JPH01100225A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH01100225A
JPH01100225A JP25571387A JP25571387A JPH01100225A JP H01100225 A JPH01100225 A JP H01100225A JP 25571387 A JP25571387 A JP 25571387A JP 25571387 A JP25571387 A JP 25571387A JP H01100225 A JPH01100225 A JP H01100225A
Authority
JP
Japan
Prior art keywords
ore
sintered
bedding
sintered ore
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25571387A
Other languages
Japanese (ja)
Inventor
Kazumasu Kuriyama
栗山 和益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25571387A priority Critical patent/JPH01100225A/en
Publication of JPH01100225A publication Critical patent/JPH01100225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce equipping cost and to improve yield of sintered ore by classifying the sintered are discharged from a sintering machine with sieve arranged between the sintering machine and a cooling machine and using the specific grain size of the sintered ore as bedding ore. CONSTITUTION:The sintered ore obtd. and discharged from the DL sintering machine 1 is classified with the sieve 17 arranged between the sintering machine 1 and the sintered ore cooling machine 8 after crushing a primary crusher 6. The sintered ore obtd. at there having +20mm grain size is supplied on the above cooling machine 8 to make the sintered ore product, and the sintered or having -5mm grain size is returned back to the ore stock. The sintered ore having 5-20mm medium size in them is returned to the bedding ore hopper 2 to use as the bedding ore. By this method, the heat of the lower layer of sintering bed only by the bedding ore is positively and effectively utilized and drop of sintering raw material is prevented and sintered or just after sintering to be easily powderized is resintered to strengthed or product is improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明はDL型焼結機により焼結鉱を製造する方法に
係り、より詳しくは床敷鉱の採取方法を適正化すること
によって焼結鉱の歩密の向上をはかる製造方法に関する
。 [従来の技術] DL型焼結機では例えば第3図に示すごとく、エンドレ
ス状に駆動する焼結機パレット(1)上にまず床敷鉱ホ
ッパー(2はり床敷鉱を装入したのち、この床敷鉱の上
にサージホッパー(3)から切出された焼結原料を一定
層厚に装入し、点火炉(4)において焼結原料の上層部
に点火するとともにウィンドボックス(5)により下方
から吸気し、パレットが終i側に移動する間にパレット
上焼結原料を焼結させて排鉱し、1次クラッシャー(6
)にて粗破砕した後グリズリ−(7)で分級し、篩上を
焼結鉱冷却機(8)で冷却する。次に、このままでは粗
粒が多く、高炉原料としては不適当なため1次スクリー
ン(9)にて粗粒を篩分け、その粗粒を2次クラッシャ
ー(10)にて破砕し、ざらに床敷鉱を採取するため2
次スクリーンに(11)にて分級している。2次スクリ
ーン(11)は2段構造となってあり、上が20mm、
下が81TIITlのスクリーンになっている。床敷鉱
は8mmのスクリーンの篩上の一部を゛採取し、床敷ホ
ッパー(2)へ装入される。一方、篩下(−8mm>の
部分は3次スクリーン(12)にて5mm以下の返鉱が
除去され、返鉱は再び焼結原料として用いられ再焼結さ
れる。 ところで、DL型焼結機における床敷鉱の19割は、■
焼結機パレットのグレート間隙からの原料落下防止と、
■グレートの過熱防止である。■の目的を達するために
は当然のことなから床敷鉱自体のサイズがグレート間隙
よりも大きいことが望ましい。グレート間隙は通常5〜
8mm前後でおるから、床敷鉱はこの間隙より大きいも
のとなる。 しかし床敷鉱のサイズが大きすぎると、床敷鉱間の間隙
が広くなって焼結原料が落下したり、床敷鉱の層厚に不
均一が生じる。このため、床敷鉱には20mm程度以下
のものが用いられている。 このように、焼結鉱を床敷鉱として用いる場合は成品焼
結鉱を分級処理し、8〜20mm程度の焼結鉱の一部を
床敷鉱として採取しているのである。 また、焼結機のベツドでは下層はど熱が蓄積されて高温
となり、この熱によりグレートが歪み使用不能となるの
を防止するため、グレート上に厚さ5c11程度に床敷
鉱を敷き、グレー1〜の過熱を防止している。つまり、
床敷鉱を熱の吸収材として用いているのである。しかし
、熱を床敷鉱に吸収させるだけでは供給した熱源の無駄
となる。そこで、床敷鉱に吸収される熱を積極的に有効
利用する試みがなされている。例えば、特開昭56−6
1240号公報には返鉱を床敷鉱の上に装入し、床敷鉱
に吸収させていた下層の過剰熱を返鉱に吸収させ、この
熱で返鉱を再焼結して塊成化する方法が開示されている
The present invention relates to a method for manufacturing sintered ore using a DL type sintering machine, and more particularly to a manufacturing method for improving the yield of sintered ore by optimizing the method for collecting bedding ore. [Prior Art] In a DL type sintering machine, for example, as shown in Fig. 3, bedding ore is first charged into a bedding ore hopper (2) on a sintering machine pallet (1) that is driven in an endless manner. The sintered raw material cut out from the surge hopper (3) is charged onto this bedding ore in a constant layer thickness, and the upper layer of the sintered raw material is ignited in the ignition furnace (4), and the wind box (5) The sintering material on the pallet is sintered and discharged while the pallet moves to the terminal i side, and the primary crusher (6
), and then classified by Grizzly (7), and the top of the sieve is cooled by a sinter cooler (8). Next, since there are many coarse particles in this state and they are not suitable as blast furnace raw materials, the coarse particles are sieved by the primary screen (9), and then crushed by the secondary crusher (10), and the coarse particles are crushed into a rough bed. To extract the bedding 2
The next screen is classified in (11). The secondary screen (11) has a two-tiered structure, with the top being 20mm wide and the top being 20mm wide.
Below is the 81TIITl screen. A portion of the bedding ore above the 8 mm screen is collected and charged into the bedding hopper (2). On the other hand, in the area under the sieve (-8 mm>), return ore of 5 mm or less is removed by a tertiary screen (12), and the return ore is used again as a sintering raw material and re-sintered. By the way, DL type sintering 190% of the bedding ore in the machine is ■
Preventing raw materials from falling from the grate gap of the sintering machine pallet,
■Prevents the grate from overheating. In order to achieve the objective (2), it is naturally desirable that the bedding ore itself be larger in size than the grate gap. Grate gap is usually 5~
Since the gap is around 8mm, the bedding ore is larger than this gap. However, if the size of the bedding ore is too large, the gaps between the bedding ores become wide, causing the sintering raw material to fall or causing uneven layer thickness of the bedding ore. For this reason, bedding ores with a diameter of about 20 mm or less are used. In this way, when sintered ore is used as bedding ore, the finished sintered ore is classified and a part of the sintered ore with a size of about 8 to 20 mm is collected as bedding ore. In addition, in the bed of the sintering machine, heat accumulates in the lower layer and reaches a high temperature. In order to prevent the grate from becoming distorted and unusable due to this heat, bedding ore is laid on the grate to a thickness of about 5cm1. 1 to prevent overheating. In other words,
The bedding ore is used as a heat absorber. However, simply allowing the heat to be absorbed by the bedding ore would be a waste of the supplied heat source. Therefore, attempts are being made to effectively utilize the heat absorbed by bedding ore. For example, JP-A-56-6
Publication No. 1240 discloses that return ore is charged onto bedding ore, excess heat from the lower layer that was absorbed by bedding ore is absorbed by the return ore, and this heat is used to re-sinter the return ore to form agglomerates. A method is disclosed.

【発明が解決しようとする問題点1 しかし、従来の前記返鉱を用いて下層の過剰熱を有効利
用する方法には以下に示す問題点がおる。 すなわち、焼結ベツド下層の過剰熱を吸収してグレート
を保護することはできるが、返鉱の一す゛イズがグレー
ト間隙よりも小さいものが大部分を占めるため、グレー
ト間隙からの原料の落下防止をはかるためには床敷鉱を
敷かねばならない。したがって、パレット上には通常の
床敷鉱、返鉱、焼結原料を3段に装入することになり、
そのためのホッパー、シュート等の装入装置やベルトコ
ンベア等の搬送装置を増設しなければならず、設備費が
高くつくという問題がある。 この発明はかかる問題を解決するためになされたもので
、返鉱を用いずして床敷鉱のみで焼結ベツド下層の熱を
積極的に有効利用できかつ焼結原料の落下を防止できる
方法を提案せんとするものである。 【問題点を解決するための手段】 この発明は従来の前記問題点を解決するための手段とし
て、焼結間より排鉱された焼結鉱を焼結機と焼結鉱冷却
機との間に設けた篩により分級し、分級して得られた粒
度5〜20mmの焼結鉱を床敷鉱として用いることを特
徴とするものである。 すなわち、この発明は冷却機に供給する手前で分級した
粒度5〜20mmの焼結鉱を床敷鉱として用いることに
より、焼結ベツド下層の過剰熱の有効利用とグレート間
隙からの原料落下防止効果を得たものである。
Problem 1 to be Solved by the Invention However, the conventional method of effectively utilizing the excess heat in the lower layer using the return ore has the following problems. In other words, it is possible to protect the grate by absorbing excess heat in the lower layer of the sintered bed, but since most of the return ore is smaller than the gap between the grate, it is difficult to prevent the raw material from falling from the gap between the grate. In order to measure this, a bedding stone must be laid. Therefore, ordinary bedding ore, return ore, and sintering raw materials are charged in three stages on the pallet.
For this purpose, a charging device such as a hopper and a chute, and a conveying device such as a belt conveyor must be added, which raises the problem of high equipment costs. This invention was made to solve this problem, and is a method that can positively and effectively utilize the heat in the lower layer of the sintering bed using bedding ore alone without using return ore, and can prevent the sintering raw materials from falling. This is what we would like to propose. [Means for Solving the Problems] As a means for solving the above-mentioned problems of the prior art, the present invention provides a method for discharging sintered ore discharged from the sintering machine between the sintering machine and the sintered ore cooling machine. It is characterized in that the sintered ore with a particle size of 5 to 20 mm obtained by classification is used as bedding ore. That is, by using sintered ore with a grain size of 5 to 20 mm, which is classified before being supplied to the cooler, as bedding ore, the present invention effectively utilizes excess heat in the lower layer of the sintered bed and prevents the material from falling from the gap between the grate. This is what I got.

【作  用】[For production]

この発明において、焼結機から排鉱された直後の焼結鉱
を床敷鉱に用いる理由について以下に説明する。 この発明者は焼結原料のグレート間隙からの落下防止と
焼結ベツド下層の過剰熱の有効利用の両方を実現できる
ような床敷鉱について種々検討した結果、焼結鉱冷却機
手前の排鉱部近傍の焼結鉱 ・(以下説明の便宜上焼結
鉱Aという)と、通常床敷鉱に使用される冷却機を出た
後で2次スクリーンにて分級して採取した焼結鉱(以下
焼結鉱Bという)では、その性状に大きな差が存在する
ことを見出した。 すなわち、焼結鉱Aの場合は強度が弱く、仮にそのまま
2次スクリーン近傍まで搬送されると途中の衝撃によっ
てほぼ仝但が粉化し返鉱となってしまうことが判明した
。その原因について調査すると、焼結機の排鉱部近傍で
はすでに粒度が8〜20+nn+どなっている焼結鉱A
は、もともと強度的に弱い焼結機上の焼結ケーキ上層に
由来するものであるために、搬送の@撃によって容易に
粉化するためとわかった。 一方、焼結鉱Bは強度が高く搬送の衝撃等で容易に粉化
することがない焼結鉱であり、また粗粒が2次クラッシ
ャーで破砕されて生じた焼結鉱である。従来はこの焼結
鉱Bを床敷鉱として用いていたのであるが、単に熱の吸
収材としての作用しかなかったため熱源の無駄となって
いたのであることは前記した通りである。 これに対し、焼結鉱Aを床敷鉱として用いると、サイズ
的には焼結鉱Bと同等でおるから焼結原料のグレート間
隙からの落下防止をはかることができ、また焼結ベツド
下層の過剰熱を吸収してグレートを保護するのみならず
、自らはこの熱で再焼結されるため強度が向上し容易に
粉化しなくなる。 したがって、本来なら返鉱となる部分が成品となるため
歩留りが向上するのである。 以上の理由により、この発明では粉化しゃすい排鉱直後
の焼結鉱を粉化する前に床敷鉱として用いることとした
のである。 第1図はこの発明方法の一実施例を示す概略図、第2図
は同上他の実施例を示す概略図である。 すなわち、この発明では焼結機(1)と冷却機(8)と
の間に設けたFJ(t7)(位置的には従来のグリズリ
−に相当する)により分級して得られた5〜20mmの
焼結鉱を床敷鉱ホッパー(2)に供給する。なお、排鉱
直後の8〜20mm程度の焼結鉱は焼結ケーキ上層に由
来するもので、焼結ケーキ上層は排鉱までに焼結殿上で
常温近くまで冷却されるので、ハンドリングに支障が出
るほど高温になっていることはない。 床敷鉱を採取するための篩(17)は第1図に示すごと
く1次クラッシャー(6)と冷却機(8)との間か、も
しくは第2図に示すごとく焼結Ia(1)と1次タラッ
シψ−(6)との間のいずれでもよい。 床敷鉱を採取するための篩(17)としては従来用いら
れている2段式の2次スクリーンが一般的であるが、上
下2段@造からなる固定式のグリズリ−でもよい。この
篩では粒度5〜20+n+nの焼結鉱を採取するため、
篩の上段は間隔を20mm前後とし、下段は間隔を5m
m前後とする。 床敷鉱のサイズとしては、篩(17)にて−5mmの焼
結鉱(返鉱)を分級して除去すれば、3次スクリーン〈
12)にて篩取る返鉱の暑が減少し、3次スクリーンの
効率が上って成品中に混入する返鉱を減らすことができ
るため、下限サイズを5mmとした。上限サイズについ
ては従来と同様20mmとする。 1次クラッシャー(6)の下流で1W(17)により粒
度5〜20mmの床敷鉱用焼結鉱を採取する方式(第1
図)の場合は、20mm以上の篩上は冷却機へ供給され
、5mm以下の篩下は返鉱として原料ラインへ戻し、粒
度5〜20mmのものを床敷鉱ホッパー(2)へ供給す
る。また、焼結機から排鉱された焼結鉱を1次クラッシ
ャー(6)の手前で篩にかけて粒度5〜20+r+mの
床敷鉱用焼結鉱を採取する方式(第2図)の場合も同様
、粒度5〜20mmのものを床敷鉱ホッパー(2)へ供
給し、−5mmのものは返鉱として原料ラインへ戻すが
、20nur+以上の篩上は1次クラッシャー(6)を
経て冷却機(8)へ供給される。 (実 施 例] 公称能力9500トン/日のDL型焼結機(グレート間
隔5mm)に第1図および第2図に示す方式にて床敷鉱
を採取し焼結鉱を製造した。 なお、第1図の方式では1次クラッシャーの下流に篩目
20mmの上段スクリーンと篩目5mmの下段スクリー
ンからなる篩を使用して粒度5〜20mmの焼結鉱を採
取し、第2図の方式では1次クラッシャーの上流に20
mm間隔と5+nm間隔の2段式グリズリ−を設けて粒
度5〜20m+nの焼結鉱を採取し、採取した焼結鉱を
床敷鉱ホッパーから焼結機パレット上にそれぞれ80k
g4装入した。 本実施例における焼結鉱歩留を、第3図に示す従来の方
式にて床敷鉱を採取した場合と比較して第1表に示す。 第1表より明らかなごとく、容易に粉化しやすい焼結鉱
を床敷鉱として用いたことにより低強度部分が改質され
た結果、従来法と比べて歩留が2〜3%向上した。 以下余白 第  1   表
In this invention, the reason why the sintered ore immediately after being discharged from the sintering machine is used as the bedding ore will be explained below. As a result of various studies on bedding ore that can prevent sintering raw materials from falling through the grate gap and effectively utilize excess heat in the lower layer of the sintering bed, the inventor found that Sintered ore near the area (hereinafter referred to as sintered ore A for convenience of explanation) and sintered ore (hereinafter referred to as sintered ore A) that was classified and collected using a secondary screen after exiting the cooler normally used for bedding ore. It was found that there were large differences in the properties of the sintered ore B). That is, in the case of sintered ore A, it was found that the strength is weak, and if it were to be transported as it is to the vicinity of the secondary screen, most of the sintered ore would be pulverized by the impact on the way and become return ore. When we investigated the cause of this, we found that the particle size of sintered ore A was already increasing from 8 to 20+nn+ in the vicinity of the ore discharge area of the sintering machine.
It was found that this is because the sintered cake originates from the upper layer of the sintered cake on the sintering machine, which is originally weak in strength, and is easily pulverized by the impact during transportation. On the other hand, sintered ore B is a sintered ore that has high strength and is not easily pulverized by impacts such as transportation, and is a sintered ore that is produced by crushing coarse particles in a secondary crusher. Conventionally, this sintered ore B was used as bedding ore, but as described above, it only acted as a heat absorbing material, resulting in a wasted heat source. On the other hand, if sintered ore A is used as bedding ore, the size is the same as sintered ore B, so it is possible to prevent the sintering raw material from falling through the grate gap, and the lower layer of the sintered bed Not only does it protect the grate by absorbing excess heat, it also resinters itself with this heat, improving its strength and preventing it from becoming powder easily. Therefore, the yield is improved because the portion that would normally be returned ore becomes a finished product. For the above reasons, in the present invention, the sintered ore immediately after being discharged from the pulverized sinter is used as bedding ore before being pulverized. FIG. 1 is a schematic diagram showing one embodiment of the method of this invention, and FIG. 2 is a schematic diagram showing another embodiment of the same. That is, in this invention, the 5 to 20 mm particles obtained by classification by the FJ (t7) (positionally equivalent to the conventional grizzly) installed between the sintering machine (1) and the cooling machine (8) of sintered ore is supplied to the bedding ore hopper (2). The sintered ore with a thickness of about 8 to 20 mm immediately after discharge comes from the upper layer of the sintered cake, and the upper layer of the sintered cake is cooled to near room temperature on the sintered cake before the ore is discharged, so handling is not affected. It never gets hot enough to come out. The sieve (17) for collecting bedding ore is placed between the primary crusher (6) and the cooler (8) as shown in Figure 1, or between the sintered Ia (1) as shown in Figure 2. It may be any one between the first-order Tarassi ψ-(6). The sieve (17) for collecting bedding ore is generally a conventional two-stage secondary screen, but a fixed type grizzly screen consisting of two upper and lower stages may also be used. This sieve collects sintered ore with a particle size of 5 to 20+n+n.
The upper tier of the sieve has a spacing of around 20mm, and the lower tier has a spacing of 5m.
It should be around m. As for the size of bedding ore, if -5mm sintered ore (return ore) is classified and removed with sieve (17), it becomes tertiary screen.
In step 12), the heat of the return ore sieved is reduced, the efficiency of the tertiary screen is increased, and the return ore mixed into the product can be reduced, so the lower limit size was set to 5 mm. The upper limit size is 20 mm as before. A method (first
In the case of (Figure), the upper part of the sieve with a diameter of 20 mm or more is supplied to the cooler, the lower part of the sieve with a diameter of 5 mm or less is returned to the raw material line as return ore, and the part with a particle size of 5 to 20 mm is supplied to the bedding ore hopper (2). The same applies to the method (Figure 2) in which the sintered ore discharged from the sintering machine is sieved before the primary crusher (6) to collect sintered ore for bedding with a particle size of 5 to 20+r+m. Those with a particle size of 5 to 20 mm are supplied to the bedding ore hopper (2), and those with a particle size of -5 mm are returned to the raw material line as return ore, but those on the sieve with a particle size of 20 nur+ or more are passed through the primary crusher (6) and sent to the cooler ( 8). (Example) Sintered ore was produced by extracting bedding ore using the method shown in Fig. 1 and Fig. 2 using a DL type sintering machine (grate interval: 5 mm) with a nominal capacity of 9,500 tons/day. In the method shown in Figure 1, sintered ore with a particle size of 5 to 20 mm is collected using a sieve downstream of the primary crusher, consisting of an upper screen with a sieve size of 20 mm and a lower stage screen with a sieve size of 5 mm. 20 upstream of the primary crusher
A two-stage grizzly with a spacing of mm and a spacing of 5+nm is installed to collect sintered ore with a particle size of 5 to 20m+n, and the collected sintered ore is transferred from the bedding ore hopper to a sintering machine pallet of 80kg each.
g4 was charged. The sintered ore yield in this example is shown in Table 1 in comparison with the case where bedding ore was extracted by the conventional method shown in FIG. As is clear from Table 1, the use of easily pulverized sintered ore as bedding ore improved the low-strength portion, resulting in a 2-3% improvement in yield compared to the conventional method. Table 1 in the margin below

【発明の効果】【Effect of the invention】

以上説明したごとく、この発明方法によれば、床敷鉱の
採取位置を変更するだけで床敷鉱本来の役割、すなわち
焼結原料の落下防止、グレート保護、下層熱の有効利用
をはかることができるので、従来の床敷鉱、返鉱、焼結
原料の3段装入方式に比べはるかに設備費が安価につく
とともに、焼結鉱歩留を向上させることができるという
優れた効果を秦するものでおる。
As explained above, according to the method of this invention, by simply changing the extraction position of bedding ore, the original role of bedding ore can be achieved, that is, preventing sintering raw materials from falling, protecting the grate, and effectively utilizing the heat in the lower layer. As a result, the equipment cost is much lower than the conventional three-stage charging method of bedding ore, return ore, and sintered raw material, and it has the excellent effect of improving the sintered ore yield. I have something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略図である。 第2図は同上他の実施例を示す概略図である。 第3図は従来の一般的な焼結鉱製造工程を示す概略図で
ある。 1・・・焼結機      2・・・床敷鉱ホッパー3
・・・サージホッパー  6・・・1次クラッシャー8
・・・焼結鉱冷却機   17・・・篩用願人  住友
金属工業株式会社 代理人  弁理士 押田良久[胆廷
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is a schematic diagram showing another embodiment of the same. FIG. 3 is a schematic diagram showing a conventional general sintered ore manufacturing process. 1... Sintering machine 2... Bed ore hopper 3
...Surge hopper 6...Primary crusher 8
... Sintered ore cooler 17 ... Sieve applicant: Sumitomo Metal Industries Co., Ltd. Agent Yoshihisa Oshida, patent attorney

Claims (1)

【特許請求の範囲】[Claims] DL型焼結機による焼結鉱の製造方法において、焼結機
より排鉱された焼結鉱を焼結機と焼結鉱冷却機との間に
設けた篩により分級し、分級して得られた粒度5〜20
mmの焼結鉱を床敷鉱として用いることを特徴とする焼
結鉱の製造方法。
In a method for producing sintered ore using a DL type sintering machine, the sintered ore discharged from the sintering machine is classified by a sieve installed between the sintering machine and the sintered ore cooler, and the sintered ore obtained by the classification is Particle size 5-20
A method for producing sintered ore, characterized in that sintered ore of mm size is used as bedding ore.
JP25571387A 1987-10-09 1987-10-09 Production of sintered ore Pending JPH01100225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25571387A JPH01100225A (en) 1987-10-09 1987-10-09 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25571387A JPH01100225A (en) 1987-10-09 1987-10-09 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH01100225A true JPH01100225A (en) 1989-04-18

Family

ID=17282608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25571387A Pending JPH01100225A (en) 1987-10-09 1987-10-09 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH01100225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202720A (en) * 1990-11-30 1992-07-23 Sumitomo Metal Ind Ltd Production of sintered ore
KR20200011459A (en) * 2017-05-22 2020-02-03 풀 부르스 에스.에이. How to operate the sintering plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202720A (en) * 1990-11-30 1992-07-23 Sumitomo Metal Ind Ltd Production of sintered ore
KR20200011459A (en) * 2017-05-22 2020-02-03 풀 부르스 에스.에이. How to operate the sintering plant
JP2020521050A (en) * 2017-05-22 2020-07-16 ポール ワース エス.アー. Sinter plant operation method
US11549159B2 (en) 2017-05-22 2023-01-10 Paul Wurth S.A. Method of operating a sinter plant

Similar Documents

Publication Publication Date Title
US8101007B2 (en) Method for reduction treatment of electric furnace dust
KR100360109B1 (en) fludized bed type Smelting reduction apparatus and method for recycling fines
JP2012144788A (en) Method and device for producing hot briquette iron
CN203540667U (en) Coke granulation system
US5520719A (en) Process for producing sintered iron ore product
JPH01100225A (en) Production of sintered ore
US6457659B1 (en) Roller press grinding plant
JP3273652B2 (en) Sintering method for sinter
CN1899731A (en) Method for producing super fine steel slag powder
CN215088716U (en) Zinc dross recovery plant
JPH01205038A (en) Production of sintered ore
KR101376576B1 (en) Method for manufuring luppe charging of blast furnace and operational method of blast furnace using the same
JPS62158986A (en) Grading device for sintered ore
CN115725804B (en) Secondary treatment method for steel slag by taking steel slag vertical mill as center
CN210187677U (en) Screening plant of zinc-containing waste residue sand
TWM621815U (en) Pozzolanic material manufacturing system
KR100374231B1 (en) Manufacturing method of sintered light using recycled buoyancy
JPH01217185A (en) Crushing method for sintering ore
JP2001181714A (en) Method of screening sintered ore
LU100075B1 (en) Method of Operating a Pelletizing Plant
JPS62174336A (en) Method for supplying sintered ore to sintering and cooling device
Van Huffel The Recovery of Usable Agglomerate from Returned Fines
JP2550465B2 (en) Raw material charging device in sintering machine
US4436552A (en) Method of furnace operation with high pellet burdens
JPH01259133A (en) Method of charging sintered ore to sintered ore cooling machine