JP7549333B2 - Oligonucleotides for detecting the stag beetle - Google Patents

Oligonucleotides for detecting the stag beetle Download PDF

Info

Publication number
JP7549333B2
JP7549333B2 JP2020171816A JP2020171816A JP7549333B2 JP 7549333 B2 JP7549333 B2 JP 7549333B2 JP 2020171816 A JP2020171816 A JP 2020171816A JP 2020171816 A JP2020171816 A JP 2020171816A JP 7549333 B2 JP7549333 B2 JP 7549333B2
Authority
JP
Japan
Prior art keywords
seq
oligonucleotide
base sequence
sequence shown
beetle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020171816A
Other languages
Japanese (ja)
Other versions
JP2022063510A (en
Inventor
聡 古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2020171816A priority Critical patent/JP7549333B2/en
Publication of JP2022063510A publication Critical patent/JP2022063510A/en
Application granted granted Critical
Publication of JP7549333B2 publication Critical patent/JP7549333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ヒメマダラカツオブシムシ検出用オリゴヌクレオチド、ヒメマダラカツオブシムシ検出用キット、及びヒメマダラカツオブシムシの検出方法に関する。 The present invention relates to an oligonucleotide for detecting the stag beetle, a kit for detecting the stag beetle, and a method for detecting the stag beetle.

ヒメマダラカツオブシムシ(Trogoderma inclusumLeConte)は、コウチュウ目カツオブシムシ科に分類される。カツオブシムシ科の昆虫(カツオブシムシ類と称する)は、世界中に約1000種が知られているが、日本には20種程度の存在が報告されており(非特許文献1)、例えば、ヒメマダラカツオブシムシのほかには、ヒメアカカツオブシムシ、ヒメカツオブシムシ、ヒメマルカツオブシムシ、カドマルカツオブシムシ、ハラジロカツオブシムシ、マルカツオブシムシ、マダラカツオブシムシ、カザリマダラカツオブシムシ、トビカツオブシムシ等が挙げられる。カツオブシムシ類の多くはカツオブシや毛織物等の乾燥した動物質を食害するが、一部は米や豆類等の貯穀の植物質を食害する貯穀害虫である。カツオブシムシ類は、形態学的に類似しているものが多く、目視による判別は非常に困難とされている。 Trogoderma inclusum LeConte is classified as a member of the Dermestidae family of the order Coleoptera. There are approximately 1,000 known species of insects in the Dermestidae family (called dermestidae) around the world, but around 20 species have been reported in Japan (Non-Patent Document 1). In addition to Trogoderma inclusum LeConte, examples include the red dermestidae, the red dermestidae, the round dermestidae, the square dermestidae, the white dermestidae, the round dermestidae, the spotted dermestidae, the kasari spotted dermestidae, and the flying dermestidae. Many dermestid beetles feed on dried animal matter such as dried bonito flakes and wool, but some are stored grain pests that feed on vegetable matter in stored grains such as rice and beans. Many dermestid beetles are morphologically similar, making it very difficult to distinguish them by visual inspection.

日本において害虫による被害を受けやすい代表的な貯穀は米である。米は日本の主要な輸出対象品目の1つとして位置づけられており、農林水産省等においても、和食の国際的な普及促進活動と、それに伴い海外の日本食レストラン用に日本産米や加工品である日本酒の消費を促すとともに、輸出用米の作付拡大を進めている。 In Japan, rice is a typical stored grain that is susceptible to damage from pests. Rice is one of Japan's main export items, and the Ministry of Agriculture, Forestry and Fisheries and other organizations are working to promote the international spread of Japanese cuisine, encouraging the consumption of Japanese rice and processed sake for use in Japanese restaurants overseas, while also promoting the expansion of rice cultivation for export.

一方、諸外国では病害虫の侵入及びまん延を防止するためにそれぞれの植物検疫制度を設けており、日本から輸出する農作物は、輸出先国側の植物検疫条件に適合している必要がある。そのため、農林水産省では、我が国の農産物の輸出環境を整備するため、諸外国に対して輸出解禁要請を行っている。例えば、中国向けの精米の輸出に際しては、「中華人民共和国向け精米の輸出検疫実施要領(平成20年6月20日付け20消安第3741号消費安全局長通知)」が定められており、同実施要項では、中国側が認可した指定登録施設で精米・くん蒸等がなされた精米のみ輸出できることとなっている。指定登録施設における認可手続きでは、同施設内に誘引剤フェロモンを用いたトラップを設置して、カツオブシムシ類が無発生であることの確認(トラップ調査)が必要とされている。中国側が検疫対象としているカツオブシムシ類は、ヒメアカカツオブシムシ、カザリマダラカツオブシムシ及びヒメマダラカツオブシムシであり、これらが同施設で見つかった場合には、輸出停止措置を取り、くん蒸等による対象種の撲滅措置及び効果の確認を経るなどの管理が必要となり、時間的にも手間等にもコストがかかる厄介なプロセスが追加発生する。 On the other hand, each country has its own plant quarantine system to prevent the introduction and spread of pests, and agricultural products exported from Japan must meet the plant quarantine requirements of the destination country. Therefore, the Ministry of Agriculture, Forestry and Fisheries is requesting other countries to lift the export ban in order to improve the export environment for Japanese agricultural products. For example, when exporting polished rice to China, the "Guidelines for Export Quarantine of Polished Rice to the People's Republic of China (Notice No. 203741 of the Director-General of the Consumer Safety Bureau dated June 20, 2008)" is set, and the guidelines state that only polished rice that has been polished and fumigated at a designated registered facility approved by the Chinese side can be exported. The approval procedure for the designated registered facility requires that traps using attractant pheromones be set up within the facility to confirm that there are no dermestid beetles (trap survey). The cutworms that China is subject to quarantine are the small red cutworm, the spotted cutworm, and the small spotted cutworm. If any of these are found at the facility, exports will be suspended and management will be required, including eradication measures for the target species by fumigation and other methods and confirmation of the effectiveness of these measures, resulting in additional, troublesome processes that are costly in terms of time and effort.

植物検疫は、まず検疫の対象の種であるか否かを明確にし、検疫対象であれば燻蒸などの措置を行うため、種の同定は極めて重要である。中国への輸出に際しては、上記の3種のカツオブシムシを同定する必要があるが、日本で見つかったとされている20種程度のカツオブシムシ類から該当するそれぞれを区別することは目視では極めて困難である。その理由としては、貯穀害虫は一般に成虫であっても小さく、幼虫や卵については特徴が限られることが挙げられる。また、マルカツオブシムシ、マダラカツオブシムシの成虫には体表に鱗片が密植しており、特徴的な斑紋が認められるものの、この斑紋は良く似ているものが多いこと、当該昆虫が棲息している現場で採集されたものについては物理的な接触等による摩耗で鱗片そのものが脱落してしまっていること、オイルで捕獲するタイプの誘引剤(フェロモン)を用いた捕獲器(トラップ)で浸漬された個体は斑紋が損傷なく残っていたとしてもオイルによって黒色調となって斑紋のコントラストが不明瞭となっていること等が挙げられる。 Plant quarantine first clarifies whether a species is subject to quarantine, and if so, measures such as fumigation are taken, so identification of the species is extremely important. When exporting to China, it is necessary to identify the three types of dermestid beetles mentioned above, but it is extremely difficult to distinguish each of the approximately 20 species of dermestid beetles that are said to have been found in Japan by visual inspection. The reason for this is that grain pests are generally small even as adults, and the characteristics of the larvae and eggs are limited. In addition, although the adult round dermestid beetles and spotted dermestid beetles have densely grown scales on their body surfaces and characteristic markings can be seen, these markings are often very similar, the scales themselves have fallen off due to wear caused by physical contact, etc., in the case of insects collected at the site where the insects live, individuals immersed in a trap using an attractant (pheromone) that captures them with oil have their markings remain intact, but the oil makes the contrast of the markings unclear, even if they remain intact.

近年、昆虫においてもDNA分析が良く用いられており、目視による鑑定が非常に困難な場合に特に有用である。平成20年度に環境省が纏めた環境循環型社会白書には、全世界の既知の総生物種数は約175万種で、このうち、哺乳類は約6,000種、鳥類は約9,000種、昆虫は約95万種、維管束植物は約27万種との記載がある。これによると、生物の約55%は昆虫が占めており、極めて多様な昆虫をDNAで分類・鑑定することは理に叶っている。 In recent years, DNA analysis has also come to be widely used in insects, and is particularly useful in cases where visual identification is extremely difficult. The Environmental Recycling Society White Paper compiled by the Ministry of the Environment in 2008 states that there are approximately 1.75 million known biological species in the world, of which there are approximately 6,000 mammal species, 9,000 bird species, 950,000 insect species, and 270,000 vascular plant species. According to this, insects account for approximately 55% of all living organisms, and it makes sense to classify and identify the extremely diverse range of insects using their DNA.

細胞内に存在するDNAは、核(ゲノム)DNAの他に、ミトコンドリアDNAや葉緑体DNAに分けられる。核DNAは、犯罪捜査や親子などの血縁の関係、作物や家畜における品種鑑定に用いられている。これらのうち、ミトコンドリアDNAは核DNAよりも変異の頻度が高く、1細胞あたりのコピー数がゲノムよりも多いため、昆虫の種判定に有用であるとされている。 The DNA present within cells is divided into nuclear (genomic) DNA, mitochondrial DNA, and chloroplast DNA. Nuclear DNA is used in criminal investigations, to determine blood relationships such as parent-child relationships, and to identify varieties of crops and livestock. Of these, mitochondrial DNA mutates more frequently than nuclear DNA and has a greater number of copies per cell than the genome, making it useful for identifying insect species.

DNAによる検査手法には、従来から用いられているPCR法の他に、LAMP (Loop-Mediated Isothermal Amplification)法、DNAの塩基配列決定を用いるもの、サザンハイブリダイゼーション、DNAマイクロアレイ等様々な方法がある。これらのうち、鑑定に用いられている手法としては、LAMP法、DNAの塩基配列決定を用いるDNAバーコーディング法等が挙げられる。LAMP法は特異性が高く、PCR法のようにDNA反応時の温度の厳密で多段階の変更ステップがないため有用であるが、その反面、プライマー設計の難易度が高すぎ、遺伝子組換えトウモロコシ系統の検出に利用する例が報告されているが(特許文献1)、プライマー設計が出来る配列が限られ、使用しづらいという欠点がある。また、DNAバーコーディング法は、DNAの配列を解読し、その配列情報を既知の配列情報と比較して利用するため、昆虫名まで同定することが出来る。しかしながら、本法はPCR法を行った分析用試料をDNAシークエンサーによって塩基配列を解読後、専用のソフトウェアにより1検体ずつ配列を比較するため、操作が頻雑でコストも高く、時間が掛かることが難点である。 In addition to the conventional PCR method, there are various DNA testing methods, such as the LAMP (Loop-Mediated Isothermal Amplification) method, methods that use DNA base sequencing, Southern hybridization, and DNA microarrays. Among these, methods used for identification include the LAMP method and the DNA barcoding method that uses DNA base sequencing. The LAMP method is useful because it has high specificity and does not require strict and multi-stage temperature changes during DNA reaction as in the PCR method. On the other hand, the primer design is too difficult, and although there have been reports of its use in detecting genetically modified corn lines (Patent Document 1), it has the disadvantage that the sequences for which primers can be designed are limited and it is difficult to use. In addition, the DNA barcoding method decodes the DNA sequence and compares the sequence information with known sequence information, so it can identify even the insect name. However, this method has the disadvantage that the operation is complicated, costly, and time-consuming because the base sequence of the analysis sample subjected to the PCR method is decoded by a DNA sequencer, and then the sequence of each sample is compared using dedicated software.

PCR法は、前述したDNAバーコーディングとは異なり、予め検出対象が決まっており、それに由来するDNAが試料の中に含まれているか否かを調べる手法である。検査は抽出したDNAをPCRに供するだけで検出対象の生物のDNAの有無が判定可能であり、大量・高速に判定できるという特長がある。1つの典型的な例は、対象昆虫種がおおよそ分かっている場合、例えば前述のフェロモントラップによってある程度選択的に捕捉された昆虫の同定等には特に有用である。また、昆虫の誘引にフェロモントラップを用いた場合には、その特性上、誘引対象の昆虫の近縁種など、外見が似ている個体が多数捕獲される可能性があるが、適切に設計されたプライマーやプローブを用いれば鑑定対象であるか否かを迅速・大量・正確に確認できる。 Unlike the previously mentioned DNA barcoding, the PCR method is a method in which the detection target is determined in advance and whether or not DNA derived from that target is contained in a sample. The test can determine the presence or absence of the DNA of the target organism simply by subjecting the extracted DNA to PCR, and has the advantage of being able to perform large-scale, rapid determination. One typical example is when the target insect species is roughly known, which is particularly useful for identifying insects that have been captured with a certain degree of selectivity using the aforementioned pheromone trap. In addition, when a pheromone trap is used to attract insects, due to its characteristics, there is a possibility that a large number of individuals with similar appearances, such as closely related species of the insect being attracted, will be captured, but by using appropriately designed primers and probes, it is possible to quickly, accurately, and in large quantities to determine whether or not the insect is the target for identification.

また、PCR法はDNA増幅による判別法としては犯罪捜査や親子鑑定にも既に活用されているように、最も歴史があり、実績も豊富であるため、世界的に見ても社会的な信頼性は高い。一方、他の手法については、将来、PCR法にはない利点を生かした活用も考えられるが、現時点ではPCR法より実用的とは言いがたい状況にある。従って、試薬の安定性、入手しやすさ、検査装置や実験設備等の総合的な観点から、PCR法は他方と比べて整っている状況にある。また、PCR法の増幅産物の解析方法として、電気泳動によらず、蛍光シグナルの測定によって定量的な解析を可能とするリアルタイムPCR法も知られており、そのためのプライマーと検出用プローブがセットとして提供されている。例えば、特許文献2には細菌病原体を迅速に検出及び同定するための特異的及び普遍的プローブ及び増幅プライマーについて記載されている。本発明者は、グラナリアコクゾウムシやヒメアカカツオブシムシなどの主要な食品害虫をPCR法やリアルタイムPCR法で検出するためのオリゴヌクレオチドセットを順次確立してきた(特許文献3)。しかしながら、ヒメマダラカツオブシムシの検出は、前述のとおり、精米の輸出検疫実施上の要請があるものの、個体の入手および専門家の形態学的特徴による同定が著しく困難であり、公知の遺伝子情報も少ないため、PCR法やリアルタイムPCR法による分析に用いるオリゴヌクレオチドセットは確立されていなかった。 As a method of DNA amplification discrimination, the PCR method has the longest history and a long track record, and is already used in criminal investigations and parentage testing, so it has a high social credibility worldwide. On the other hand, other methods may be used in the future to take advantage of advantages that the PCR method does not have, but at present it is difficult to say that they are more practical than the PCR method. Therefore, from the overall perspective of reagent stability, ease of availability, testing equipment, experimental facilities, etc., the PCR method is more well-equipped than the other methods. In addition, as a method of analyzing the amplification products of the PCR method, a real-time PCR method is also known that enables quantitative analysis by measuring fluorescent signals without electrophoresis, and a set of primers and detection probes for this purpose is provided. For example, Patent Document 2 describes specific and universal probes and amplification primers for rapid detection and identification of bacterial pathogens. The present inventor has successively established oligonucleotide sets for detecting major food pests such as the granaria rice weevil and the red-eared beetle by the PCR method and real-time PCR method (Patent Document 3). However, as mentioned above, although detection of the small brown deer beetle is required for the implementation of export quarantine for polished rice, it is extremely difficult to obtain individuals and for experts to identify them based on morphological characteristics, and there is little publicly known genetic information, so oligonucleotide sets for use in analysis by PCR or real-time PCR have not been established.

特許第4899180号公報Patent No. 4899180 特開2007-125032号公報JP 2007-125032 A 特許第6600831号Patent No. 6600831

中根猛彦 カツオブシムシ 日本大百科全書 5 375-376 (1985)Takehiko Nakane, The Dermestid Beetle, Encyclopedia of Japan 5, 375-376 (1985)

従って、本発明の目的は、上記の実情に鑑み、食品害虫であるカツオブシムシ科ヒメマダラカツオブシムシを検出するためのオリゴヌクレオチドを開発し、ヒメマダラカツオブシムシを正確かつ迅速に、しかも低コストで検出できる検査系を確立することにある。 Therefore, in view of the above-mentioned circumstances, the object of the present invention is to develop an oligonucleotide for detecting the Dermestidae family's food pest, the Dermestidae, and to establish a test system capable of detecting the Dermestidae accurately, quickly, and at low cost.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、カツオブシムシ科ヒメマダラカツオブシムシのミトコンドリアDNAの配列情報から、ヒメマダラカツオブシムシに特徴的な塩基配列を見出し、これらの塩基配列を含むオリゴヌクチドを組み合わせて、ヒメマダラカツオブシムシを正確かつ迅速に検出できるオリゴヌクレオチドセットを確立することに成功した。
すなわち、本発明は以下の発明を包含する。
As a result of extensive research to solve the above problems, the inventors have discovered base sequences characteristic of the Dermestidae family's Dermestidae beetle from its mitochondrial DNA sequence information, and by combining oligonucleotides containing these base sequences, have succeeded in establishing an oligonucleotide set that can accurately and quickly detect the Dermestidae beetle.
That is, the present invention includes the following inventions.

(1)ヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な塩基配列を含む、2種以上のオリゴヌクレオチドから構成される、ヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット。
(2)前記ミトコンドリアDNAの特徴的な塩基配列が、チトクロムcオキダーゼサブユニット1(CO1)領域内の塩基配列である、(1)に記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット。
(3)前記オリゴヌクレオチドが、プライマー及びプローブとして使用されるものである、(1)又は(2)に記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット。
(4)前記オリゴヌクレオチドセットが、下記の配列番号1~3に示す塩基配列もしくはその相補配列からなるオリゴヌクレオチド、又は配列番号1~3に示す塩基配列もしくはその相補配列における連続する少なくとも15塩基を含む塩基配列からなるオリゴヌクレオチドから構成される、オリゴヌクレオチドセットである、(1)~(3)のいずれかに記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット。
配列番号1:5'-CCCCCTATTTACAGGACTAACC-3'
配列番号2:5'-GTGTAGGCGTCTGGGTAGTCG-3'
配列番号3:5'-CCAACACTTCCTAGGACTCAGAGGC-3'
(5)(1)~(4)のいずれかに記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットを含む、ヒメマダラカツオブシムシ検出用キット。
(6)被検試料より抽出したDNAを鋳型とし、(1)~(4)のいずれかに記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットを用いてPCR増幅を行い、得られた増幅産物を検出する工程を含む、ヒメマダラカツオブシムシの検出方法。
(1) An oligonucleotide set for detecting the pleurocanthid beetle, which is composed of two or more oligonucleotides containing a characteristic base sequence of the mitochondrial DNA of the pleurocanthid beetle.
(2) The oligonucleotide set for detecting the mitochondrial beetle described in (1), wherein the characteristic base sequence of the mitochondrial DNA is a base sequence within the cytochrome c oxidase subunit 1 (CO1) region.
(3) The oligonucleotide set for detecting the pleurocanthid beetle according to (1) or (2), wherein the oligonucleotides are used as primers and probes.
(4) The oligonucleotide set for detecting P. alternatus according to any one of (1) to (3), which is an oligonucleotide set consisting of an oligonucleotide having the base sequence shown in any one of SEQ ID NOs: 1 to 3 below or a complementary sequence thereof, or an oligonucleotide having a base sequence containing at least 15 consecutive bases in the base sequence shown in any one of SEQ ID NOs: 1 to 3 or a complementary sequence thereof.
SEQ ID NO: 1: 5'-CCCCCTATTTACAGGACTAACC-3'
SEQ ID NO: 2: 5'-GTGTAGGCGTCTGGGTAGTCG-3'
SEQ ID NO: 3: 5'-CCAACACTTCCTAGGACTCAGAGGC-3'
(5) A kit for detecting Pseudokirchneriella punctata, comprising the oligonucleotide set for detecting Pseudokirchneriella punctata according to any one of (1) to (4).
(6) A method for detecting P. alternatus, comprising the steps of: using DNA extracted from a test sample as a template; carrying out PCR amplification using an oligonucleotide set for detecting P. alternatus according to any one of (1) to (4); and detecting the resulting amplification product.

本発明によれば、食品害虫であるヒメマダラカツオブシムシを検出するためのオリゴヌクレオチドセット、当該オリゴヌクレオチドセットを含むヒメマダラカツオブシムシ検出用キット、及び当該オリゴヌクレオチドセットを用いるヒメマダラカツオブシムシの検出方法が提供される。従って、本発明によれば、ヒメマダラカツオブシムシを正確かつ迅速に、しかも低コストで検出できるので、食品の管理や保証に活用することで品質の信頼性を強化できる。 According to the present invention, there are provided an oligonucleotide set for detecting the food pest, the stag beetle, a kit for detecting the stag beetle containing the oligonucleotide set, and a method for detecting the stag beetle using the oligonucleotide set. Therefore, according to the present invention, the stag beetle can be detected accurately, quickly, and at low cost, and thus the reliability of quality can be enhanced by utilizing the method for managing and guaranteeing food.

図1は、TaqManTMプローブを用いたリアルタイムPCR法によるヒメマダラカツオブシムシの検出結果を示す。本法では、配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして用いた(ヒメマダラカツオブシムシ以外の代表的な貯穀害虫等:タバコシバンムシ、コナナガシンクイムシ、カクムネヒラタムシ、ノコギリヒラタムシ、コクヌストモドキ、ガイマイゴミムシダマシ、ヒメゴミムシダマシ、チャイロコメノゴミムシダマシ、ヒラタコクヌストモドキ、カシミールコクスヌトモドキ、オオツノコクヌストモドキ、ヒメコクヌストモドキ、アズキゾウムシ、コクゾウムシ、ココクゾウムシ、グラナリアコクゾウムシ、ノシメマダラメイガ、バクガ、ヒメマルカツオブシムシ、ヒメアカカツオブシムシ、ヒメカツオブシムシ、オオムギ、コメ、トウモロコシ、コムギ)。Figure 1 shows the results of detecting the beetle Pleurotus fasciatus by real-time PCR using a TaqMan TM probe. In this method, the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer, the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer, and the nucleotide sequence of SEQ ID NO: 3 was used as the downstream primer. The nucleotide sequence was labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side. Used as TM probes (typical grain pests other than the lesser cutworm beetle: cigarette beetle, mealybug, square-headed beetle, sawtooth beetle, red flour beetle, cockroach meal beetle, lesser meal beetle, brown meal beetle, flat-headed flour beetle, Kashmir red flour beetle, large-horned flour beetle, lesser red flour beetle, adzuki bean weevil, rice weevil, rice weevil, granarian rice weevil, Indian meal moth, box moth, lesser cutworm beetle, lesser red cutworm beetle, lesser cutworm beetle, barley, rice, corn, wheat). 図2は、TaqManTMプローブを用いたリアルタイムPCR法によるヒメマダラカツオブシムシの検出結果を示す(A1:配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。A2:配列番号6の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。A3:配列番号7の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。A4:配列番号1の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。A5:配列番号6の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。A6:配列番号7の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして使用。)。FIG. 2 shows the results of detection of P. punctata by real-time PCR using TaqMan TM probes (A1: the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer, the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer, and the nucleotide sequence of SEQ ID NO: 3 was used as the TaqMan TM probe, with the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA). A2: the nucleotide sequence of SEQ ID NO: 6 was used as the upstream primer, the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer, and the nucleotide sequence of SEQ ID NO: 3 was used as the TaqMan TM probe, with the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA). A3: the nucleotide sequence of SEQ ID NO: 7 was used as the upstream primer, the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer, and the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA) was used as the TaqMan TM probe). A4: The base sequence of SEQ ID NO: 1 is used as an upstream primer, the base sequence of SEQ ID NO: 8 is used as a downstream primer, and the base sequence of SEQ ID NO: 3 is used as a TaqMan TM probe, with the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA). A5: The base sequence of SEQ ID NO: 6 is used as an upstream primer, the base sequence of SEQ ID NO: 8 is used as a downstream primer, and the base sequence of SEQ ID NO: 3 is used as a TaqMan TM probe, with the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA). A6: The base sequence of SEQ ID NO: 7 is used as an upstream primer, the base sequence of SEQ ID NO: 8 is used as a downstream primer, and the base sequence of SEQ ID NO: 3 is used as a TaqMan TM probe, with the 5' side labeled with a reporter dye (FAM) and the 3' side labeled with a quencher (TAMRA). 図3は、Simplex PCR法によるヒメマダラカツオブシムシの検出結果を示す。本法では、配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして用いた(1:タバコシバンムシ、2:コナナガシンクイムシ、3:カクムネヒラタムシ、4:ノコギリヒラタムシ、5:コクヌストモドキ、6:ガイマイゴミムシダマシ、7:ヒメゴミムシダマシ、8:チャイロコメノゴミムシダマシ、9:ヒラタコクヌストモドキ、10:カシミールコクスヌトモドキ、11:オオツノコクヌストモドキ、12:ヒメコクヌストモドキ、13:アズキゾウムシ、14:コクゾウムシ、15:ココクゾウムシ、16:グラナリアコクゾウムシ、17:ノシメマダラメイガ、18:バクガ、19:ヒメマルカツオブシムシ、20:ヒメアカカツオブシムシ、21:ヒメカツオブシムシ、22:ヒメマダラカツオブシムシ、23:オオムギ、24:コメ、25:トウモロコシ、26:コムギ、27:鋳型なし、Mk:Gene Ladder 100 DNAマーカー)。3 shows the results of detection of the splenic red beetle by the Simplex PCR method. In this method, the base sequence of SEQ ID NO: 1 was used as the upstream primer, and the base sequence of SEQ ID NO: 2 was used as the downstream primer (1: cigarette beetle, 2: grain long bostrich beetle, 3: square-headed flat beetle, 4: sawtooth flat beetle, 5: red flour beetle, 6: cone meal beetle, 7: dwarf meal beetle, 8: brown meal beetle, 9: flat-headed red flour beetle, 10: Kashmir red flour beetle, 11: giant horn beetle). 1: Flour beetle, 2: Lesser red flour beetle, 3: Azuki bean weevil, 4: Maize weevil, 5: Rice weevil, 6: Granaria grain weevil, 7: Indian meal moth, 8: Bacterial grain moth, 9: Lesser red flour beetle, 10: Lesser red flour beetle, 11: Lesser red flour beetle, 12: Lesser red flour beetle, 13: Azuki bean weevil, 14: Maize weevil, 15: Rice weevil, 16: Granaria grain weevil, 17: Indian meal moth, 18: Bacterial grain moth, 19: Lesser round cut grass beetle, 20: Lesser red cut grass beetle, 21: Lesser cut grass beetle, 22: Lesser spotted cut grass beetle, 23: Barley, 24: Rice, 25: Corn, 26: Wheat, 27: No template, Mk: Gene Ladder 100 DNA marker). 図4は、Simplex PCR法によるヒメマダラカツオブシムシの検出結果を示す(1:配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして使用。2:配列番号1の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマーとして使用。3:配列番号1の塩基配列を上流側プライマー、配列番号9の塩基配列を下流側プライマーとして使用。4:配列番号1の塩基配列を上流側プライマー、配列番号10の塩基配列を下流側プライマーとして使用。5:配列番号6の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして使用。6:配列番号6の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマーとして使用。7:配列番号6の塩基配列を上流側プライマー、配列番号9の塩基配列を下流側プライマーとして使用。8:配列番号6の塩基配列を上流側プライマー、配列番号10の塩基配列を下流側プライマーとして使用。9:配列番号7の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして使用。10:配列番号7の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマーとして使用。11:配列番号7の塩基配列を上流側プライマー、配列番号9の塩基配列を下流側プライマーとして使用。12:配列番号7の塩基配列を上流側プライマー、配列番号10の塩基配列を下流側プライマーとして使用。13:配列番号11の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして使用。14:配列番号11の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマーとして使用。15:配列番号12の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして使用。16:配列番号12の塩基配列を上流側プライマー、配列番号8の塩基配列を下流側プライマーとして使用。Mk:Gene Ladder 100 DNAマーカー)。FIG. 4 shows the results of detection of P. variegata by the Simplex PCR method (1: the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer. 2: the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 8 was used as the downstream primer. 3: the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 9 was used as the downstream primer. 4: the nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 10 was used as the downstream primer. 5: the nucleotide sequence of SEQ ID NO: 6 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer. 6: the nucleotide sequence of SEQ ID NO: 6 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 8 was used as the downstream primer. 7: the nucleotide sequence of SEQ ID NO: 6 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 9 was used as the downstream primer. 8: the nucleotide sequence of SEQ ID NO: 6 was used as the upstream primer and the nucleotide sequence of SEQ ID NO: 10 was used as the downstream primer). 9: The base sequence of SEQ ID NO: 7 is used as an upstream primer and the base sequence of SEQ ID NO: 2 is used as a downstream primer. 10: The base sequence of SEQ ID NO: 7 is used as an upstream primer and the base sequence of SEQ ID NO: 8 is used as a downstream primer. 11: The base sequence of SEQ ID NO: 7 is used as an upstream primer and the base sequence of SEQ ID NO: 9 is used as a downstream primer. 12: The base sequence of SEQ ID NO: 7 is used as an upstream primer and the base sequence of SEQ ID NO: 10 is used as a downstream primer. 13: The base sequence of SEQ ID NO: 11 is used as an upstream primer and the base sequence of SEQ ID NO: 2 is used as a downstream primer. 14: The base sequence of SEQ ID NO: 11 is used as an upstream primer and the base sequence of SEQ ID NO: 8 is used as a downstream primer. 15: The base sequence of SEQ ID NO: 12 is used as an upstream primer and the base sequence of SEQ ID NO: 2 is used as a downstream primer. 16: The base sequence of SEQ ID NO: 12 is used as an upstream primer and the base sequence of SEQ ID NO: 8 is used as a downstream primer. Mk: Gene Ladder 100 DNA marker).

以下、本発明を詳細に説明する。 The present invention is described in detail below.

1.ヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット及び検出用キット
本発明のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットは、検出対象のヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な塩基配列を含む、2種以上のオリゴヌクレオチドから構成される。オリゴヌクレオチドの塩基長は、限定はされないが、通常プライマーの場合は、15~30塩基長、好ましくは18~25塩基長であり、プローブの場合は、10~30塩基長である。
The oligonucleotide set for detecting P. alternatus and the detection kit of the present invention for detecting P. alternatus is composed of two or more oligonucleotides containing a characteristic base sequence of the mitochondrial DNA of the P. alternatus to be detected. The base length of the oligonucleotide is not limited, but is usually 15 to 30 bases long, preferably 18 to 25 bases long, for a primer, and 10 to 30 bases long for a probe.

検出対象のヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な塩基配列とは、広範囲の食品害虫の既知のミトコンドリアDNAの塩基配列と相同性が低く、かつ、検出対象となるヒメマダラカツオブシムシにのみ特徴的と考えられる、長さが10塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上の塩基配列をいう。 The characteristic base sequence of the mitochondrial DNA of the target beetle is a base sequence that has low homology with known mitochondrial DNA base sequences of a wide range of food pests and is considered to be characteristic only of the target beetle, and is 10 bases or more in length, preferably 15 bases or more, and more preferably 20 bases or more in length.

上記のミトコンドリアDNAの特徴的な塩基配列を特定するにあたり、まず、ヒメマダラカツオブシムシのミトコンドリアDNAの塩基配列情報を入手する。塩基配列情報は、データベース(NCBI、DDBJ等)より入手してもよく、又は後記実施例に示すように、直接的に塩基配列を解析して入手してもよい。 To identify the characteristic base sequence of the mitochondrial DNA, first obtain base sequence information of the mitochondrial DNA of the Dermestid beetle. The base sequence information may be obtained from a database (NCBI, DDBJ, etc.) or may be obtained by directly analyzing the base sequence as shown in the examples below.

本発明において、ヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な塩基配列としては、例えば、チトクロムcオキダーゼサブユニット1(CO1)領域の塩基配列が挙げられる。 In the present invention, an example of a characteristic base sequence of the mitochondrial DNA of the Dermestid beetle is the base sequence of the cytochrome c oxidase subunit 1 (CO1) region.

次に、特定した特徴的な塩基配列に基づき、プライマーを設計する。プライマーの設計は、オリゴヌクレオチドの長さ、GC含量、Tm値、オリゴヌクレオチド間の相補性、オリゴヌクレオチド内の二次構造などを考慮して行うが、例えば、「PCR法最前線-基礎技術から応用まで」(蛋白質・核酸・酵素 臨時増刊号 1996年 共立出版株式会社)や、「バイオ実験イラストレイテッド3 本当にふえるPCR:細胞工学別紙 目で見る実験ノートシリーズ」(中山広樹著 株式会社秀潤社)、「PCRテクノロジー-DNA増幅の原理と応用-」(Henry A Erlich編、加藤邦之進 監修、宝酒造株式会社)等を参考にすればよい。 Next, primers are designed based on the identified characteristic base sequence. Primers are designed taking into consideration the length of the oligonucleotide, GC content, Tm value, complementarity between oligonucleotides, and secondary structures within the oligonucleotide. For example, "The Frontline of PCR - From Basic Technology to Applications" (Protein, Nucleic Acid, Enzyme Special Issue, 1996, Kyoritsu Publishing Co., Ltd.), "Bio Experiment Illustrated 3: Truly Increasing PCR: Cell Engineering Appendix, Visual Experiment Note Series" (by Hiroki Nakayama, Shujunsha Co., Ltd.), and "PCR Technology - Principles and Applications of DNA Amplification" (edited by Henry A. Erlich, supervised by Kuninoshin Kato, Takara Shuzo Co., Ltd.) can be used as a reference.

具体的に採用した設計基準は以下のとおりである。
(a)ヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な配列のPCR増幅産物を電気泳動した場合に増幅産物が明確に検出されること。
(b) PCR増幅産物が100~500bp、好ましくは100~250bpであること。
(c) プライマー長は鋳型DNAとの間の特異的なアニーリングが可能とするために、15~30bpの範囲であること。
(d)アニーリング温度はTm(melting temperature)に依存するので、特異性の高いPCR増幅産物を得るため、Tm値が50~70℃、好ましくは55~65℃であり、互いに近似したプライマーを選定すること。
(e)プライマーの3’末端の塩基配列と鋳型DNA配列との相同性が高いこと。
(f) プライマーはダイマーや立体構造を形成しないように、両プライマー間の相補的配列を避けること。
(g) 鋳型DNAとの安定な結合を確保するため、GC含量をなるべく約50%とするようにし、プライマー内においてはできるだけGC-richあるいはAT-richが偏在しないように配慮する。
The specific design standards adopted are as follows:
(a) When the PCR amplified product of the characteristic sequence of the mitochondrial DNA of the Dermestid beetle was electrophoresed, the amplified product was clearly detected.
(b) The PCR amplification product is 100 to 500 bp, preferably 100 to 250 bp.
(c) The length of the primer should be in the range of 15 to 30 bp to enable specific annealing to the template DNA.
(d) The annealing temperature depends on the melting temperature (Tm), so in order to obtain a highly specific PCR amplification product, primers with similar Tm values should be selected, with a Tm value of 50-70°C, preferably 55-65°C.
(e) The base sequence at the 3' end of the primer has high homology with the template DNA sequence.
(f) The primers should be free of complementary sequences between each other to prevent the formation of dimers or three-dimensional structures.
(g) In order to ensure stable binding to the template DNA, the GC content should be approximately 50%. Care should be taken to avoid an uneven distribution of GC-rich or AT-rich sequences within the primer.

また、プローブの設計は、ABI Prism 7900HT Real-time PCR System (ライフテクノロジーズジャパン株式会社)等の市販のリアルタイムPCR装置に付属しているソフトウェアのプロトコルに基づいて行えばよい。プローブの設計基準としては、GC含量が20-80%の範囲内であること、配列内に4塩基以上のG又はCの連続を避けること、対応するプライマー対のTm値よりも8-10℃程度高く設定すること、プローブの5'側末端がGにならないことが一般論として挙げられる。 Probe design can be based on the protocol of the software that comes with commercially available real-time PCR devices such as the ABI Prism 7900HT Real-time PCR System (Life Technologies Japan, Inc.). Probe design criteria generally include that the GC content is within the range of 20-80%, that the sequence should avoid four or more consecutive G or C bases, that the Tm value should be set about 8-10°C higher than the Tm value of the corresponding primer pair, and that the 5' end of the probe should not be G.

上記基準に基づき、本発明のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットとして以下のものを確立した。 Based on the above criteria, the following oligonucleotide set for detecting the pleurotus erythropod beetle of the present invention was established.

[ヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット]
配列番号1:5'-CCCCCTATTTACAGGACTAACC-3'
配列番号2:5'-GTGTAGGCGTCTGGGTAGTCG-3'
配列番号3:5'-CCAACACTTCCTAGGACTCAGAGGC-3'
[Oligonucleotide set for detecting the stag beetle]
SEQ ID NO: 1: 5'-CCCCCTATTTACAGGACTAACC-3'
SEQ ID NO: 2: 5'-GTGTAGGCGTCTGGGTAGTCG-3'
SEQ ID NO: 3: 5'-CCAACACTTCCTAGGACTCAGAGGC-3'

本発明のオリゴヌクレオチドセットを構成するオリゴヌクレオチドは、上記の「配列番号1~3に示す塩基配列もしくはその相補配列からなるオリゴヌクレオチド」のみならず、ヒメマダラカツオブシムシ検出用のプライマー又はプローブとして機能しうる限り、その変異オリゴヌクレオチドであってもよい。例えば、変異オリゴヌクレオチドとしては、「配列番号1~3に示す塩基配列もしくはその相補配列における連続する少なくとも15塩基を含む塩基配列からなるオリゴヌクレオチド」が挙げられる。連続する少なくとも15塩基以外の塩基の種類、連続する少なくとも15塩基の変異オリゴヌクレオチドの存在部位(3’末端側、5’末端側)について特に制限はない。また、変異オリゴヌクレオチドの全長は、15~30塩基程度が好ましい。一般に、プローブが鋳型DNAに相補的に結合する際には、両末端の領域に付加される塩基配列の重要性は低い。従って、上記のオリゴヌクレオチドセットに含まれるオリゴヌクレオチドをプローブとして用いる場合は、各配列番号の塩基配列を有するオリゴヌクレオチドの両末端に5個以下の任意の塩基が付加又は欠失されていてもよい。 The oligonucleotides constituting the oligonucleotide set of the present invention may be not only the above-mentioned "oligonucleotides consisting of the base sequences shown in SEQ ID NOs: 1 to 3 or their complementary sequences" but also mutant oligonucleotides thereof as long as they function as primers or probes for detecting the pleozoite. For example, the mutant oligonucleotide may be "an oligonucleotide consisting of a base sequence containing at least 15 consecutive bases in the base sequences shown in SEQ ID NOs: 1 to 3 or their complementary sequences". There are no particular restrictions on the type of bases other than the at least 15 consecutive bases, or on the location (3' end side, 5' end side) of the mutant oligonucleotide of at least 15 consecutive bases. In addition, the total length of the mutant oligonucleotide is preferably about 15 to 30 bases. In general, when a probe binds complementarily to a template DNA, the base sequences added to the regions at both ends are of little importance. Therefore, when the oligonucleotides included in the above-mentioned oligonucleotide set are used as probes, any 5 or less bases may be added or deleted at both ends of the oligonucleotide having the base sequence of each SEQ ID NO.

本発明において検出対象となる食品害虫は、糧として食しうる物質を直接食害する、又は混入することで物質の品質低下を招きうる害虫である、ヒメマダラカツオブシムシであり、その成虫、蛹、幼虫、卵のいずれをも含む。また、ヒメマダラカツオブシムシが混入する物質としては、食品に限られず、植物由来残渣等も含む。 The food pests to be detected in this invention are the Asian cutworm beetles, which are pests that can directly damage or contaminate edible materials, thereby causing a deterioration in the quality of the materials, and include all of the adults, pupae, larvae, and eggs of the Asian cutworm beetles. In addition, materials that Asian cutworms can contaminate are not limited to food, but also include plant-derived residues, etc.

プライマー又はプローブとなるオリゴヌクレオチドは、オリゴヌクレオチドの合成法として当技術分野で公知の方法、例えば、ホスホロアミダイト法、H-ホスホネート法等により、通常用いられるDNA自動合成装置(例えば、Applied Biosystems社製Model 394など)を利用して合成することが可能である。 Oligonucleotides to be used as primers or probes can be synthesized by methods known in the art for synthesizing oligonucleotides, such as the phosphoramidite method or the H-phosphonate method, using a commonly used automated DNA synthesizer (e.g., Model 394 manufactured by Applied Biosystems, Inc.).

上記オリゴヌクレオチドセットはキット化することもできる。本発明のキットは、上記のオリゴヌクレオチドセット含むものであればよく、必要に応じて、DNA抽出用試薬、PCR用緩衝液やDNAポリメラーゼ等のPCR用試薬、反応の陽性コントロールとなるPCR増幅領域を含むDNA溶液、染色剤や電気泳動用ゲル等の検出用試薬、説明書などを含んでいてもよい。 The above oligonucleotide set can also be made into a kit. The kit of the present invention may contain the above oligonucleotide set, and may also contain, as necessary, a DNA extraction reagent, a PCR reagent such as a PCR buffer or DNA polymerase, a DNA solution containing a PCR amplified region that serves as a positive control for the reaction, a detection reagent such as a stain or an electrophoresis gel, instructions, etc.

2.ヒメマダラカツオブシムシの検出方法
本発明の食品害虫を検出する方法は、被検試料からDNAを抽出し、該DNAを鋳型とし、上記オリゴヌクレオチドセットに含まれるオリゴヌクレオチドから選ばれる2種のオリゴヌクレオチドを用いてポリメラーゼ連鎖反応(PCR)を行い、該PCRにより得られた増幅産物を検出する工程を含む。
2. Method for detecting Pseudokirchneriella nerka The method for detecting food pests of the present invention comprises the steps of extracting DNA from a test sample, using the DNA as a template to perform a polymerase chain reaction (PCR) with two oligonucleotides selected from the oligonucleotides contained in the oligonucleotide set described above, and detecting the amplification product obtained by the PCR.

被検試料としては、ヒメマダラカツオブシムシそのものだけでなく、ヒメマダラカツオブシムシが食害又は混入する可能性のある食品原料、加工過程にある材料、加工食品等の製品などが用いられ、特に制限されない。具体的には、穀物粒やその粉砕物のような非加工状態のものや、米飯、チョコレート、カップ麺、納豆等の加工品などが挙げられる。本発明の方法により得られた検出結果は、食品の安全性表示に利用できるほか、生産者の意図していない製造ラインにおける食品害虫混入の有無の確認に利用できる。 As test samples, not only the scutella beetle itself, but also food ingredients, materials in the process of processing, processed foods, and other products that may be eaten or contaminated by the scutella beetle, can be used, and are not particularly limited. Specific examples include unprocessed products such as grain grains and their crushed products, and processed products such as cooked rice, chocolate, instant noodles, and natto. The detection results obtained by the method of the present invention can be used for labeling food safety, as well as for confirming whether or not food pests have been mixed in the production line unintentionally by the producer.

被検試料からのDNAの抽出は、核酸抽出法として当業者に公知のいかなる方法を用いてもよく、例えば、フェノール抽出法、臭化セチルトリメチルアンモニウム(CTAB)法、アルカリSDS法等が挙げられる。また、これらの方法は適宜改変して行ってもよく、試薬メーカーより販売されている各種DNA抽出キットを用いてもよい。試料の種類によっては、メンブランフィルターによる濾過やホモジナイズを行う。また、試薬メーカーより販売されているDNeasy Plant mini Kit(株式会社キアゲン製)等の各種DNA抽出キットを用いても良い。これらの方法により抽出したDNAは、PCRの鋳型として用いるのに適した状態で保持することが好ましく、例えば適切な緩衝液に溶解させて低温下で保管することが好ましい。また、DNAの抽出後、クロロホルム/イソアミルアルコール処理、イソプロパノール沈澱、フェノール/クロロホルムによる除蛋白、エタノール沈澱などの精製処理を行ってもよい。 The DNA from the test sample may be extracted by any method known to those skilled in the art as a nucleic acid extraction method, such as phenol extraction, cetyltrimethylammonium bromide (CTAB) method, and alkaline SDS method. These methods may be modified as appropriate, and various DNA extraction kits sold by reagent manufacturers may be used. Depending on the type of sample, filtration with a membrane filter or homogenization may be performed. Various DNA extraction kits sold by reagent manufacturers, such as DNeasy Plant mini Kit (Qiagen, Inc.), may also be used. The DNA extracted by these methods is preferably kept in a state suitable for use as a PCR template, for example, by dissolving it in an appropriate buffer and storing it at low temperature. After extraction of the DNA, purification treatments such as chloroform/isoamyl alcohol treatment, isopropanol precipitation, deproteinization with phenol/chloroform, and ethanol precipitation may be performed.

また、上記のオリゴヌクレオチドをプローブとして用いる場合は、増幅産物に由来する蛍光シグナルを検出するための標識物質で標識されていてもよい。標識プローブとしては、蛍光物質と消光物質で二重標識したTaqManTMプローブが好ましい。TaqManTMプローブは、通常、核酸プローブの5’末端を蛍光物質(レポーター蛍光色素)で修飾し、3’末端を消光物質(クエンチャー蛍光色素)で修飾する。レポーター蛍光色素の例としては6-FAM(6-カルボキシフルオレセイン)、TET(6-カルボキシ-4, 7, 2',7'-テトラクロロフルオレセイン)、HEX(6-カルボキシ-2',4',7',4,7-ヘキサクロロフルオレセイン)等のフルオレセイン系蛍光色素が挙げられ、クエンチャー蛍光色素の例としては、6-カルボキシテトラメチルローダミン(TAMRA)、6-カルボキシ-X-ローダミン(ROX)等のローダミン系蛍光色素が挙げられる。これらの蛍光色素は公知であり、市販のリアルタイムPCR用キットに含まれているのでそれを用いることができる。 In addition, when the above oligonucleotide is used as a probe, it may be labeled with a labeling substance for detecting a fluorescent signal derived from the amplification product. As a labeled probe, a TaqMan TM probe double-labeled with a fluorescent substance and a quencher is preferable. In the TaqMan TM probe, the 5' end of a nucleic acid probe is usually modified with a fluorescent substance (reporter fluorescent dye) and the 3' end is modified with a quencher (quencher fluorescent dye). Examples of reporter fluorescent dyes include fluorescein-based fluorescent dyes such as 6-FAM (6-carboxyfluorescein), TET (6-carboxy-4,7,2',7'-tetrachlorofluorescein), and HEX (6-carboxy-2',4',7',4,7-hexachlorofluorescein), and examples of quencher fluorescent dyes include rhodamine-based fluorescent dyes such as 6-carboxytetramethylrhodamine (TAMRA) and 6-carboxy-X-rhodamine (ROX). These fluorescent dyes are known and can be used since they are included in commercially available real-time PCR kits.

次いで、抽出したDNAを鋳型とし、上記の本発明のオリゴヌクレオチドセットに含まれるオリゴヌクレオチドから選ばれる2種を用いて、PCR増幅を行う。PCR増幅は前述のオリゴヌクレオチドセットを用いる以外は特に制限はなく、常法に従って行えばよい。具体的には、鋳型DNAの変性、プライマーへの鋳型へのアニーリング、及び耐熱性酵素(TaqポリメラーゼやThermus thermophilus由来のTth DNAポリメラーゼなどのDNAポリメラーゼ)を用いたプライマーの伸長反応を含むサイクルを繰り返すことにより、検出対象となる食品害虫のミトコンドリアDNAの特徴的な塩基配列を増幅させる。PCR溶液の組成(鋳型DNA量、緩衝液の種類、プライマー濃度、DNAポリメラーゼの種類や濃度、dNTP濃度、塩化マグネシウム濃度等)、PCR反応条件(温度サイクル、サイクルの回数等)は、当業者であれば適切に選択及び設定することができる。 Next, the extracted DNA is used as a template, and PCR amplification is performed using two oligonucleotides selected from the oligonucleotide set of the present invention. There are no particular limitations on the PCR amplification other than the use of the aforementioned oligonucleotide set, and it may be performed according to a conventional method. Specifically, a cycle including denaturation of the template DNA, annealing of the primer to the template, and primer extension reaction using a heat-resistant enzyme (DNA polymerase such as Taq polymerase or Tth DNA polymerase derived from Thermus thermophilus) is repeated to amplify the characteristic base sequence of the mitochondrial DNA of the food pest to be detected. The composition of the PCR solution (amount of template DNA, type of buffer, primer concentration, type and concentration of DNA polymerase, dNTP concentration, magnesium chloride concentration, etc.) and PCR reaction conditions (temperature cycle, number of cycles, etc.) can be appropriately selected and set by a person skilled in the art.

例えば、鋳型となるDNA0.1~100ng、10×PCR反応用緩衝液、プライマー各0.25~1μM、DNAポリメラーゼ(Taq ポリメラーゼ、Tth DNAポリメラーゼなど)0.25~2.5U、dNTP各250μMを混合した後、全液量が10~100μlとなるように希釈したものについて、94~96℃ 5分×1サイクル、(94~96℃ 30秒、52~58℃ 30秒、70~74℃ 1分)×30サイクル、70~74℃ 5分×1サイクルで反応を行う。これは一例にすぎず、PCR溶液の組成、反応温度や時間は、プライマーとなるオリゴヌクレオチド配列の長さや塩基組成などに応じて適宜設定することができる。これらPCRの一連の操作は、市販のPCRキットやPCR装置を利用して、その操作説明書に従って行うことができる。 For example, 0.1-100ng of template DNA, 10x PCR reaction buffer, 0.25-1μM of each primer, 0.25-2.5U of DNA polymerase (Taq polymerase, Tth DNA polymerase, etc.), and 250μM of each dNTP are mixed and then diluted to a total volume of 10-100μl. The reaction is carried out at 94-96°C for 5 minutes x 1 cycle, (94-96°C for 30 seconds, 52-58°C for 30 seconds, 70-74°C for 1 minute) x 30 cycles, and 70-74°C for 5 minutes x 1 cycle. This is only one example, and the composition of the PCR solution, reaction temperature, and reaction time can be set appropriately depending on the length and base composition of the oligonucleotide sequence that serves as the primer. This series of PCR operations can be carried out using a commercially available PCR kit or PCR device and following the operating instructions.

PCR増幅産物の検出は、アガロースゲル電気泳動やキャピラリー電気泳動などの慣用の電気泳動、DNAハイブリダイゼーションやリアルタイムPCR等の方法を用いて確認できる。例えば、アガロースゲル電気泳動では、臭化エチジウム、SYBR Green液等により染色し、そして増幅産物を1本のバンドとして検出し、その大きさに基づいて食品害虫の有無や種類を判定する。また、予め標識物質により標識したプライマーを用いて当該PCRを行い、増幅産物を検出することもできる。標識物質としては、当該技術分野においてよく知られる蛍光物質、放射性同位体、化学発光物質、ビオチン等を用いることができる。また、DNAハイブリダイゼーションでは、マイクロアレイなどの固定化担体に増幅産物を結合させ、蛍光又は酵素反応等により増幅産物を確認する。検出用の固定化担体は、検出すべきヒメマダラカツオブシムシのミトコンドリアDNAの特徴的な配列とハイブリダイズしうる配列を有するオリゴヌクレオチドが固定化されている支持体である。支持体としては、例えば、ナイロン膜、ニトロセルロース膜、ガラス、シリコンチップなどを用いることができる。 The detection of PCR amplified products can be confirmed using conventional electrophoresis such as agarose gel electrophoresis and capillary electrophoresis, DNA hybridization, real-time PCR, and other methods. For example, in agarose gel electrophoresis, the amplified product is stained with ethidium bromide, SYBR Green solution, etc., and the presence or absence and type of food pests are determined based on the size of the band. The PCR can also be performed using primers previously labeled with a labeling substance to detect the amplified product. As the labeling substance, fluorescent substances, radioisotopes, chemiluminescent substances, biotin, and other substances well known in the art can be used. In DNA hybridization, the amplified product is bound to an immobilization carrier such as a microarray, and the amplified product is confirmed by fluorescence or enzyme reaction, etc. The immobilization carrier for detection is a support on which an oligonucleotide having a sequence that can hybridize with a characteristic sequence of the mitochondrial DNA of the beetle to be detected is immobilized. As the support, for example, a nylon membrane, a nitrocellulose membrane, glass, a silicon chip, and the like can be used.

リアルタイムPCR法には、プライマー対とともに二本鎖DNAに結合することによって蛍光を発する化合物であるSYBR Green IなどのインターカレーターをPCR反応系に加えるインターカレーター法、又は、5'末端をレポーターと呼ばれる蛍光物質で、3'末端をクエンチャーと呼ばれる消光物質で標識したプローブ(TaqManTMプローブ)をPCR反応系に加えるTaqMan法があり、いずれも本発明において用いることができるが、TaqMan法が好ましい。TaqMan法では、TaqManTMプローブがPCRによる増幅反応においてポリメラーゼの伸長反応に使用される条件下で鋳型DNAに特異的にハイブリダイズし、DNA鎖の伸長、すなわち鋳型DNAの増幅に伴って分解され、蛍光物質を遊離することによりPCR溶液中の蛍光量が増加する。この蛍光量の増加が鋳型DNAの増幅の指標となり、PCRにおける増幅の様子をリアルタイムで簡便に検出することができる。リアルタイムPCR法は、上記のオリゴヌクレオチドセットを用いる以外は、当業者に知られている通常の方法に基づいて、市販のリアルタイムPCRキットやリアルタイムPCR装置を用い、それらに添付の操作説明書に従って行えばよい。リアルタイムPCR装置としては、例えば、ABI Prism 7900HT Real-time PCR System等が用いられる。 The real-time PCR method includes an intercalator method in which an intercalator such as SYBR Green I, which is a compound that emits fluorescence by binding to double-stranded DNA together with a primer pair, is added to the PCR reaction system, and a TaqMan method in which a probe (TaqMan TM probe) labeled with a fluorescent substance called a reporter at the 5' end and a quenching substance called a quencher at the 3' end is added to the PCR reaction system. Either method can be used in the present invention, but the TaqMan method is preferred. In the TaqMan method, the TaqMan TM probe specifically hybridizes to the template DNA under the conditions used for the extension reaction of polymerase in the PCR amplification reaction, and is decomposed as the DNA chain is extended, i.e., the template DNA is amplified, and the amount of fluorescence in the PCR solution increases as the fluorescent substance is released. This increase in the amount of fluorescence serves as an indicator of the amplification of the template DNA, and the state of amplification in PCR can be easily detected in real time. The real-time PCR method can be performed using a commercially available real-time PCR kit or real-time PCR device based on a normal method known to those skilled in the art, except for using the above-mentioned oligonucleotide set, and can be performed according to the operating instructions attached to the device. As a real-time PCR device, for example, ABI Prism 7900HT Real-time PCR System or the like can be used.

被検試料中のヒメマダラカツオブシムシを検出する場合は、次のように行う。まず、被検試料でリアルタイムPCR法を実施し、増幅曲線を得る。次に蛍光シグナルの増加がサイクル数に対して指数関係にある領域で、蛍光量増加(ΔRn)の適当な閾値(Threshold)を設定し、増幅曲線と閾値(Threshold)が交わるか否かにより、被検試料中の食品害虫DNAの有無を判断する。この増幅曲線と閾値(Threshold)との交わるサイクル数をCt値(Threshold Cycle)と呼ぶ。 The procedure for detecting Asian dermestid beetles in a test sample is as follows. First, real-time PCR is performed on the test sample to obtain an amplification curve. Next, an appropriate threshold for the increase in fluorescence (ΔRn) is set in the region where the increase in fluorescent signal is exponentially related to the cycle number, and the presence or absence of food pest DNA in the test sample is determined based on whether or not the amplification curve intersects with the threshold. The cycle number at which this amplification curve intersects with the threshold is called the Ct value (Threshold Cycle).

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

(実施例1)ヒメマダラカツオブシムシ検出用オリゴヌクレオチド(プライマー・プローブの設計)
(1)DNAの抽出
専門家による形態学的鑑定によりヒメマダラカツオブシムシと同定された検体についてDNA抽出を行った。DNAの抽出には、DNeasy Blood & Tissue Kit(株式会社キアゲン製)を使用し、検体害虫約25mgを1.5mlのチューブに入れ、DNeasy Blood & Tissue Kitに付属のプロティナーゼ(Proteinase)K 20μlを含む200μlのBuffer ATLに加えてペッスルで磨りつぶしつつ混合し、56℃で一夜保温した。リボヌクレアーゼ(RNase)A 4μlを加えて混合し、室温で5分間保温した。その後200μlのBuffer ALを添加し、十分に混合後、200μlのエタノール(96~100%)を添加し、再度十分に混合した。
Example 1 Oligonucleotides for detecting P. punctata (Primer and probe design)
(1) DNA extraction DNA was extracted from specimens identified as P. punctata by morphological analysis by an expert. DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Inc.). Approximately 25 mg of the specimen was placed in a 1.5 ml tube, and added to 200 μl of Buffer ATL containing 20 μl of Proteinase K included in the DNeasy Blood & Tissue Kit. The specimen was mixed while being crushed with a pestle and incubated at 56°C overnight. 4 μl of RNase A was added and mixed, and the mixture was incubated at room temperature for 5 minutes. 200 μl of Buffer AL was then added and mixed thoroughly, after which 200 μl of ethanol (96-100%) was added and mixed thoroughly again.

混合液を、DNeasy Blood & Tissue Kitに添付のDNeasy Spin Columnに加えて遠心分離を行い、フィルターにDNAを吸着させた。続いて200μlのBuffer AW1を加えて遠心分離を行い、DNAが吸着したフィルターを洗浄した。その後、200μlのBuffer AW2を加えて遠心分離することによりフィルターからミトコンドリアDNAを含むトータルDNAを溶出した。 The mixture was added to the DNeasy Spin Column provided with the DNeasy Blood & Tissue Kit and centrifuged to adsorb the DNA onto the filter. Next, 200 μl of Buffer AW1 was added and centrifuged to wash the filter with the adsorbed DNA. After that, 200 μl of Buffer AW2 was added and centrifuged to elute the total DNA, including mitochondrial DNA, from the filter.

(2)ミトコンドリアDNAのチトクロムC酸化酵素サブユニット(CO1)領域のDNAシーケンス分析及びヒメマダラカツオブシムシ検出用オリゴヌクレオチドの設計
ヒメマダラカツオブシムシのミトコンドリアDNAの塩基配列情報はデータベース(NCBI、DDBJ等)には16S ribosomal RNA遺伝子の一部のみ登録があったが、検出には不十分であったため、新たにDNAバーコーディング法で標準的に用いられる動物のチトクロムcオキダーゼサブユニット1 遺伝子(CO1)領域増幅用の共通プライマーであるLCO1490:5’-GGTCAACAAATCATAAAGATATTGG-3’(配列番号4)及びHCO2198: 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’(配列番号5)[0. Folmerら, DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates Molecular Marine Biology and Biotechnology 3(5), 294-299(1994)]を用いて増幅後、その近傍を更に解析して新規に塩基配列情報を入手した。
(2) DNA sequence analysis of the cytochrome C oxidase subunit (CO1) region of mitochondrial DNA and design of oligonucleotides for detection of P. nigricans. The mitochondrial DNA sequence information of P. nigricans was registered in databases (NCBI, DDBJ, etc.) for only a part of the 16S ribosomal RNA gene, but this was insufficient for detection. Therefore, we newly designed common primers for amplifying the cytochrome c oxidase subunit 1 gene (CO1) region of animals, which are standardly used in DNA barcoding methods, LCO1490: 5'-GGTCAACAAATCATAAAGATATTGG-3' (SEQ ID NO: 4) and HCO2198: 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' (SEQ ID NO: 5) [0. Folmer et al., DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates Molecular Marine Biology and Biotechnology 3(5), 294-299 (1994)], and the adjacent region was further analyzed to obtain new base sequence information.

次に、入手した上記の塩基配列情報と、近縁種の公知のCO1の配列情報を鋭意精査して比較し、標的配列長が比較的短く、高い特異性が得られると判断された箇所について下記のDNA配列を設計し、ヒメマダラカツオブシムシ検出用オリゴヌクレオチドとした。
配列番号1:5'-CCCCCTATTTACAGGACTAACC-3'
配列番号2:5'-GTGTAGGCGTCTGGGTAGTCG-3'
配列番号3:5'-CCAACACTTCCTAGGACTCAGAGGC-3'
Next, the above-mentioned base sequence information obtained was carefully examined and compared with the known sequence information of CO1 of a closely related species, and the following DNA sequence was designed for the portion where the target sequence length was determined to be relatively short and high specificity was obtained, and used as an oligonucleotide for detecting the pleurotus dermestid beetle.
SEQ ID NO: 1: 5'-CCCCCTATTTACAGGACTAACC-3'
SEQ ID NO: 2: 5'-GTGTAGGCGTCTGGGTAGTCG-3'
SEQ ID NO: 3: 5'-CCAACACTTCCTAGGACTCAGAGGC-3'

(実施例2)ヒメマダラカツオブシムシ検出用オリゴヌクレオチドの性能確認(TaqManTMプローブを用いたリアルタイムPCR法)
実施例1で設計したヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットを用いてリアルタイムPCR法(TaqManTMプローブ法)によってヒメマダラカツオブシムシの検出を行った。配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマー、配列番号3の塩基配列の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとして用いた。
(Example 2) Confirmation of the performance of oligonucleotides for detecting P. punctata (real-time PCR method using TaqMan TM probe)
Detection of P. alternatus was performed by real-time PCR (TaqMan TM probe method) using the oligonucleotide set for detecting P. alternatus designed in Example 1. The nucleotide sequence of SEQ ID NO: 1 was used as the upstream primer, the nucleotide sequence of SEQ ID NO: 2 was used as the downstream primer, and the nucleotide sequence of SEQ ID NO: 3, labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side, was used as the TaqMan TM probe.

供試試料として、ヒメマダラカツオブシムシを含む以下の貯穀害虫(22種)、及び貯穀害虫が食害する穀物(4種)を用いた。DNA抽出法は、実施例1(1)のDNAの抽出によった。なお、穀物DNAは、GM Quicker2(株式会社ニッポンジーン製)を用い、キットに添付された手法に従ってDNAを抽出した。 The following grain pests (22 species), including the red-eared beetle, and grains (4 species) that are damaged by the grain pests were used as test samples. The DNA extraction method was the same as that described in Example 1 (1). Grain DNA was extracted using GM Quicker2 (manufactured by Nippon Gene Co., Ltd.) according to the method attached to the kit.

<貯穀害虫>
タバコシバンムシ、コナナガシンクイムシ、カクムネヒラタムシ、ノコギリヒラタムシ、コクヌストモドキ、ガイマイゴミムシダマシ、ヒメゴミムシダマシ、チャイロコメノゴミムシダマシ、ヒラタコクヌストモドキ、カシミールコクスヌトモドキ、オオツノコクヌストモドキ、ヒメコクヌストモドキ、アズキゾウムシ、コクゾウムシ、ココクゾウムシ、グラナリアコクゾウムシ、ノシメマダラメイガ、バクガ、ヒメマルカツオブシムシ、ヒメアカカツオブシムシ、ヒメカツオブシムシ及びヒメマダラカツオブシムシ
<Grain pests>
Cigarette beetles, flour beetles, Chinese long-horned beetles, Japanese sawtooth beetles, red flour beetles, Chinese meal beetles, lesser meal beetles, brown meal beetles, flat-headed flour beetles, Kashmir red flour beetles, large-horned flour beetles, lesser red flour beetles, azuki bean weevils, rice weevils, rice weevils, granarian rice weevils, Indian meal moth, box moth, lesser round cut beetles, lesser red cut beetles, lesser cut beetles and lesser spotted cut beetles

<貯穀害虫が食害する穀物>
オオムギ、コメ、トウモロコシ、コムギ
<Grains damaged by stored grain pests>
Barley, rice, corn, wheat

各試料より実施例1(1)の方法に従ってミトコンドリアDNAを含むトータルDNAを抽出し、これらを鋳型DNAとして、リアルタイムPCR法(TaqManTMプローブ法)によるヒメマダラカツオブシムシの検出を次のようにして行った。1ウェルあたりSsoAdvanced Universal Probes Supermix(バイオ・ラッド ラボラトリーズ株式会社製)5μl、配列番号3の5’末端をFAM、3’末端をTAMRAでそれぞれラベルした0.2μM TaqManTMプローブ、0.5μM 各プライマー対(配列番号1及び配列番号2)、1 ng トータルDNAを含む反応液(総量10μl)を調製し、それぞれ、CFX96 TouchTMリアルタイム PCR 解析システム(バイオ・ラッド ラボラトリーズ株式会社製)で95℃30秒保温したのち、95℃5秒→60℃5秒を30サイクル繰り返して増幅することにより検出した。 Total DNA including mitochondrial DNA was extracted from each sample according to the method of Example 1 (1), and using these as template DNA, detection of P. punctata by real-time PCR (TaqMan TM probe method) was performed as follows: A reaction solution (total volume 10 μl) containing 5 μl of SsoAdvanced Universal Probes Supermix (manufactured by Bio-Rad Laboratories, Inc.), 0.2 μM TaqMan TM probe labeled with FAM at the 5' end and TAMRA at the 3' end of SEQ ID NO: 3, 0.5 μM of each primer pair (SEQ ID NO: 1 and SEQ ID NO: 2), and 1 ng total DNA was prepared per well, and each was incubated at 95°C for 30 seconds using a CFX96 Touch TM real-time PCR analysis system (manufactured by Bio-Rad Laboratories, Inc.), and then amplified by repeating 30 cycles of 95°C for 5 seconds and 60°C for 5 seconds.

検査陽性/陰性の判定は、CFX96 TouchTMリアルタイム PCR 解析システムにおいて、スレッシュホールド値(Th値)を500に固定した際のCt値で判断することにより行った。 The test results were judged as positive or negative based on the Ct value when the threshold value (Th value) was fixed at 500 in the CFX96 Touch TM real-time PCR analysis system.

結果を図1に示す。図1に示されるように、16サイクルの付近からヒメマダラカツオブシムシのミトコンドリアDNAの増幅産物由来の蛍光量が明瞭に検出された。他方、本実験に供試した鋳型DNAを含まない反応液、ヒメマダラカツオブシムシ以外の貯穀害虫であるタバコシバンムシ、コナナガシンクイムシ、カクムネヒラタムシ、ノコギリヒラタムシ、コクヌストモドキ、ガイマイゴミムシダマシ、ヒメゴミムシダマシ、チャイロコメノゴミムシダマシ、ヒラタコクヌストモドキ、カシミールコクスヌトモドキ、オオツノコクヌストモドキ、ヒメコクヌストモドキ、アズキゾウムシ、コクゾウムシ、ココクゾウムシ、グラナリアコクゾウムシ、ノシメマダラメイガ、バクガ、ヒメマルカツオブシムシ、ヒメアカカツオブシムシ及びヒメカツオブシムシ(計21種)の反応液、及び穀物であるオオムギ、コメ、トウモロコシ、コムギ(計4種)の反応液についてはミトコンドリアDNAの増幅産物由来の蛍光は認められなかった。また、Th値を500に固定した際に算出されるヒメマダラカツオブシムシ由来のCt値は実数である20.01として得られたが、その他貯穀害虫はN/A(検出できず)であり、明確に蛍光検出の有無を判別できた。以上の判定結果から、配列番号1~3に示す塩基配列からなるオリゴヌクレオチドを用いたリアルタイムPCR法では、多数の貯穀害虫や穀物のなかから、ヒメマダラカツオブシムシを特異的に検出できることが示された。 The results are shown in Figure 1. As shown in Figure 1, the amount of fluorescence derived from the amplification product of the mitochondrial DNA of the lesser cut beetle was clearly detected around the 16th cycle. On the other hand, the reaction solution containing no template DNA used in this experiment, and the amplification products of stored grain pests other than the lesser cut beetle, such as the cigarette beetle, the grain beetle, the square-headed flathead beetle, the sawtooth flathead beetle, the red flour beetle, the cone meal beetle, the lesser meal beetle, the brown meal beetle, the flat-headed red flour beetle, the Kashmir red flour beetle, the large horned red flour beetle, and the Japanese red flour beetle, No fluorescence from the mitochondrial DNA amplification products was observed in the reaction solutions of the rice flour beetle, the azuki bean weevil, the rice weevil, the rice weevil, the granary rice weevil, the Indian meal moth, the box moth, the small cut grass beetle, the small red cut grass beetle, and the small cut grass beetle (total of 21 species), and in the reaction solutions of the grains barley, rice, corn, and wheat (total of 4 species). In addition, the Ct value from the small cut grass beetle calculated when the Th value was fixed at 500 was obtained as a real number of 20.01, but the other grain pests were N/A (not detectable), and it was possible to clearly distinguish whether or not fluorescence was detected. From the above judgment results, it was shown that the real-time PCR method using the oligonucleotides consisting of the base sequences shown in SEQ ID NOs: 1 to 3 can specifically detect the small cut grass beetle from among many grain pests and grains.

(実施例3)ヒメマダラカツオブシムシ検出用オリゴヌクレオチドの性能確認(TaqManTMプローブを用いたリアルタイムPCR法)
実施例1で設計した配列番号1~3からなるオリゴヌクレオチド、及び配列番号1~3に示す塩基配列を改変した塩基配列からなるオリゴヌクレオチドを組み合わせて、TaqManTMプローブを用いたリアルタイムPCR法によってヒメマダラカツオブシムシの検出を行った。
Example 3: Confirmation of the performance of oligonucleotides for detecting the porphyrophorus beetle (real-time PCR method using TaqMan TM probe)
The oligonucleotides consisting of sequence numbers 1 to 3 designed in Example 1 and oligonucleotides consisting of modified base sequences of sequence numbers 1 to 3 were combined and used to detect the Asian dermestid beetle by real-time PCR using a TaqMan TM probe.

オリゴヌクレオチドセットとして、以下のA1~A6のオリゴヌクレオチドセットを用いた。
A1:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
A2:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
A3:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
A4:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
A5:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
A6:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマー、配列番号3の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGGC-3')の5’側をレポーター色素(FAM)、3’側をクエンチャー(TAMRA)でそれぞれ標識した塩基配列をTaqManTMプローブとするオリゴヌクレオチドセット
As the oligonucleotide set, the following oligonucleotide sets A1 to A6 were used.
A1: an oligonucleotide set in which the nucleotide sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') is used as an upstream primer, the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') is used as a downstream primer, and the nucleotide sequence of SEQ ID NO: 3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3') is used as a TaqMan TM probe, the nucleotide sequence of which is labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side. A2: an oligonucleotide set in which the nucleotide sequence of SEQ ID NO: 6 (5'-CCCCTATTTACAGGACTAACC-3'), which is the nucleotide sequence of SEQ ID NO: 1 with one base deleted from the 5' side, is used as an upstream primer, the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') is used as a downstream primer, and the nucleotide sequence of SEQ ID NO: 3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3'), which is labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side, is used as a TaqMan TM probe. A3: an oligonucleotide set in which the nucleotide sequence of SEQ ID NO: 7 (5'-CCCCCTATTTACAGGACTAAC-3'), which is obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 1, is used as an upstream primer, the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') is used as a downstream primer, and the nucleotide sequence of SEQ ID NO: 3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3'), which is labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side, is used as a TaqMan TM probe. A4: An oligonucleotide set comprising the nucleotide sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') as an upstream primer, the nucleotide sequence of SEQ ID NO: 8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 2 as a downstream primer, and the nucleotide sequence of SEQ ID NO: 3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3') labeled with a reporter dye (FAM) on the 5' side and a quencher (TAMRA) on the 3' side as a TaqMan TM probe. A5: an oligonucleotide set comprising an upstream primer of the nucleotide sequence of SEQ ID NO:6 (5'-CCCCTATTTACAGGACTAACC-3') obtained by deleting one base from the 5' side of the nucleotide sequence of SEQ ID NO:1, a downstream primer of the nucleotide sequence of SEQ ID NO:8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO:2, and a TaqMan TM probe comprising a nucleotide sequence of SEQ ID NO:3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3') labeled with a reporter dye (FAM) on the 5' side and a quencher ( TAMRA) on the 3' side. A6: an oligonucleotide set comprising an upstream primer of the nucleotide sequence of SEQ ID NO:7 (5'-CCCCCTATTTACAGGACTAAC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO:1, a downstream primer of the nucleotide sequence of SEQ ID NO:8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO:2, and a TaqMan TM probe comprising a nucleotide sequence of SEQ ID NO:3 (5'-CCAACACTTCCTAGGACTCAGAGGC-3') labeled with a reporter dye (FAM) on the 5' side and a quencher ( TAMRA) on the 3' side.

実施例1(1)の方法に従って抽出したヒメマダラカツオブシムシのミトコンドリアDNAを用いてリアルタイムPCR法(TaqManTMプローブ法)を行った。PCRの反応液組成及び条件、ならびに検査陽性/陰性の判定は、実施例2の記載に従った。 A real-time PCR method (TaqMan probe method) was carried out using the mitochondrial DNA of P. punctata extracted according to the method of Example 1 (1). The composition and conditions of the PCR reaction solution, as well as the judgment of whether the test was positive or negative, were as described in Example 2.

結果を図2に示す。図2に示されるように、配列番号1~3に示す塩基配列からなるオリゴヌクレオチドのセットA1と同様、配列番号1~3に示す塩基配列を改変した塩基配列からなるオリゴヌクレオチドのセットA2~A6を用いたリアルタイムPCR法において、16サイクルの付近からヒメマダラカツオブシムシのミトコンドリアDNAの増幅産物由来の蛍光量が明瞭に検出された。また、Th値を500に固定した際に算出されるヒメマダラカツオブシムシ由来のCt値はいずれも約20前後であったが、鋳型DNAが含まれないものはオリゴヌクレオチドのセットA1~A6の全てにおいてN/A(検出できず)であり、明確に蛍光検出の有無を判別できた。以上の判定結果から、配列番号1~3に示す塩基配列の一部を欠失させた塩基配列からオリゴヌクレオチドのセットを用いたリアルタイムPCR法においても、ヒメマダラカツオブシムシを特異的に検出でき、検出結果は欠失させていないものと比較して同等であることが示された。 The results are shown in Figure 2. As shown in Figure 2, in the real-time PCR method using oligonucleotide sets A2 to A6 consisting of modified base sequences of the base sequences shown in SEQ ID NOs: 1 to 3, as well as oligonucleotide sets A1 consisting of the base sequences shown in SEQ ID NOs: 1 to 3, the amount of fluorescence derived from the amplification product of the mitochondrial DNA of P. punctifolia was clearly detected from around the 16th cycle. In addition, the Ct values derived from P. punctifolia calculated when the Th value was fixed at 500 were all around 20, but those that did not contain template DNA were N/A (not detectable) for all of the oligonucleotide sets A1 to A6, making it possible to clearly distinguish whether or not fluorescence was detected. From the above judgment results, it was shown that P. punctifolia could be specifically detected by the real-time PCR method using oligonucleotide sets from base sequences in which a portion of the base sequences shown in SEQ ID NOs: 1 to 3 was deleted, and the detection results were equivalent to those of those without the deletion.

(実施例4)ヒメマダラカツオブシムシ検出用オリゴヌクレオチドの性能確認(Simplex PCR法)
実施例1で設計したヒメマダラカツオブシムシ検出用オリゴヌクレオチドを用いてSimplex PCR法によってヒメマダラカツオブシムシの検出を行った。配列番号1の塩基配列を上流側プライマー、配列番号2の塩基配列を下流側プライマーとして用いた。
(Example 4) Confirmation of the performance of oligonucleotides for detecting P. punctata (Simplex PCR method)
Detection of P. alternatus was carried out by Simplex PCR using the oligonucleotides for detecting P. alternatus designed in Example 1. The base sequence of SEQ ID NO: 1 was used as the upstream primer, and the base sequence of SEQ ID NO: 2 was used as the downstream primer.

各試料より実施例1(1)の方法に従ってミトコンドリアDNAを抽出し、これらを鋳型DNAとして、Simplex PCR法によるヒメマダラカツオブシムシの検出を次のようにして行った。即ち、1ウェルあたりAmpliTaq Gold DNA Polymerase (Thermo Fisher Scientific社製)0.5U、1×PCR BufferII(Mg2+ free)、200μM 各 dNTP、1.5mM MgCl2、0.5μM 各プライマー対(配列番号1及び配列番号2)、1 ng トータルDNAを含む反応液(総量10μl)を調製し、それぞれ、 S1000TMサーマルサイクラーで95℃10分保温したのち、95℃30秒→60℃30秒→72℃30秒を40サイクル繰り返して増幅した。 Mitochondrial DNA was extracted from each sample according to the method of Example 1 (1), and using these as template DNA, detection of P. punctata was performed by Simplex PCR as follows: A reaction solution (total volume 10 μl) containing 0.5 U of AmpliTaq Gold DNA Polymerase (Thermo Fisher Scientific), 1×PCR Buffer II (Mg 2+ free), 200 μM each dNTP, 1.5 mM MgCl 2 , 0.5 μM each primer pair (SEQ ID NO: 1 and SEQ ID NO: 2), and 1 ng total DNA per well was prepared, and each was incubated at 95°C for 10 minutes in an S1000 TM thermal cycler, and then amplified by repeating 40 cycles of 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds.

検査陽性/陰性の判定は、各10μlの反応液をDNAマーカーであるGene Ladder 100 (0.1-2kbp)と共に、3%アガロースゲルによる電気泳動に供し、エチジウムブロマイドによるゲルの染色を経て、UVトランスイルミネーターによる紫外線の照射下で染色されたDNAバンドの有無を確認することにより行った。 The test was judged to be positive or negative by subjecting 10 μl of each reaction solution to electrophoresis on a 3% agarose gel together with the DNA marker Gene Ladder 100 (0.1-2 kbp), staining the gel with ethidium bromide, and then confirming the presence or absence of stained DNA bands under ultraviolet light irradiation using a UV transilluminator.

結果を図3に示す。レーン番号22においてヒメマダラカツオブシムシのミトコンドリアDNA由来の増幅産物を示す約153bpのバンドが明瞭に検出された。他方、ヒメマダラカツオブシムシ以外の貯穀害虫であるタバコシバンムシ(レーン番号1)、コナナガシンクイムシ(レーン番号2)、カクムネヒラタムシ(レーン番号3)、ノコギリヒラタムシ(レーン番号4)、コクヌストモドキ(レーン番号5)、ガイマイゴミムシダマシ(レーン番号6)、ヒメゴミムシダマシ(レーン番号7)、チャイロコメノゴミムシダマシ(レーン番号8)、ヒラタコクヌストモドキ(レーン番号9)、カシミールコクスヌトモドキ(レーン番号10)、オオツノコクヌストモドキ(レーン番号11)、ヒメコクヌストモドキ(レーン番号12)、アズキゾウムシ(レーン番号13)、コクゾウムシ(レーン番号14)、ココクゾウムシ(レーン番号15)、グラナリアコクゾウムシ(レーン番号16)、ノシメマダラメイガ(レーン番号17)、バクガ(レーン番号18)、ヒメマルカツオブシムシ(レーン番号19)、ヒメアカカツオブシムシ(レーン番号20)及びヒメカツオブシムシ(レーン番号21)の反応液、穀物であるオオムギ(レーン番号23)、コメ(レーン番号24)、トウモロコシ(レーン番号25)、コムギ(レーン番号26)及び本実験に供試した鋳型DNAを含まない反応液(レーン番号27)についてはミトコンドリアDNAの増幅産物由来のバンドは認められなかった。MkはGene Ladder 100 DNAマーカーである。以上の判定結果から、配列番号1、2に示す塩基配列からなるオリゴヌクレオチドを用いたSimplex PCR法では、多数の貯穀害虫や穀物のなかから、ヒメマダラカツオブシムシを特異的に検出できることが示された。 The results are shown in Figure 3. In lane number 22, a band of approximately 153 bp was clearly detected, indicating an amplification product derived from the mitochondrial DNA of the lesser cut beetle. On the other hand, the following insects that are storage pests other than the lesser cut beetle, namely the cigarette beetle (lane number 1), the grain long bostrich beetle (lane number 2), the square-headed flathead beetle (lane number 3), the sawtooth flathead beetle (lane number 4), the red flour beetle (lane number 5), the Chinese mealworm beetle (lane number 6), the lesser mealworm beetle (lane number 7), the brown mealworm beetle (lane number 8), the flat-headed red flour beetle (lane number 9), the Kashmir red flour beetle (lane number 10), the giant red flour beetle (lane number 11), the lesser red flour beetle (lane number 12), the adzuki bean weevil (lane number 13), and the coho beetle (lane number 14). No bands derived from the amplification products of mitochondrial DNA were observed in the reactions of the corn weevil (lane 14), rice weevil (lane 15), granaria grain weevil (lane 16), Indian meal moth (lane 17), Japanese burrowing moth (lane 18), Indian cutworm beetle (lane 19), Indian cutworm beetle (lane 20), and Indian cutworm beetle (lane 21), as well as in the reactions of the grains barley (lane 23), rice (lane 24), corn (lane 25), and wheat (lane 26), and in the reaction mixture not containing the template DNA used in this experiment (lane 27). Mk is the Gene Ladder 100 DNA marker. The above results show that the Simplex PCR method using oligonucleotides consisting of the base sequences shown in SEQ ID NOs: 1 and 2 can specifically detect the Asian dermestid beetle from among many stored grain pests and grains.

(実施例5)ヒメマダラカツオブシムシ検出用オリゴヌクレオチドの性能確認(Simplex PCR法)
実施例1で設計した配列番号1~3に示す塩基配列からなるオリゴヌクレオチド、配列番号1~3に示す塩基配列もしくはその相補配列を改変した塩基配列からなるオリゴヌクレオチドを組み合わせて、Simplex PCR法によってヒメマダラカツオブシムシの検出を行った。
(Example 5) Confirmation of the performance of oligonucleotides for detecting P. punctata (Simplex PCR method)
Detection of the pleurocanthid beetle was carried out by Simplex PCR using a combination of oligonucleotides consisting of the base sequences shown in SEQ ID NOs: 1 to 3 designed in Example 1 and oligonucleotides consisting of modified base sequences shown in SEQ ID NOs: 1 to 3 or their complementary sequences.

オリゴヌクレオチドセットとして、以下のB1~B16のオリゴヌクレオチドセットを用いた。
B1:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマーとするオリゴヌクレオチドセット
B2:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマーとするオリゴヌクレオチドセット
B3:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号3の逆鎖の塩基配列の3'側から1塩基欠失させた配列番号9の塩基配列(5'-GCCTCTGAGTCCTAGGAAGTGTTG-3')を下流側プライマーとするオリゴヌクレオチドセット
B4:配列番号1の塩基配列(5'-CCCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号3の逆鎖の塩基配列の5'側から1塩基欠失させた配列番号10の塩基配列(5'-CCTCTGAGTCCTAGGAAGTGTTGG-3')を下流側プライマーとするオリゴヌクレオチドセット
B5:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマーとするオリゴヌクレオチドセット
B6:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマーとするオリゴヌクレオチドセット
B7:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号3の逆鎖の塩基配列の3'側から1塩基欠失させた配列番号9の塩基配列(5'-GCCTCTGAGTCCTAGGAAGTGTTG-3')を下流側プライマーとするオリゴヌクレオチドセット
B8:配列番号1の塩基配列の5'側から1塩基欠失させた配列番号6の塩基配列(5'-CCCCTATTTACAGGACTAACC-3')を上流側プライマー、配列番号3の逆鎖の塩基配列の5'側から1塩基欠失させた配列番号10の塩基配列(5'-CCTCTGAGTCCTAGGAAGTGTTGG-3')を下流側プライマーとするオリゴヌクレオチドセット
B9:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマーとするオリゴヌクレオチドセット
B10:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマーとするオリゴヌクレオチドセット
B11:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')を上流側プライマー、配列番号3の逆鎖の塩基配列の3'側から1塩基欠失させた配列番号9の塩基配列(5'-GCCTCTGAGTCCTAGGAAGTGTTG-3')を下流側プライマーとするオリゴヌクレオチドセット
B12:配列番号1の塩基配列の3'側から1塩基欠失させた配列番号7の塩基配列(5'-CCCCCTATTTACAGGACTAAC-3')、配列番号3の逆鎖の塩基配列の5'側から1塩基欠失させた配列番号10の塩基配列(5'-CCTCTGAGTCCTAGGAAGTGTTGG-3')を下流側プライマーとするオリゴヌクレオチドセット
B13:配列番号3の塩基配列の5'側から1塩基欠失させた配列番号11の塩基配列(5'- CAACACTTCCTAGGACTCAGAGGC-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマーとするオリゴヌクレオチドセット
B14:配列番号3の塩基配列の5'側から1塩基欠失させた配列番号11の塩基配列(5'- CAACACTTCCTAGGACTCAGAGGC-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマーとするオリゴヌクレオチドセット
B15:配列番号3の塩基配列の3'側から1塩基欠失させた配列番号12の塩基配列(5'- CCAACACTTCCTAGGACTCAGAGG-3')を上流側プライマー、配列番号2の塩基配列(5'-GTGTAGGCGTCTGGGTAGTCG-3')を下流側プライマーとするオリゴヌクレオチドセット
B16:配列番号3の塩基配列の3'側から1塩基欠失させた配列番号12の塩基配列(5'-CCAACACTTCCTAGGACTCAGAGG-3')を上流側プライマー、配列番号2の塩基配列の3'側から1塩基欠失させた配列番号8の塩基配列(5'-GTGTAGGCGTCTGGGTAGTC-3')を下流側プライマーとするオリゴヌクレオチドセット
As the oligonucleotide set, the following oligonucleotide sets B1 to B16 were used.
B1: An oligonucleotide set having the nucleotide sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') as an upstream primer and the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') as a downstream primer. B2: An oligonucleotide set having the nucleotide sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') as an upstream primer and the nucleotide sequence of SEQ ID NO: 8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 2 as a downstream primer. B3: An oligonucleotide set having the nucleotide sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') as an upstream primer and the nucleotide sequence of SEQ ID NO: 9 (5'-GCCTCTGAGTCCTAGGAAGTGTTG-3') obtained by deleting one base from the 3' side of the nucleotide sequence of the reverse strand of SEQ ID NO: 3 as a downstream primer. B4: An oligonucleotide set in which the base sequence of SEQ ID NO: 1 (5'-CCCCCTATTTACAGGACTAACC-3') is used as an upstream primer, and the base sequence of SEQ ID NO: 10 (5'-CCTCTGAGTCCTAGGAAGTGTTGG-3') obtained by deleting one base from the 5' side of the base sequence of the reverse strand of SEQ ID NO: 3 is used as a downstream primer. B5: An oligonucleotide set in which the base sequence of SEQ ID NO: 6 (5'-CCCCTATTTACAGGACTAACC-3') obtained by deleting one base from the 5' side of the base sequence of SEQ ID NO: 1 is used as an upstream primer, and the base sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') is used as a downstream primer. B6: An oligonucleotide set in which the nucleotide sequence of SEQ ID NO: 6 (5'-CCCCTATTTACAGGACTAACC-3') obtained by deleting one base from the 5' side of the nucleotide sequence of SEQ ID NO: 1 is used as an upstream primer, and the nucleotide sequence of SEQ ID NO: 8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 2 is used as a downstream primer. B7: An oligonucleotide set in which the nucleotide sequence of SEQ ID NO: 6 (5'-CCCCTATTTACAGGACTAACC-3') obtained by deleting one base from the 5' side of the nucleotide sequence of SEQ ID NO: 1 is used as an upstream primer, and the nucleotide sequence of SEQ ID NO: 9 (5'-GCCTCTGAGTCCTAGGAAGTGTTG-3') obtained by deleting one base from the 3' side of the nucleotide sequence of the reverse strand of SEQ ID NO: 3 is used as a downstream primer. B8: An oligonucleotide set in which the base sequence of SEQ ID NO: 6 (5'-CCCCTATTTACAGGACTAACC-3') obtained by deleting one base from the 5' side of the base sequence of SEQ ID NO: 1 is used as an upstream primer, and the base sequence of SEQ ID NO: 10 (5'-CCTCTGAGTCCTAGGAAGTGTTGG-3') obtained by deleting one base from the 5' side of the base sequence of the reverse strand of SEQ ID NO: 3 is used as a downstream primer. B9: An oligonucleotide set in which the base sequence of SEQ ID NO: 7 (5'-CCCCCTATTTACAGGACTAAC-3') obtained by deleting one base from the 3' side of the base sequence of SEQ ID NO: 1 is used as an upstream primer, and the base sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') is used as a downstream primer. B10: An oligonucleotide set having the nucleotide sequence of SEQ ID NO: 7 (5'-CCCCCTATTTACAGGACTAAC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 1 as an upstream primer, and the nucleotide sequence of SEQ ID NO: 8 (5'-GTGTAGGCGTCTGGGTAGTC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 2 as a downstream primer. B11: An oligonucleotide set having the nucleotide sequence of SEQ ID NO: 7 (5'-CCCCCTATTTACAGGACTAAC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 1 as an upstream primer, and the nucleotide sequence of SEQ ID NO: 9 (5'-GCCTCTGAGTCCTAGGAAGTGTTG-3') obtained by deleting one base from the 3' side of the nucleotide sequence of the reverse strand of SEQ ID NO: 3 as a downstream primer. B12: an oligonucleotide set having the nucleotide sequence of SEQ ID NO: 7 (5'-CCCCCTATTTACAGGACTAAC-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 1, and the nucleotide sequence of SEQ ID NO: 10 (5'-CCTCTGAGTCCTAGGAAGTGTTGG-3') obtained by deleting one base from the 5' side of the nucleotide sequence of the reverse strand of SEQ ID NO: 3 as a downstream primer. B13: an oligonucleotide set having the nucleotide sequence of SEQ ID NO: 11 (5'- CAACACTTCCTAGGACTCAGAGGC-3') obtained by deleting one base from the 5' side of the nucleotide sequence of SEQ ID NO: 3 as an upstream primer, and the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTCG-3') as a downstream primer. B14: an oligonucleotide set having the nucleotide sequence of SEQ ID NO: 11 (5'- B15: an oligonucleotide set having the nucleotide sequence of SEQ ID NO: 12 (5'-CCAACACTTCCTAGGACTCAGAGG-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 3 as an upstream primer and the nucleotide sequence of SEQ ID NO: 2 (5'-GTGTAGGCGTCTGGGTAGTC-3') as a downstream primer. B16: an oligonucleotide set having the nucleotide sequence of SEQ ID NO: 12 (5'-CCAACACTTCCTAGGACTCAGAGG-3') obtained by deleting one base from the 3' side of the nucleotide sequence of SEQ ID NO: 3 as an upstream primer and the nucleotide sequence of SEQ ID NO: 8 (5'-GTGTAGGCGTCTGGGTAGTC-3') as a downstream primer.

実施例1(1)の方法に従って抽出したヒメマダラカツオブシムシのミトコンドリアDNAを用いてSimplex PCR法を行った。PCRの反応液組成及び条件、ならびに検査陽性/陰性の判定は、実施例4の記載に従った。 Simplex PCR was performed using mitochondrial DNA of the beetle Pleurotus erythrorhynchos fasciatus extracted according to the method of Example 1 (1). The composition of the PCR reaction solution and conditions, as well as the determination of whether the test was positive or negative, were as described in Example 4.

結果を図4に示す。MkはGene Ladder 100 DNAマーカーである。オリゴヌクレオチドのセットB1~B16を用いたSimplex PCR法において、いずれも使用したオリゴヌクレオチドプライマーの標的箇所にそれぞれ対応した増幅鎖長でヒメマダラカツオブシムシのミトコンドリアDNAの増幅産物を示すバンドが明瞭に検出された(レーン番号1~16)。なお、オリゴヌクレオチドのセットB1~B16を用いて、鋳型DNAなしの反応液に対してSimplex PCR法を行ったが、いずれも陽性と考え得るバンドは認められなかった。以上の判定結果から、配列番号1~3に示す塩基配列もしくはその相補配列の一部を欠失させた塩基配列からオリゴヌクレオチドのセットを用いたSimplex PCR法においても、ヒメマダラカツオブシムシを特異的に検出でき、検出結果は欠失させていないものと比較して同等であることが示された。 The results are shown in Figure 4. Mk is the Gene Ladder 100 DNA marker. In the Simplex PCR method using oligonucleotide sets B1 to B16, bands indicating the amplification products of mitochondrial DNA of P. punctata were clearly detected with the amplified strand length corresponding to the target site of the oligonucleotide primer used (lanes 1 to 16). In addition, the Simplex PCR method was performed on reaction solutions without template DNA using oligonucleotide sets B1 to B16, but no bands that could be considered positive were observed. From the above judgment results, it was shown that P. punctata can be specifically detected by the Simplex PCR method using oligonucleotide sets from the base sequences shown in SEQ ID NOs: 1 to 3 or their complementary sequences with a partial deletion, and the detection results were equivalent to those without the deletion.

本発明は、食品製造及び食品加工分野において、ヒメマダラカツオブシムシなどの食品害虫の有無の確認に利用できる。 The present invention can be used in the food manufacturing and food processing fields to check for the presence or absence of food pests such as the Asian cutworm.

Claims (3)

下記の配列番号1~3、6~12に示す塩基配列からなるオリゴヌクレオチドの2種以上のオリゴヌクレオチドの組み合わせから構成される、ヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットであって、
配列番号1:5'-CCCCCTATTTACAGGACTAACC-3'
配列番号2:5'-GTGTAGGCGTCTGGGTAGTCG-3'
配列番号3:5'-CCAACACTTCCTAGGACTCAGAGGC-3'
配列番号6:5'-CCCCTATTTACAGGACTAACC-3'
配列番号7:5'-CCCCCTATTTACAGGACTAAC-3'
配列番号8:5'-GTGTAGGCGTCTGGGTAGTC-3'
配列番号9:5'-GCCTCTGAGTCCTAGGAAGTGTTG-3'
配列番号10:5'-CCTCTGAGTCCTAGGAAGTGTTGG-3'
配列番号11:5'-CAACACTTCCTAGGACTCAGAGGC-3'
配列番号12:5'-CCAACACTTCCTAGGACTCAGAGG-3'
前記オリゴヌクレオチドセットが、以下の(A1)~(A6)、(B1)~(B16)
のいずれかである、ヒメマダラカツオブシムシ検出用オリゴヌクレオチドセット。
(A1)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(A2)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(A3)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(A4)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(A5)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(A6)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとし、配列番号3に示す塩基配列からなるオリゴヌクレオチドをプローブとするオリゴヌクレオチドセット
(B1)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B2)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B3)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号9に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B4)配列番号1に示す塩基配列からなるオリゴヌクレオチドと、配列番号10に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B5)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B6)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B7)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号9に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B8)配列番号6に示す塩基配列からなるオリゴヌクレオチドと、配列番号10に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B9)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B10)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B11)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号9に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B12)配列番号7に示す塩基配列からなるオリゴヌクレオチドと、配列番号10に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B13)配列番号11に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B14)配列番号11に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B15)配列番号12に示す塩基配列からなるオリゴヌクレオチドと、配列番号2に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
(B16)配列番号12に示す塩基配列からなるオリゴヌクレオチドと、配列番号8に示す塩基配列からなるオリゴヌクレオチドをプライマーとするオリゴヌクレオチドセット
An oligonucleotide set for detecting P. punctatus, which is composed of a combination of two or more oligonucleotides having the base sequences shown in SEQ ID NOs: 1 to 3 and 6 to 12 below,
SEQ ID NO: 1: 5'-CCCCCTATTTACAGGACTAACC-3'
SEQ ID NO: 2: 5'-GTGTAGGCGTCTGGGTAGTCG-3'
SEQ ID NO: 3: 5'-CCAACACTTCCTAGGACTCAGAGGC-3'
SEQ ID NO: 6: 5'-CCCCTATTTACAGGACTAACC-3'
SEQ ID NO: 7: 5'-CCCCCTATTTACAGGACTAAC-3'
SEQ ID NO: 8: 5'-GTGTAGGCGTCTGGGTAGTC-3'
SEQ ID NO: 9: 5'-GCCTCTGAGTCCTAGGAAGTGTTG-3'
SEQ ID NO: 10: 5'-CCTCTGAGTCCTAGGAAGTGTTGG-3'
SEQ ID NO: 11: 5'-CAACACTTCCTAGGACTCAGAGGC-3'
SEQ ID NO: 12: 5'-CCAACACTTCCTAGGACTCAGAGG-3'
The oligonucleotide set is selected from the group consisting of the following (A1) to (A6) and (B1) to (B16):
An oligonucleotide set for detecting the Asian cutworm, which is either one of the above.
(A1) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:1 and an oligonucleotide having the base sequence shown in SEQ ID NO:2 as a primer and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(A2) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6, an oligonucleotide having the base sequence shown in SEQ ID NO:2 as a primer, and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(A3) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:7 and an oligonucleotide having the base sequence shown in SEQ ID NO:2 as a primer and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(A4) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:1 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(A5) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(A6) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:7 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers and an oligonucleotide having the base sequence shown in SEQ ID NO:3 as a probe.
(B1) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:1 and an oligonucleotide having the base sequence shown in SEQ ID NO:2 as primers.
(B2) an oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:1 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers;
(B3) an oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 1 and an oligonucleotide having the base sequence shown in SEQ ID NO: 9 as primers;
(B4) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 1 and an oligonucleotide having the base sequence shown in SEQ ID NO: 10 as primers.
(B5) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6 and an oligonucleotide having the base sequence shown in SEQ ID NO:2 as primers.
(B6) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers.
(B7) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6 and an oligonucleotide having the base sequence shown in SEQ ID NO:9 as primers.
(B8) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:6 and an oligonucleotide having the base sequence shown in SEQ ID NO:10 as primers.
(B9) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 7 and an oligonucleotide having the base sequence shown in SEQ ID NO: 2 as primers.
(B10) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 7 and an oligonucleotide having the base sequence shown in SEQ ID NO: 8 as primers.
(B11) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 7 and an oligonucleotide having the base sequence shown in SEQ ID NO: 9 as primers.
(B12) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 7 and an oligonucleotide having the base sequence shown in SEQ ID NO: 10 as primers.
(B13) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:11 and an oligonucleotide having the base sequence shown in SEQ ID NO:2 as primers.
(B14) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO:11 and an oligonucleotide having the base sequence shown in SEQ ID NO:8 as primers.
(B15) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 12 and an oligonucleotide having the base sequence shown in SEQ ID NO: 2 as primers.
(B16) An oligonucleotide set comprising an oligonucleotide having the base sequence shown in SEQ ID NO: 12 and an oligonucleotide having the base sequence shown in SEQ ID NO: 8 as primers.
請求項に記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットを含む、ヒメマダラカツオブシムシ検出用キット。 A kit for detecting P. granulosa, comprising the oligonucleotide set for detecting P. granulosa according to claim 1 . 被検試料より抽出したDNAを鋳型とし、請求項に記載のヒメマダラカツオブシムシ検出用オリゴヌクレオチドセットを用いてPCR増幅を行い、得られた増幅産物を検出する工程を含む、ヒメマダラカツオブシムシの検出方法。 A method for detecting the pleurocanthid beetle, comprising the steps of: using DNA extracted from a test sample as a template, carrying out PCR amplification using the oligonucleotide set for detecting the pleurocanthid beetle described in claim 1 , and detecting the obtained amplification product.
JP2020171816A 2020-10-12 2020-10-12 Oligonucleotides for detecting the stag beetle Active JP7549333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020171816A JP7549333B2 (en) 2020-10-12 2020-10-12 Oligonucleotides for detecting the stag beetle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020171816A JP7549333B2 (en) 2020-10-12 2020-10-12 Oligonucleotides for detecting the stag beetle

Publications (2)

Publication Number Publication Date
JP2022063510A JP2022063510A (en) 2022-04-22
JP7549333B2 true JP7549333B2 (en) 2024-09-11

Family

ID=81213389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020171816A Active JP7549333B2 (en) 2020-10-12 2020-10-12 Oligonucleotides for detecting the stag beetle

Country Status (1)

Country Link
JP (1) JP7549333B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082971A (en) 2014-10-23 2016-05-19 国立研究開発法人農業・食品産業技術総合研究機構 Oligonucleotide for detection of food pests

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082971A (en) 2014-10-23 2016-05-19 国立研究開発法人農業・食品産業技術総合研究機構 Oligonucleotide for detection of food pests

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
植物防疫所 病害虫情報,2008年,Vol.85,pp.1-2

Also Published As

Publication number Publication date
JP2022063510A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
Inglis et al. Laboratory techniques used for entomopathogenic fungi: Hypocreales
Juen et al. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates
Strayer-Scherer et al. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens
Altinok et al. Molecular diagnosis of fish diseases: a review
Christoforou et al. Rapid detection and quantification of viable potato cyst nematodes using qPCR in combination with propidium monoazide
JP6600831B2 (en) Oligonucleotide for food pest detection
KR101663136B1 (en) Specific SSR primers for discriminating colored maize and uses thereof
JP5855335B2 (en) A primer set for detection of marine bivalve molluscs and a method for detection and quantification of marine bivalve larvae using this primer set
JP7549333B2 (en) Oligonucleotides for detecting the stag beetle
Akrami et al. Molecular detection of Moniezia spp.(Cestoda) in Pergalumna persica (Acari: Oribatida) in Iran
JP2021073945A (en) Molecular identification technique for thrips
Wiersch et al. Haemosporidian infection in passerine birds from Lower Saxony
JP7486147B2 (en) Oligonucleotides for detecting the mealworm moth
JP2022173818A (en) Oligonucleotide for detecting trogoderma varium
JP2024066550A (en) Oligonucleotide for detecting tribolium confusum jacquelin du val
KR20110037772A (en) Method for identification of mealybug found on korean pears using polymerase chain reaction
Lombard et al. Comparing the effectiveness of real-time PCRs to simultaneously detect and identify viable Globodera pallida and G. rostochiensis
Abbasi et al. Strategy for DNA extraction and detection from insect pests in stored home grain samples
Hundsdoerfer et al. New source of genetic polymorphisms in Lepidoptera?
Rugman-Jones et al. Species-specific multiplex PCR for the rapid diagnosis of egg parasitoids of light brown apple moth, Epiphyas postvittana, in northern California
KR101491776B1 (en) Specific primer pair for rapid detection of Fusarium verticillioides, a causal agent of corn ear rot, and method for detecting Fusarium verticillioides using the same
KR102319859B1 (en) Multiplex primer sets based on microsatellite markers for identification of Korean native chicken and uses thereof
Usha et al. Genetic relationship between quality and non quality wood of Pterocarpus santalinus L.(red sanders), an endemic tree species by using molecular markers
TWI383050B (en) Oligo-nucleotide probes of tephritid fruit flies identification, biochip, and identifying method thereof
Post The taxonomic use of DNA Sequences in the Simulium damnosum complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240823

R150 Certificate of patent or registration of utility model

Ref document number: 7549333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150