JPH01100139A - Production of 3-methylpentane-1,5-diol - Google Patents

Production of 3-methylpentane-1,5-diol

Info

Publication number
JPH01100139A
JPH01100139A JP62258829A JP25882987A JPH01100139A JP H01100139 A JPH01100139 A JP H01100139A JP 62258829 A JP62258829 A JP 62258829A JP 25882987 A JP25882987 A JP 25882987A JP H01100139 A JPH01100139 A JP H01100139A
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
reaction
modified
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62258829A
Other languages
Japanese (ja)
Other versions
JP2503031B2 (en
Inventor
Kenichi Hino
憲一 日野
Yasuo Tokito
時任 康雄
Noriaki Yoshimura
吉村 典昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62258829A priority Critical patent/JP2503031B2/en
Publication of JPH01100139A publication Critical patent/JPH01100139A/en
Application granted granted Critical
Publication of JP2503031B2 publication Critical patent/JP2503031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound in high selectivity at a low cost, by hydrogenating 2-hydroxy-4-methyltetrahydropyran in the presence of a hydrogenation catalyst consisting of a molybdenum-modified Raney-Ni catalyst. CONSTITUTION:The titled compound useful as a raw material for polyester polyol can be produced by hydrogenating 2-hydroxy-4-methyltetrahydropyran in the presence of 0.1-10wt.%, preferably 0.5-5wt.% (in terms of metal based on the reaction mixture) of a molybdenum-modified Raney-Ni catalyst (preferably a catalyst modified with 0.1-10wt.% of molybdenum based on nickel) at 1-100atm., preferably 2-20atm., especially 5-15atm. at 50-180 deg.C, preferably 80-140 deg.C preferably using the reaction product as a reaction solvent. The industrial advantages of the process are e.g. quantitative production of the objective compound even under low pressure condition, the repeated use of the catalyst with little lowering of the catalytic activity, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2−ヒドロキシ−4−メチルテトラヒドロビラ
ン(以下MHPと略記する)の水素化による3−メチル
ペンタン−1,5−ジオール(以下MPi)と略記する
)の改良された製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to hydrogenation of 3-methylpentane-1,5-diol (hereinafter referred to as MPi) by hydrogenation of 2-hydroxy-4-methyltetrahydrobilane (hereinafter referred to as MHP). )) is related to an improved manufacturing method.

本発明の方法により得らtしるMPDはポリエステルポ
リオールの原料として有用である。ポリエステルポリオ
ールは液状でありかつ耐加水分解性に優れた物性を有し
ているので、ポリウレタンや高分子可塑剤分野に使用す
ることによりその特性を生かすことかでざる。
The MPD obtained by the method of the present invention is useful as a raw material for polyester polyols. Since polyester polyol is liquid and has excellent physical properties such as hydrolysis resistance, it is possible to take advantage of its properties by using it in the fields of polyurethane and polymer plasticizers.

〔従来の技術〕[Conventional technology]

従来、MPI)の製造方法としてはMKPを水素化触媒
の存在下に高められた温度および高めらまた圧力におい
て水素化する方法(特公昭58−40533号公報〕が
知られている。特公昭58−40533号公報において
、MPDは具体的には200気圧の圧力下、ラネーコバ
ルト触媒の存在下にM)IPを水素化して製造ざルてい
る。そして、同公報には、普通の水素化触媒に活性化添
加物、たとえば銅、クロム及びマンガンを含有していて
もよいコバルト及びニッケルを含有する触媒が好ましい
旨記載されているか、具体的な例は開示されていない。
Conventionally, as a method for producing MPI, a method is known in which MKP is hydrogenated in the presence of a hydrogenation catalyst at elevated temperature and pressure (Japanese Patent Publication No. 40533/1983). In Publication No. 40533, MPD is specifically produced by hydrogenating M)IP in the presence of a Raney cobalt catalyst under a pressure of 200 atmospheres. The publication also mentions that catalysts containing cobalt and nickel, which may contain activating additives such as copper, chromium, and manganese, are preferable to ordinary hydrogenation catalysts, or provide specific examples. is not disclosed.

〔発明が解決しようとする問題点〕 MILPを従来公知の方法に従って水素化すると。[Problem that the invention seeks to solve] When MILP is hydrogenated according to conventionally known methods.

かなりの量のβ−メチル−δ−バレロラクトンや、MI
IPとMPDのアセタール化反応生成物が副生ざ才しる
。こrしらの副生物はKPDへの選択率を低下させるの
みならず、水素化触媒を劣化させる。
Significant amounts of β-methyl-δ-valerolactone and MI
An acetalization reaction product of IP and MPD is produced as a by-product. These by-products not only reduce the selectivity to KPD but also degrade the hydrogenation catalyst.

なかでも、水素化触媒をくり返し使用した場合に、もは
や2回目で急激に活性か低下してしまうことは工業的に
重大な問題点である。水素化触媒は比較的高価であり、
水素化反応における使用量は多く、本発明のような汎用
の化学品を製造する場合、くり返して使用できなければ
経済的な製造法であるとはいい難い。
Among these, it is an industrially serious problem that when a hydrogenation catalyst is used repeatedly, its activity decreases rapidly the second time. Hydrogenation catalysts are relatively expensive;
The amount used in the hydrogenation reaction is large, and when producing a general-purpose chemical product like the one of the present invention, it cannot be said that it is an economical production method unless it can be used repeatedly.

従って本発明の目的は、MnPの水素化反応において高
いAIFDへの選択率を得ることができ、かつ長期にく
り返し使用可能な水素化触媒を見い出すことにある。
Therefore, an object of the present invention is to find a hydrogenation catalyst that can obtain a high selectivity to AIFD in the MnP hydrogenation reaction and can be used repeatedly over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意検討を重ね、MHPの水素化反応にモ
リブデン変性ラネーニッケルを触媒として使用すること
により、上記目的が達成できることを見い出し、本発明
に至った。すなわち本発明は、2−ヒドロキシ−4−メ
チルテトラヒドロピランを水素化触媒の存在下に水素化
して3−メチルペンタン−1,5−ジオールを製造する
に際し、触媒としてモリブデン変性ラネーニッケル触媒
を使用することを特徴とする3−メチルペンタン−1,
5−ジオールの製造方法である。
The inventors of the present invention have made extensive studies and have discovered that the above object can be achieved by using molybdenum-modified Raney nickel as a catalyst in the hydrogenation reaction of MHP, leading to the present invention. That is, the present invention uses a molybdenum-modified Raney nickel catalyst as a catalyst when hydrogenating 2-hydroxy-4-methyltetrahydropyran in the presence of a hydrogenation catalyst to produce 3-methylpentane-1,5-diol. 3-methylpentane-1, characterized by
This is a method for producing 5-diol.

モリブデン変性ラネーニッケルをMiiPの水素化触媒
として使用することにより、 Mill’から低圧にお
いてもほぼ定量的にMPD%li造することかでき、く
り返し使用においてもほとんど活性が低下しないなど工
業的に大きなメリットかもたらされる。このような効果
は、後述の比較例から明らかなように、ラネーニッケル
、安定化ニッケル、ラネーコバルト、銅クロマイト触媒
など汎用されている水素化触媒ではもたらされない。
By using molybdenum-modified Raney nickel as a hydrogenation catalyst for MiiP, it is possible to produce MPD%li almost quantitatively even at low pressure from Mill', and the activity hardly decreases even after repeated use, which is a great industrial advantage. brought about. As is clear from the comparative examples described later, such effects are not produced by commonly used hydrogenation catalysts such as Raney nickel, stabilized nickel, Raney cobalt, and copper chromite catalysts.

本発明においては、MfiPの水素化触媒としてモリブ
デンで変性されたラネーニッケル触媒を用いる必要かあ
る。モリブデンによる変性の割合があまり小さいと上記
のような効果か小さく、又該変性の割合があまり大きい
ものは調製か煩雑になる傾向にあるので、実用的にはニ
ッケルに対して0、lN10重麓%0モリブデンで変性
ざtした触媒を使用するのが好ましい。このような変性
触媒は変性ラネーニッケルとして容易に入手できるので
、この点からも好ましい。本発明においては、モリブデ
ン以外に少量の金属たとえばd 、 (3u 、 Co
%W、TOlZn等を実害のない範囲で含んでいても何
らざしつかえない。
In the present invention, it is necessary to use a Raney nickel catalyst modified with molybdenum as a hydrogenation catalyst for MfiP. If the proportion of modification by molybdenum is too small, the above effect will be small, and if the proportion of modification is too large, the preparation tends to be complicated. Preference is given to using catalysts modified with %0 molybdenum. Since such a modified catalyst is easily available as modified Raney nickel, it is preferred from this point of view as well. In the present invention, in addition to molybdenum, small amounts of metals such as d, (3u, Co
Even if it contains %W, TOlZn, etc. within a range that does not cause actual harm, there is no problem.

モリブデン変性ラネーニッケル触媒は反応混合液に対し
て金属重量換算で0.1〜10重量%、好ましくは0.
5〜5重量%の量で使用するのが望ましい。該モリブデ
ン変性ラネーニッケル触媒は単独で用いることも、アル
ミナ、シリカ、ケイソウ土等の担体に担持して用いるこ
ともできる。
The molybdenum-modified Raney nickel catalyst is 0.1 to 10% by weight, preferably 0.1 to 10% by weight in terms of metal weight, based on the reaction mixture.
Preferably, it is used in an amount of 5 to 5% by weight. The molybdenum-modified Raney nickel catalyst can be used alone or supported on a carrier such as alumina, silica, diatomaceous earth, or the like.

MIiPの水素化反応は水素加圧下に実施されるか、水
素化反応の圧力をあまり低く・すると、同一の原料供給
量では未反応の原料濃度か増加し、その結果触媒は劣化
する傾向にあり、又fhまり高くてもそれ程効果はなく
むしろ装置上の問題が出てくるので1本発明においては
1〜100気圧、好ましくは2〜20気圧、ざらに好ま
しくは5〜15気圧で実施するのが望ましい。
If the hydrogenation reaction of MIiP is carried out under hydrogen pressure or the pressure of the hydrogenation reaction is too low, the concentration of unreacted raw materials will increase with the same amount of raw material supplied, and as a result the catalyst will tend to deteriorate. In addition, even if fh is higher, it will not be as effective and problems will occur on the equipment, so in the present invention, it is carried out at 1 to 100 atm, preferably 2 to 20 atm, more preferably 5 to 15 atm. is desirable.

M n Pの水素化反応の温度はあまり低いと反応速度
が低い傾向にあり、又lhまり高くてもそれ程の効果は
発現しないので、本発明においては50〜180℃、好
ましくは80〜140℃で実施ざnる。
If the temperature of hydrogenation reaction of M n P is too low, the reaction rate tends to be low, and even if it is too high, the effect will not be as great. It will not be implemented.

MILFの水素化反応には反応に不活性な溶媒が使用さ
れるが、このような溶媒の具体例としては。
A solvent inert to the reaction is used in the hydrogenation reaction of MILF, and specific examples of such solvents are as follows.

メタノール、エタノール、ブタノール、2−エチルヘキ
サノールなどのアルコール類、ジブチルエーテル、ジオ
キサン、テトラヒドロフランなどのエーテル類をあげる
ことができる。溶媒は反応生成物から分離されて再使用
ざオするので、分離の煩雑ざを回避するために反応生成
物を溶媒として使用するのが好ましい。
Examples include alcohols such as methanol, ethanol, butanol, and 2-ethylhexanol, and ethers such as dibutyl ether, dioxane, and tetrahydrofuran. Since the solvent is separated from the reaction product and reused, it is preferable to use the reaction product as the solvent in order to avoid the complexity of separation.

MllPの水素化反応は懸濁床、固定床等の反応方式に
より、回分式または連続式で実施することかできるが、
原料MliPを連続フィードし1反応か水素供給律速に
ならないようにして行うのが好ましい。反応終了後、反
応混合液からモリブデン変性ラネーニッケルを公知の方
法で分離し、反応生成物をとり出すことかでさる。
The hydrogenation reaction of MllP can be carried out batchwise or continuously using a suspended bed, fixed bed, etc. reaction system.
It is preferable to continuously feed the raw material MliP so that only one reaction or hydrogen supply becomes rate limiting. After the reaction is completed, the molybdenum-modified Raney nickel is separated from the reaction mixture by a known method and the reaction product is taken out.

〔実 施 例〕〔Example〕

以下、実施例により本発明を具体的に説明するか1本発
明はこf’Lらにより何ら制限されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited in any way by these examples.

実施例1 水素ガス供給口、原料供給口、温度計およびサンプリン
グ口を備えた内容5oo−の電磁撹拌式オートクレーブ
中に、モリブデン変性ラネーニッケル触媒(R−230
i日興リカ社製、モリブデン/ニッケル=0.4〜0.
6重量%)をウェットで4g(金属換算的zg)および
MPDを150g仕込み、水素ガス圧力5ky/cd 
(ゲージ圧)で5回系内を置換した。しかる後、水素ガ
スにて9 ky/al(ゲージ圧)まで昇圧し、B o
 o rpmの撹拌下120℃まで昇温した。120℃
一定となったところでMHP150gを3時間かけて連
続的に供給した。反応中、水素圧力は圧力調整弁を通じ
て常に9 ky/crt (ゲージ圧)になるように保
たれ、オフガス流量は151/hrに調節された。原料
の供給終了後、1時間反応を続けた。次いで撹拌を停止
し、放冷しながら1時間静置した。サンプリング口より
反応液149gを抜き取り微量浮遊の触媒を濾過した後
、ガスクロマトグラフィーにより分析した。その結果M
 、EI Fの転化率は99.6モル%であり、MPD
への選択率は反応したMHP基準で96モル%であった
。β−メチル−δ−バレロラクトン(MVL)およびア
セタール化物の副生は反応したMMP基準の選択率でそ
れぞれ3モル%、および1モル%であった。
Example 1 A molybdenum-modified Raney nickel catalyst (R-230
i Manufactured by Nikko Rica, molybdenum/nickel = 0.4-0.
6% by weight) in wet form (metal equivalent zg) and 150g of MPD, hydrogen gas pressure was 5ky/cd.
(gauge pressure) and purged the system 5 times. After that, the pressure was increased to 9 ky/al (gauge pressure) with hydrogen gas, and Bo
The temperature was raised to 120°C while stirring at 0 rpm. 120℃
When the temperature became constant, 150 g of MHP was continuously supplied over 3 hours. During the reaction, the hydrogen pressure was always maintained at 9 ky/crt (gauge pressure) through a pressure regulating valve, and the off-gas flow rate was adjusted to 151/hr. After the supply of raw materials was completed, the reaction was continued for 1 hour. Next, stirring was stopped, and the mixture was allowed to stand for 1 hour while being allowed to cool. 149 g of the reaction solution was taken out from the sampling port, and after filtering off a trace amount of floating catalyst, it was analyzed by gas chromatography. As a result M
, the conversion rate of EIF was 99.6 mol%, and the MPD
The selectivity to MHP was 96 mol% based on the reacted MHP. The selectivities of β-methyl-δ-valerolactone (MVL) and acetalized by-products were 3 mol % and 1 mol %, respectively, based on the reacted MMP.

次に、オートクレーブの圧力を9kv’al (ゲージ
圧)に昇圧し、800 rpmの撹拌下120℃まで昇
温し120℃一定となったところで再びMIIP150
gを3時間かけて連続的に供給し2回目の反応を行なっ
た。MIiPの供給終了後、1時間反応を続けた。次い
で、撹拌を停止し放冷しながら1時間静置した後サンプ
リング口より反応液150gを抜き取った。このような
繰り返し反応を計4回実施した。MHPの転化率、MP
D、β−メチル−δ−バレロラクトンおよびアセタール
化物への選択率を各々第1表に示す。
Next, the pressure of the autoclave was increased to 9kv'al (gauge pressure), and the temperature was raised to 120°C while stirring at 800 rpm, and when the temperature remained constant at 120°C, the MIIP150
A second reaction was carried out by continuously supplying 1.5 g of 100 g over 3 hours. After the supply of MIiP was completed, the reaction was continued for 1 hour. Next, stirring was stopped and the mixture was allowed to stand for 1 hour while cooling, and then 150 g of the reaction liquid was taken out from the sampling port. Such repeated reactions were performed a total of four times. Conversion rate of MHP, MP
Table 1 shows the selectivity to D, β-methyl-δ-valerolactone and acetalized product.

第  1  表 (モル%)   MPD   MVL   アセタール
1      99.6    96    3   
  12      99.6    95    3
     23      98.9    95  
  3     24      99.2    9
5    3     2実施例2 実施例1において、モリブデン変性ラネーニッケル触媒
(用研ファインケミカル社製、ラネーニッケル合金(モ
リブデン3重fjkg6)を展開したもの)をウェット
で2g(金属換算約1g)用いで実施する以外は実施例
1と同様の操作を3回行なった。繰り返し3回目のMH
Pの転化率は98.3モル%であり、MPDへの選択率
は反応したMfiF基準で94モル%であった。MVL
およびアセタール化物への選択率は反応したMfiF基
準でそrしぞれ3モル%および3モル%であった。
Table 1 (mol%) MPD MVL Acetal 1 99.6 96 3
12 99.6 95 3
23 98.9 95
3 24 99.2 9
5 3 2 Example 2 In Example 1, except for carrying out using 2 g of molybdenum-modified Raney nickel catalyst (manufactured by Yoken Fine Chemical Co., Ltd., developed with Raney nickel alloy (molybdenum triplex fjkg6)) in a wet state (approximately 1 g in terms of metal). The same operation as in Example 1 was performed three times. Repeat 3rd MH
The conversion rate of P was 98.3 mol%, and the selectivity to MPD was 94 mol% based on the reacted MfiF. MVL
and the selectivity to the acetalate were 3 mol % and 3 mol %, respectively, based on the reacted MfiF.

実施例3 実施例1において、モリブデン変性ラネーニッケル触媒
CB−230i日興リカ社製、モリブデン/ニッケル=
0.4〜0.6重ffi%)をウェットで6g(金属換
算約3y)用い、反応圧力3kg/c11(ゲージ圧)
で実施する以外は実施例1と同様の操作を3回行なった
。繰り返し3回目のMHPの転化率は98.5モル%で
あり、h&PDへの選択率は反応したMIliF基準で
92モル%であった。MVLおよびアセタール化物への
選択率は反応したΔiMP基準でそ几ぞれ5モル%およ
び3モル%であった。
Example 3 In Example 1, molybdenum-modified Raney nickel catalyst CB-230i manufactured by Nikko Rica, molybdenum/nickel =
0.4 to 0.6 weight ffi%) was used in a wet state of 6 g (approximately 3 y in terms of metal), and the reaction pressure was 3 kg/c11 (gauge pressure).
The same operation as in Example 1 was performed three times, except that The conversion rate of MHP in the third repetition was 98.5 mol %, and the selectivity to h&PD was 92 mol % based on the reacted MIliF. The selectivities to MVL and acetalate were 5 mol % and 3 mol %, respectively, based on the reacted ΔiMP.

比較例1〜3 実施例1においてモリブデン変性ラネーニッケル触媒の
かわりに第2表に示す触媒および温度で実施する以外は
実施例1と同様の操作を3回行なった。繰り返し3回目
のM 14 F転化率、MPD、MVLおよびアセター
ル化物への選択率を第2表に示す。
Comparative Examples 1 to 3 The same operations as in Example 1 were carried out three times, except that the catalyst and temperature shown in Table 2 were used instead of the molybdenum-modified Raney nickel catalyst. Table 2 shows the M 14 F conversion, MPD, MVL, and selectivity to acetalate for the third repetition.

3   ラネーコ”    120    79   
65   4    31ルト
3 Raneko” 120 79
65 4 31 Ruto

Claims (1)

【特許請求の範囲】 1、2−ヒドロキシ−4−メチルテトラヒドロピランを
水素化触媒の存在下に水素化して3−メチルペンタン−
1,5−ジオールを製造するに際し、触媒としてモリブ
デン変性ラネーニツケル触媒を使用することを特徴とす
る3−メチルペンタン−1,5−ジオールの製造方法。 2、モリブデン変性ラネーニツケル触媒がニッケルに対
して0.1〜10重量%のモリブデンで変性された触媒
である特許請求の範囲第1項記載の製造方法。 3、モリブデン変性ラネーニツケル触媒の使用量が反応
混合液に対して金属重量換算で0.1〜10重量%であ
る特許請求の範囲第1項または第2項記載の製造方法。 4、モリブデン変性ラネーニツケル触媒の使用量が反応
混合液に対して金属重量換算で0.5〜5重量%である
特許請求の範囲第1項または第2項記載の製造方法。 5、水素化反応の圧力が1〜100気圧である特許請求
の範囲第1項〜第4項のいずれか1項記載の製造方法。 6、水素化反応の圧力が2〜20気圧である特許請求の
範囲第1項〜第4項のいずれか1項記載の製造方法。 7、水素化反応の圧力が5〜15気圧である特許請求の
範囲第1項〜第4項のいずれか1項記載の製造方法。 8、水素化反応の温度が50〜180℃である特許請求
の範囲第1項〜第7項のいずれか1項記載の製造方法。 9、水素化反応の温度が80〜140℃である特許請求
の範囲第1項〜第7項のいずれか1項記載の製造方法。 10、水素化反応の溶媒が反応生成物である特許請求の
範囲第1項〜第9項のいずれか1項記載の製造方法。
[Claims] 1,2-hydroxy-4-methyltetrahydropyran is hydrogenated in the presence of a hydrogenation catalyst to produce 3-methylpentane-
A method for producing 3-methylpentane-1,5-diol, which comprises using a molybdenum-modified Raney nickel catalyst as a catalyst in producing 1,5-diol. 2. The manufacturing method according to claim 1, wherein the molybdenum-modified Raney nickel catalyst is a catalyst modified with 0.1 to 10% by weight of molybdenum based on nickel. 3. The production method according to claim 1 or 2, wherein the amount of the molybdenum-modified Raney nickel catalyst used is 0.1 to 10% by weight in terms of metal weight based on the reaction mixture. 4. The production method according to claim 1 or 2, wherein the amount of the molybdenum-modified Raney nickel catalyst used is 0.5 to 5% by weight in terms of metal weight based on the reaction mixture. 5. The manufacturing method according to any one of claims 1 to 4, wherein the pressure of the hydrogenation reaction is 1 to 100 atm. 6. The manufacturing method according to any one of claims 1 to 4, wherein the pressure of the hydrogenation reaction is 2 to 20 atm. 7. The production method according to any one of claims 1 to 4, wherein the hydrogenation reaction pressure is 5 to 15 atm. 8. The manufacturing method according to any one of claims 1 to 7, wherein the hydrogenation reaction temperature is 50 to 180°C. 9. The manufacturing method according to any one of claims 1 to 7, wherein the hydrogenation reaction temperature is 80 to 140°C. 10. The manufacturing method according to any one of claims 1 to 9, wherein the solvent for the hydrogenation reaction is a reaction product.
JP62258829A 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol Expired - Lifetime JP2503031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258829A JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258829A JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Publications (2)

Publication Number Publication Date
JPH01100139A true JPH01100139A (en) 1989-04-18
JP2503031B2 JP2503031B2 (en) 1996-06-05

Family

ID=17325605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258829A Expired - Lifetime JP2503031B2 (en) 1987-10-13 1987-10-13 Method for producing 3-methylpentane-1,5-diol

Country Status (1)

Country Link
JP (1) JP2503031B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125909A1 (en) 2006-04-28 2007-11-08 Kuraray Co., Ltd. Method for production of 3-methyl-1,5-pentanediol
WO2014196530A1 (en) 2013-06-04 2014-12-11 株式会社クラレ Process for producing polyhydric alcohol
JP2014234375A (en) * 2013-06-04 2014-12-15 株式会社クラレ Method for producing polyhydric alcohol
CN113906005A (en) * 2019-06-04 2022-01-07 Oq化学有限责任公司 Through raneyTMCobalt-catalyzed continuous production of glycols from aldehydes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125909A1 (en) 2006-04-28 2007-11-08 Kuraray Co., Ltd. Method for production of 3-methyl-1,5-pentanediol
US7560601B2 (en) 2006-04-28 2009-07-14 Kuraray Co., Ltd. Method for producing 3-methyl-1,5-pentanediol
JP5101495B2 (en) * 2006-04-28 2012-12-19 株式会社クラレ Method for producing 3-methyl-1,5-pentanediol
KR101364249B1 (en) * 2006-04-28 2014-02-14 가부시키가이샤 구라레 Method for production of 3-methyl-1,5-pentanediol
WO2014196530A1 (en) 2013-06-04 2014-12-11 株式会社クラレ Process for producing polyhydric alcohol
JP2014234375A (en) * 2013-06-04 2014-12-15 株式会社クラレ Method for producing polyhydric alcohol
KR20160034249A (en) 2013-06-04 2016-03-29 가부시키가이샤 구라레 Process for producing polyhydric alcohol
JPWO2014196530A1 (en) * 2013-06-04 2017-02-23 株式会社クラレ Method for producing polyhydric alcohol
US10029965B2 (en) 2013-06-04 2018-07-24 Kuraray Co., Ltd. Process for producing polyhydric alcohol
CN113906005A (en) * 2019-06-04 2022-01-07 Oq化学有限责任公司 Through raneyTMCobalt-catalyzed continuous production of glycols from aldehydes
CN113906005B (en) * 2019-06-04 2024-01-05 Oq化学有限责任公司 Through Raney TM Cobalt catalyzed continuous glycol production from aldehydes

Also Published As

Publication number Publication date
JP2503031B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US7041857B1 (en) Hydrogenation of acetone
US5196602A (en) Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
EP2626344B1 (en) Method for producing trans-1,4-bis(aminomethyl)cyclohexane
JPH027295B2 (en)
KR19980087026A (en) Method for preparing diamine
US8664444B2 (en) Method for producing primary aliphatic amines from aldehydes
KR100659913B1 (en) Alcohol production method
JPH01100139A (en) Production of 3-methylpentane-1,5-diol
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
KR100344962B1 (en) Preparation method of gamma butyrolactone using maleic anhydride
JPH01149828A (en) Production of polyalcohol
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
JP3016727B2 (en) Modified Raney nickel catalyst and method for producing diol compound using the catalyst
JP4045604B2 (en) Method for producing 2-methylimidazole
EP0333296B1 (en) Process for the preparation of alkanediols
JPH10130210A (en) Production of diamine
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
CN114436865B (en) Preparation method of 4-aminocyclohexanol
JPH10310559A (en) Production of diamine
JP2002088030A (en) Method for producing diamine
JPH0149135B2 (en)
JP3387131B2 (en) Method for producing alicyclic diol
KR100645667B1 (en) Process for producing 1-n-halophenylethanol
JP2964536B2 (en) Method for producing octamethylenediamine
EP2765126A1 (en) Hydrogenation of citral in a solvent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12