the second valve body 10 is formed with an annular protrusion 56 that comes into contact with the first valve body 9 and is connected to the outlet 2 by the flow path 21.
Connect with.

第二の弁体10の開閉とは独立して第一の弁体9の開閉
によって流入量の制御を行うことができる。
The inflow amount can be controlled by opening and closing the first valve body 9 independently of opening and closing the second valve body 10.

以上の構成にお、いて、ソレノイド1が励磁されプラン
ジャ17を吸引すると、軸体19と平滑面22とにすき
間を生じ、負圧側の流出口2の負圧が圧力調整室18に
おいて軸体19を吸引する。
In the above configuration, when the solenoid 1 is excited and attracts the plunger 17, a gap is created between the shaft body 19 and the smooth surface 22, and the negative pressure at the outlet 2 on the negative pressure side is applied to the shaft body 19 in the pressure adjustment chamber 18. aspirate.

これによって軸体19は変位し、環状突出部5b先端の
第二のバルブシート5bから離れ空気は流路21を経て
流出口2へ流れる補助流路を形成する。一方第二の弁体
は感温部12の冷却水温に対応して低温時は、ワックス
は感温部12内において収縮しておりバルブシート5a
から離れており主流路20を形成する。これに対し冷却
水温が上昇してくると感温部12内のワックスが膨張し
て案内部16を介在して第二の弁体10を押付は第二の
弁体がバルブシート5aと当接して流路20を断ち閉じ
た状態となる。これを冷却水温度と流量の関係で第2図
に示す。第2図において冷却水温に応じて変化する第二
の弁体により変化する流量変化Aと、これと独立して運
転状態に対応して応動するソレノイド1による流量変化
Bとが重ね合せて全流量が制御する構成となす。
As a result, the shaft body 19 is displaced and separated from the second valve seat 5b at the tip of the annular protrusion 5b, forming an auxiliary flow path through which air flows to the outlet 2 via the flow path 21. On the other hand, when the second valve element is at a low temperature corresponding to the cooling water temperature of the temperature sensing part 12, the wax contracts in the temperature sensing part 12, and the valve seat 5a
It is separated from the main flow path 20 and forms a main flow path 20. On the other hand, when the cooling water temperature rises, the wax in the temperature sensing part 12 expands and presses the second valve element 10 through the guide part 16, causing the second valve element to come into contact with the valve seat 5a. As a result, the flow path 20 is cut off and closed. This is shown in Figure 2 as a relationship between cooling water temperature and flow rate. In Figure 2, the flow rate change A that changes due to the second valve body that changes according to the cooling water temperature, and the flow rate change B caused by the solenoid 1 that independently responds to the operating state are superimposed, resulting in the total flow rate. The configuration is controlled by

従来例においては、第一の弁体9と第二の弁体10で形
成する第一の流路と、第二の弁体10とバルブシート4
とで形成する第二の流路とが本考案によるものと異なり
、共通の流路となっており、感温部に応動する第二の弁
体10の変位量とソレノイド1により応動する第一の弁
体9の変位量が1:1で対応し、それぞれの間の隙間の
大きさで流量を制御するため寸法精度1位置精度が流量
に影響する。
In the conventional example, the first flow path is formed by the first valve body 9 and the second valve body 10, and the second valve body 10 and the valve seat 4 are connected to each other.
Unlike the one according to the present invention, the second flow path formed by The displacement amounts of the valve bodies 9 correspond in a 1:1 ratio, and the flow rate is controlled by the size of the gap between them, so the dimensional accuracy 1 position accuracy affects the flow rate.

これに対し、本発明によれば、前記する様に二つの独立
した流路を形成できること、すなわち第一の流路に対し
ては、流路の断面積、流通抵抗で定圧の下では第一の弁
体9の開閉だけで定流量が精度に余り影響せずに得られ
第二の流路に対しては、パルシート4を基準に開口度合
を決定すべく第二の弁体10の位置決めができる。
On the other hand, according to the present invention, two independent channels can be formed as described above. A constant flow rate can be obtained by simply opening and closing the valve body 9 without much influence on accuracy.For the second flow path, the second valve body 10 is positioned to determine the degree of opening based on the pal sheet 4. can.

これは、第2図において、一般に第二の弁体10の変位
で冷却水温tに対して曲線A、A’に対応しソレノイド
1に応動する第一の弁体9の変位による特性は曲線已に
対応し、本発明によれば、曲PAA′、Bの冷却水温し
に対する空気流量Qのバラツキが少いことを示している
In FIG. 2, the displacement of the second valve body 10 generally corresponds to the curves A and A' with respect to the cooling water temperature t, and the characteristics due to the displacement of the first valve body 9 responding to the solenoid 1 correspond to the curves. Corresponding to this, according to the present invention, there is little variation in the air flow rate Q with respect to the cooling water temperature of the songs PAA' and B.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、エンジンの冷却水温(エンジ
ン温度)に応じた吸入空気量の制御により、エンジン冷
却量時のエンジンストールを防止する流量制御機能と、
エンジン運転状態に応じた吸入空気流量の制御によりア
イシングもなくアイドリング時の回転数精度を向上させ
る機能とが提供できるとともに、構造が簡略で廉価でコ
ンパクトな流量制御装置を得ることができる。
Therefore, according to the present invention, there is provided a flow rate control function that prevents an engine stall when the engine is cooled by controlling the amount of intake air according to the engine cooling water temperature (engine temperature);
By controlling the intake air flow rate according to the engine operating state, it is possible to provide a function of improving the rotational speed accuracy during idling without icing, and also to obtain a flow control device that is simple in structure, inexpensive, and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流量制御装置の断面図、第
2図は本実施例による冷却水温と空気流量との関係図で
ある。 1・・・ソレノイド、2・・・流出口、3・・・流入口
、4・・・隔壁、5a・・・第1のバルブシート、5b
・・・第2のバルブシート、6・・・ダイヤフラム、7
・・・蓋体、8・・・ハウジング、9・・・第一の弁体
、10・・・第二の弁体、11・・・中空部、12・・
・感温部、13・・・バネ体、14・・・バネ板、15
・・・可動部、16・・・案内部、17・・・プランジ
ャー、18・・・圧力調整室、19・・・軸体、20・
・・流路、21・・・流路、22・・・平滑面。 第10 第2崎俸うユ度−棗量τ耐t
FIG. 1 is a sectional view of a flow rate control device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between cooling water temperature and air flow rate according to this embodiment. DESCRIPTION OF SYMBOLS 1... Solenoid, 2... Outlet, 3... Inlet, 4... Partition, 5a... First valve seat, 5b
...Second valve seat, 6...Diaphragm, 7
... Lid body, 8... Housing, 9... First valve body, 10... Second valve body, 11... Hollow part, 12...
- Temperature sensing part, 13... Spring body, 14... Spring plate, 15
...Movable part, 16...Guiding part, 17...Plunger, 18...Pressure adjustment chamber, 19...Shaft body, 20...
... Channel, 21... Channel, 22... Smooth surface. 10th 2nd Saki Yu degree - Natsume amount τ tolerance t

Claims (1)

【特許請求の範囲】 1、吸気管をバイパスする通気路中にあつて、エンジン
冷却水温を感知する感温部を有し、エンジン冷却水温に
応じて開閉する第二の流路を形成する第二の弁体を有す
る感温バルブと、第二の弁体と離接して第一の流路を形
成する第一の弁体を開閉する駆動部を装備してなること
を特徴とする供給空気量制御装置。 2、特許請求の範囲第1項において、第一の弁体と第二
の弁体を対向して直列に構成したことを特徴とする供給
空気量制御装置。 3、特許請求の範囲第1項において、第一の弁体を開閉
する駆動部を電磁弁により構成したことを特徴とする供
給空気量制御装置。 4、特許請求の範囲第1項において、第二の弁体に形成
する第一の流路を、第二の弁体の移動方向の軸に交わる
面内にのみ形成することを特徴とする供給空気量制御装
置。
[Claims] 1. A second flow path, which is located in the air passage bypassing the intake pipe and has a temperature-sensing section that senses the engine cooling water temperature, and forms a second flow path that opens and closes according to the engine cooling water temperature. Supply air characterized by being equipped with a temperature-sensitive valve having two valve bodies, and a drive unit that opens and closes the first valve body that comes into contact with and separates from the second valve body to form a first flow path. Volume control device. 2. A supply air amount control device according to claim 1, characterized in that the first valve body and the second valve body are configured to face each other in series. 3. The supply air amount control device according to claim 1, characterized in that the drive section for opening and closing the first valve body is constituted by a solenoid valve. 4. The supply according to claim 1, characterized in that the first flow path formed in the second valve body is formed only within a plane that intersects with the axis in the moving direction of the second valve body. Air volume control device.
JP62254551A 1987-10-12 1987-10-12 Feed air flow control device Pending JPH01100332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254551A JPH01100332A (en) 1987-10-12 1987-10-12 Feed air flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254551A JPH01100332A (en) 1987-10-12 1987-10-12 Feed air flow control device

Publications (1)

Publication Number Publication Date
JPH01100332A true JPH01100332A (en) 1989-04-18

Family

ID=17266611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254551A Pending JPH01100332A (en) 1987-10-12 1987-10-12 Feed air flow control device

Country Status (1)

Country Link
JP (1) JPH01100332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047317A (en) * 2006-08-11 2008-02-28 Omron Corp Switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047317A (en) * 2006-08-11 2008-02-28 Omron Corp Switch

Similar Documents

Publication Publication Date Title
US4356802A (en) Valve system for regulating the idling speed of Otto engines, particularly automobile engines
JPH0638165Y2 (en) Damper device in flow control mechanism
JPH0312226B2 (en)
JPS6149544B2 (en)
US4407248A (en) Electronically controlled carburetor
JPH01100332A (en) Feed air flow control device
US4095570A (en) Electronic engine control system and method of operation
US3931802A (en) Fuel injection system for internal combustion engines
JP3552305B2 (en) Flow control valve
JP2895073B2 (en) Intake air flow control valve for internal combustion engine
JPH0511343Y2 (en)
JPH0648147Y2 (en) Air flow control valve
JP2896723B2 (en) Automatic starter for vaporizer
JPH0224946Y2 (en)
JPS6341665A (en) Fuel pressure regulating device for engine
JPH063176Y2 (en) Variable venturi vaporizer
JPH0240295Y2 (en)
JPS632590Y2 (en)
JP2643192B2 (en) Exhaust gas recirculation device
SU1744297A1 (en) Internal combustion engine feed system
JPH0639944B2 (en) Variable bench lily type vaporizer
JPS5824688Y2 (en) fluid control valve
JPS5837382A (en) Flow rate control valve
JPH0315888Y2 (en)
JPH081265B2 (en) Throttle assembly