JPH01100072A - Production of light-weight foamed concrete - Google Patents

Production of light-weight foamed concrete

Info

Publication number
JPH01100072A
JPH01100072A JP25726687A JP25726687A JPH01100072A JP H01100072 A JPH01100072 A JP H01100072A JP 25726687 A JP25726687 A JP 25726687A JP 25726687 A JP25726687 A JP 25726687A JP H01100072 A JPH01100072 A JP H01100072A
Authority
JP
Japan
Prior art keywords
composition
water
light
temperature
pouring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25726687A
Other languages
Japanese (ja)
Other versions
JP2601489B2 (en
Inventor
Hiroaki Yanagida
洋明 柳田
Yasushi Kawamura
川村 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62257266A priority Critical patent/JP2601489B2/en
Publication of JPH01100072A publication Critical patent/JPH01100072A/en
Application granted granted Critical
Publication of JP2601489B2 publication Critical patent/JP2601489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a light-weight foamed concrete having improved foaming efficiency, appearance and strength, by using a composition for light-weight foamed concrete containing a water-soluble cellulose having a specific gelling temperature and pouring the composition into a form containing a reinforcing material. CONSTITUTION:The objective concrete is produced by pouring a specific composition for light-weight foamed concrete into a frame containing a reinforcing material at a specific position. The composition used in the above process contains 0.001-0.05% of a water-soluble cellulose based on the solid component in the composition for light-weight foamed concrete and the gelling temperature of the water-soluble cellulose measured in the form of a solution produced by dissolving 1% of the cellulose in 0.01N aqueous solution of NaOH is higher than the pouring temperature of the composition for light-weight foamed concrete into the form by 0-15 deg.C. The process utilizes the abrupt thickening phenomenon caused by the gelation of the water-soluble cellulose. The composition is fluid in pouring because of its low viscosity. The viscosity increases several minutes after pouring since the slurry temperature increases to the gelling temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軽量気泡コンクリートの製造方法に関し、特に
鉄筋やラス金網等の補強材で強化された軽量気泡コンク
リートの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing lightweight cellular concrete, and particularly to a method for producing lightweight cellular concrete reinforced with reinforcing materials such as reinforcing bars and lath wire mesh.

〔従来の技術〕[Conventional technology]

セメント、石膏及び所定の粒度に調整した生石灰、珪石
等を主原料とする軽量気泡コンクリート用原料に発泡剤
又は気泡剤及び水を加えて混合した泥状の組成物(以下
スラリーという)を型枠に注入し発泡硬化させて、モル
タルカッターで切断、オートクレーブで養生する軽量気
泡コンクリートの製造に於いて、気泡を安定させるため
には、原材料の混合割合の範囲を限定することや、発泡
剤・起泡剤の特性を細かく設定することを行ってきた。
A slurry composition (hereinafter referred to as slurry) made by adding a foaming agent or a foaming agent and water to raw materials for lightweight cellular concrete whose main raw materials are cement, gypsum, quicklime, silica stone, etc. adjusted to a specified particle size, and mixing the mixture is used as a formwork. In the production of lightweight aerated concrete, which is injected into foam, cured by foaming, cut with a mortar cutter, and cured in an autoclave, in order to stabilize the foam, it is necessary to limit the mixing ratio of raw materials, and to use foaming agents and foaming agents. We have been working on finely setting the characteristics of foaming agents.

また、予め起泡剤を発泡させて造った泡とセメントモル
タルとを混合するプレフォーム法による軽量気泡コンク
リートの製造に於いては、上記に加えて、増粘剤を用い
ることが一般的であった。
In addition to the above, when manufacturing lightweight cellular concrete using the preform method, in which foam made by foaming a foaming agent in advance is mixed with cement mortar, a thickener is generally used in addition to the above. Ta.

〔従来技術の問題点〕[Problems with conventional technology]

従来の軽量気泡コンクリートは、アルミニウム粉末その
他の発泡剤を添加し、気泡を導入するが、発生した気泡
の一部が散逸や消泡して十分に膨張せず、膨張後陥没し
たり、また発泡剤の発泡により生じた気泡がスラリー上
部に集合し、スラリーの強度発現が不充分な部分(通常
、鉄筋などの補強材の垂直上方に水がたまりやすい部分
)から、突沸現象を起こし、均一な組織を得ることが困
難であった。したがって、これを防止させるために、原
材料の混合割合を細かく規定したり、発泡剤・起泡剤の
特性を細かく設定することを行っていたが、十分とは言
えなかった。また、プレフォーム法による軽量気泡コン
クリートでは、増粘剤を用いて、これらを防止すること
を行う場合もあるが、流動性が著しく高くなる等の問題
点を有する。
Conventional lightweight aerated concrete adds aluminum powder or other foaming agents to introduce air bubbles, but some of the generated air bubbles dissipate or defoam and do not expand sufficiently, causing the concrete to collapse after expansion, or to foam again. Bubbles generated by foaming of the agent gather at the top of the slurry, causing a bumping phenomenon in areas where the strength of the slurry is insufficient (usually areas where water tends to accumulate vertically above reinforcing materials such as reinforcing bars), resulting in uniform uniformity. It was difficult to obtain tissue. Therefore, in order to prevent this, attempts have been made to precisely specify the mixing ratio of raw materials and to finely set the characteristics of blowing agents and foaming agents, but these efforts have not been sufficient. In addition, in lightweight cellular concrete made by the preform method, thickeners are sometimes used to prevent these problems, but there are problems such as extremely high fluidity.

一方、増粘剤を通常のアルミ粉末を用いる軽量気泡コン
クリートに用いると、効果が得られる量を添加する場合
、注入時の粘性が高すぎ、スラリーが流動しないため、
型枠に一定高さに流し込めないばかりでなく、空気泡を
巻きこみ、粗大気泡が生成してしまうため、製品外観を
そこなうことになりがちであった。
On the other hand, when thickeners are used in lightweight cellular concrete using ordinary aluminum powder, when added in an effective amount, the viscosity during injection is too high and the slurry does not flow.
Not only could it not be poured into the formwork at a constant height, but it would also trap air bubbles and generate coarse air bubbles, which tended to spoil the appearance of the product.

また、発泡初期の粘性が高過ぎるため、発泡効率が悪く
なり、アルミの使用量が多くなる欠点があり、実用化に
は至っていないのが実情であった。
In addition, the viscosity at the initial stage of foaming is too high, resulting in poor foaming efficiency and the use of a large amount of aluminum, which has prevented it from being put to practical use.

〔問題点を解決するための手段〕[Means for solving problems]

これらの問題点を解決するために研究を押し進めた結果
本発明に至った。すなわち、軽量気泡コンクリート用組
成物の中に、水溶性セルロースのうち、0.01規定の
NaOH水溶液中で1%溶解した水溶液で測定したゲル
化温度が軽量気泡コンクリートの型枠へ注入する温度よ
り、0〜15℃高い水溶性セルロースを固形分に対して
0.001%以上でかつ0.05%以下で混合するもの
である。
The present invention was achieved as a result of research to solve these problems. In other words, the gelation temperature measured with an aqueous solution of 1% of water-soluble cellulose dissolved in a 0.01 N NaOH aqueous solution in the composition for lightweight cellular concrete is higher than the temperature at which it is poured into the formwork of lightweight cellular concrete. , 0 to 15° C. high water-soluble cellulose is mixed in an amount of 0.001% or more and 0.05% or less based on the solid content.

このように本発明は水溶性セルロースのゲル化による急
激な増粘現象を利用したものであり、注入時には低い粘
性のため流動性を有し、注入後数分後にスラリーの温度
上昇により、ゲル化温度に達するため、増粘し所定の効
果を上げることができる。このゲル化の増粘効果のため
、水溶性セルロースの添加量は最少限とすることができ
、コスト低減効果がある。また、水溶性セルロースは水
溶液中のゲル化温度に比べて、アルカリ溶液中ではゲル
化温度が低くなるため、グレードの選定は、前もって軽
量気泡コンクリートスラリー中でのゲル化温度を測定し
ておく必要があるが、これは、はぼ0.01規定のNa
OH水溶液中でのゲル化温度と等しいため後者で代用で
きる。使用する水溶性セルロースのゲル化温度は軽量気
泡コンクリート用組成物が型枠への注入終了後から、予
定発泡量の50%が発泡するまでの間にゲル化すること
が必要なため、注入時の軽量気泡コンクリート用組成物
(以下スラリーと言う)温度と比べて0〜15℃高いも
のが必要である。スラリー温度未満の場合、混合時にす
でに増粘してしまうため流動性が著しく悪くなるため好
ましくない。また、スラリー温度より15℃を越える場
合、増粘が発泡後半に起こるため、添加する効果が得ら
れない。
In this way, the present invention utilizes the phenomenon of rapid thickening due to gelation of water-soluble cellulose, which has fluidity due to its low viscosity at the time of injection, and gels due to the rise in temperature of the slurry several minutes after injection. Since the temperature is reached, the viscosity can be increased and a desired effect can be achieved. Due to the thickening effect of this gelation, the amount of water-soluble cellulose added can be minimized, resulting in a cost reduction effect. In addition, the gelation temperature of water-soluble cellulose in an alkaline solution is lower than that in an aqueous solution, so it is necessary to measure the gelation temperature in lightweight aerated concrete slurry before selecting a grade. However, this is approximately 0.01 standard Na
Since it is equal to the gelation temperature in an OH aqueous solution, the latter can be used instead. The gelling temperature of the water-soluble cellulose used must be set at the time of pouring, since it is necessary for the composition for lightweight cellular concrete to gel between the time it is poured into the formwork and the time when 50% of the expected foaming volume is foamed. The temperature of the composition for lightweight cellular concrete (hereinafter referred to as slurry) must be 0 to 15°C higher. If the temperature is lower than the slurry temperature, the viscosity will already increase during mixing, resulting in significantly poor fluidity, which is not preferable. Furthermore, if the temperature exceeds the slurry temperature by 15°C, thickening occurs in the latter half of foaming, so that the effect of addition cannot be obtained.

水溶性セルロースの添加量は、対固形分0.001%以
上かつ0.05%以下とするのが好ましい。
The amount of water-soluble cellulose added is preferably 0.001% or more and 0.05% or less based on the solid content.

0.001未満の添加量の場合は、必要な増粘効果が得
られず、0.05%をこえる添加量の場合は、増粘が大
き過ぎ、発泡時に補強材の垂直上方へ回り込めず、地割
れの様な空洞が生成するため好ましくない。
If the amount added is less than 0.001%, the necessary thickening effect cannot be obtained, and if the amount added is more than 0.05%, the viscosity increase is too large and the reinforcing material cannot be wrapped vertically upward during foaming. , which is undesirable because it creates cavities like cracks in the ground.

本発明における水溶性セルロースは、メチルセルロース
、エチルセルロース、メチルエチルセルロース、ヒドロ
キシエチルメチルセルロース、ヒドロキシエチルセルロ
ース、ヒドロキシプロピルメチルセルロース、カルボキ
シメチルセルロース等の水溶性セルロースエーテルから
選ばれるものであり、メチルセルロースのメトキシ基の
84〜93%をヒドロキシプロポキシ基に置換したもの
も含まれ、そのエーテルの置換基の量および置換基の種
類などによりそのゲル化温度が種々変化するものである
The water-soluble cellulose in the present invention is selected from water-soluble cellulose ethers such as methylcellulose, ethylcellulose, methylethylcellulose, hydroxyethylmethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, and carboxymethylcellulose, and contains 84 to 93% of the methoxy groups in methylcellulose. It also includes those in which the ether is substituted with a hydroxypropoxy group, and the gelation temperature varies depending on the amount and type of substituents in the ether.

なお、これらセルロースはその分子量により粘度が異な
るものである。しかし、ゲル化する前の粘度は分子量に
より大巾に変化するので、あまりに分子量が高く、粘度
が高すぎるものの使用はさける方が好ましいが、ゲル化
すると分子量による粘度変化は、少なくなる°ので、そ
れ程分子量は気にすることはない。
Note that these celluloses have different viscosities depending on their molecular weights. However, the viscosity before gelation varies widely depending on the molecular weight, so it is better to avoid using products with too high molecular weight and viscosity, but once gelled, the viscosity change due to molecular weight will be less. I don't really care about molecular weight.

一般には分子N5万〜12万のものが使用される。また
、本発明に用いるセルロースはグリオキザールで表面処
理されたものであることが溶解し易いので好ましい。
Generally, molecules of N50,000 to 120,000 are used. Further, it is preferable that the cellulose used in the present invention is surface-treated with glyoxal because it is easily dissolved.

これらセルロースの中から上記の如<0.0INのNa
OH水溶液中での1%溶液のゲル化温度が上記の如きも
のを選択すればよい。軽量気泡コンクリート組成物の型
枠への注入温度は40℃以上、好ましくは50℃程度で
あるので、メチルセルロースの場合は、そのセルロース
基当りの置換度が1.4〜1.9で、メトキシ基を19
〜30%、ヒドロキシプロポキシ基を4〜12%含むも
のが前記の条件を満足することが多い。例えば、メチル
セルロースの中で、セルロース基当りの置換度(3個の
OH基の内で何個置換されているかを示す値)が1.8
〜1.9でメトキシ基が28〜30%、ヒドロキシ基が
7〜12%で分子量が86000のものは、前記のゲル
化温度は50℃であり、セルロース基当りの置換度が1
.7〜1.8で、メトキシaが2’l〜29%、ヒドロ
キシル基が4〜8で分子量が86000のものは、前記
のゲル化温度は55℃であり、セルロース基当りの置換
度が1.3〜1.4でメトキシ基が19〜24%、ヒド
ロキシル基が4〜12%で分子量が12万のものは前記
のゲル化温度は65℃である。なお、本発明は型枠に補
強材を入れたものであれば、どのような種類の型枠にで
も応用できるが、所定の位置に補強鉄筋を垂直に保持さ
せた型枠に対して適用すると効果が顕著になる。
Among these celluloses, as mentioned above, <0.0 IN Na
The gelling temperature of a 1% solution in an OH aqueous solution may be selected as described above. The temperature at which the lightweight cellular concrete composition is poured into the formwork is 40°C or higher, preferably about 50°C. 19
~30%, and those containing 4 to 12% of hydroxypropoxy groups often satisfy the above conditions. For example, in methylcellulose, the degree of substitution per cellulose group (a value indicating how many of the three OH groups are substituted) is 1.8.
~1.9, with 28-30% methoxy groups, 7-12% hydroxy groups, and a molecular weight of 86,000, the gelation temperature is 50°C and the degree of substitution per cellulose group is 1.
.. 7 to 1.8, methoxy a is 2'l to 29%, hydroxyl group is 4 to 8, and the molecular weight is 86,000, the gelation temperature is 55°C, and the degree of substitution per cellulose group is 1. .3 to 1.4, 19 to 24% methoxy groups, 4 to 12% hydroxyl groups, and a molecular weight of 120,000, the gelation temperature is 65°C. The present invention can be applied to any type of formwork as long as the reinforcing material is inserted into the formwork, but if it is applied to a formwork in which reinforcing bars are held vertically in a predetermined position The effect becomes noticeable.

〔実施例〕〔Example〕

次に実施例によって本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

(実施例1) 軽量気泡コンクリート用組成物は、セメント30重量%
、生石灰8重量%、珪石35重量%、石膏2重量%、軽
量気泡コンクリートの解砕層25重量%の割合からなる
混合物100重量部に水70重量部と金属アルミ粉状物
0.06重量部とヒドロキシプロピルセルロース(商品
名、信越化学hiメトローズ65SH−4000,この
1%溶液のゲル化温度は、水中では65℃であるが、0
.01規定のNaOH中では55℃を示した。)0.0
1重量部とを加えて混練したものであり、この混練直後
の軽量気泡コンクリート用組成物を補強筋を多数垂直に
保持した型枠内に注入した。このときの注入スラリーの
温度は、50℃であった。
(Example 1) The composition for lightweight aerated concrete contains 30% by weight of cement.
, 70 parts by weight of water and 0.06 parts by weight of metallic aluminum powder to 100 parts by weight of a mixture consisting of 8% by weight quicklime, 35% by weight silica stone, 2% by weight gypsum, and 25% by weight crushed layer of lightweight cellular concrete. and hydroxypropyl cellulose (trade name, Shin-Etsu Chemical hi Metrose 65SH-4000, the gelation temperature of this 1% solution is 65°C in water, but
.. In 01N NaOH, the temperature was 55°C. )0.0
Immediately after this kneading, the lightweight cellular concrete composition was poured into a formwork in which a large number of reinforcing bars were held vertically. The temperature of the injected slurry at this time was 50°C.

この結果、発泡効率(最終発泡高さ/型枠上面までの高
さの平均値×100で表わす数値)は、ヒドロキシプロ
ピルセルロースを添加したものは、100%であったの
に対し、添加しなかったものは、97%であり、3%の
向上を示した。さらに、型枠内発泡高さの最大と最小の
差は1(inを示し、添加しない場合と同一であった。
As a result, the foaming efficiency (value expressed as the final foaming height/average value of the height to the top of the formwork x 100) was 100% with the addition of hydroxypropyl cellulose, whereas it was 100% with the addition of hydroxypropyl cellulose, whereas it was 100% with the addition of hydroxypropyl cellulose. 97%, representing an improvement of 3%. Furthermore, the difference between the maximum and minimum foam height within the mold was 1 (in), which was the same as when no addition was made.

また、突沸現象の程度を示す突沸指数(型枠上面の突沸
穴の数を測定し、1−当りに換算したもの)は、添加し
たものはOであるのに対し、添加しないものは12とな
り、大巾に改善された。また、膨張終了後の陥没現象は
起らず、直径3f1以上の粗大泡は皆無であり、気泡が
細かくなっていることと合せて、外観美観も向上した。
In addition, the bumping index (measured by the number of bumping holes on the top surface of the mold and converted to 1-percent), which indicates the degree of bumping phenomenon, is 0 for the additive, while it is 12 for the non-additive. , has been greatly improved. Furthermore, no collapse phenomenon occurred after the expansion was completed, and there were no large bubbles with a diameter of 3f1 or more, and together with the fact that the bubbles were finer, the appearance was also improved.

また、補強筋垂直上方の無筋部の圧縮強度は50.4k
g/−を示し、添加0の場合の48.6kg/−に比べ
て向上した。
In addition, the compressive strength of the unreinforced part vertically above the reinforcing bars is 50.4k.
g/-, which was improved compared to 48.6 kg/- in the case of no addition.

(実施例2) 軽量気泡コンクリート用組成物は、セメント30重量%
、生石灰8重量%、珪石35重量%、石膏2重量%、軽
量気泡コンクリートの解砕層25重量%の割合からなる
混合物100重量部に水70重量部と金属アルミ粉状物
0.06重量部とヒドロキシプロピルセルロース(商品
名、信越化学hiメトローズ60SH−4000゜この
1%溶液のゲル化温度は水中では60℃であるが、0、
O1規定のNaOH中では50℃を示した。)0.01
重量部とを加えて混練したものであり、この混練直後の
軽量気泡コンクリート用組成物を補強筋を多数垂直に保
持した型枠内に注入した。このときの注入スラリーの温
度は47℃であった。この結果、発泡効率は、メチルセ
ルロースを添加したものは、100%であったのに対し
、添加しなかったものは、98.5%であり、1.5%
の向上を示した。また、型枠内発泡高さの最大と最小の
差は10mを示し、添加しない場合と同一であった。
(Example 2) The composition for lightweight aerated concrete contains 30% by weight of cement.
, 70 parts by weight of water and 0.06 parts by weight of metallic aluminum powder to 100 parts by weight of a mixture consisting of 8% by weight quicklime, 35% by weight silica stone, 2% by weight gypsum, and 25% by weight crushed layer of lightweight cellular concrete. and hydroxypropyl cellulose (trade name, Shin-Etsu Chemical hi Metrose 60SH-4000°) The gelation temperature of this 1% solution is 60°C in water, but 0,
In NaOH with normal O1, the temperature was 50°C. )0.01
Immediately after this kneading, the lightweight cellular concrete composition was poured into a formwork in which a large number of reinforcing bars were held vertically. The temperature of the injected slurry at this time was 47°C. As a result, the foaming efficiency was 100% in the case where methylcellulose was added, while it was 98.5% in the case where methylcellulose was not added, and 1.5%.
showed an improvement in Further, the difference between the maximum and minimum foam height within the mold was 10 m, which was the same as when no addition was made.

一方、突沸指数は添加したものはOであるのに対し、添
加しないものは12となり、大巾に改善された。また、
膨張終了後の陥没現象は起らず、直径3寵以上の粗大泡
は皆無であり、気泡が細かくなっていることと合わせて
、外観美観も向上した。
On the other hand, the bumping index was O in the case of the additive, whereas it was 12 in the case without the addition, which was a significant improvement. Also,
There was no sinking phenomenon after the completion of expansion, there were no large bubbles with a diameter of 3 cm or more, and in addition to the finer bubbles, the appearance was also improved.

また、補強筋垂直上方の無筋部の圧縮強度は50.9k
g / cdを示し、添加0の場合の49.5 kg/
cdに比べて向上した。
In addition, the compressive strength of the unreinforced part vertically above the reinforcing bars is 50.9k.
g/cd, 49.5 kg/cd with 0 addition
Improved compared to CD.

〔発明の効果〕〔Effect of the invention〕

このように、軽量気泡コンクリート用組成物の中に、水
溶性セルロースを本発明のごとく混合することによって
、次の効果が得られる。
As described above, by mixing water-soluble cellulose into a composition for lightweight cellular concrete as in the present invention, the following effects can be obtained.

1)セルロースのゲル化により、発生した気泡が、散逸
や消泡することが無くなり、発泡効率を向上させること
ができる。
1) Due to gelation of cellulose, generated air bubbles are prevented from dissipating or defoaming, and foaming efficiency can be improved.

2)セルロースのゲル化により、スラリーの気泡の保持
力が向上するため、膨張後に陥没するといった現象が無
くなる。
2) Gelation of cellulose improves the ability of the slurry to retain air bubbles, eliminating the phenomenon of collapse after expansion.

3)セルロースのゲル化により、発生した気泡が集合す
ることが無いため、気泡が細かく均一にでき、外観・強
度が向上する。
3) Due to the gelation of cellulose, the generated air bubbles do not aggregate, so the air bubbles are made fine and uniform, improving the appearance and strength.

4)セルロースのゲル化により、鉄筋の垂直上方におい
て突沸現象を起こすことがないため、ブロックのちぎれ
現象に到ることがなく、均一な組織を得ることができる
4) Due to the gelation of cellulose, bumping phenomenon does not occur vertically above the reinforcing bars, so a uniform structure can be obtained without causing block tearing phenomenon.

5)注入時にはセルロースがゲル化していないので、ス
ラリーの流動性をそこなうことなく注入できるため、注
入高さを一定にすることができる。
5) Since the cellulose is not gelatinized during injection, the slurry can be poured without damaging its fluidity, so the injection height can be kept constant.

6)注入時はセルロースがゲル化していないので、注入
時のスラリー粘度を低く保てるため、空気の巻き込みに
よる粗大泡が発生することがない。
6) Since the cellulose is not gelled during injection, the viscosity of the slurry during injection can be kept low, and coarse bubbles due to air entrainment will not be generated.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 軽量気泡コンクリート用組成物中にその固形分に対して
0.001%以上0.05%以下の水溶性セルロースを
含み、かつ該水溶性セルロースは0.01規定のNaO
H水溶液に1%溶解して測定したときのゲル化温度が軽
量気泡コンクリート用組成物を型枠内へ注入するときの
温度よりも0〜15℃高いものである軽量気泡コンクリ
ート用組成物を所定の位置に補強材を保持させた型枠内
に注入することを特徴とする軽量気泡コンクリートの製
造方法。
The composition for lightweight cellular concrete contains 0.001% or more and 0.05% or less of water-soluble cellulose based on its solid content, and the water-soluble cellulose contains 0.01N NaO
Specify a composition for lightweight cellular concrete whose gelation temperature, when measured by dissolving 1% in an aqueous solution of H, is 0 to 15°C higher than the temperature at which the composition for lightweight cellular concrete is poured into the formwork. A method for producing lightweight aerated concrete, characterized by pouring it into a formwork in which reinforcing material is held at the position of.
JP62257266A 1987-10-14 1987-10-14 Manufacturing method of lightweight cellular concrete Expired - Lifetime JP2601489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257266A JP2601489B2 (en) 1987-10-14 1987-10-14 Manufacturing method of lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257266A JP2601489B2 (en) 1987-10-14 1987-10-14 Manufacturing method of lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JPH01100072A true JPH01100072A (en) 1989-04-18
JP2601489B2 JP2601489B2 (en) 1997-04-16

Family

ID=17303993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257266A Expired - Lifetime JP2601489B2 (en) 1987-10-14 1987-10-14 Manufacturing method of lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP2601489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348261A (en) * 2000-06-01 2001-12-18 Asahi Kasei Corp Production process of alc thin plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595136A (en) * 1982-06-15 1984-01-12 ロレアル 3-benzylidene-camphor derivative and use
JPS6424081A (en) * 1987-07-17 1989-01-26 De Kitsufure Kiaara Manufacture of foamed concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595136A (en) * 1982-06-15 1984-01-12 ロレアル 3-benzylidene-camphor derivative and use
JPS6424081A (en) * 1987-07-17 1989-01-26 De Kitsufure Kiaara Manufacture of foamed concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348261A (en) * 2000-06-01 2001-12-18 Asahi Kasei Corp Production process of alc thin plate

Also Published As

Publication number Publication date
JP2601489B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US3963507A (en) Foam-containing slurry to make porous, inorganic construction material
CN111574119A (en) Foam concrete with high light weight and performance and preparation method thereof
CN112079605A (en) Concrete for inhibiting concrete cracks and preparation method thereof
EP1831128A1 (en) Shaped concrete body
CN111908855B (en) Composite pile premixed fluidized solidified soil slurry and preparation method thereof
CN112608093A (en) Dry-mixed plastering mortar prepared from recycled aggregate and preparation method thereof
CN113754362A (en) Shield grouting material and preparation method thereof
JPH01100072A (en) Production of light-weight foamed concrete
CN111620664A (en) Non-cement-based ultrahigh-performance concrete and preparation method thereof
CN112299771B (en) Super-dispersion-resistant and segregation-resistant concrete and preparation method and construction process thereof
CN115432979A (en) Large-section tunnel secondary lining self-compacting concrete used in water-rich environment
CN114853426A (en) Light-weight finishing mortar for external thermal insulation system of external wall
JPS5927739B2 (en) Additive for improving properties of lightweight concrete
JPH092882A (en) Concrete composition and production of concrete hardened product
JP5895588B2 (en) Underwater non-separated grout composition, grout slurry and grout cured body
JP4638651B2 (en) Non-shrink mortar / concrete admixture and non-shrink mortar / concrete containing the same
JP2505606B2 (en) Steam curing light weight air bubble concrete manufacturing method
CN116396043B (en) Composite high-strength gypsum material and preparation method and application thereof
CN116396044B (en) Foaming gypsum and preparation method and application thereof
JP2001348261A (en) Production process of alc thin plate
JPH04166508A (en) Lightweight, highly fluid reinforcing soil
CN118684467A (en) Low-shrinkage foam concrete and preparation method thereof
CN112209660A (en) Preparation method of fiber lightweight aggregate concrete slab and concrete slab prepared by same
JPH09249438A (en) Admixture for cement-based material for extrusion molding and hardening of cement-based material for extrusion molding using the same
SU1675283A1 (en) Composition for manufacturing porous materials and method for manufacturing porous materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11