JP7548355B1 - Foamed sheet, method for producing foamed sheet, and molded product - Google Patents
Foamed sheet, method for producing foamed sheet, and molded product Download PDFInfo
- Publication number
- JP7548355B1 JP7548355B1 JP2023030405A JP2023030405A JP7548355B1 JP 7548355 B1 JP7548355 B1 JP 7548355B1 JP 2023030405 A JP2023030405 A JP 2023030405A JP 2023030405 A JP2023030405 A JP 2023030405A JP 7548355 B1 JP7548355 B1 JP 7548355B1
- Authority
- JP
- Japan
- Prior art keywords
- foamed sheet
- polylactic acid
- acid resin
- foamed
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 354
- 239000004626 polylactic acid Substances 0.000 claims abstract description 354
- 229920005989 resin Polymers 0.000 claims abstract description 238
- 239000011347 resin Substances 0.000 claims abstract description 238
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000000178 monomer Substances 0.000 claims abstract description 25
- 239000005416 organic matter Substances 0.000 claims abstract description 24
- 239000000470 constituent Substances 0.000 claims abstract description 13
- 239000006260 foam Substances 0.000 claims description 141
- 150000001875 compounds Chemical class 0.000 claims description 94
- 125000003700 epoxy group Chemical group 0.000 claims description 83
- 238000002425 crystallisation Methods 0.000 claims description 73
- 230000008025 crystallization Effects 0.000 claims description 73
- 238000004898 kneading Methods 0.000 claims description 61
- 239000004088 foaming agent Substances 0.000 claims description 41
- 238000001125 extrusion Methods 0.000 claims description 30
- 239000004593 Epoxy Substances 0.000 claims description 18
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims description 12
- 238000003856 thermoforming Methods 0.000 claims description 11
- 229930182843 D-Lactic acid Natural products 0.000 claims description 7
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims description 7
- 229940022769 d- lactic acid Drugs 0.000 claims description 7
- 230000008016 vaporization Effects 0.000 claims description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 abstract description 72
- 239000004310 lactic acid Substances 0.000 abstract description 36
- 235000014655 lactic acid Nutrition 0.000 abstract description 36
- 238000009413 insulation Methods 0.000 abstract description 27
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 abstract description 19
- 239000011342 resin composition Substances 0.000 description 131
- 238000000034 method Methods 0.000 description 123
- 238000005259 measurement Methods 0.000 description 111
- 238000005187 foaming Methods 0.000 description 64
- 238000010438 heat treatment Methods 0.000 description 59
- 238000000465 moulding Methods 0.000 description 56
- 238000002844 melting Methods 0.000 description 49
- 230000008018 melting Effects 0.000 description 47
- 239000004970 Chain extender Substances 0.000 description 46
- 230000008569 process Effects 0.000 description 40
- 239000002667 nucleating agent Substances 0.000 description 35
- 229960000448 lactic acid Drugs 0.000 description 34
- 239000012530 fluid Substances 0.000 description 32
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 31
- 238000001953 recrystallisation Methods 0.000 description 31
- 239000010954 inorganic particle Substances 0.000 description 30
- 230000009477 glass transition Effects 0.000 description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 27
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 239000000047 product Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 239000000155 melt Substances 0.000 description 23
- 229920003023 plastic Polymers 0.000 description 21
- 239000004033 plastic Substances 0.000 description 21
- 238000001816 cooling Methods 0.000 description 20
- 238000000113 differential scanning calorimetry Methods 0.000 description 20
- 239000002994 raw material Substances 0.000 description 20
- 238000005481 NMR spectroscopy Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000003431 cross linking reagent Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 230000007547 defect Effects 0.000 description 15
- 238000002156 mixing Methods 0.000 description 15
- 239000001569 carbon dioxide Substances 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000005470 impregnation Methods 0.000 description 13
- 230000037303 wrinkles Effects 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 239000004971 Cross linker Substances 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 230000007704 transition Effects 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004604 Blowing Agent Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000012086 standard solution Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 238000005303 weighing Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- -1 L-lactic acid (L-lactic acid) (DL-lactic acid) Chemical compound 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Chemical class 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- LKUDPHPHKOZXCD-UHFFFAOYSA-N 1,3,5-trimethoxybenzene Chemical compound COC1=CC(OC)=CC(OC)=C1 LKUDPHPHKOZXCD-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 4
- 238000004811 liquid chromatography Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 238000010966 qNMR Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- 238000003109 Karl Fischer titration Methods 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- ZDGWGNDTQZGISB-UHFFFAOYSA-N acetic acid;perchloric acid Chemical compound CC(O)=O.OCl(=O)(=O)=O ZDGWGNDTQZGISB-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical group CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical class OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000003921 particle size analysis Methods 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical class [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 2
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- XSCLFFBWRKTMTE-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCCC(CN=C=O)C1 XSCLFFBWRKTMTE-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- KVZLHPXEUGJPAH-DKWTVANSSA-N 2-hydroxypropanoic acid;(2s)-2-hydroxypropanoic acid Chemical compound CC(O)C(O)=O.C[C@H](O)C(O)=O KVZLHPXEUGJPAH-DKWTVANSSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Chemical class C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- KVZLHPXEUGJPAH-QRLADXQJSA-N C([C@H](O)C)(=O)O.C([C@H](O)C)(=O)O Chemical compound C([C@H](O)C)(=O)O.C([C@H](O)C)(=O)O KVZLHPXEUGJPAH-QRLADXQJSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical class OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- OMRDSWJXRLDPBB-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1 Chemical compound N=C=O.N=C=O.C1CCCCC1 OMRDSWJXRLDPBB-UHFFFAOYSA-N 0.000 description 1
- ADYVCZCQSVYNPQ-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)C1=CC=CC=C1 ADYVCZCQSVYNPQ-UHFFFAOYSA-N 0.000 description 1
- QORUGOXNWQUALA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 QORUGOXNWQUALA-UHFFFAOYSA-N 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- ARUKYTASOALXFG-UHFFFAOYSA-N cycloheptylcycloheptane Chemical compound C1CCCCCC1C1CCCCCC1 ARUKYTASOALXFG-UHFFFAOYSA-N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013518 molded foam Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3442—Mixing, kneading or conveying the foamable material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/04—Polyesters derived from hydroxycarboxylic acids
- B29K2067/046—PLA, i.e. polylactic acid or polylactide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/16—Biodegradable polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
Abstract
【課題】成型性、耐熱性、断熱性、及び生分解性に優れる発泡シートを提供すること。【解決手段】ポリ乳酸樹脂を含有する組成物からなる発泡シートであって、前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、前記発泡シートのかさ密度が0.063g/cm3以上0.250g/cm3以下であり、前記発泡シートの厚み方向かつTD方向の断面から見た、該発泡シートの少なくとも一方の表面のTD方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下である発泡シートである。【選択図】図1[Problem] To provide a foamed sheet having excellent moldability, heat resistance, heat insulation, and biodegradability. [Solution] A foamed sheet made of a composition containing a polylactic acid resin, in which the polylactic acid resin contains 98 mol % or more of either the D-form of lactic acid or the L-form of lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin, the content of the polylactic acid resin relative to the total amount of organic matter in the foamed sheet is 98 mass % or more, the bulk density of the foamed sheet is 0.063 g/cm3 or more and 0.250 g/cm3 or less, and the ratio [Ra/RSm] of the arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to the average length RSm of the roughness curve elements calculated in accordance with JIS B 0601:2013 is 0.050 or less for the shape in the TD direction of at least one surface of the foamed sheet as viewed from a cross section in the thickness direction and TD direction of the foamed sheet. [Selected Figure] Figure 1
Description
本発明は、発泡シート、発泡シートの製造方法、及び成型体に関する。 The present invention relates to a foam sheet, a method for producing a foam sheet, and a molded body.
プラスチックは、袋、容器など様々な製品形状に加工され広く流通している。しかし、プラスチック製品は、自然界で分解されにくい性質を有しているため、使用後の廃棄処理が問題となっている。近年、環境意識の高まりから、プラスチック製品について、自然界で分解されにくい非生分解性プラスチックから、自然界で分解されやすい生分解性バイオマスプラスチックへ置き換えるための材料開発が盛んに行われている。 Plastics are processed into various product shapes such as bags and containers and are widely distributed. However, plastic products are difficult to decompose in nature, making disposal of them after use a problem. In recent years, with growing environmental awareness, there has been active development of materials to replace non-biodegradable plastics, which are difficult to decompose in nature, with biodegradable biomass plastics, which are easily decomposed in nature.
生分解性バイオマスプラスチックの中でもポリ乳酸樹脂は、プラスチックとして従来使用されているポリスチレンなどと性質が似ていることから、非分解性プラスチックの代替材料として注目されている。ポリスチレンの利用形態の1つに、ポリスチレンを発泡させることで、軽量性、緩衝性、断熱性等の機能を付与した発泡ポリスチレンがあり、広く用いられている。このような発泡ポリスチレンの環境に配慮した代替素材として、生分解性プラスチックであるポリ乳酸樹脂を用いた発泡ポリ乳酸も提案されている(例えば、特許文献1~4参照)。 Among biodegradable biomass plastics, polylactic acid resin has attracted attention as an alternative to non-degradable plastics because its properties are similar to polystyrene, a plastic that has been used traditionally. One form of use for polystyrene is expanded polystyrene, which is made by foaming polystyrene to give it properties such as light weight, cushioning, and insulation, and is widely used. Expanded polylactic acid, which uses polylactic acid resin, a biodegradable plastic, has also been proposed as an environmentally friendly alternative to expanded polystyrene (see, for example, Patent Documents 1 to 4).
一般に、ポリ乳酸樹脂はガラス転移温度(約60℃)が低いことに起因して、ポリ乳酸樹脂を食品用容器に適用する場合、耐熱性が低いことが指摘されているが、成型過程でポリ乳酸樹脂の結晶化度を高めることで耐熱性を向上することが確認されている(特許文献5及び6参照)。 It is generally pointed out that polylactic acid resin has low heat resistance when used for food containers due to its low glass transition temperature (approximately 60°C). However, it has been confirmed that heat resistance can be improved by increasing the crystallinity of polylactic acid resin during the molding process (see Patent Documents 5 and 6).
本発明は、成型性、耐熱性、断熱性、及び生分解性に優れる発泡シートを提供することを目的とする。 The objective of the present invention is to provide a foamed sheet that has excellent moldability, heat resistance, insulation, and biodegradability.
前記課題を解決するための手段としての本発明の発泡シートは、ポリ乳酸樹脂を含有する組成物からなる発泡シートであって、前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、前記発泡シートのかさ密度が0.063g/cm3以上0.250g/cm3以下であり、前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下であることを特徴とする。 The foam sheet of the present invention as a means for solving the above-mentioned problems is a foam sheet made of a composition containing a polylactic acid resin, wherein the polylactic acid resin contains 98 mol % or more of either a D-form of lactic acid or an L-form of lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin, and the content of the polylactic acid resin relative to the total amount of organic matter in the foam sheet is 98 mass % or more, the bulk density of the foam sheet is 0.063 g/cm 3 or more and 0.250 g/cm 3 or less, and the ratio [Ra/RSm] of the arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to the average length RSm of roughness curve elements calculated in accordance with JIS B 0601:2013 is 0.050 or less, with respect to a shape of at least one surface of the foam sheet in a direction perpendicular to the extrusion direction of the foam sheet, as viewed from a cross section in the thickness direction of the foam sheet and in a direction perpendicular to the extrusion direction of the foam sheet.
本発明によれば、成型性、耐熱性、断熱性、及び生分解性に優れる発泡シートを提供することができる。 The present invention provides a foam sheet that is excellent in moldability, heat resistance, heat insulation, and biodegradability.
以下、本発明の発泡シート、発泡シートの製造方法、及び成型体について詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、又は削除などの当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用及び効果を奏する限り、本発明の範囲に含まれるものである。 The foam sheet, the method for producing the foam sheet, and the molded product of the present invention are described in detail below. Note that the present invention is not limited to the embodiments shown below, and may be modified within the scope of what a person skilled in the art can imagine, such as other embodiments, additions, modifications, or deletions, and any embodiment is within the scope of the present invention as long as it provides the functions and effects of the present invention.
(発泡シート)
本発明の発泡シートは、ポリ乳酸樹脂を含有する組成物(以下、「ポリ乳酸樹脂組成物」と称することがある)からなる発泡シートであって、前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、前記発泡シートのかさ密度が0.063g/cm3以上0.250g/cm3以下であり、前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下である。
(Foam sheet)
The foamed sheet of the present invention is a foamed sheet made of a composition containing a polylactic acid resin (hereinafter, may be referred to as a "polylactic acid resin composition"), wherein the polylactic acid resin contains 98 mol % or more of either a D-form of lactic acid or an L-form of lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin, the content of the polylactic acid resin with respect to the total amount of organic matter in the foamed sheet is 98 mass % or more, the bulk density of the foamed sheet is 0.063 g/cm 3 or more and 0.250 g/cm 3 or less, and the shape of at least one surface of the foamed sheet in a direction perpendicular to the extrusion direction of the foamed sheet, as viewed from a cross section in the thickness direction of the foamed sheet and in a direction perpendicular to the extrusion direction of the foamed sheet, is calculated in accordance with JIS B 0601:2013 and the arithmetic average roughness Ra is calculated in accordance with JIS B The ratio [Ra/RSm] to the average length RSm of the roughness curve elements calculated in accordance with JIS H0601:2013 is 0.050 or less.
なお、本発明において、「発泡シートの押出方向」を「MD(machine dirrection)方向」、「発泡シートの押出方向に直行する方向」を「TD(transverse dirrection)方向」と称することがある。前記発泡シートのTD方向は、前記発泡シートの幅方向と同義である。 In the present invention, the "extrusion direction of the foam sheet" may be referred to as the "MD (machine direction) direction," and the "direction perpendicular to the extrusion direction of the foam sheet" may be referred to as the "TD (transverse direction) direction." The TD direction of the foam sheet is synonymous with the width direction of the foam sheet.
本発明者らは、断熱性や軽量化などの機能を高めるために発泡シートの発泡倍率を高めようとした場合、つまり、かさ密度の低い発泡シートを作製した場合に、発泡シート製造時に該発泡シートの表面にコルゲート状のしわが発生することがあること、そして、発泡シートの表面のコルゲート状のしわがある場合、容器形状に発泡シートを成型する場合には、コルゲート状のしわ部分が破れるなどの成型不良が起きてしまうという課題を見出した。 The present inventors have found that when attempting to increase the expansion ratio of a foamed sheet to improve functions such as heat insulation or weight reduction, i.e., when producing a foamed sheet with low bulk density, corrugated wrinkles may occur on the surface of the foamed sheet during production, and that when corrugated wrinkles exist on the surface of a foamed sheet, molding defects such as tears at the corrugated portions occur when the foamed sheet is molded into a container shape.
このような課題に対し、本発明者らは鋭意検討を行い、上記構成を有することにより、耐熱性、断熱性、及び生分解性に優れ、かつ食品用容器等の容器形状に成型する際に破れなどの成型不良を起こさない成型性に優れる発泡シートを提供することができることを見出した。 In response to these problems, the inventors conducted extensive research and discovered that the above-described configuration makes it possible to provide a foamed sheet that is excellent in heat resistance, heat insulation, and biodegradability, and also has excellent moldability that prevents molding defects such as breakage when molded into container shapes such as food containers.
本発明の発泡シートはポリ乳酸樹脂組成物からなるため、本発明の発泡シートは、「ポリ乳酸発泡シート」、「発泡ポリ乳酸組成物シート」などと称してもよい。詳細は後述するが、本発明の発泡シートは良好な耐熱性を有し、例えば耐熱食品容器としても使用することが可能となる。
なお、本発明の発泡シートは、ポリ乳酸樹脂組成物を発泡させ、シート状にしたものを意味する。
Since the foamed sheet of the present invention is made of a polylactic acid resin composition, the foamed sheet of the present invention may be called a "polylactic acid foamed sheet", an "expanded polylactic acid composition sheet", etc. As will be described in detail later, the foamed sheet of the present invention has good heat resistance and can be used, for example, as a heat-resistant food container.
The foamed sheet of the present invention refers to a sheet-like product obtained by foaming a polylactic acid resin composition.
[発泡シートの物性]
前記発泡シートは、前記ポリ乳酸樹脂組成物を発泡して得られることから、前記発泡シートの熱履歴や形体を特徴付ける物性を除いて、前記発泡シートの物性と前記ポリ乳酸樹脂組成物の物性は同義である。詳細は後述するが、前記発泡シートの熱履歴を特徴付ける物性としては冷結晶化エンタルピーがあり、形体を特徴付ける物性としては、かさ密度、発泡径、坪量、Ra、RSmがある。
[Physical properties of foam sheet]
Since the foamed sheet is obtained by foaming the polylactic acid resin composition, the physical properties of the foamed sheet and the physical properties of the polylactic acid resin composition are synonymous with each other, except for the physical properties that characterize the thermal history and shape of the foamed sheet. The details will be described later, but the physical properties that characterize the thermal history of the foamed sheet include cold crystallization enthalpy, and the physical properties that characterize the shape include bulk density, foam diameter, basis weight, Ra, and RSm.
-かさ密度-
前記発泡シートのかさ密度は、0.063g/cm3以上0.250g/cm3以下であり、0.063g/cm3以上0.125g/cm3以下であることが好ましく、0.063g/cm3以上0.098g/cm3以下であることがより好ましい。前記発泡シートのかさ密度が0.063g/cm3未満であると、成型性が悪化し、0.250g/cm3を超えると、断熱性が不十分となる。一方、前記発泡シートのかさ密度を0.063g/cm3以上0.250g/cm3以下にすることで、断熱効果の高い気泡を多く含んだ発泡シートとなり、高い断熱性に繋がる。
- Bulk density -
The bulk density of the foamed sheet is 0.063 g/cm 3 or more and 0.250 g/cm 3 or less, preferably 0.063 g/cm 3 or more and 0.125 g/cm 3 or less, and more preferably 0.063 g/cm 3 or more and 0.098 g/cm 3 or less. If the bulk density of the foamed sheet is less than 0.063 g/cm 3 , the moldability is deteriorated, and if it exceeds 0.250 g/cm 3 , the heat insulation is insufficient. On the other hand, by setting the bulk density of the foamed sheet to 0.063 g/cm 3 or more and 0.250 g/cm 3 or less, the foamed sheet contains many bubbles having a high heat insulation effect, which leads to high heat insulation.
前記発泡シートのかさ密度は、前記発泡シートを製造する際の発泡温度、発泡剤の量、ダイの種類などで発泡倍率を変えることにより調整可能である。具体的には、前記発泡シートを製造する際の発泡温度を低くする、前記発泡剤の量を多くする、前記ダイとしてサーキュラーダイを用いるなどの方法を取ることで発泡倍率が上がるため、前記発泡シートのかさ密度を小さくすることができる。 The bulk density of the foamed sheet can be adjusted by changing the expansion ratio by the foaming temperature, the amount of foaming agent, the type of die, etc., when producing the foamed sheet. Specifically, the expansion ratio can be increased by lowering the foaming temperature when producing the foamed sheet, increasing the amount of the foaming agent, using a circular die, etc., and therefore the bulk density of the foamed sheet can be reduced.
本発明における発泡シートのかさ密度は、次のようにして測定した値である。
前記発泡シートを温度23℃、相対湿度50%に調整された環境下で24時間以上静置し、50mm×50mmの試験片を切り出す。切り出した試験片に対して、自動比重計(例えば、株式会社東洋精機製作所製のDSG-1など)を用い、液中秤量法を用いてかさ密度を求める。
液中秤量法においては、前記発泡シートの試験片の大気中の質量(g)を精秤し、次いで発泡シートの試験片の水中での質量(g)を精秤し、下記式(1)により算出することができる。
かさ密度[g/cm3]=水の密度[g/cm3]×大気中の試験片の質量[g]/(大気中の試験片の質量[g]-液体中の試験片の質量[g]) ・・・ 式(1)
The bulk density of the foamed sheet in the present invention is a value measured as follows.
The foamed sheet is left to stand for 24 hours or more in an environment adjusted to a temperature of 23° C. and a relative humidity of 50%, and a test piece of 50 mm×50 mm is cut out. The bulk density of the cut test piece is measured by a liquid weighing method using an automatic specific gravity meter (e.g., DSG-1 manufactured by Toyo Seiki Seisakusho Co., Ltd.).
In the liquid weighing method, the mass (g) of a test piece of the foamed sheet in air is precisely weighed, and then the mass (g) of the test piece of the foamed sheet in water is precisely weighed, and the mass can be calculated according to the following formula (1).
Bulk density [g/cm 3 ]=density of water [g/cm 3 ]×mass of test piece in air [g]/(mass of test piece in air [g]−mass of test piece in liquid [g]) Equation (1)
-発泡径(メジアン径)-
前記発泡シートの発泡径としては、特に制限はなく、目的に応じて適宜選択することができるが、メジアン径で、1,220μm以下が好ましく、800μm以下がより好ましく、500μm以下が更に好ましい。前記発泡シートの発泡径(メジアン径)を1,220μm以下にすることで、気泡内の対流が抑えられ、熱伝導が低下し断熱性が向上し、800μm以下にすることで、更に断熱性が向上する。
- Foam diameter (median diameter) -
The foam diameter of the foamed sheet is not particularly limited and can be appropriately selected depending on the purpose, but the median diameter is preferably 1,220 μm or less, more preferably 800 μm or less, and even more preferably 500 μm or less. By setting the foam diameter (median diameter) of the foamed sheet to 1,220 μm or less, convection within the bubbles is suppressed, heat conduction is reduced, and heat insulation is improved, and by setting it to 800 μm or less, heat insulation is further improved.
前記発泡シートの発泡径(メジアン径)の測定方法としては、特に制限はなく、目的に応じて適宜選択することができる。
例えば、前記発泡シートを鋭利なカミソリ(例えば、日新EM株式会社製の76カミソリなど)を用いて断面切削を行い、走査電子顕微鏡(SEM)(例えば、KEYENCE社製の3Dリアルサーフェスビュー顕微鏡 VE-9800)を用い、発泡シート断面のSEM観察を行う。拡大倍率は、後述の画像解析に適する画像が得られるように、観察範囲の気泡数が数十~数百個になるように調整する(100μm程度の発泡径であれば、例えば50倍)。必要に応じて、複数の視野を撮影し、画像を連結させて画像解析に供してもよい。得られた画像は、例えば、画像解析ソフト(例えば、ImageJのMorphoLibJプラグイン)を用い、watershed法(Morphological segmetation)による領域分割を行う。この際、Toleranceは分割が妥当になるように画像毎に調整する(例えば60等)。領域の分割線を2値画像として出力し、画像解析ソフトの粒子径解析機能により気泡面積の分布を求める。この際、画像端部に接する気泡は解析から除外する。気泡面積の累積分布を表計算ソフト等で作成し、累積分布が50%になる面積を求め、該面積の円相当径を計算し発泡径(メジアン径)として用いる。
The method for measuring the foam diameter (median diameter) of the foamed sheet is not particularly limited and can be appropriately selected depending on the purpose.
For example, the foam sheet is cut into a cross section using a sharp razor (e.g., 76 razor manufactured by Nisshin EM Co., Ltd.), and the cross section of the foam sheet is observed using a scanning electron microscope (SEM) (e.g., 3D real surface view microscope VE-9800 manufactured by KEYENCE Co., Ltd.). The magnification is adjusted so that the number of bubbles in the observation range is several tens to several hundreds so that an image suitable for the image analysis described below can be obtained (for example, 50 times for a foam diameter of about 100 μm). If necessary, multiple fields of view may be photographed, and the images may be linked and subjected to image analysis. The obtained image is subjected to region division by the watershed method (morphological segmentation) using, for example, image analysis software (e.g., MorphoLibJ plug-in of ImageJ). At this time, the tolerance is adjusted for each image so that the division is appropriate (for example, 60, etc.). The dividing lines of the regions are output as a binary image, and the distribution of the bubble area is obtained using the particle size analysis function of the image analysis software. At this time, bubbles in contact with the edge of the image are excluded from the analysis. The cumulative distribution of the bubble area is created using a spreadsheet software or the like, the area where the cumulative distribution is 50% is obtained, and the circle equivalent diameter of that area is calculated and used as the bubble diameter (median diameter).
-坪量-
前記発泡シートの坪量としては、特に制限はなく、用途に応じて適宜選択することができるが、前記発泡シートを食品包装容器として用いる場合は、100g/m2以上300g/m2以下が好ましく、140g/m2以上280g/m2以下がより好ましく、250g/m2以上280g/m2以下が更に好ましい。前記発泡シートの坪量が100g/m2以上300g/m2以下であると、軽量性と強度を両立した発泡シートを得られる傾向にある。
- Grammage -
The basis weight of the foamed sheet is not particularly limited and can be appropriately selected depending on the application, but when the foamed sheet is used as a food packaging container, the basis weight is preferably 100 g/m 2 or more and 300 g/m 2 or less, more preferably 140 g/m 2 or more and 280 g/m 2 or less, and even more preferably 250 g/m 2 or more and 280 g/m 2 or less. When the basis weight of the foamed sheet is 100 g/m 2 or more and 300 g/m 2 or less, a foamed sheet that is both lightweight and strong tends to be obtained.
本発明における前記発泡シートの坪量の測定方法としては、特に限定されないが、例えば以下のようにして測定することができる。
前記発泡シートを温度23℃、相対湿度50%に調整された環境下で24時間以上静置し、50mm×50mmの試験片を切り出す。前記試験片の質量を天秤で測定する。測定した質量をから下記式(2)により坪量を算出することができる。前記発泡シートの坪量は、該発泡シートの押出方向(MD方向)と、MD方向に対して直行する方向(TD方向)にそれぞれ3点以上測定を行い、この3点の算術平均値とする。
坪量[g/m2]=測定質量[g]/(0.05m×0.05m) ・・・ 式(2)
The method for measuring the basis weight of the foamed sheet in the present invention is not particularly limited, but for example, it can be measured as follows.
The foamed sheet is left to stand for 24 hours or more in an environment adjusted to a temperature of 23° C. and a relative humidity of 50%, and a test piece of 50 mm×50 mm is cut out. The mass of the test piece is measured with a balance. The basis weight can be calculated from the measured mass by the following formula (2). The basis weight of the foamed sheet is determined by measuring three or more points in each of the extrusion direction (MD direction) of the foamed sheet and the direction perpendicular to the MD direction (TD direction), and the arithmetic average value of the three points is used.
Basis weight [g/m 2 ] = Measured mass [g]/(0.05m x 0.05m) ... Formula (2)
-発泡シートの最表面形状-
前記発泡シートの厚み方向かつTD方向の断面から見た、該発泡シートの少なくとも一方の表面のTD方向の形状は、上述の通り、該発泡シートの成型時の破れなどの成型不良に大きく影響を与える。特に、発泡シートの表面にコルゲート状のしわがある場合、該発泡シートの成型時に成型不良が起きやすい。これに対し、本発明の発泡シートの表面はコルゲート状のしわの起伏が非常に少ないものである。
- Surface shape of foam sheet -
As described above, the shape of at least one surface of the foamed sheet in the TD direction when viewed from a cross section in the thickness direction and TD direction of the foamed sheet greatly affects molding defects such as breakage during molding of the foamed sheet. In particular, when the foamed sheet has corrugated wrinkles on its surface, molding defects are likely to occur during molding of the foamed sheet. In contrast, the surface of the foamed sheet of the present invention has very few undulations of corrugated wrinkles.
--比[Ra/RSm]--
前記発泡シートの表面のコルゲート状のしわは、前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向(TD方向)の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向(TD方向)の形状について、JIS B 0601:2013(製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ)に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]で表すことができる。
--Ratio [Ra/RSm]--
The corrugated wrinkles on the surface of the foamed sheet can be expressed as a ratio [Ra/RSm] of an arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 (Geometric Product Specifications (GPS)-Surface Quality: Profile Curve Method-Terminology, Definitions and Surface Quality Parameters) to an average length RSm of roughness curve elements calculated in accordance with JIS B 0601:2013, for a shape of at least one surface of the foamed sheet in a direction perpendicular to the extrusion direction of the foamed sheet (TD direction) as viewed from a cross section in the thickness direction of the foamed sheet and in the direction perpendicular to the extrusion direction of the foamed sheet (TD direction).
前記発泡シートの厚み方向かつTD方向の断面から見た、該発泡シートの少なくとも一方の表面のTD方向の形状について、図面を用いて具体的に説明する。
図1は、本発明の発泡シートの厚み方向かつTD方向の断面から見た、該発泡シートの少なくとも一方の表面のTD方向の形状の概略説明図(斜視図)である。図1において、上下方向が発泡シート200の厚み方向を示し、左右方向が発泡シート200のTD方向を示し、奥行き方向が発泡シート200のMD方向を示す。発泡シート200の厚み方向かつTD方向の断面201から見た、発泡シート200の一方の表面(最表面)202の輪郭形状は、太線で示すように、コルゲート状のしわ(波型の凹凸、波型の周期的な起伏)を有する。なお、ここでは、発泡シート200の一方の表面(最表面)202について説明したが、発泡シート200の他方の表面(最表面)についても同様の形状を有する。
The shape of at least one surface of the foamed sheet in the TD direction as viewed from a cross section in the thickness direction and TD direction of the foamed sheet will be specifically described with reference to the drawings.
FIG. 1 is a schematic diagram (perspective view) of the shape in the TD direction of at least one surface of the foamed sheet of the present invention, as viewed from a cross section in the thickness direction and TD direction of the foamed sheet. In FIG. 1, the up-down direction indicates the thickness direction of the foamed sheet 200, the left-right direction indicates the TD direction of the foamed sheet 200, and the depth direction indicates the MD direction of the foamed sheet 200. The contour shape of one surface (outermost surface) 202 of the foamed sheet 200, as viewed from a cross section 201 in the thickness direction and TD direction of the foamed sheet 200, has corrugated wrinkles (wave-shaped unevenness, periodic wave-shaped undulations), as shown by the thick line. Here, one surface (outermost surface) 202 of the foamed sheet 200 has been described, but the other surface (outermost surface) of the foamed sheet 200 also has a similar shape.
以下、本明細書において、前記発泡シートの厚み方向かつTD方向の断面から見た、該発泡シートの少なくとも一方の表面のTD方向の形状を「発泡シートの断面のTD方向の最表面形状」と称することがある。 Hereinafter, in this specification, the shape of at least one surface of the foam sheet in the TD direction as viewed from a cross section of the foam sheet in the thickness direction and TD direction may be referred to as the "outermost surface shape in the TD direction of the cross section of the foam sheet."
前記発泡シートの断面のTD方向の最表面形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]は、0.050以下であるが、0.030以下が好ましく、0.021以下がより好ましい。前記比[Ra/RSm]が0.050以下であることは、前記発泡シートの断面のTD方向の最表面においてコルゲート状のしわの起伏が非常に少ないことを示しており、該発泡シートの成型時に破れの起点となる部分が少なく成型不良を抑制することができる。一方、前記比[Ra/RSm]が0.050超であると、前記発泡シートの断面のTD方向の最表面においてコルゲート状のしわの起伏が非常に多いことを示し、該発泡シートの成型時に破れの起点となる部分が多く、成型不良となる。 Regarding the outermost surface shape in the TD direction of the cross section of the foam sheet, the ratio [Ra/RSm] of the arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to the average length RSm of the roughness curve element calculated in accordance with JIS B 0601:2013 is 0.050 or less, preferably 0.030 or less, and more preferably 0.021 or less. The ratio [Ra/RSm] being 0.050 or less indicates that the outermost surface in the TD direction of the cross section of the foam sheet has very few corrugated wrinkles, and the number of parts that can become the starting point of tears during molding of the foam sheet is small, and molding defects can be suppressed. On the other hand, if the ratio [Ra/RSm] is more than 0.050, the outermost surface in the TD direction of the cross section of the foam sheet has very many corrugated wrinkles, and the number of parts that can become the starting point of tears during molding of the foam sheet is large, resulting in molding defects.
--算術平均粗さRa--
前記発泡シートの断面のTD方向の最表面形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRa(以下、「算術平均粗さRa」と略記することがある)は、前記発泡シートのコルゲート状のしわの起伏の大きさと相関する。前記算術平均粗さRaが大きな数値になると、より前記発泡シートのコルゲート状のしわが強く出ており、前記発泡シートを成型する際の破れの起点になりやすく、成型不良に繋がる。
--Arithmetic mean roughness Ra--
The arithmetic mean roughness Ra (hereinafter sometimes abbreviated as "arithmetic mean roughness Ra") calculated in accordance with JIS B 0601: 2013 for the outermost surface shape in the TD direction of the cross section of the foamed sheet correlates with the magnitude of undulations of the corrugated wrinkles of the foamed sheet. When the arithmetic mean roughness Ra is a large value, the corrugated wrinkles of the foamed sheet are more pronounced, which is likely to become the starting point of breakage when the foamed sheet is molded, leading to molding defects.
前記算術平均粗さRaとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.15mm以下が好ましく、0.08mm以下がより好ましい。前記算術平均粗さRaを0.15mm以下にすることで、前記発泡シートの成型時の成型不良を抑制することができる。 The arithmetic mean roughness Ra is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.15 mm or less, and more preferably 0.08 mm or less. By setting the arithmetic mean roughness Ra to 0.15 mm or less, molding defects during molding of the foamed sheet can be suppressed.
--粗さ曲線要素の平均長さRSm--
前記発泡シートの断面のTD方向の最表面形状について、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSm(以下、「粗さ曲線要素の平均長さRSm」と略記することがある)は、前記発泡シートのコルゲート状のしわの周期を示している。前記粗さ曲線要素の平均長さRSmが小さい時、前記発泡シートのコルゲート状のしわ発生の周期が短く、より急峻な凹凸となり、前記発泡シートを成型する際の破れの起点になりやすく、成型不良に繋がる。
--Average length of roughness curve element RSm--
The average length RSm of roughness curve elements (hereinafter, sometimes abbreviated as "average length RSm of roughness curve elements") calculated in accordance with JIS B 0601:2013 for the outermost surface shape in the TD direction of the cross section of the foamed sheet indicates the period of the corrugated wrinkles of the foamed sheet. When the average length RSm of the roughness curve elements is small, the period of the corrugated wrinkles of the foamed sheet is short, resulting in sharper unevenness, which is likely to become the starting point of breakage when the foamed sheet is molded, leading to molding defects.
前記粗さ曲線要素の平均長さRSmとしては、特に制限はなく、目的に応じて適宜選択することができるが、4.0mm以上が好ましく、5.0mm以上がより好ましい。前記粗さ曲線要素の平均長さRSmを4.0mm以上とすることで、前記発泡シートの成型時の成型不良を抑制することができる。 The average length RSm of the roughness curve element is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 4.0 mm or more, and more preferably 5.0 mm or more. By setting the average length RSm of the roughness curve element to 4.0 mm or more, molding defects during molding of the foam sheet can be suppressed.
本発明における前記発泡シートの断面のTD方向の最表面形状は、レーザー顕微鏡や3次元計測器などを用いて測定することができ、前記算術平均粗さRa及び前記粗さ曲線要素の平均長さRSmは、前記発泡シートの断面のTD方向の最表面形状を計測したレーザー顕微鏡や3次元計測器などの付属のソフトから算出することができる。測定装置及び測定条件としては、特に限定されないが、例えば下記測定方法が挙げられる。 In the present invention, the outermost surface shape in the TD direction of the cross section of the foamed sheet can be measured using a laser microscope, a three-dimensional measuring device, or the like, and the arithmetic mean roughness Ra and the average length of the roughness curve element RSm can be calculated from the attached software of the laser microscope or three-dimensional measuring device that measures the outermost surface shape in the TD direction of the cross section of the foamed sheet. The measuring device and measuring conditions are not particularly limited, but examples thereof include the following measuring methods.
まず、測定用試料の調製方法として、前記発泡シートのTD方向の中央部を5cm×5cmの正方形に切り出し、レーザー顕微鏡や3次元計測器のステージに両面テープなどで発泡シートが浮かないよう固定する。 First, to prepare a measurement sample, cut out a 5 cm x 5 cm square from the center of the foam sheet in the TD direction and fix the foam sheet to the stage of a laser microscope or three-dimensional measuring device using double-sided tape or similar to prevent it from floating.
前記発泡シートの成型時の成型不良に影響するのは、特に、前記発泡シートの断面のTD方向の最表面形状における周期が短く高低差が大きな応答うねりである。一方、前記発泡シートの断面のTD方向の最表面形状において、周期の長いうねりは、該発泡シートの成型時の成型不良に大きく影響しない。したがって、前記算術平均粗さRa及び前記粗さ曲線要素の平均長さRSmに対する大きなうねりの影響を排除して測定を行うことが好ましい。本発明においては、前記粗さ曲線要素の平均長さRSmを評価した際に、10mm以上の数値が計測される場合には、うねりのカットオフ(λc)を10mmに設定して計測を行う。 The response waviness, which has a short period and a large height difference in the outermost surface shape in the TD direction of the cross section of the foam sheet, particularly affects molding defects when the foam sheet is molded. On the other hand, long-period waviness in the outermost surface shape in the TD direction of the cross section of the foam sheet does not significantly affect molding defects when the foam sheet is molded. Therefore, it is preferable to perform measurements while eliminating the influence of large waviness on the arithmetic mean roughness Ra and the average length RSm of the roughness curve element. In the present invention, when a value of 10 mm or more is measured when evaluating the average length RSm of the roughness curve element, the waviness cutoff (λc) is set to 10 mm and measurements are performed.
本発明において、前記発泡シートの前記算術平均粗さRa及び前記粗さ曲線要素の平均長さRSmは、JIS B 0601:2013に準拠して算出した値であるが、具体的には、下記測定装置及び測定条件で、前記発泡シートの断面のTD方向の最表面形状を観察し、付属のソフトを用いて、前記算術平均粗さRa及び前記粗さ曲線要素の平均長さRSmを算出することができる。なお、本発明において、前記算術平均粗さRa及び前記粗さ曲線要素の平均長さRSmは、前記測定用試料の調製の際に、前記発泡シートから切り出す場所を変えて3個以上の測定用試料を作製し、合計3回以上の測定結果の平均値を用いる。
[[測定装置及び測定条件]]
・ 装置:3次元計測器 VR-3200(Keyence社製)
・ 観察倍率:12倍
・ 測定モード:スタンダード
・ 測定方向:両側
・ 測定用明るさ調整:オート(設定値:80)
・ 基準面設定:画面のx方向、y方向のそれぞれを選択して実施
In the present invention, the arithmetic mean roughness Ra and the average length RSm of the roughness curve element of the foamed sheet are values calculated in accordance with JIS B 0601:2013, and specifically, the outermost surface shape in the TD direction of the cross section of the foamed sheet is observed with the following measuring device and measuring conditions, and the arithmetic mean roughness Ra and the average length RSm of the roughness curve element can be calculated using the attached software. Note that, in the present invention, the arithmetic mean roughness Ra and the average length RSm of the roughness curve element are calculated by cutting three or more measurement samples at different positions from the foamed sheet when preparing the measurement sample, and using the average values of the measurement results of three or more times in total.
[Measurement equipment and conditions]
・ Equipment: 3D measuring device VR-3200 (Keyence)
Observation magnification: 12x Measurement mode: Standard Measurement direction: Both sides Measurement brightness adjustment: Auto (Set value: 80)
- Reference plane setting: Select and execute for each of the x and y directions of the screen
-冷結晶化エンタルピー-
前記発泡シートの冷結晶化エンタルピーとしては、特に制限はなく、目的に応じて適宜選択することができるが、20J/g以上が好ましく、30J/g以上がより好ましい。なお、前記発泡シートの冷結晶化エンタルピーが20J/g以上であり、前記発泡シートの再結晶化エンタルピーが20J/g以上であることは、前記発泡シートの結晶化速度は速いが、結晶化の余地を十分に残していることを意味している。
-Cold crystallization enthalpy-
The cold crystallization enthalpy of the foamed sheet is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 20 J/g or more, more preferably 30 J/g or more. The cold crystallization enthalpy of the foamed sheet being 20 J/g or more and the recrystallization enthalpy of the foamed sheet being 20 J/g or more mean that the crystallization rate of the foamed sheet is fast but there is still sufficient room for crystallization.
熱成型では前記発泡シートをガラス転移温度以上の温度で延伸するが、前記発泡シートの結晶化度が高くなるにつれて該発泡シートの破断伸びが小さくなる傾向にある。前記発泡シートの冷結晶化エンタルピーが20J/g以上であると、熱成型時に前記発泡シートが伸びずに成型品に破れが生じたり、金型に追従できずに賦形が甘くなる不具合を防止したりすることができる。前記発泡シートの冷結晶化エンタルピーの上限値としても、特に制限はなく、目的に応じて適宜選択することができるが、概ね50J/g以下である。 In thermoforming, the foam sheet is stretched at a temperature equal to or higher than the glass transition temperature, and the breaking elongation of the foam sheet tends to decrease as the crystallization degree of the foam sheet increases. If the cold crystallization enthalpy of the foam sheet is 20 J/g or more, problems such as the foam sheet not stretching during thermoforming, causing the molded product to break, or the foam sheet being unable to follow the mold and resulting in poor shaping can be prevented. There is no particular limit to the upper limit of the cold crystallization enthalpy of the foam sheet, and it can be selected appropriately depending on the purpose, but it is generally 50 J/g or less.
前記発泡シートの冷結晶化エンタルピーは、前記発泡シートの製造装置全体の温度を適切に設定することや、押し出した発泡シートの冷却することで前記好ましい範囲内に調整することができる。前記発泡シート中の発泡剤の濃度や前記ポリ乳酸樹脂を含有する組成物にも拠るが、前記発泡シートの製造装置の最低温度を前記ポリ乳酸樹脂の融点から-20℃の範囲内に設定し、押し出した発泡シートを急冷することで、前記発泡シートの冷結晶化エンタルピーを前記好ましい範囲内に調整できる傾向にある。 The cold crystallization enthalpy of the foam sheet can be adjusted to within the preferred range by appropriately setting the temperature of the entire foam sheet manufacturing apparatus or by cooling the extruded foam sheet. Although it depends on the concentration of the foaming agent in the foam sheet and the composition containing the polylactic acid resin, the cold crystallization enthalpy of the foam sheet tends to be adjusted to within the preferred range by setting the minimum temperature of the foam sheet manufacturing apparatus within a range of -20°C from the melting point of the polylactic acid resin and rapidly cooling the extruded foam sheet.
前記発泡シートの冷却方法としては、特に制限はなく、公知の方法を用いることができ、例えば、後述する発泡シートの製造方法において、ダイから吐出された筒状の発泡体を冷却したマンドレルに沿わせながら引き取って冷却する方法、筒状の発泡体の外周から冷却用の空気を吹き付ける方法などが挙げられる。 The cooling method for the foamed sheet is not particularly limited, and any known method can be used. For example, in the foamed sheet manufacturing method described below, a method in which the cylindrical foam extruded from the die is pulled along a cooled mandrel and cooled, or a method in which cooling air is blown around the outer periphery of the cylindrical foam can be used.
本発明において、前記発泡シートの冷結晶化エンタルピーは、JIS K 7122:2012(プラスチックの転移熱測定方法)に準拠した示差走査熱量(DSC)測定から求めることができる。
具体的には、前記発泡シートを5mg~10mg程度とり、65℃に熱したホットプレート上で銅製の丸棒(直径20mm程度、丸棒も同様に65℃に熱しておく)により1秒間~3秒間プレス(500gf程度の荷重に拠る)して平坦化して試料を作製する。この平坦化は、試料と試料パンの熱接触を良くし、精度良く冷結晶化エンタルピーを測定するために行う。この試料を、下記測定装置及び測定条件にて測定し、下記解析方法で解析する。なお、本発明において、冷結晶化エンタルピーは、試料の調製から解析までを5回行って得られた結果の算術平均を用いる。
[[測定装置及び測定条件]]
・ 装置:Q-2000(TAインスツルメント社製)
・ 温度プログラム:10℃/分間の昇温速度で10℃から200℃まで走査する(1st heating)。
・ 冷結晶化エンタルピーの解析:1st heatingの60℃~100℃において観察される結晶化に伴う発熱ピークについて積分により面積を求めて冷結晶化エンタルピーとする。積分のベースラインは、該発熱ピークの前後を結ぶ直線とする。
In the present invention, the cold crystallization enthalpy of the foamed sheet can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7122:2012 (Method for measuring heat of transition of plastics).
Specifically, about 5 mg to 10 mg of the foamed sheet is taken and flattened on a hot plate heated to 65°C by pressing (with a load of about 500 gf) with a copper rod (diameter about 20 mm, the rod also heated to 65°C) for 1 to 3 seconds to prepare a sample. This flattening is performed to improve the thermal contact between the sample and the sample pan and to measure the cold crystallization enthalpy with high accuracy. This sample is measured with the measuring device and measuring conditions described below, and analyzed by the analytical method described below. In the present invention, the cold crystallization enthalpy is calculated by the arithmetic average of the results obtained by performing the process from sample preparation to analysis five times.
[Measurement equipment and conditions]
・ Apparatus: Q-2000 (manufactured by TA Instruments)
Temperature program: Scan from 10° C. to 200° C. at a heating rate of 10° C./min (1st heating).
Analysis of cold crystallization enthalpy: The cold crystallization enthalpy is determined by integrating the area of the exothermic peak associated with crystallization observed at 60° C. to 100° C. during the first heating. The baseline for the integration is a straight line connecting the front and back of the exothermic peak.
-冷結晶化温度-
前記発泡シートの冷結晶化温度としては、特に制限はなく、目的に応じて適宜選択することができるが、70℃~100℃が好ましく、75℃~85℃がより好ましい。前記発泡シートの冷結晶化温度が70℃以上であると、成型性の観点で優位であり、100℃以下であると、耐熱性の観点で優位である。
前記発泡シートの冷結晶化温度は、前記発泡シートに含有されるポリ乳酸樹脂の構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方のモル比率により調整することができる。
-Cold crystallization temperature-
The cold crystallization temperature of the foamed sheet is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 70° C. to 100° C., and more preferably 75° C. to 85° C. A cold crystallization temperature of 70° C. or higher is advantageous in terms of moldability, and a cold crystallization temperature of 100° C. or lower is advantageous in terms of heat resistance.
The cold crystallization temperature of the foamed sheet can be adjusted by the molar ratio of either the D-form of lactic acid or the L-form of lactic acid, which are constituent monomer units of the polylactic acid resin contained in the foamed sheet.
前記発泡シートの冷結晶化温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めることができる。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(例えば、TAインスツルメント社製のQ-2000型)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温する。この際、ガラス転移温度以上の温度域で観測される発熱ピークのピークトップ温度を前記発泡シートの冷結晶化温度として測定することができる。
The cold crystallization temperature of the foamed sheet can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet is placed in a container of a differential scanning calorimeter (e.g., Q-2000 model manufactured by TA Instruments) and heated from 10° C. to 200° C. at a heating rate of 10° C./min. In this case, the peak top temperature of an exothermic peak observed in a temperature range equal to or higher than the glass transition temperature can be measured as the cold crystallization temperature of the foamed sheet.
-再結晶化エンタルピー-
本発明において、前記発泡シートの結晶性が高いとは、DSCで測定した再結晶化エンタルピーが20J/g以上であることを意味する。前記発泡シートの再結晶化エンタルピーが20J/g以上であると、前記発泡シートの熱成型時に金型上での結晶化による形状の固定や、成型品への耐熱性の付与が現実的な成型時間で可能になり、熱成型性に優れた発泡シートとすることができる。
- Recrystallization enthalpy -
In the present invention, the foamed sheet has high crystallinity meaning that the recrystallization enthalpy measured by DSC is 20 J/g or more. When the recrystallization enthalpy of the foamed sheet is 20 J/g or more, the shape of the foamed sheet can be fixed by crystallization on a mold during thermoforming, and the molded product can be imparted with heat resistance within a practical molding time, so that the foamed sheet has excellent thermoformability.
前記発泡シートの再結晶化エンタルピーの上限値としては、特に制限はないが、本発明における前記発泡シートにおいては、概ね40J/g~50J/gである。前記発泡シートの再結晶化エンタルピーは、前記ポリ乳酸樹脂の光学純度を高くする方法や、結晶核剤となるような成分を添加する方法(結晶核の発生を促進する方法)、結晶化促進剤となるような成分を添加する方法(結晶核の成長を促進する方法)、鎖伸長剤(架橋剤)としてエポキシ基を有する(メタ)アクリルモノマー及びスチレンモノマー(エポキシ官能性(メタ)アクリル-スチレン系鎖伸長剤)を用いる方法などにより調整することができる。これらの中でも、前記ポリ乳酸樹脂組成物の発泡性を阻害せず、前記発泡シートのリサイクル性、環境適性、及びコストの観点から、前記ポリ乳酸樹脂の光学純度を高くすること、及び前記エポキシ官能性(メタ)アクリル-スチレン系鎖伸長剤を用いる方法を併用することで、前記発泡シートの再結晶化エンタルピーを調整することが好ましい。 The upper limit of the recrystallization enthalpy of the foamed sheet is not particularly limited, but in the foamed sheet of the present invention, it is approximately 40 J/g to 50 J/g. The recrystallization enthalpy of the foamed sheet can be adjusted by a method of increasing the optical purity of the polylactic acid resin, a method of adding a component that acts as a crystal nucleating agent (a method of promoting the generation of crystal nuclei), a method of adding a component that acts as a crystallization promoter (a method of promoting the growth of crystal nuclei), a method of using an epoxy-functional (meth)acrylic monomer and a styrene monomer (an epoxy-functional (meth)acrylic-styrene-based chain extender) as a chain extender (crosslinking agent), and the like. Among these, it is preferable to adjust the recrystallization enthalpy of the foamed sheet by combining a method of increasing the optical purity of the polylactic acid resin and a method of using the epoxy-functional (meth)acrylic-styrene-based chain extender without inhibiting the foamability of the polylactic acid resin composition, from the viewpoints of the recyclability, environmental compatibility, and cost of the foamed sheet.
一方、このような結晶性に優れたポリ乳酸樹脂組成物の押出成型では、材料投入エリアを除いた混練から押出しまでの温度を、前記ポリ乳酸樹脂組成物の融点以上、若しくは前記ポリ乳酸樹脂組成物の再結晶化温度以上に維持することが肝要となる。前記ポリ乳酸樹脂組成物の再結晶化温度は、熱履歴や、該ポリ乳酸樹脂組成物の構成、せん断の程度等に拠って変化し得るため、一概には言えないが、本発明においては、混練から押出しまでの温度が前記ポリ乳酸樹脂組成物の融点-20℃以上であることが好ましい。 On the other hand, in extrusion molding of such polylactic acid resin compositions with excellent crystallinity, it is essential to maintain the temperature from kneading to extrusion, excluding the material input area, at or above the melting point of the polylactic acid resin composition or at or above the recrystallization temperature of the polylactic acid resin composition. The recrystallization temperature of the polylactic acid resin composition cannot be generalized because it can vary depending on the thermal history, the composition of the polylactic acid resin composition, the degree of shear, etc., but in the present invention, it is preferable that the temperature from kneading to extrusion is at least 20°C below the melting point of the polylactic acid resin composition.
混練から押出しまでの温度を前記ポリ乳酸樹脂組成物の融点-20℃以下とした場合、該ポリ乳酸樹脂組成物が冷却されることで発泡に適した粘度に調整しやすい反面、過冷却度(融点と樹脂温度との乖離)が高くなり、装置内での急激な結晶化による操業停止のリスクや、得られる発泡シートの結晶化が進行してしまい、熱成型性に劣る傾向にある。混練から押出しまでの温度が前記ポリ乳酸樹脂組成物の融点-20℃以上であれば、結晶化による操業停止のリスクを低減でき、得られる発泡シートの結晶化度を低く抑えられ、熱成型性に優れた発泡シートを得ることができる傾向にある。前記発泡シートの結晶化度は、DSCで測定した前記発泡シートの冷結晶化エンタルピーで評価できる。 If the temperature from kneading to extrusion is set to the melting point of the polylactic acid resin composition minus 20°C or less, the polylactic acid resin composition is cooled and the viscosity can be easily adjusted to a level suitable for foaming, but the degree of supercooling (the difference between the melting point and the resin temperature) becomes high, and there is a risk of operation stoppage due to sudden crystallization in the device, and the crystallization of the resulting foamed sheet progresses, tending to result in poor thermoformability. If the temperature from kneading to extrusion is set to the melting point of the polylactic acid resin composition minus 20°C or more, the risk of operation stoppage due to crystallization can be reduced, the crystallization degree of the resulting foamed sheet can be kept low, and a foamed sheet with excellent thermoformability tends to be obtained. The crystallization degree of the foamed sheet can be evaluated by the cold crystallization enthalpy of the foamed sheet measured by DSC.
本発明において、前記発泡シートの再結晶化エンタルピーは、JIS K 7122:2012(プラスチックの転移熱測定方法)に準拠した示差走査熱量(DSC)測定から求めることができる。
具体的には、前記発泡シートを5mg~10mg程度とり、65℃に熱したホットプレート上で銅製の丸棒(直径20mm程度、丸棒も同様に65℃に熱しておく)により1秒間~3秒間プレス(500gf程度の荷重に拠る)して平坦化して試料を作製する。この平坦化は、試料と試料パンの熱接触を良くし、精度良く再結晶化エンタルピーを測定するために行う。この試料を、下記測定装置及び測定条件にて測定し、下記解析方法で解析する。なお、本発明において、再結晶化エンタルピーは、試料の調製から解析までを5回行って得られた結果の算術平均を用いる。
[[測定装置及び測定条件]]
・ 装置:Q-2000(TAインスツルメント社製)
・ 温度プログラム:10℃/分間の昇温速度で10℃から200℃まで走査し(1st heating)、200℃で1分間保持した後、10℃/分間の降温速度で200℃から25℃まで走査する(1st cooling)。
・ 再結晶化エンタルピーの解析:1st coolingにおいて観察される結晶化に伴う発熱ピークについて、積分により面積を求めて再結晶化エンタルピーとする。結晶化に伴う発熱ピークの位置は本発明においては、おおよそ100℃~130℃の範囲である。積分のベースラインは、発熱ピークの前後を結ぶ直線とする。
In the present invention, the recrystallization enthalpy of the foamed sheet can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7122:2012 (Method for measuring heat of transition of plastics).
Specifically, about 5 mg to 10 mg of the foamed sheet is taken and flattened on a hot plate heated to 65°C by pressing (with a load of about 500 gf) with a copper rod (diameter about 20 mm, the rod also heated to 65°C) for 1 to 3 seconds to prepare a sample. This flattening is performed to improve the thermal contact between the sample and the sample pan and to measure the recrystallization enthalpy with high accuracy. This sample is measured with the measuring device and measuring conditions described below, and analyzed by the analytical method described below. In the present invention, the recrystallization enthalpy is calculated by the arithmetic average of the results obtained by performing the process from sample preparation to analysis five times.
[Measurement equipment and conditions]
・ Apparatus: Q-2000 (manufactured by TA Instruments)
Temperature program: Scan from 10° C. to 200° C. at a heating rate of 10° C./min (1st heating), hold at 200° C. for 1 minute, and then scan from 200° C. to 25° C. at a cooling rate of 10° C./min (1st cooling).
Analysis of recrystallization enthalpy: The area of the exothermic peak associated with crystallization observed in the first cooling is determined by integration, and the recrystallization enthalpy is determined. In the present invention, the position of the exothermic peak associated with crystallization is in the range of approximately 100°C to 130°C. The baseline for integration is a straight line connecting the front and rear of the exothermic peak.
-再結晶化温度-
前記発泡シートの再結晶化温度としては、特に制限はなく、目的に応じて適宜選択することができるが、120℃~150℃が好ましく、130℃~145℃がより好ましい。前記発泡シートの再結晶化温度が120℃以上であると、前記ポリ乳酸樹脂の結晶化速度が速いことを示し、成型過程で結晶化が進み耐熱性に有利であり、150℃以下であると、前記発泡シートの製造時点で結晶化が進み過ぎず、成型時の破れが起きにくいため、成型性の観点で優位である。
前記発泡シートの再結晶化温度は、前記発泡シートに含有されるポリ乳酸樹脂の構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方のモル比率により調整することができる。
-Recrystallization temperature-
The recrystallization temperature of the foamed sheet is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 120° C. to 150° C., and more preferably 130° C. to 145° C. When the recrystallization temperature of the foamed sheet is 120° C. or higher, the crystallization rate of the polylactic acid resin is high, and crystallization advances during the molding process, which is advantageous for heat resistance, while when the recrystallization temperature is 150° C. or lower, crystallization does not advance too much at the time of production of the foamed sheet, and tearing during molding is unlikely to occur, which is advantageous from the viewpoint of moldability.
The recrystallization temperature of the foamed sheet can be adjusted by the molar ratio of either the D-form of lactic acid or the L-form of lactic acid, which are constituent monomer units of the polylactic acid resin contained in the foamed sheet.
前記発泡シートの再結晶化温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めることができる。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(例えば、TAインスツルメント社製のQ-2000型)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温し10分間保持後、200℃から10℃まで10℃/分間で降温する。この際、発熱ピークのピークトップ温度を前記発泡シートの再結晶化温度として測定することができる。
The recrystallization temperature of the foamed sheet can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet is placed in a container of a differential scanning calorimeter (e.g., Q-2000 type manufactured by TA Instruments), and the temperature is increased from 10° C. to 200° C. at a rate of 10° C./min, maintained at that temperature for 10 minutes, and then decreased from 200° C. to 10° C. at a rate of 10° C./min. In this case, the peak top temperature of the exothermic peak can be measured as the recrystallization temperature of the foamed sheet.
-融点-
前記発泡シートの融点は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求められる。
具体的には、前記発泡シートの融点のDSC測定は、例えば、示差走査熱量計装置(例えば、Q-2000型、TAインスツルメント社製)を用いることができ、前記発泡シート5mg~10mgの試料を、前記示差走査熱量計装置の容器に入れ、10℃/分間の昇温速度で200℃まで昇温速度10℃/分間で昇温することにより測定することができる。
ガラス転移温度より高温側で観測される結晶の溶融に伴う吸熱ピークのピークトップ温度(融解ピーク温度、Tpm)を前記発泡シートの融点とする。ガラス転移温度より高温側で複数の吸熱ピークが観察される場合、面積が最大となるピークのピークトップ温度を前記発泡シートの融点として扱う。前記発泡シートの融点は、概ね160℃~190℃の範囲内である。
-Melting point-
The melting point of the foamed sheet can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, the melting point of the foamed sheet can be measured by DSC using, for example, a differential scanning calorimeter (e.g., Q-2000 type, manufactured by TA Instruments). A sample of 5 mg to 10 mg of the foamed sheet is placed in a container of the differential scanning calorimeter, and heated at a heating rate of 10° C./min up to 200° C. at a heating rate of 10° C./min.
The peak top temperature of the endothermic peak (melting peak temperature, Tpm) associated with the melting of crystals observed on the higher temperature side than the glass transition temperature is taken as the melting point of the foamed sheet. When multiple endothermic peaks are observed on the higher temperature side than the glass transition temperature, the peak top temperature of the peak with the largest area is taken as the melting point of the foamed sheet. The melting point of the foamed sheet is generally within the range of 160°C to 190°C.
-ガラス転移温度-
前記発泡シートのガラス転移温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求められる。
具体的には、前記発泡シートのガラス転移温度のDSC測定は、例えば、示差走査熱量計装置(例えば、Q-2000型、TAインスツルメント社製)を用いることができ、前記発泡シートから切り出した5mg~10mgの試料を、前記示差走査熱量計装置の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温することにより測定することができる。
本発明におけるガラス転移温度とは、JIS K 7121:2012に記載の補外ガラス転移開始温度(Tig)を指す。前記発泡シートのガラス転移温度は、概ね55℃~70℃の範囲内である。
- Glass transition temperature -
The glass transition temperature of the foamed sheet is determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (measurement method for glass transition temperature of plastics).
Specifically, the glass transition temperature of the foamed sheet can be measured by DSC using, for example, a differential scanning calorimeter (e.g., Q-2000 type, manufactured by TA Instruments). A sample of 5 mg to 10 mg cut out from the foamed sheet is placed in a container of the differential scanning calorimeter, and the temperature is increased from 10° C. to 200° C. at a heating rate of 10° C./min.
The glass transition temperature in the present invention refers to the extrapolated glass transition onset temperature (Tig) described in JIS K 7121: 2012. The glass transition temperature of the foamed sheet is generally within the range of 55°C to 70°C.
-重量平均分子量(Mw)-
前記発泡シートの重量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、230,000以上600,000以下が好ましく、250,000以上400,000以下がより好ましい。前記発泡シートの重量平均分子量(Mw)が230,000以上600,000以下であると、発泡時に適した溶融粘度になり発泡倍率が向上し断熱性の向上に繋がる。
-Weight average molecular weight (Mw)-
The weight average molecular weight (Mw) of the foamed sheet is not particularly limited and may be appropriately selected depending on the purpose. It is preferably from 230,000 to 600,000, more preferably from 250,000 to 400,000. When the weight average molecular weight (Mw) of the foamed sheet is from 230,000 to 600,000, the sheet has a suitable melt viscosity during foaming, and the foaming ratio is improved, leading to improved heat insulating properties.
前記発泡シートの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。重量平均分子量(Mw)は、重量平均分子量が既知のポリスチレン試料(例えば、東ソー株式会社製のA-500(重量平均分子量589)、A-1000(重量平均分子量1,010)、A-2500(重量平均分子量312)、A-5000(重量平均分子量5,430)、F-1(重量平均分子量9,490)、F-2(重量平均分子量15,700)、F-4(重量平均分子量37,200)、F-10(重量平均分子量98,900)、F-20(重量平均分子量189,000)、F-40(重量平均分子量397,000)、F-80(重量平均分子量707,000)、F-128(重量平均分子量1,110,000))によって作成した検量線を標準として計算される。 The weight average molecular weight (Mw) of the foam sheet can be measured using gel permeation chromatography (GPC). The weight average molecular weight (Mw) is calculated using a calibration curve prepared using polystyrene samples with known weight average molecular weights (for example, A-500 (weight average molecular weight 589), A-1000 (weight average molecular weight 1,010), A-2500 (weight average molecular weight 312), A-5000 (weight average molecular weight 5,430), F-1 (weight average molecular weight 9,490), F-2 (weight average molecular weight 15,700), F-4 (weight average molecular weight 37,200), F-10 (weight average molecular weight 98,900), F-20 (weight average molecular weight 189,000), F-40 (weight average molecular weight 397,000), F-80 (weight average molecular weight 707,000), and F-128 (weight average molecular weight 1,110,000) manufactured by Tosoh Corporation).
前記GPCに供する試料は、前記発泡シートとクロロホルムとを、該発泡シートの濃度が2mg/mL程度になるように混合し、卓上振盪機(例えば、アズワン株式会社製のMSI-60)で半日程度振盪し、前記発泡シートが溶解したことを確認した後、0.45μmのメンブレンフィルターにてろ過して用いる。溶解しにくいものはクロロホルムの沸点以下の温度で加熱して溶解することもできる。前記GPCの測定装置及び測定条件は、特に制限はないが、このようにして調製した試料を、例えば、下記条件でGPC測定することで、前記発泡シートの重量平均分子量(Mw)を測定することができる。
[[測定装置及び測定条件]]
・ 装置:HLC-8320GPC(東ソー・テクノシステム株式会社製)
・ カラム:TSKgel(登録商標) guardcolumn SuperHZ-L及びTSKgel SuperHZM-M×4本
・ 検出器:RI
・ 測定温度:40℃
・ 移動相:クロロホルム
・ 流量:0.45mL/分間
・ 注入量:20μL
The sample to be subjected to the GPC is prepared by mixing the foam sheet with chloroform so that the concentration of the foam sheet is about 2 mg/mL, shaking the mixture with a tabletop shaker (e.g., MSI-60 manufactured by AS ONE CORPORATION) for about half a day, confirming that the foam sheet has dissolved, and then filtering the mixture with a 0.45 μm membrane filter. Those that are difficult to dissolve can also be dissolved by heating at a temperature equal to or lower than the boiling point of chloroform. There are no particular limitations on the measuring device and measuring conditions for the GPC, but the weight average molecular weight (Mw) of the foam sheet can be measured by measuring the sample thus prepared with GPC under, for example, the following conditions.
[Measurement equipment and conditions]
・ Apparatus: HLC-8320GPC (manufactured by Tosoh Technosystems Co., Ltd.)
Column: TSKgel (registered trademark) guard column SuperHZ-L and TSKgel SuperHZM-M x 4 Detector: RI
Measurement temperature: 40°C
Mobile phase: chloroform Flow rate: 0.45 mL/min Injection volume: 20 μL
-溶融粘度-
前記発泡シートの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、10,000Pa・s以上40,000Pa・s以下が好ましい。前記ポリ乳酸樹脂組成物の溶融粘度が10,000Pa・s以上であると、かさ密度が低く、断熱性や強度、表面性に優れたシートを、結晶化度を低く維持しながら得ることができる傾向にあり、40,000Pa・s以下であると、発泡装置の負荷が高くなり、生産性に劣ることを防ぐことができる。
-Melt Viscosity-
The melt viscosity of the foamed sheet is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 10,000 Pa·s or more and 40,000 Pa·s or less. When the melt viscosity of the polylactic acid resin composition is 10,000 Pa·s or more, a sheet having low bulk density and excellent heat insulation, strength, and surface properties tends to be obtained while maintaining a low crystallinity, and when it is 40,000 Pa·s or less, the load on the foaming device increases, and poor productivity can be prevented.
前記発泡シートの溶融粘度は、例えば、前記発泡シートを1.5g計量し、80℃の乾燥機で2時間乾燥させたものを試料として、フローテスターを用いて下記測定条件で測定することができる。
[[測定装置及び測定条件]]
・ 装置:CFT-100EX(株式会社島津製作所製)
・ 試験条件:
定温法、試験温度:190℃、試験力:40kgf、余熱時間:180秒間、ダイ穴径:1mm、ダイ長さ:1mm
・ 解析:付属ソフトCFT-EXを使用し、以下の計算パラメータによって溶融粘度を算出する。
・ 計算パラメータ:
限定法、計算開始位置:3.0mm、計算終了位置:7.0mm、試料密度:1g/cm3
The melt viscosity of the foamed sheet can be measured, for example, by weighing 1.5 g of the foamed sheet, drying it in a dryer at 80° C. for 2 hours, and using the resulting sample as a flow tester under the following measurement conditions.
[Measurement equipment and conditions]
・ Equipment: CFT-100EX (manufactured by Shimadzu Corporation)
Test conditions:
Constant temperature method, test temperature: 190°C, test force: 40 kgf, preheat time: 180 seconds, die hole diameter: 1 mm, die length: 1 mm
Analysis: Using the attached software CFT-EX, calculate the melt viscosity using the following calculation parameters.
Calculation parameters:
Limiting method, calculation start position: 3.0 mm, calculation end position: 7.0 mm, sample density: 1 g/cm 3
前記発泡シートの溶融粘度を前記好ましい範囲に調整する方法としては、本発明で開示される特徴を有するポリ乳酸樹脂と、鎖伸長剤(架橋剤)とを溶融混練(反応押出)してポリ乳酸樹脂組成物を得る方法が挙げられる。前記発泡シートの溶融粘度は、混練から押出しの温度に拠っても大きく変化するが、混練部に200℃~240℃、より好ましくは220℃~240℃に設定した区間を設けることが好ましい。 As a method for adjusting the melt viscosity of the foamed sheet to the preferred range, a method can be mentioned in which a polylactic acid resin having the characteristics disclosed in the present invention is melt-kneaded (reactive extrusion) with a chain extender (crosslinking agent) to obtain a polylactic acid resin composition. The melt viscosity of the foamed sheet varies greatly depending on the temperature from kneading to extrusion, but it is preferable to provide a section in the kneading section set at 200°C to 240°C, more preferably 220°C to 240°C.
<ポリ乳酸樹脂を含有する組成物>
本発明において、「ポリ乳酸樹脂を含有する組成物」とは、発泡させる前の組成物を意味する。
前記ポリ乳酸樹脂を含有する組成物(ポリ乳酸樹脂組成物)は、少なくともポリ乳酸樹脂を含有し、好ましくは結晶性ポリ乳酸樹脂を含有し、更に鎖伸長剤(「架橋剤」とも称する)及び発泡核剤を含有することがより好ましく、更に必要に応じて、その他の成分を含有していてもよい。
<Composition containing polylactic acid resin>
In the present invention, the "composition containing a polylactic acid resin" means the composition before being foamed.
The composition containing the polylactic acid resin (polylactic acid resin composition) contains at least a polylactic acid resin, preferably a crystalline polylactic acid resin, and more preferably further contains a chain extender (also referred to as a "crosslinking agent") and a foaming nucleating agent, and may further contain other components as necessary.
<<ポリ乳酸樹脂>>
前記ポリ乳酸樹脂は微生物により生分解されるため、環境に優しい低環境負荷高分子材料として注目されている(「脂肪族ポリエステルの構造、物性、生分解性」、井上 義夫、高分子、2001年、50巻、6号、p374-377参照)。前記ポリ乳酸樹脂としては、例えば、乳酸のD体(D-乳酸)と乳酸のL体(L-乳酸)との共重合体(DL-乳酸);D-乳酸又はL-乳酸のいずれか一方の単独重合体;ラクチドのD体(D-ラクチド)、ラクチドのL体(L-ラクチド)、及びDL-ラクチドからなる群より選ばれた一又は二以上のラクチドの開環重合体などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。前記ポリ乳酸樹脂としては、適宜合成したものを用いても、市販されているものを用いてもよい。
<<Polylactic acid resin>>
The polylactic acid resin is biodegradable by microorganisms, and therefore has been attracting attention as an environmentally friendly polymer material with low environmental impact (see "Structure, Properties, and Biodegradability of Aliphatic Polyesters," Yoshio Inoue, Polymer, 2001, Vol. 50, No. 6, pp. 374-377). Examples of the polylactic acid resin include a copolymer of D-lactic acid (D-lactic acid) and L-lactic acid (L-lactic acid) (DL-lactic acid); a homopolymer of either D-lactic acid or L-lactic acid; a ring-opening polymer of one or more lactides selected from the group consisting of D-lactide (D-lactide), L-lactide (L-lactide), and DL-lactide. These may be used alone or in combination of two or more. The polylactic acid resin may be appropriately synthesized or commercially available.
前記ポリ乳酸樹脂の合成は、公知の方法を用いることができる。例えば、乳酸を原料としてラクチドを生成し、該ラクチドをアルコール等の開始剤を用いて開環重合する方法、乳酸を直接脱水縮合する方法などが挙げられる。 The polylactic acid resin can be synthesized by a known method. For example, a method of producing lactide using lactic acid as a raw material and subjecting the lactide to ring-opening polymerization using an initiator such as alcohol, or a method of directly dehydrating and condensing lactic acid can be used.
前記ポリ乳酸樹脂の合成においては、前記モノマーの他に、開始剤、触媒、酸化防止剤、末端封止剤等を含んでもよい。 The synthesis of the polylactic acid resin may include, in addition to the monomer, an initiator, a catalyst, an antioxidant, an end-capping agent, etc.
前記開始剤としては、水や活性水素基を1つ以上有するアルコールなどが挙げられる。
前記活性水素基を1つ以上有するアルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族アルコール類、ポリアルキレングリコール類、多価アルコール類などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
The initiator may be water or an alcohol having one or more active hydrogen groups.
The alcohol having one or more active hydrogen groups is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include aliphatic alcohols, polyalkylene glycols, polyhydric alcohols, etc. These may be used alone or in combination of two or more.
前記多価アルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリセリン、トリメチロールプロパン、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、エリスリトールなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 The polyhydric alcohol is not particularly limited and can be appropriately selected depending on the purpose. Examples include glycerin, trimethylolpropane, 1,4-cyclohexanedimethanol, neopentyl glycol, erythritol, etc. These may be used alone or in combination of two or more kinds.
[ポリ乳酸樹脂の物性]
-光学異性体-
前記ポリ乳酸樹脂として、D-乳酸とL-乳酸との共重合体(DL-乳酸)、又はD-ラクチド、L-ラクチド、及びDL-ラクチドからなる群より選ばれた一又は二以上のラクチドの開環重合体を用いる場合、D体及びL体のうち少ない方の光学異性体が減少するに従って、結晶性が高くなり融点や結晶化速度が高くなる傾向がある。また、D体及びL体のうち少ない方の光学異性体が増加するに従って、結晶性が低くなり、やがて非晶性となる傾向がある。
[Physical properties of polylactic acid resin]
- Optical isomers -
When a copolymer of D-lactic acid and L-lactic acid (DL-lactic acid) or a ring-opening polymer of one or more lactides selected from the group consisting of D-lactide, L-lactide, and DL-lactide is used as the polylactic acid resin, the crystallinity tends to increase and the melting point and crystallization rate tend to increase as the amount of the lesser optical isomer of the D-form and the L-form decreases, and the crystallinity tends to decrease and eventually become amorphous as the amount of the lesser optical isomer of the D-form and the L-form increases.
本発明においては、発泡時の泡成長に伴う結晶化により、充分な耐熱性を付与する必要がある点から、前記ポリ乳酸樹脂組成物に含有されるポリ乳酸樹脂の構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方のモル比率は、該ポリ乳酸樹脂中98モル%以上であり、99モル%以上であることが好ましい。このようなことから、前記ポリ乳酸樹脂としては、乳酸のD体及び乳酸のL体のいずれか一方の光学異性体のみからなるポリ乳酸樹脂を用いてもよい。前記ポリ乳酸樹脂中の該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方が98モル%未満である場合、前記ポリ乳酸樹脂組成物からなる発泡シートを成型してなる成型体は、良好な耐熱性が得られない。一方、前記ポリ乳酸樹脂中の該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方を98モル%以上にすることによって、結晶化速度が速くなり成型過程での結晶化が進み成型品の耐熱性が向上する。 In the present invention, since it is necessary to impart sufficient heat resistance by crystallization accompanying bubble growth during foaming, the molar ratio of either the D-form of lactic acid or the L-form of lactic acid, which are the constituent monomer units of the polylactic acid resin contained in the polylactic acid resin composition, is 98 mol% or more in the polylactic acid resin, and preferably 99 mol% or more. For this reason, the polylactic acid resin may be a polylactic acid resin consisting of only one optical isomer of either the D-form of lactic acid or the L-form of lactic acid. If either the D-form of lactic acid or the L-form of lactic acid, which are the constituent monomer units of the polylactic acid resin in the polylactic acid resin, is less than 98 mol%, the molded product obtained by molding the foamed sheet made of the polylactic acid resin composition does not have good heat resistance. On the other hand, by making either the D-form of lactic acid or the L-form of lactic acid, which are the constituent monomer units of the polylactic acid resin in the polylactic acid resin, 98 mol% or more, the crystallization rate is increased, crystallization progresses during the molding process, and the heat resistance of the molded product is improved.
前記構成モノマー単位である乳酸のD体及び乳酸のL体のいずれか一方の比率は、光学活性カラムを用いた液体クロマトグラフィーで分析することにより確認することができる。
具体的には、前記発泡シートを凍結粉砕し、該発泡シートの粉末200mgを三角フラスコに取り、1Nの水酸化ナトリウム水溶液30mLを加え、前記三角フラスコを振盪しながら65℃に加熱して、前記発泡シート中のポリ乳酸樹脂を完全に溶解させる。続いて、1Nの塩酸を用いてpHが4~7となるように調整し、メスフラスコを用いて所定の体積に希釈してポリ乳酸樹脂溶解液を得る。次に、前記ポリ乳酸樹脂溶解液を0.45μmのメンブレンフィルターで濾過した後、液体クロマトグラフを用いて分析する。得られたチャートに基づいて、乳酸のD体及び乳酸のL体由来のピークから面積比を算出し、これを存在比として乳酸のD体量及び乳酸のL体量を算出する。上記操作を3回行って得られた結果の算術平均した値を、前記発泡シートにおけるポリ乳酸樹脂を構成する乳酸のD体量及びL体量とする。
The ratio of either the D-lactic acid or the L-lactic acid, which are the constituent monomer units, can be confirmed by analysis using liquid chromatography using an optically active column.
Specifically, the foamed sheet is freeze-pulverized, 200 mg of the powder of the foamed sheet is placed in an Erlenmeyer flask, 30 mL of 1N aqueous sodium hydroxide is added, and the Erlenmeyer flask is heated to 65°C while shaking to completely dissolve the polylactic acid resin in the foamed sheet. Then, the pH is adjusted to 4-7 using 1N hydrochloric acid, and the solution is diluted to a predetermined volume using a measuring flask to obtain a polylactic acid resin solution. Next, the polylactic acid resin solution is filtered through a 0.45 μm membrane filter and then analyzed using a liquid chromatograph. Based on the obtained chart, the area ratio is calculated from the peaks derived from the D-form of lactic acid and the L-form of lactic acid, and the amount of the D-form of lactic acid and the amount of the L-form of lactic acid are calculated as the abundance ratio. The arithmetic average of the results obtained by performing the above operation three times is taken as the amount of the D-form and the amount of the L-form of lactic acid constituting the polylactic acid resin in the foamed sheet.
前記液体クロマトグラフィーの測定装置及び測定条件としては、特に制限はないが、例えば、下記測定装置及び測定条件で測定することができる。
[[測定装置及び測定条件]]
・ HPLC装置(液体クロマトグラフ):PU-2085Plus型システム(日本分光株式会社製)
・ カラム:Chromolith(登録商標) coated with SUMICHIRAL OA-5000(内径4.6mm、長さ250mm)(株式会社住友分析センター製)
・ カラム温度:25℃
・ 移動相:2mM CuSO4水溶液と2-プロパノールとの混合液(CuSO4水溶液:2-プロパノール(体積比)=95:5)
・ 移動相流量:1.0mL/分間
・ 検出器:UV254nm
・ 注入量:20μL
The measurement device and measurement conditions for the liquid chromatography are not particularly limited, but for example, the measurement can be performed using the following measurement device and measurement conditions.
[Measurement equipment and conditions]
HPLC device (liquid chromatograph): PU-2085Plus system (manufactured by JASCO Corporation)
Column: Chromolith (registered trademark) coated with SUMICHIRAL OA-5000 (inner diameter 4.6 mm, length 250 mm) (manufactured by Sumitomo Analysis Center Co., Ltd.)
Column temperature: 25°C
Mobile phase: a mixture of 2 mM CuSO4 aqueous solution and 2-propanol ( CuSO4 aqueous solution: 2-propanol (volume ratio) = 95:5)
Mobile phase flow rate: 1.0 mL/min Detector: UV 254 nm
Injection volume: 20 μL
前記発泡シートに対して上記した液体クロマトグラフィー分析を行い、乳酸のD体及び乳酸のL体由来のピークの面積の合計に対して、乳酸のD体及び乳酸のL体由来のピークのうちピーク面積が大きい方の面積が98%以上である場合、前記発泡シート中の前記ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又はL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であると言える。 When the foamed sheet is subjected to the above-mentioned liquid chromatography analysis, if the area of the larger peak of the peaks derived from the D- and L-forms of lactic acid is 98% or more of the total area of the peaks derived from the D- and L-forms of lactic acid, it can be said that either the D- or L-form of lactic acid, which is a constituent monomer unit of the polylactic acid resin in the foamed sheet, accounts for 98 mol% or more of the polylactic acid resin.
-重量平均分子量-
前記ポリ乳酸樹脂の重量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、180,000以上320,000以下が好ましく、210,000以上310,000以下がより好ましい。前記ポリ乳酸樹脂の重量平均分子量(Mw)が180,000以上320,000以下であると前記ポリ乳酸樹脂組成物の粘度を発泡に適正な範囲に制御することができ、前記発泡シートの製造時の気泡の合一及び破泡が抑制され、発泡倍率や表面性に優れた発泡シートを安定的に得ることができる。一方、前記ポリ乳酸樹脂の重量平均分子量(Mw)が180,000以下であると、前記ポリ乳酸樹脂組成物の粘度を発泡に適切な範囲とするために必要な鎖伸長剤の添加量が多くなるか、発泡に適切な粘度に調整しにくい傾向にある。前記鎖伸長剤は、一般的に石油由来化合物であり、非生分解性であるため、環境負荷を少なくする観点から可能な限り添加量を少なくできることが望ましい。また、前記ポリ乳酸樹脂の重量平均分子量(Mw)が320,000以上であると、前記ポリ乳酸樹脂組成物の粘度が前記鎖伸長剤の添加量に応じて急峻に変化する傾向にあり、前記ポリ乳酸樹脂組成物の粘度の制御性が低下し、前記発泡シートを安定的に製造することが難しくなることがある。
- Weight average molecular weight -
The weight average molecular weight (Mw) of the polylactic acid resin is not particularly limited and can be appropriately selected according to the purpose, but is preferably 180,000 to 320,000, and more preferably 210,000 to 310,000. When the weight average molecular weight (Mw) of the polylactic acid resin is 180,000 to 320,000, the viscosity of the polylactic acid resin composition can be controlled to a range suitable for foaming, and the coalescence and breakage of bubbles during the production of the foamed sheet can be suppressed, and a foamed sheet having excellent foaming ratio and surface properties can be stably obtained. On the other hand, when the weight average molecular weight (Mw) of the polylactic acid resin is 180,000 or less, the amount of chain extender required to adjust the viscosity of the polylactic acid resin composition to a range suitable for foaming becomes large, or it tends to be difficult to adjust the viscosity to a suitable range for foaming. The chain extender is generally a petroleum-derived compound and is non-biodegradable, so it is desirable to reduce the amount of addition as much as possible from the viewpoint of reducing the environmental load. Furthermore, when the weight average molecular weight (Mw) of the polylactic acid resin is 320,000 or more, the viscosity of the polylactic acid resin composition tends to change sharply depending on the amount of the chain extender added, which reduces controllability of the viscosity of the polylactic acid resin composition and may make it difficult to stably produce the foamed sheet.
前記ポリ乳酸樹脂の重量平均分子量(Mw)は、GPCを用いて測定することができる。前記ポリ乳酸樹脂の重量平均分子量(Mw)は、重量平均分子量が既知のポリスチレン試料(例えば、東ソー株式会社製のA-500(重量平均分子量589)、A-1000(重量平均分子量1,010)、A-2500(重量平均分子量312)、A-5000(重量平均分子量5,430)、F-1(重量平均分子量9,490)、F-2(重量平均分子量15,700)、F-4(重量平均分子量37,200)、F-10(重量平均分子量98,900)、F-20(重量平均分子量189,000)、F-40(重量平均分子量397,000)、F-80(重量平均分子量707,000)、F-128(重量平均分子量1,110,000))によって作成した検量線を標準として計算される。 The weight average molecular weight (Mw) of the polylactic acid resin can be measured using GPC. The weight average molecular weight (Mw) of the polylactic acid resin is calculated using a calibration curve prepared using polystyrene samples with known weight average molecular weights (e.g., A-500 (weight average molecular weight 589), A-1000 (weight average molecular weight 1,010), A-2500 (weight average molecular weight 312), A-5000 (weight average molecular weight 5,430), F-1 (weight average molecular weight 9,490), F-2 (weight average molecular weight 15,700), F-4 (weight average molecular weight 37,200), F-10 (weight average molecular weight 98,900), F-20 (weight average molecular weight 189,000), F-40 (weight average molecular weight 397,000), F-80 (weight average molecular weight 707,000), and F-128 (weight average molecular weight 1,110,000) manufactured by Tosoh Corporation).
前記GPCに供する試料は、前記ポリ乳酸樹脂とクロロホルムとを、前記ポリ乳酸樹脂の濃度が2mg/mL程度になるように混合し、卓上振盪機(例えば、アズワン株式会社製のMSI-60)で半日程度振盪し、前記ポリ乳酸樹脂が溶解したことを確認した後、0.45μmのメンブレンフィルターにて濾過した濾液を用いる。溶解しにくいものはクロロホルムの沸点以下の温度で加熱して溶解することもできる。このようにして調製した試料を、例えば、前記発泡シートの重量平均分子量(Mw)の測定と同様の測定装置及び測定条件で測定することができる。 The sample to be subjected to the GPC is prepared by mixing the polylactic acid resin and chloroform so that the concentration of the polylactic acid resin is about 2 mg/mL, shaking the mixture for about half a day with a tabletop shaker (e.g., MSI-60 manufactured by AS ONE Corporation), and after confirming that the polylactic acid resin has dissolved, filtering the mixture through a 0.45 μm membrane filter to obtain a filtrate. Materials that are difficult to dissolve can also be dissolved by heating at a temperature below the boiling point of chloroform. The sample thus prepared can be measured, for example, with the same measuring device and under the same measuring conditions as those used to measure the weight average molecular weight (Mw) of the foamed sheet.
-酸価-
前記ポリ乳酸樹脂組成物中のポリ乳酸樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、5mgKOH/g以下が好ましい。前記ポリ乳酸樹脂の酸価が5mgKOH/g以下であると、前記ポリ乳酸樹脂組成物の粘度を発泡に適切な範囲に調整しやすく、更に前記ポリ乳酸樹脂の保管中の分解を抑制できる傾向がある。
前記ポリ乳酸樹脂の酸価の測定方法としては、特に制限はないが、例えば、滴定法により求めることができる。
-Acid value-
The acid value of the polylactic acid resin in the polylactic acid resin composition is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 5 mgKOH/g or less. When the acid value of the polylactic acid resin is 5 mgKOH/g or less, the viscosity of the polylactic acid resin composition can be easily adjusted to a range suitable for foaming, and further, the decomposition of the polylactic acid resin during storage tends to be suppressed.
The method for measuring the acid value of the polylactic acid resin is not particularly limited, but it can be determined, for example, by a titration method.
具体的には、前記ポリ乳酸樹脂1g~3g程度を三角フラスコにとり、ジクロロメタン40mLを加えて室温で半日程度振盪し、得られたポリ乳酸樹脂のジクロロメタン溶液を試料として測定に供する。前記ジクロロメタン溶液の粘度が高い場合は、ポリ乳酸樹脂量を減ずるか、ジクロロメタンの量を適宜増やして試料を調整する。前記試料に指示薬としてフェノールフタレインを加え、0.01Nの水酸化カリウムのエタノール溶液を用い、前記試料及びブランクを滴定し、下記式(3)により酸価を算出する。
酸価[mgKOH/g]=(滴定値[mL]-ブランク[mL])×ファクター×0.01[N]×56.1[g/mol]/(試料の質量[g]) ・・・ 式(3)
Specifically, about 1 g to 3 g of the polylactic acid resin is placed in an Erlenmeyer flask, 40 mL of dichloromethane is added, and the mixture is shaken at room temperature for about half a day, and the resulting dichloromethane solution of the polylactic acid resin is used as a sample for measurement. If the viscosity of the dichloromethane solution is high, the amount of polylactic acid resin is reduced or the amount of dichloromethane is appropriately increased to adjust the sample. Phenolphthalein is added to the sample as an indicator, and the sample and blank are titrated using a 0.01 N ethanol solution of potassium hydroxide, and the acid value is calculated using the following formula (3).
Acid value [mgKOH/g] = (titer value [mL] - blank [mL]) x factor x 0.01 [N] x 56.1 [g/mol] / (mass of sample [g]) ... formula (3)
-含水量-
前記ポリ乳酸樹脂は、前記ポリ乳酸樹脂組成物又は前記発泡シートの製造に供する前に、予め含水量を500ppm以下に低下させておくことが好ましい。前記ポリ乳酸樹脂の含水量が500ppm以下であると、前記ポリ乳酸樹脂組成物は発泡に適正な粘度に調整できる傾向にある。
- Moisture content -
It is preferable that the water content of the polylactic acid resin is reduced to 500 ppm or less before it is used in the production of the polylactic acid resin composition or the foamed sheet. When the water content of the polylactic acid resin is 500 ppm or less, the viscosity of the polylactic acid resin composition tends to be adjusted to an appropriate level for foaming.
前記ポリ乳酸樹脂の含水量の測定方法としては、特に制限はなく、公知の方法を用いることができ、例えばカールフィッシャー滴定などが挙げられる。
前記ポリ乳酸樹脂の乾燥方法としては、特に制限はなく、公知の方法を用いることができ、例えば、熱風乾燥機や真空乾燥機を用いる方法などが挙げられる。
前記乾燥の温度としても、特に制限はないが、60℃~80℃が好ましい。含水量の測定方法は特に限定されず、例えばカールフィッシャー滴定等を適用することができる。
The method for measuring the water content of the polylactic acid resin is not particularly limited, and any known method can be used, such as Karl Fischer titration.
The method for drying the polylactic acid resin is not particularly limited, and any known method can be used, such as a method using a hot air dryer or a vacuum dryer.
The drying temperature is not particularly limited, but is preferably 60° C. to 80° C. The method for measuring the water content is not particularly limited, and for example, Karl Fischer titration or the like can be applied.
-含有量-
前記ポリ乳酸樹脂組成物における前記ポリ乳酸樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、生分解性及びリサイクル性(リサイクルが容易となる)の観点から、該ポリ乳酸樹脂組成物における有機物の総量に対して98質量%以上であり、99質量%以上であることが好ましい。なお、前記ポリ乳酸樹脂組成物における有機物の総量に対する前記ポリ乳酸樹脂の含有量は、前記発泡シートが前記ポリ乳酸樹脂組成物からなるため、前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量と同義である。
- Content -
The content of the polylactic acid resin in the polylactic acid resin composition is not particularly limited and can be appropriately selected depending on the purpose, but from the viewpoint of biodegradability and recyclability (easy recycling), it is preferably 98% by mass or more and more preferably 99% by mass or more based on the total amount of organic matter in the polylactic acid resin composition. Note that the content of the polylactic acid resin based on the total amount of organic matter in the polylactic acid resin composition is synonymous with the content of the polylactic acid resin based on the total amount of organic matter in the foamed sheet, since the foamed sheet is made of the polylactic acid resin composition.
なお、前記ポリ乳酸樹脂組成物中の前記有機物としては、主に前記ポリ乳酸樹脂であるが、該ポリ乳酸樹脂以外の有機物としては、例えば、後述する発泡核剤としての有機系核剤、鎖伸長剤などが挙げられる。前記発泡シートの発泡核剤として無機系核剤を用いた場合、該無機系核剤は前記有機物には該当しない。 The organic matter in the polylactic acid resin composition is mainly the polylactic acid resin, but examples of organic matter other than the polylactic acid resin include organic nucleating agents and chain extenders as foam nucleating agents described below. When an inorganic nucleating agent is used as the foam nucleating agent for the foam sheet, the inorganic nucleating agent does not fall under the category of organic matter.
前記ポリ乳酸樹脂組成物における有機物の総量に対する前記ポリ乳酸樹脂の含有量は、該ポリ乳酸樹脂組成物を調製する際の混合比(仕込み比)から計算により求めることができる。前記混合比が不明な場合、以下のように核磁気共鳴分析(NMR)によって求めてもよい。 The content of the polylactic acid resin relative to the total amount of organic matter in the polylactic acid resin composition can be calculated from the mixing ratio (feed ratio) when preparing the polylactic acid resin composition. If the mixing ratio is unknown, it may be determined by nuclear magnetic resonance analysis (NMR) as follows.
前記核磁気共鳴分析に用いる溶媒は、内部標準物質として1,3,5-トリメトキシベンゼン標準品(定量NMR用、富士フイルム和光純薬株式会社製)を約100mg量り取り、10mLメスフラスコにて重クロロホルム(テトラメチルシラン(TMS)0.3体積%含有)で溶解させたものを用いる。 The solvent used in the nuclear magnetic resonance analysis is approximately 100 mg of 1,3,5-trimethoxybenzene standard (for quantitative NMR, Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved in deuterated chloroform (containing 0.3% by volume of tetramethylsilane (TMS)) in a 10 mL measuring flask as an internal standard.
前記核磁気共鳴分析に供する試料としては、前記ポリ乳酸樹脂組成物又は前記発泡シートの濃度が10mg/mLとなるように、該ポリ乳酸樹脂組成物又は該発泡シート前記溶媒を加え、卓上振盪機(例えば、アズワン株式会社製のMSI-60)で半日程度振盪して溶解する。この際、蒸発による試料濃度の変化を最小限に留めるために、容器としては可能な限り小さいものを選ぶ。上記方法で調製した試料を直径5mmの試料管に封じてNMRに供する。 For the sample to be subjected to the nuclear magnetic resonance analysis, the polylactic acid resin composition or the foamed sheet is mixed with the solvent so that the concentration of the polylactic acid resin composition or the foamed sheet becomes 10 mg/mL, and the mixture is dissolved by shaking for about half a day using a tabletop shaker (e.g., MSI-60 manufactured by AS ONE Corporation). At this time, in order to minimize the change in the sample concentration due to evaporation, the smallest possible container is selected. The sample prepared by the above method is sealed in a sample tube with a diameter of 5 mm and subjected to NMR.
前記試料を用い、下記測定装置及び測定条件で、JIS K0138:2018(定量核磁気共鳴分光法通則(qNMR通則))に準拠して、1H核のNMR測定(1H-NMR測定)を行う。
[[測定装置及び測定条件]]
・ 核磁気共鳴(NMR)装置:JNM-ECX-500 FT-NMR(日本電子株式会社製)
・ 観測核:1H
・ 測定温度:30℃
・ スピン:オフ
・ デジタル分解能:0.25Hz
・ 観測範囲:-0.5~15ppm
・ パルス角:90°
・ 緩和時間:60秒
・ 積算回数:16回(本測定の前にダミースキャンを2回行う)
・ 13Cデカップリング:有
Using the above sample, 1 H NMR measurement ( 1 H-NMR measurement) is performed in accordance with JIS K0138:2018 (General rules for quantitative nuclear magnetic resonance spectroscopy (qNMR general rules)) using the following measurement device and measurement conditions.
[Measurement equipment and conditions]
・Nuclear magnetic resonance (NMR) device: JNM-ECX-500 FT-NMR (manufactured by JEOL Ltd.)
Observed nucleus: 1H
Measurement temperature: 30°C
Spin: Off Digital resolution: 0.25Hz
Observation range: -0.5 to 15 ppm
Pulse angle: 90°
Relaxation time: 60 seconds. Number of scans: 16 (two dummy scans were performed before the actual measurement).
・13C decoupling: Yes
得られたデータについて、下記化学シフトのピークに対する積分を行い、下記式(4)により積分比を計算する。
積分1(ポリ乳酸樹脂由来):5.2ppm
積分2(内部標準由来):6.1ppm
積分比=積分1/(積分2×試料質量) ・・・ 式(4)
The obtained data is integrated with respect to the peaks of the following chemical shifts, and the integral ratio is calculated according to the following formula (4).
Integral 1 (derived from polylactic acid resin): 5.2 ppm
Integral 2 (from internal standard): 6.1 ppm
Integral ratio = integral 1 / (integral 2 × sample mass) ... formula (4)
純度既知のポリ乳酸樹脂について、前記試料と共通の溶媒を用いて同様のNMR測定を行い、純度既知のポリ乳酸樹脂について前記式(4)より得られた積分比と、前記試料についての積分比との比を取り、下記式(5)により前記ポリ乳酸樹脂組成物又は前記発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量を算出する。なお、前記試料の調製から解析までの工程を3回行い、得られたポリ乳酸樹脂の含有量の算術平均を、前記ポリ乳酸樹脂組成物又は前記発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量とする。
ポリ乳酸樹脂の含有量[質量%]=100×純度既知のポリ乳酸樹脂の純度[質量%]×(試料の積分比)/(純度既知のポリ乳酸樹脂の積分比) ・・・ 式(5)
A similar NMR measurement is performed on a polylactic acid resin of known purity using the same solvent as the sample, and the ratio of the integral ratio obtained from the formula (4) for the polylactic acid resin of known purity to the integral ratio for the sample is calculated, and the content of the polylactic acid resin relative to the total amount of organic matter in the polylactic acid resin composition or the foamed sheet is calculated using the following formula (5). Note that the steps from sample preparation to analysis are performed three times, and the arithmetic average of the obtained polylactic acid resin contents is taken as the content of the polylactic acid resin relative to the total amount of organic matter in the polylactic acid resin composition or the foamed sheet.
Content of polylactic acid resin [mass %]=100×purity of polylactic acid resin of known purity [mass %]×(integral ratio of sample)/(integral ratio of polylactic acid resin of known purity) (5)
-融点-
前記ポリ乳酸樹脂の融点は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求められる。
具体的には、前記ポリ乳酸樹脂の融点のDSC測定は、例えば、示差走査熱量計装置(例えば、Q-2000型、TAインスツルメント社製)を用いることができ、前記ポリ乳酸樹脂5mg~10mgの試料を、前記示差走査熱量計装置の容器に入れ、10℃/分間の昇温速度で200℃まで昇温速度10℃/分間で昇温することにより測定することができる。
ガラス転移温度より高温側で観測される結晶の溶融に伴う吸熱ピークのピークトップ温度(融解ピーク温度、Tpm)を前記ポリ乳酸樹脂の融点とする。ガラス転移温度より高温側で複数の吸熱ピークが観察される場合、面積が最大となるピークのピークトップ温度をポリ乳酸樹脂の融点として扱う。前記ポリ乳酸樹脂の融点は、概ね150℃~190℃の範囲内である。
-Melting point-
The melting point of the polylactic acid resin can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, the melting point of the polylactic acid resin can be measured by DSC using, for example, a differential scanning calorimeter (e.g., Q-2000 type, manufactured by TA Instruments). A sample of 5 mg to 10 mg of the polylactic acid resin is placed in a container of the differential scanning calorimeter, and the temperature is increased at a rate of 10° C./min up to 200° C. at a rate of 10° C./min.
The peak top temperature (melting peak temperature, Tpm) of the endothermic peak associated with the melting of crystals observed on the higher temperature side than the glass transition temperature is taken as the melting point of the polylactic acid resin. When multiple endothermic peaks are observed on the higher temperature side than the glass transition temperature, the peak top temperature of the peak with the largest area is taken as the melting point of the polylactic acid resin. The melting point of the polylactic acid resin is generally within the range of 150°C to 190°C.
-ガラス転移温度-
前記ポリ乳酸樹脂のガラス転移温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求められる。
具体的には、前記ポリ乳酸樹脂のガラス転移温度のDSC測定は、例えば、示差走査熱量計装置(例えば、Q-2000型、TAインスツルメント社製)を用いることができ、前記ポリ乳酸樹脂5mg~10mgの試料を、前記示差走査熱量計装置の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温することにより測定することができる。
本発明におけるガラス転移温度とは、JIS K 7121:2012に記載の補外ガラス転移開始温度(Tig)を指す。前記ポリ乳酸樹脂のガラス転移温度は、概ね55℃~70℃の範囲内である。
- Glass transition temperature -
The glass transition temperature of the polylactic acid resin can be determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (measurement method for glass transition temperature of plastics).
Specifically, the glass transition temperature of the polylactic acid resin can be measured by DSC using, for example, a differential scanning calorimeter (e.g., Q-2000 type, manufactured by TA Instruments). A sample of 5 mg to 10 mg of the polylactic acid resin is placed in a container of the differential scanning calorimeter, and the temperature is increased from 10° C. to 200° C. at a heating rate of 10° C./min.
The glass transition temperature in the present invention refers to the extrapolated glass transition onset temperature (Tig) described in JIS K 7121: 2012. The glass transition temperature of the polylactic acid resin is generally within the range of 55°C to 70°C.
-溶融粘度-
前記ポリ乳酸樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、500Pa.s以上1,500Pa.s以下が好ましい。前記ポリ乳酸樹脂の溶融粘度が500Pa.s以上1,500Pa.s以下であると、前記ポリ乳酸樹脂組成物の粘度を、発泡に適した粘度に調整しやすく、発泡装置の負荷を抑え生産性に優れると共に、かさ密度が低く、表面性に優れた発泡シートを得ることができる。
-Melt Viscosity-
The melt viscosity of the polylactic acid resin is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 500 Pa.s to 1,500 Pa.s. When the melt viscosity of the polylactic acid resin is 500 Pa.s to 1,500 Pa.s, the viscosity of the polylactic acid resin composition can be easily adjusted to a viscosity suitable for foaming, the load on the foaming device can be reduced, productivity can be improved, and a foamed sheet having a low bulk density and excellent surface properties can be obtained.
前記ポリ乳酸樹脂の溶融粘度は、例えば、前記ポリ乳酸樹脂を1.5g計量し、80℃の乾燥機で2時間乾燥させたものを試料として、フローテスターを用いて下記測定条件で測定することができる。
[[測定装置及び測定条件]]
・ 装置:CFT-100EX(株式会社島津製作所製)
・ 試験条件:定温法、試験温度:190℃、試験力:40kgf、余熱時間:180秒間、ダイ穴径:1mm、ダイ長さ:1mm
・ 解析:付属ソフトCFT-EXを使用し、以下の計算パラメータによって溶融粘度を算出する。
・ 計算パラメータ:限定法、計算開始位置:3.0mm、計算終了位置:7.0mm、試料密度:1g/cm3
The melt viscosity of the polylactic acid resin can be measured, for example, by weighing 1.5 g of the polylactic acid resin, drying it in a dryer at 80° C. for 2 hours, and using the resultant as a sample, using a flow tester under the following measurement conditions.
[Measurement equipment and conditions]
・ Equipment: CFT-100EX (manufactured by Shimadzu Corporation)
Test conditions: constant temperature method, test temperature: 190°C, test force: 40 kgf, preheat time: 180 seconds, die hole diameter: 1 mm, die length: 1 mm
Analysis: Using the attached software CFT-EX, calculate the melt viscosity using the following calculation parameters.
Calculation parameters: limiting method, calculation start position: 3.0 mm, calculation end position: 7.0 mm, sample density: 1 g/cm 3
-発泡シートの溶融粘度とポリ乳酸樹脂の溶融粘度の比-
前記発泡シートの溶融粘度と前記ポリ乳酸樹脂の溶融粘度の比としては、特に制限はなく、目的に応じて適宜選択することができるが、7以上80以下が好ましい。前記発泡シートの溶融粘度と前記ポリ乳酸樹脂の溶融粘度の比が7以上80以下であると、発泡装置の負荷を抑え生産性に優れると共に、かさ密度が低く、断熱性や強度、表面性に優れた発泡シートを、結晶化度を低く維持しながら得ることができる。
- Ratio of melt viscosity of foam sheet to that of polylactic acid resin -
The ratio of the melt viscosity of the foamed sheet to the melt viscosity of the polylactic acid resin is not particularly limited and may be appropriately selected depending on the purpose, but is preferably from 7 to 80. When the ratio of the melt viscosity of the foamed sheet to the melt viscosity of the polylactic acid resin is from 7 to 80, the load on the foaming device is reduced, resulting in excellent productivity, and a foamed sheet having a low bulk density and excellent heat insulation properties, strength, and surface properties can be obtained while maintaining a low degree of crystallinity.
前記発泡シートの溶融粘度と前記ポリ乳酸樹脂の溶融粘度の比は、下記式(6)によって求められる。
発泡シートの溶融粘度とポリ乳酸樹脂の溶融粘度の比=発泡シートの溶融粘度/ポリ乳酸樹脂の溶融粘度 ・・・ 式(6)
The ratio of the melt viscosity of the foamed sheet to the melt viscosity of the polylactic acid resin is calculated by the following formula (6).
Ratio of melt viscosity of foamed sheet to melt viscosity of polylactic acid resin=melt viscosity of foamed sheet/melt viscosity of polylactic acid resin ... formula (6)
<<鎖伸長剤(架橋剤)>>
前記鎖伸長剤(架橋剤)は、前記ポリ乳酸樹脂の粘度を発泡に適した範囲に調整するために前記ポリ乳酸樹脂組成物に含有することが好ましい。また、前記鎖伸長剤(架橋剤)は、前記ポリ乳酸樹脂組成物及び前記発泡シートの耐熱性や耐加水分解性を向上できる効果もある。
<<Chain extender (crosslinking agent)>>
The chain extender (crosslinking agent) is preferably contained in the polylactic acid resin composition in order to adjust the viscosity of the polylactic acid resin to a range suitable for foaming. The chain extender (crosslinking agent) also has the effect of improving the heat resistance and hydrolysis resistance of the polylactic acid resin composition and the foamed sheet.
前記鎖伸長剤(架橋剤)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸基及び/又はカルボン酸基と反応性を有する化合物や、過酸化物などを用いることができる。本発明においては、前記ポリ乳酸樹脂との反応後に、該ポリ乳酸樹脂の結晶性を阻害しない、若しくは結晶性を向上できる観点から、前記ポリ乳酸樹脂の水酸基及び/又はカルボン酸基と反応性を有する化合物が好ましい。 The chain extender (crosslinking agent) is not particularly limited and can be appropriately selected depending on the purpose. For example, a compound reactive with a hydroxyl group and/or a carboxylic acid group, a peroxide, etc. can be used. In the present invention, a compound reactive with a hydroxyl group and/or a carboxylic acid group of the polylactic acid resin is preferred from the viewpoint of not inhibiting the crystallinity of the polylactic acid resin after reaction with the polylactic acid resin or being able to improve the crystallinity.
前記ポリ乳酸樹脂の水酸基及び/又はカルボン酸基と反応性を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、エポキシ基を有する化合物、イソシアネート基を有する化合物、カルボジイミド基を有する化合物が好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 The compound reactive with the hydroxyl group and/or carboxylic acid group of the polylactic acid resin is not particularly limited and can be appropriately selected depending on the purpose, but a compound having an epoxy group, a compound having an isocyanate group, or a compound having a carbodiimide group is preferred. These may be used alone or in combination of two or more.
前記ポリ乳酸樹脂の水酸基及び/又はカルボン酸基と反応性を有する化合物としては、前記ポリ乳酸樹脂に分岐構造を導入し、該ポリ乳酸樹脂組成物の粘度を効率的に向上でき、未反応の鎖伸長剤(架橋剤)の遊離を少なくできる点から、分子内に2つ以上の反応性基を有する化合物が好ましく、分子内に2つ以上のエポキシ基を有する化合物又は分子内に2つ以上のイソシアネート基を有する化合物がより好ましく、作業性や安全性の観点から、分子内に2つ以上のエポキシ基を有する化合物が更に好ましく、反応性、作業性、安全性の観点から、分子内に2つ以上のエポキシ基を有するエポキシ官能性(メタ)アクリル-スチレン系鎖伸長剤が特に好ましい。 As the compound reactive with the hydroxyl group and/or carboxylic acid group of the polylactic acid resin, a compound having two or more reactive groups in the molecule is preferred from the viewpoint of introducing a branched structure into the polylactic acid resin, efficiently improving the viscosity of the polylactic acid resin composition, and reducing the release of unreacted chain extender (crosslinking agent), and a compound having two or more epoxy groups in the molecule or a compound having two or more isocyanate groups in the molecule is more preferred, and from the viewpoints of workability and safety, a compound having two or more epoxy groups in the molecule is even more preferred, and from the viewpoints of reactivity, workability, and safety, an epoxy-functional (meth)acrylic-styrene chain extender having two or more epoxy groups in the molecule is particularly preferred.
-エポキシ基を有する化合物-
前記鎖伸長剤(架橋剤)としての前記分子内に2つ以上のエポキシ基を有する化合物とは、少なくともエポキシ基を有する(メタ)アクリルモノマーを共重合させて得られる化合物である。
前記エポキシ基を有する(メタ)アクリルモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリシジルアクリレート、グリシジルメタクリレート等の1,2-エポキシ基を含有するモノマーなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
- Compounds having epoxy groups -
The compound having two or more epoxy groups in the molecule as the chain extender (crosslinking agent) is a compound obtained by copolymerizing a (meth)acrylic monomer having at least an epoxy group.
The (meth)acrylic monomer having an epoxy group is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include monomers containing a 1,2-epoxy group such as glycidyl acrylate, glycidyl methacrylate, etc. These may be used alone or in combination of two or more kinds.
前記分子内に2つ以上のエポキシ基を有する化合物は、その共重合成分として、前記モノマーに加えて、更にエポキシ基を有しない(メタ)アクリルモノマーを含有していてもよい。前記エポキシ基を有しない(メタ)アクリルモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、シクロヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレートなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 The compound having two or more epoxy groups in the molecule may further contain, as a copolymerization component, a (meth)acrylic monomer having no epoxy group in addition to the monomer. The (meth)acrylic monomer having no epoxy group is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, cyclohexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate. These may be used alone or in combination of two or more.
前記分子内に2つ以上のエポキシ基を有する化合物は、更に、前記エポキシ基を有しない(メタ)アクリルモノマーに加えて、二重結合基を有するモノマーを含有していてもよい。前記二重結合基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレンモノマー、α-メチルスチレンモノマー、酢酸ビニルモノマーなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。前記スチレンモノマーとしては、例えば、スチレン、α-メチルスチレンなどが挙げられる。 The compound having two or more epoxy groups in the molecule may further contain a monomer having a double bond group in addition to the (meth)acrylic monomer having no epoxy group. The monomer having a double bond group is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include styrene monomer, α-methylstyrene monomer, vinyl acetate monomer, etc. These may be used alone or in combination of two or more. Examples of the styrene monomer include styrene, α-methylstyrene, etc.
前記分子内に2つ以上のエポキシ基を有するエポキシ官能性(メタ)アクリル-スチレン系鎖伸長剤とは、少なくともエポキシ基を有する(メタ)アクリルモノマーとスチレンモノマーとを共重合させて得られた化合物である。 The epoxy-functional (meth)acrylic-styrene chain extender having two or more epoxy groups in the molecule is a compound obtained by copolymerizing at least an epoxy-group-containing (meth)acrylic monomer and a styrene monomer.
前記エポキシ基を有する化合物としては、適宜合成してもよく、市販品を用いてもよい。前記エポキシ基を有する化合物の市販品としては、例えば、商品名で、マープルーフ(登録商標)G-01100(日油株式会社製)、マープルーフ(登録商標)G-0105SA(日油株式会社製)、マープルーフ(登録商標)G-2050M(日油株式会社製)、マープルーフ(登録商標)G-0130SP(日油株式会社製)、マープルーフ(登録商標)G-0130SF(日油株式会社製)、マープルーフ(登録商標)G-0250SP(日油株式会社製)、マープルーフG-0250SF(日油株式会社製)、メタブレン(登録商標)P1901(三井ケミカル株式会社製)、Joncy(登録商標) ADR4368(BASF社製)、Joncy(登録商標) ADR4370(BASF社製)、Joncy(登録商標) ADR4468(BASF社製)、ボンドファースト(登録商標)BF-2C(住友化学株式会社製)、ボンドファースト(登録商標)BF-E(住友化学株式会社製)、ボンドファースト(登録商標)BF-2B(住友化学株式会社製)、ボンドファースト(登録商標)BF-7B(住友化学株式会社製)、ボンドファースト(登録商標)BF-7M(住友化学株式会社製)、CESA-Extend OMAN698493(クラリアント社製)、ARUFON UG-4040(東亜合成株式会社製)などが挙げられる。これらの中でも、前記エポキシ基を有する化合物の市販品としては、前記発泡シートにコルゲート状のしわが発生しにくい発泡シートの製造の条件下において、低添加濃度で高発泡倍率化できるため、断熱性、生分解性、成型不良防止の観点から、マープルーフ(登録商標)G-0250SP(日油株式会社製)、マープルーフ(登録商標)G-0250SF(日油株式会社製)、Joncy(登録商標) ADR4468(BASF社製)を用いることが好ましい。 The compound having an epoxy group may be appropriately synthesized, or a commercially available product may be used. Examples of commercially available products of the compound having an epoxy group include, by trade name, Marproof (registered trademark) G-01100 (manufactured by NOF Corporation), Marproof (registered trademark) G-0105SA (manufactured by NOF Corporation), Marproof (registered trademark) G-2050M (manufactured by NOF Corporation), Marproof (registered trademark) G-0130SP (manufactured by NOF Corporation), Marproof (registered trademark) G-0130SF (manufactured by NOF Corporation), Marproof (registered trademark) G-0250SP (manufactured by NOF Corporation), Marproof G-0250SF (manufactured by NOF Corporation), Metablen (registered trademark) P1901 (manufactured by Mitsui Chemical Co., Ltd.), Joncy (registered trademark) ADR4368 (manufactured by BASF), Joncy (registered trademark) ADR4370 (manufactured by BASF), and Joncy (registered trademark). Examples of such an adhesive include ADR4468 (manufactured by BASF), Bondfast (registered trademark) BF-2C (manufactured by Sumitomo Chemical Co., Ltd.), Bondfast (registered trademark) BF-E (manufactured by Sumitomo Chemical Co., Ltd.), Bondfast (registered trademark) BF-2B (manufactured by Sumitomo Chemical Co., Ltd.), Bondfast (registered trademark) BF-7B (manufactured by Sumitomo Chemical Co., Ltd.), Bondfast (registered trademark) BF-7M (manufactured by Sumitomo Chemical Co., Ltd.), CESA-Extend OMAN698493 (manufactured by Clariant), and ARUFON UG-4040 (manufactured by Toagosei Co., Ltd.). Among these, as commercially available products of the compound having the epoxy group, it is preferable to use Marproof (registered trademark) G-0250SP (manufactured by NOF Corporation), Marproof (registered trademark) G-0250SF (manufactured by NOF Corporation), and Joncy (registered trademark) ADR4468 (manufactured by BASF) from the viewpoints of heat insulation, biodegradability, and prevention of molding defects, because they can achieve a high expansion ratio at a low addition concentration under conditions for manufacturing a foam sheet in which corrugated wrinkles are unlikely to occur in the foam sheet.
前記エポキシ基を有する化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ポリ乳酸樹脂組成物中の有機物の総量に対して0.2質量%以上1.3質量%以下であることが好ましく、0.7質量%以上0.9質量%以下であることがより好ましい。前記エポキシ基を有する化合物は非生分解の材料であるため、含有量を可能な限り下げて前記ポリ乳酸樹脂組成物中の前記ポリ乳酸樹脂の含有量を多くすることで、生分解性が向上する。一方、前記エポキシ基を有する化合物の含有量が少ない場合には、溶融発泡時の溶融粘度が低く、発泡倍率が上がらないため断熱性が悪くなってしまうことがある。前記ポリ乳酸樹脂組成物中の有機物の総量に対する前記エポキシ基を有する化合物の含有量を0.2質量%以上1.3質量%以下とすることで、生分解性と断熱性との両立を図ることができる。また、前記エポキシ基を有する化合物の重量平均分子量(Mw)とエポキシ当量を適切な範囲内にしたエポキシ基を有する化合物を鎖伸長剤(架橋剤)として用いると、前記エポキシ基を有する化合物の含有量が少ない場合であっても、高い断熱性が得られるため生分解性の向上に繋がる。 The content of the compound having an epoxy group is not particularly limited and can be appropriately selected according to the purpose, but is preferably 0.2% by mass or more and 1.3% by mass or less, and more preferably 0.7% by mass or more and 0.9% by mass or less, relative to the total amount of organic matter in the polylactic acid resin composition. Since the compound having an epoxy group is a non-biodegradable material, the content is reduced as much as possible to increase the content of the polylactic acid resin in the polylactic acid resin composition, thereby improving biodegradability. On the other hand, when the content of the compound having an epoxy group is low, the melt viscosity during melt foaming is low and the foaming ratio does not increase, so that the insulation properties may be deteriorated. By setting the content of the compound having an epoxy group to 0.2% by mass or more and 1.3% by mass or less relative to the total amount of organic matter in the polylactic acid resin composition, it is possible to achieve both biodegradability and insulation properties. In addition, when a compound having an epoxy group with a weight average molecular weight (Mw) and epoxy equivalent within an appropriate range is used as a chain extender (crosslinking agent), high insulation properties can be obtained even when the content of the compound having an epoxy group is low, leading to improved biodegradability.
前記エポキシ基を有する化合物のエポキシ当量としては、特に制限はなく、目的に応じて適宜選択することができるが、250以上350以下であることが好ましく、270以上330以下であることがより好ましい。前記エポキシ基を有する化合物のエポキシ当量は、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点間距離に影響を及ぼす。前記エポキシ基を有する化合物の仕込み量(質量)が、前記ポリ乳酸樹脂の仕込み量(質量)と同一の場合には、前記エポキシ基を有する化合物のエポキシ当量は小さいほど、前記エポキシ基を有する化合物1分子あたりのエポキシ基の量が増えて、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点間距離が短くなり、前記エポキシ基を有する化合物のエポキシ当量は大きいほど、前記エポキシ基を有する化合物1分子あたりのエポキシ基の量が減り、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点間距離が長くなる。前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点間距離が短すぎる場合、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物中で局所的に架橋構造が入り過ぎてしまい、溶融粘度にムラができて発泡倍率が上がらない。前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点間距離が長すぎる場合も、溶融粘度向上の効果が少なく、同様に発泡倍率が上がらない。結果として、前記エポキシ基を有する化合物のエポキシ当量を250以上350以下にすることで、溶融粘度のムラがなく溶融粘度を高くできるので発泡倍率が高くなり断熱性向上に繋がる。 The epoxy equivalent of the compound having an epoxy group is not particularly limited and can be appropriately selected according to the purpose, but is preferably 250 to 350, more preferably 270 to 330. The epoxy equivalent of the compound having an epoxy group affects the distance between crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group. When the amount (mass) of the compound having an epoxy group is the same as the amount (mass) of the polylactic acid resin, the smaller the epoxy equivalent of the compound having an epoxy group, the more the amount of epoxy groups per molecule of the compound having an epoxy group increases, and the shorter the distance between crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group becomes, and the larger the epoxy equivalent of the compound having an epoxy group, the more the amount of epoxy groups per molecule of the compound having an epoxy group decreases, and the longer the distance between crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group becomes. If the distance between crosslinking points in the reaction product of the polylactic acid resin and the compound having an epoxy group is too short, the crosslinking structure will be too localized in the reaction product of the polylactic acid resin and the compound having an epoxy group, causing unevenness in the melt viscosity and preventing an increase in the expansion ratio. If the distance between crosslinking points in the reaction product of the polylactic acid resin and the compound having an epoxy group is too long, the effect of improving the melt viscosity will be small, and the expansion ratio will not increase. As a result, by setting the epoxy equivalent of the compound having an epoxy group to 250 or more and 350 or less, the melt viscosity can be increased without unevenness, leading to a high expansion ratio and improved insulation.
前記エポキシ基を有する化合物のエポキシ当量の測定方法としては、特に制限はないが、JIS K 7236:2001(エポキシ樹脂のエポキシ当量の求め方)に準拠して滴定法により測定することができる。
具体的には、0.1g~0.3gの前記エポキシ基を有する化合物にクロロホルム10mLを加え、マグネティックスターラー等で攪拌しながら完全に溶解させる。20mLの酢酸、及び臭化テトラエチルアンモニウムのクロロホルム溶液10mL(濃度:0.25g/mL)を加えて試料とする。このようにして調製した試料を用い、例えば、下記測定装置及び測定条件で、前記試料のエポキシ当量を測定することができる。
[[測定装置及び測定条件]]
・ 装置:自動滴定装置 COM-A-19(株式会社HIRANUMA製)
・ 標準液:0.1mol/L過塩素酸-酢酸標準液
・ 電極:ガラス電極 GTRS10B
比較電極 GTPH1B(内部液は飽和過塩素酸ナトリウム/酢酸溶液)
・ 測定モード:変曲点検出
・ 微分判定値:100mV/mL
・ 計算式:1,000×S/((A1-BL)×M×f)
ここで、Sはエポキシ基を有する化合物の質量(g)を示し、A1は変曲点の滴下量(mL)を示し、BLはブランク測定の結果(mL)を示し、Mは標準液の濃度(mol/L)、fは標準液のファクターを示す。ブランク測定は2回行い、2回測定の平均値を用いる。
The method for measuring the epoxy equivalent of the compound having an epoxy group is not particularly limited, but it can be measured by a titration method in accordance with JIS K 7236:2001 (method for determining the epoxy equivalent of an epoxy resin).
Specifically, 10 mL of chloroform is added to 0.1 g to 0.3 g of the compound having an epoxy group, and the mixture is completely dissolved while stirring with a magnetic stirrer or the like. 20 mL of acetic acid and 10 mL of a chloroform solution of tetraethylammonium bromide (concentration: 0.25 g/mL) are added to prepare a sample. The epoxy equivalent of the sample thus prepared can be measured, for example, using the following measuring device and under the following measuring conditions.
[Measurement equipment and conditions]
・ Equipment: Automatic titration equipment COM-A-19 (manufactured by HIRANUMA Co., Ltd.)
・ Standard solution: 0.1 mol/L perchloric acid-acetic acid standard solution ・ Electrode: Glass electrode GTRS10B
Reference electrode GTPH1B (internal solution is saturated sodium perchlorate/acetic acid solution)
Measurement mode: Inflection point detection Differential judgment value: 100 mV/mL
・Calculation formula: 1,000×S/((A1-BL)×M×f)
Here, S is the mass (g) of the compound having an epoxy group, A1 is the drop amount (mL) at the inflection point, BL is the result of the blank measurement (mL), M is the concentration of the standard solution (mol/L), and f is the factor of the standard solution. The blank measurement is performed twice, and the average value of the two measurements is used.
前記エポキシ基を有する化合物の重量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、10,000以上20,000以下であることが好ましく、12,500以上17,500以下であることがより好ましい。前記エポキシ基を有する化合物の重量平均分子量(Mw)は、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点数に影響を及ぼす。前記エポキシ基を有する化合物1分子あたりのエポキシ基の数にも影響を受けるが、該1分子あたりのエポキシ基の数が同じ場合で、かつ、前記エポキシ基を有する化合物の仕込み量(質量)が、前記ポリ乳酸樹脂の仕込み量(質量)と同一の場合には、前記エポキシ基を有する化合物の重量平均分子量(Mw)が小さいほど、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点数は小さくなり、前記エポキシ基を有する化合物の重量平均分子量(Mw)が大きいほど、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応物の架橋点数は大きくなる。前記ポリ乳酸樹脂とエポキシ基を有する化合物との反応物の架橋点数が大きいほど、該ポリ乳酸樹脂と該エポキシ基を有する化合物との反応物の分子鎖同士が絡み合うようになり、溶融発泡時の前記ポリ乳酸樹脂組成物の溶融粘度が高くなり、発泡倍率が高くなり、断熱性向上に繋がる。ただし、前記エポキシ基を有する化合物の重量平均分子(Mw)量が大きすぎる場合、前記エポキシ基を有する化合物の反応温度下での流動性が失われて、前記ポリ乳酸樹脂と前記エポキシ基を有する化合物との反応性が落ちて前記ポリ乳酸樹脂組成物の溶融粘度が高くならずに発泡倍率が上がらない。結果として、前記エポキシ基を有する化合物の重量平均分子量を10,000以上20,000以下することで、前記ポリ乳酸樹脂組成物の溶融粘度が高くなり、発泡倍率が高くなり、断熱性向上に繋がる。 The weight average molecular weight (Mw) of the compound having an epoxy group is not particularly limited and can be appropriately selected according to the purpose, but is preferably 10,000 to 20,000, and more preferably 12,500 to 17,500. The weight average molecular weight (Mw) of the compound having an epoxy group affects the number of crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group. It is also affected by the number of epoxy groups per molecule of the compound having an epoxy group, but when the number of epoxy groups per molecule is the same and the amount (mass) of the compound having an epoxy group is the same as the amount (mass) of the polylactic acid resin, the smaller the weight average molecular weight (Mw) of the compound having an epoxy group, the smaller the number of crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group, and the larger the weight average molecular weight (Mw) of the compound having an epoxy group, the larger the number of crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group. The greater the number of crosslinking points of the reaction product of the polylactic acid resin and the compound having an epoxy group, the more the molecular chains of the reaction product of the polylactic acid resin and the compound having an epoxy group become entangled with each other, and the melt viscosity of the polylactic acid resin composition during melt foaming increases, the foaming ratio increases, and the thermal insulation property is improved. However, if the weight average molecular weight (Mw) of the compound having an epoxy group is too large, the compound having an epoxy group loses fluidity at the reaction temperature, the reactivity between the polylactic acid resin and the compound having an epoxy group decreases, and the melt viscosity of the polylactic acid resin composition does not increase, and the foaming ratio does not increase. As a result, by setting the weight average molecular weight of the compound having an epoxy group to 10,000 or more and 20,000 or less, the melt viscosity of the polylactic acid resin composition increases, the foaming ratio increases, and the thermal insulation property is improved.
前記エポキシ基を有する化合物の重量平均分子量(Mw)は、GPCを用いて測定することができる。前記エポキシ基を有する化合物の重量平均分子量(Mw)は、重量平均分子量が既知のポリスチレン試料(例えば、東ソー株式会社製のA-500(重量平均分子量589)、A-1000(重量平均分子量1,010)、A-2500(重量平均分子量312)、A-5000(重量平均分子量5,430)、F-1(重量平均分子量9,490)、F-2(重量平均分子量15,700)、F-4(重量平均分子量37,200)、F-10(重量平均分子量98,900)、F-20(重量平均分子量189,000)、F-40(重量平均分子量397,000)、F-80(重量平均分子量707,000)、F-128(重量平均分子量1,110,000))によって作成した検量線を標準として計算される。 The weight average molecular weight (Mw) of the compound having the epoxy group can be measured using GPC. The weight average molecular weight (Mw) of the compound having an epoxy group is calculated based on a calibration curve prepared using polystyrene samples with known weight average molecular weights (e.g., A-500 (weight average molecular weight 589), A-1000 (weight average molecular weight 1,010), A-2500 (weight average molecular weight 312), A-5000 (weight average molecular weight 5,430), F-1 (weight average molecular weight 9,490), F-2 (weight average molecular weight 15,700), F-4 (weight average molecular weight 37,200), F-10 (weight average molecular weight 98,900), F-20 (weight average molecular weight 189,000), F-40 (weight average molecular weight 397,000), F-80 (weight average molecular weight 707,000), and F-128 (weight average molecular weight 1,110,000) manufactured by Tosoh Corporation).
前記GPCに供する試料は、前記エポキシ基を有する化合物とクロロホルムとを、該エポキシ基を有する化合物の濃度が2mg/mL程度になるように混合し、卓上振盪機(例えば、アズワン株式会社製のMSI-60)で半日程度振盪し、前記エポキシ基を有する化合物が溶解したことを確認した後、0.45μmのメンブレンフィルターにてろ過して用いる。溶解しにくいものはクロロホルムの沸点以下の温度で加熱して溶解することもできる。前記GPCの測定装置及び測定条件は、特に制限はないが、このようにして調製した試料を、例えば、前記発泡シートの重量平均分子量(Mw)の測定と同様の測定装置及び測定条件で測定することができる。 The sample to be subjected to the GPC is prepared by mixing the compound having an epoxy group with chloroform so that the concentration of the compound having an epoxy group is about 2 mg/mL, shaking the mixture with a tabletop shaker (e.g., MSI-60 manufactured by AS ONE Corporation) for about half a day, and after confirming that the compound having an epoxy group has dissolved, filtering the mixture with a 0.45 μm membrane filter before use. Those that are difficult to dissolve can also be dissolved by heating at a temperature below the boiling point of chloroform. There are no particular limitations on the measuring device and measuring conditions for the GPC, but the sample prepared in this manner can be measured, for example, with the same measuring device and measuring conditions as those for measuring the weight average molecular weight (Mw) of the foamed sheet.
-イソシアネート基を有する化合物-
前記鎖伸長剤(架橋剤)としての前記分子内に2つ以上のイソシアネート基を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香族ジイソシアネート化合物、トリイソシアネート化合物、変性ポリイソシアネート化合物などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
- Compounds having isocyanate groups -
The compound having two or more isocyanate groups in the molecule as the chain extender (crosslinking agent) is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include aliphatic diisocyanate compounds, alicyclic polyisocyanate compounds, aromatic diisocyanate compounds, triisocyanate compounds, modified polyisocyanate compounds, etc. These may be used alone or in combination of two or more.
前記脂肪族ジイソシアネート化合物としては、例えば、1,6-ヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)、1,4-テトラメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキシル-2,4-ジイソシアネート、メチルシクロヘキシル-2,6-ジイソシアネート、キシリレンジイソシアネート、1,3-ビス(イソシアネート)メチルシクロヘキサン、テトラメチルキシリレンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、リジンジイソシアネートなどが挙げられる。 Examples of the aliphatic diisocyanate compounds include 1,6-hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate), 1,4-tetramethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, methylcyclohexyl-2,4-diisocyanate, methylcyclohexyl-2,6-diisocyanate, xylylene diisocyanate, 1,3-bis(isocyanato)methylcyclohexane, tetramethylxylylene diisocyanate, transcyclohexane-1,4-diisocyanate, and lysine diisocyanate.
前記脂環族ポリイソシアネートとしては、例えば、イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添トリレンジイソシアネート、水添キシリレンジイソシアネート、水添テトラメチルキシリレンジイソシアネート、シクロヘキサンジイソシアネートなどが挙げられる。 Examples of the alicyclic polyisocyanate include isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, and cyclohexane diisocyanate.
前記芳香族ジイソシアネートとしては、例えば、2,4-トルイレンジイソシアネート、2,6-トルイレンジイソシアネート、ジフェニルメタン-4,4’-イソシアネート、1,5’-ナフテンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,3-フェニレンジイソシアネートなどが挙げられる。 Examples of the aromatic diisocyanate include 2,4-toluylene diisocyanate, 2,6-toluylene diisocyanate, diphenylmethane-4,4'-isocyanate, 1,5'-naphthene diisocyanate, tolidine diisocyanate, diphenylmethylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, and 1,3-phenylene diisocyanate.
前記トリイソシアネート化合物としては、例えば、リジンエステルトリイソシアネート、トリフェニルメタントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-イソシアネート-4,4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチロールプロパンと2,4-トルイレンジイソシアネートとのアダクト体、トリメチロールプロパンと1,6-ヘキサメチレンジイソシアネート等のジイソシアネートとのアダクト体などが挙げられる。 Examples of the triisocyanate compound include lysine ester triisocyanate, triphenylmethane triisocyanate, 1,6,11-undecane triisocyanate, 1,8-isocyanate-4,4-isocyanate methyloctane, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, an adduct of trimethylolpropane and 2,4-toluylene diisocyanate, and an adduct of trimethylolpropane and a diisocyanate such as 1,6-hexamethylene diisocyanate.
前記変性ポリイソシアネート化合物としては、例えば、グリセリン、ペンタエリストール等の多価アルコールと、前記脂肪族ジイソシアネート化合物、前記芳香族ジイソシアネート化合物、及び/又は前記トリイソシアネート化合物などと反応させて得られる化合物などが挙げられる。 Examples of the modified polyisocyanate compound include compounds obtained by reacting a polyhydric alcohol such as glycerin or pentaerythritol with the aliphatic diisocyanate compound, the aromatic diisocyanate compound, and/or the triisocyanate compound.
前記ポリ乳酸樹脂組成物における前記鎖伸長剤(架橋剤)の含有量は、用いるポリ乳酸樹脂の分子量や分子量分布によっても異なる。例えば、重量平均分子量が小さいか、低分子量のポリ乳酸樹脂が多くなると、前記ポリ乳酸樹脂組成物を発泡に適した粘度に調整するためにより多くの前記鎖伸長剤(架橋剤)を添加することが必要となる傾向がある。しかし、前記鎖伸長剤(架橋剤)の添加量が増えると、生分解性に劣る傾向があることや、該鎖伸長剤(架橋剤)は一般的に石油由来化合物であることから、持続可能な社会への貢献の観点で好ましくない。 The content of the chain extender (crosslinker) in the polylactic acid resin composition varies depending on the molecular weight and molecular weight distribution of the polylactic acid resin used. For example, when the weight average molecular weight is small or when there is a large amount of low molecular weight polylactic acid resin, it tends to be necessary to add more of the chain extender (crosslinker) to adjust the viscosity of the polylactic acid resin composition to a suitable level for foaming. However, when the amount of the chain extender (crosslinker) added is increased, biodegradability tends to be poor, and the chain extender (crosslinker) is generally a petroleum-derived compound, which is undesirable from the perspective of contributing to a sustainable society.
前記ポリ乳酸樹脂組成物における前記エポキシ基を有する化合物以外の鎖伸長剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ基を有する化合物と前記エポキシ基を有する化合物以外の鎖伸長剤との総和が、前記ポリ乳酸樹脂組成物中の有機物の総量に対して2質量%未満であることが好ましい。 The content of the chain extender other than the compound having an epoxy group in the polylactic acid resin composition is not particularly limited and can be appropriately selected depending on the purpose, but it is preferable that the sum of the compound having an epoxy group and the chain extender other than the compound having an epoxy group is less than 2 mass% of the total amount of organic matter in the polylactic acid resin composition.
なお、前記鎖伸長剤(架橋剤)を配合すること以外のその他の粘度調整方法としては、電子線等により前記ポリ乳酸樹脂組成物を架橋する方法、高い溶融張力を有する別の樹脂組成物や少量の高分子量成分とブレンドする方法などが挙げられる。 Other viscosity adjustment methods besides adding the chain extender (crosslinking agent) include crosslinking the polylactic acid resin composition with an electron beam or blending it with another resin composition having a high melt tension or a small amount of a high molecular weight component.
<<発泡核剤>>
前記発泡核剤(以下「フィラー」と称することもある)は、前記発泡シートの発泡状態(泡の大きさ、量、及び配置等)などを調節するために、前記ポリ乳酸樹脂組成物に含有することが好ましい。
前記発泡核剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機系核剤、無機系核剤などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、前記発泡シートの発泡径が小さくなり断熱性が向上する点で、無機系核剤が好ましい。
<<Foaming nucleating agent>>
The foaming nucleating agent (hereinafter sometimes referred to as "filler") is preferably contained in the polylactic acid resin composition in order to adjust the foaming state of the foam sheet (bubble size, amount, arrangement, etc.).
The foaming nucleating agent is not particularly limited and may be appropriately selected depending on the purpose, and examples thereof include organic nucleating agents and inorganic nucleating agents. These may be used alone or in combination of two or more. Among these, inorganic nucleating agents are preferred in that the foaming diameter of the foamed sheet is reduced and the heat insulating properties are improved.
前記有機系核剤としては、例えば、澱粉、セルロースナノファイバー、セルロース微粒子、木粉、おから、モミ殻、フスマ等の天然に存在するポリマーやこれらの変性品、またグリセリン化合物、ソルビトール化合物、安息香酸及びその化合物の金属塩、燐酸エステル金属塩、ロジン化合物などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 The organic nucleating agents include, for example, naturally occurring polymers such as starch, cellulose nanofibers, cellulose fine particles, wood flour, soybean pulp, rice husks, bran, and modified products thereof, as well as glycerin compounds, sorbitol compounds, metal salts of benzoic acid and its compounds, metal salts of phosphate esters, and rosin compounds. These may be used alone or in combination of two or more.
前記無機系核剤としては、例えば、タルク、カオリン、炭酸カルシウム、層状ケイ酸塩、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウイスカー、セラミックウイスカー、チタン酸カリウム、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維等の無機粒子などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、前記無機系核剤としては、その表面処理により前記発泡シートに適した平均疎水化度及び炭素含有量を実現しやすい点から活性水素基を有する無機粒子が好ましく、層状ケイ酸塩、シリカが特に好ましい。 Examples of the inorganic nucleating agent include inorganic particles such as talc, kaolin, calcium carbonate, layered silicate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloons, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fibers, metal whiskers, ceramic whiskers, potassium titanate, boron nitride, graphite, glass fibers, and carbon fibers. These may be used alone or in combination of two or more. Among these, inorganic particles having active hydrogen groups are preferred as the inorganic nucleating agent because they are easy to achieve an average hydrophobicity and carbon content suitable for the foamed sheet by surface treatment, and layered silicate and silica are particularly preferred.
前記無機系核剤の平均疎水化度及び炭素含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、平均疎水化度は65体積%以上が好ましく、炭素含有量は4質量%以上が好ましい。前記無機系核剤の平均疎水化度及び炭素含有量が前記好ましい範囲内であると、二酸化炭素や窒素等の非極性発泡剤を用いる場合に、疎水的な無機粒子表面が発泡核形成場として好適に作用し、発泡核を効率的に形成することができる。また、前記無機系核剤の平均疎水化度及び炭素含有量の上限値としても、特に制限はないが、平均疎水化度は68体積%以下が好ましく、炭素含有量は8.9質量%以下が好ましい。前記無機系核剤の平均疎水化度が前記好ましい範囲内であると、無機粒子の凝集を抑制することができる傾向にある。しかし、凝集の程度は適用する混練条件及び混練装置にも強く依存するため、本発明の効果は前記好ましい範囲に限定されるものではない。また、前記無機系核剤の炭素含有量が前記好ましい範囲内であると、無機粒子からの表面処理剤由来成分の遊離量を低減できる傾向にある。 The average hydrophobicity and carbon content of the inorganic nucleating agent are not particularly limited and can be appropriately selected according to the purpose, but the average hydrophobicity is preferably 65% by volume or more, and the carbon content is preferably 4% by mass or more. When the average hydrophobicity and carbon content of the inorganic nucleating agent are within the above-mentioned preferred ranges, when a non-polar foaming agent such as carbon dioxide or nitrogen is used, the hydrophobic inorganic particle surface acts favorably as a foam nucleation field, and foam nuclei can be efficiently formed. In addition, the upper limit of the average hydrophobicity and carbon content of the inorganic nucleating agent is not particularly limited, but the average hydrophobicity is preferably 68% by volume or less, and the carbon content is preferably 8.9% by mass or less. When the average hydrophobicity of the inorganic nucleating agent is within the above-mentioned preferred ranges, the aggregation of inorganic particles tends to be suppressed. However, since the degree of aggregation is strongly dependent on the kneading conditions and kneading device used, the effect of the present invention is not limited to the above-mentioned preferred ranges. In addition, when the carbon content of the inorganic nucleating agent is within the above-mentioned preferred ranges, the amount of surface treatment agent-derived components released from the inorganic particles tends to be reduced.
古典的核形成理論に拠れば、気泡核と無機粒子表面との接触角が小さくなれば発泡核形成の活性化エネルギーが低下し、核形成が円滑に進行する。したがって、無機粒子表面の化学的な性質としては疎水化度のみが重要であるように考えられる。しかし、本発明者らが鋭意検討した結果、前記無機系核剤としての無機粒子の疎水化度が高いだけでは、発泡核剤として有効ではない傾向にあった。詳細な理由は不明であるが、前記無機系核剤としての無機粒子の平均疎水化度が65体積%以上、かつ前記無機粒子の炭素含有量が4質量%以上である場合に、発泡核剤として顕著な効果が得られることを見出した。前記無機粒子の炭素含有量が4質量%以上であると、該無機粒子の表層に発泡剤との親和性が高い一定の体積が生じると考えられる。本発明のように、発泡剤の濃度が低い場合、発泡核形成のために発泡剤の拡散が律速となることが想像される。無機粒子表面に存在する発泡剤との親和性が高い一定の体積中では、発泡剤濃度がその他の部分と比べて実質的に高くなることが考えられ、発泡核形成時の発泡剤の調達に有利に働くものと考えられる。 According to classical nucleation theory, if the contact angle between the bubble nucleus and the inorganic particle surface is small, the activation energy of foam nucleation is reduced, and nucleation proceeds smoothly. Therefore, it is thought that only the hydrophobicity is important as a chemical property of the inorganic particle surface. However, as a result of the intensive research by the present inventors, it was found that the inorganic particles as the inorganic nucleating agent tend not to be effective as a foam nucleating agent simply because the hydrophobicity is high. Although the detailed reason is unclear, it was found that a remarkable effect as a foam nucleating agent can be obtained when the average hydrophobicity of the inorganic particles as the inorganic nucleating agent is 65% by volume or more and the carbon content of the inorganic particles is 4% by mass or more. It is believed that when the carbon content of the inorganic particles is 4% by mass or more, a certain volume with high affinity with the foaming agent is generated on the surface layer of the inorganic particles. It is conceivable that when the concentration of the foaming agent is low as in the present invention, the diffusion of the foaming agent becomes the rate-limiting factor for foam nucleation. It is believed that in a certain volume where the affinity with the blowing agent present on the inorganic particle surface is high, the blowing agent concentration is substantially higher than in other parts, which is advantageous for obtaining the blowing agent when forming the foam nuclei.
前記無機粒子の疎水化度は、メタノールウェッタビリティ法(MW法)により求められるものである。この数値が大きいほど疎水性が高く、数値が小さいほど親水性が高いことを示す。
前記無機粒子の疎水化度は、無機粒子をV1[mL]の純水に添加し、撹拌しながらメタノールを滴下し、無機粒子が湿潤して液中に分散するまでに要したメタノールの量をV2[mL]としたとき、下記式(7)で得られる。
疎水化度[体積%]={V2/(V1+V2)}×100 ・・・ 式(7)
The hydrophobicity of the inorganic particles is determined by a methanol wettability method (MW method). A larger value indicates a higher hydrophobicity, and a smaller value indicates a higher hydrophilicity.
The hydrophobicity of the inorganic particles is obtained by adding the inorganic particles to V1 [mL] of pure water, dropping methanol thereinto while stirring, and letting the amount of methanol required for the inorganic particles to be wetted and dispersed in the liquid be V2 [mL], according to the following formula (7).
Hydrophobicity [volume %] = {V2/(V1+V2)} × 100 ... Formula (7)
本発明における疎水化度とは以下に記載する測定方法により得られた値をいう。
50mLスクリュー管(ラボランスクリュー管瓶 9-852-09、No.7、ラボランテック製)に50mgの無機粒子を秤量し、純水5mL(V1[mL])を加えて試料とする。撹拌子(直径6mm、長さ20mm、楕円形)を静かに入れ、マグネティックスターラー(MX-1型、柴田科学株式会社製)で水面にボルテックスが生じない様に静かに攪拌を行う。孔を空けたパラフィルムで容器口を覆い、25mLビュレット(公差±0.03mL、アズワン株式会社製)を用いて、メタノール(特級、>99.8%、関東化学株式会社製)を0.3mL/分間の速度で壁面を伝わせるように加えていき、無機粒子が液中に分散するまでに要したメタノールの量(V2[mL])を測定する。測定は3回行い、前記式(7)で疎水化度を算出し算術平均した値を平均疎水化度とする。
The degree of hydrophobicity in the present invention refers to a value obtained by the measurement method described below.
50 mg of inorganic particles are weighed into a 50 mL screw tube (Labolan screw tube bottle 9-852-09, No. 7, manufactured by Labolantec), and 5 mL of pure water (V1 [mL]) is added to prepare a sample. A stir bar (diameter 6 mm, length 20 mm, elliptical) is gently placed in the tube, and the tube is gently stirred with a magnetic stirrer (MX-1 type, manufactured by Shibata Scientific Co., Ltd.) so that a vortex does not occur on the water surface. The mouth of the container is covered with a perforated parafilm, and methanol (special grade, >99.8%, manufactured by Kanto Chemical Co., Ltd.) is added at a rate of 0.3 mL/min along the wall surface using a 25 mL burette (tolerance ±0.03 mL, manufactured by AS ONE Co., Ltd.), and the amount of methanol (V2 [mL]) required until the inorganic particles are dispersed in the liquid is measured. The measurement is performed three times, and the hydrophobicity is calculated using the above formula (7), and the arithmetic average value is taken as the average hydrophobicity.
また、前記無機粒子の炭素含有量は、ISO 3262-20:2021に準拠し、以下に記載する測定方法により測定することができる。
前記無機粒子を800℃で完全燃焼した後、燃焼ガス成分中の二酸化炭素を熱伝導度検出器(TCD)ガスクロマトグラフで検出し、定量することにより算出する。
The carbon content of the inorganic particles can be measured in accordance with ISO 3262-20:2021 by the measurement method described below.
The inorganic particles are completely combusted at 800° C., and then carbon dioxide in the combustion gas components is detected by a thermal conductivity detector (TCD) gas chromatograph and quantified to calculate the carbon dioxide content.
-シリカ-
前記シリカは、SiO2で表される二酸化ケイ素を主成分とするものである。シリカ粒子の製造方法により大別して、乾式法シリカと湿式法シリカの2つに分けられるが、本発明では、いずれの方法で製造されたものも用いることができる。シリカは、シランカップリング剤、チタネートカップリング剤等の反応性化合物によって、表面処理がなされていることが好ましく、オルガノポリシロキサン(シリコーンオイル)、炭素数16以上のアルキルシラン等の反応性化合物によって、表面処理がなされていることがより好ましい。
-silica-
The silica is mainly composed of silicon dioxide represented by SiO2 . The silica particles are roughly divided into two types, dry process silica and wet process silica, according to the method of producing the silica particles, and the silica produced by either method can be used in the present invention. The silica is preferably surface-treated with a reactive compound such as a silane coupling agent or a titanate coupling agent, and more preferably surface-treated with a reactive compound such as an organopolysiloxane (silicone oil) or an alkylsilane having 16 or more carbon atoms.
-層状ケイ酸塩-
前記層状ケイ酸塩の体積平均粒子径(Mv)としては、特に制限はなく、目的に応じて適宜選択することができるが、10μm以上200μm以下であることが好ましい。前記層状ケイ酸塩の体積平均粒子径(Mv)が10μm以上であると、回り道する経路が短くなり、十分にガス成分を保持できないため、発泡倍率の向上効果が得られないという不具合が生じにくい。また、前記層状ケイ酸塩の体積平均粒子径(Mv)が200μm以下であると、泡壁が脆くなりにくく、破泡につながりにくいため、発泡倍率向上効果が得られる。
- Layered silicate -
The volume average particle diameter (Mv) of the layered silicate is not particularly limited and can be appropriately selected according to the purpose, but is preferably 10 μm or more and 200 μm or less. If the volume average particle diameter (Mv) of the layered silicate is 10 μm or more, the detour path becomes short, and the gas component cannot be sufficiently retained, so that the problem of not being able to improve the expansion ratio is unlikely to occur. In addition, if the volume average particle diameter (Mv) of the layered silicate is 200 μm or less, the bubble wall is unlikely to become brittle, which is unlikely to lead to bubble breakage, so that the expansion ratio improvement effect can be obtained.
前記層状ケイ酸塩の体積平均粒子径(Mv)は仕込み前の層状ケイ酸塩を測定してもよいし、前記発泡シートから、例えば、以下の方法で取り出したものを測定してもよい。
前記発泡シートの試料を切り出して、るつぼに入れマッフル炉(例えば、FP-310、ヤマト科学株式会社製)を用いて600℃で4時間燃焼し、有機成分を燃焼させる。その後、デシケータ内でるつぼを1時間冷却し、得られた無機粒子を測定用試料とする。無機粒子が2種類以上含まれている場合は、更に比重分離によって層状ケイ酸塩を分離することができる。
前記層状ケイ酸塩の体積平均粒子径(Mv)の測定方法としては、特に制限はなく、例えば、以下の測定装置及び測定条件により求めることができる。本発明においては、前記層状ケイ酸塩の体積平均粒子径(Mv)を、該層状ケイ酸塩の平均粒子径とする。
[[測定装置及び測定条件]]
・ 装置:マイクロトラックMT3300EX(マイクロトラック・ベル株式会社製)
・ 測定条件:透過性/透過、屈折率/1.53、形状/非球形、溶媒/AIR、溶媒屈折率/1、測定時間/10s、拡張フィルタ/無効、分布/体積
The volume average particle size (Mv) of the layered silicate may be measured on the layered silicate before charging, or may be measured on a particle taken out of the foamed sheet by, for example, the following method.
A sample of the foamed sheet is cut out, placed in a crucible, and burned at 600° C. for 4 hours in a muffle furnace (e.g., FP-310, manufactured by Yamato Scientific Co., Ltd.) to burn off the organic components. The crucible is then cooled in a desiccator for 1 hour, and the resulting inorganic particles are used as a measurement sample. When two or more types of inorganic particles are contained, the layered silicate can be further separated by gravity separation.
The method for measuring the volume average particle size (Mv) of the layered silicate is not particularly limited, and can be determined, for example, by the following measuring device and measuring conditions. In the present invention, the volume average particle size (Mv) of the layered silicate is defined as the average particle size of the layered silicate.
[Measurement equipment and conditions]
・ Equipment: Microtrac MT3300EX (manufactured by Microtrac Bell Co., Ltd.)
Measurement conditions: Transmittance/transmitted, refractive index/1.53, shape/aspheric, solvent/AIR, solvent refractive index/1, measurement time/10 s, extension filter/invalid, distribution/volume
前記層状ケイ酸塩のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、10以上100以下が好ましく、25以上75以下がより好ましい。前記層状ケイ酸塩のアスペクト比が10以上であると、配向性が良好であり、十分な曲路効果が得られるため、前記発泡シートの発泡倍率の向上効果が得らる。また、前記層状ケイ酸塩のアスペクト比が100以下であると、混練工程で前記ポリ乳酸樹脂組成物と前記層状ケイ酸塩とを混練する際に、該層状ケイ酸塩が粉砕され、結果としてアスペクト比が小さくなってしまうという不具合がないため十分な効果が得られる。 The aspect ratio of the layered silicate is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 10 to 100, more preferably 25 to 75. When the aspect ratio of the layered silicate is 10 or more, the orientation is good and a sufficient curved path effect is obtained, so that the effect of improving the expansion ratio of the foamed sheet is obtained. In addition, when the aspect ratio of the layered silicate is 100 or less, when the polylactic acid resin composition and the layered silicate are kneaded in the kneading process, the layered silicate is crushed, and as a result, there is no problem that the aspect ratio becomes small, and therefore a sufficient effect can be obtained.
前記層状ケイ酸塩のアスペクト比は、下記式(8)によって求められる。
アスペクト比=層状ケイ酸塩の体積平均粒子径(Mv)/層状ケイ酸塩の平均厚み ・・・ 式(8)
前記式(8)において、前記層状ケイ酸塩の体積平均粒子径(Mv)及び前記層状ケイ酸塩の厚みの測定方法は、特に制限はないが、例えば、体積平均粒子径(Mv)は前記測定方法によって求められ、また、厚みは以下の方法で求めることができる。
The aspect ratio of the layered silicate is calculated by the following formula (8).
Aspect ratio=volume average particle size (Mv) of layered silicate/average thickness of layered silicate Formula (8)
In the formula (8), the method for measuring the volume average particle diameter (Mv) of the layered silicate and the thickness of the layered silicate is not particularly limited, and for example, the volume average particle diameter (Mv) can be determined by the above-mentioned measurement method, and the thickness can be determined by the following method.
前記層状ケイ酸塩の厚みの測定方法としては、例えば、走査電子顕微鏡(SEM)(例えば、3Dリアルサーフェスビュー顕微鏡 VE-9800、KEYENCE社製)を用いて層状ケイ酸塩のSEM観察を行う。拡大倍率は、観察範囲の粒子数が数十~数百個になるように調整する。必要に応じて、複数の視野を撮影し、画像を連結させて画像解析に供してもよい。取り込んだ画像から層状ケイ酸塩の厚み面が観察面に水平になっている粒子を選択し、厚みを計測する。粒子50個の平均値をとり、層状ケイ酸塩の平均厚みとする。 The thickness of the layered silicate can be measured, for example, by SEM observation of the layered silicate using a scanning electron microscope (SEM) (e.g., 3D Real Surface View Microscope VE-9800, manufactured by KEYENCE). The magnification is adjusted so that the number of particles in the observation range is several tens to several hundreds. If necessary, multiple fields of view can be photographed, and the images can be linked and subjected to image analysis. From the captured image, particles whose thickness plane of the layered silicate is horizontal to the observation plane are selected, and the thickness is measured. The average value of 50 particles is taken, which is the average thickness of the layered silicate.
前記ポリ乳酸樹脂組成物中の前記発泡核剤の含有量としては、前記発泡シートの物性を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、前記ポリ乳酸樹脂組成物の全質量に対して、0.1質量%以上10質量%以下が好ましく、0.25質量%以上2.5質量%以下がより好ましい。前記発泡核剤の含有量が、0.1質量%以上10質量%以下であると、前記発泡核剤同士が凝集する不具合や、前記ポリ乳酸樹脂組成物の比重が高くなり、前記発泡シートの軽量性が損なわれることを防止できる。また、前記発泡核剤の含有量が、0.25質量%以上2.5質量%以下であることにより、前記発泡核剤の量が少なく環境負荷が低減されることに加え、前記発泡シートが脆化することを防ぐことができる。 The content of the foam nucleating agent in the polylactic acid resin composition is not particularly limited as long as it does not impair the physical properties of the foam sheet, and can be appropriately selected according to the purpose. However, it is preferably 0.1% by mass to 10% by mass, and more preferably 0.25% by mass to 2.5% by mass, based on the total mass of the polylactic acid resin composition. When the content of the foam nucleating agent is 0.1% by mass to 10% by mass, it is possible to prevent the foam nucleating agents from agglomerating together, and to prevent the specific gravity of the polylactic acid resin composition from increasing, thereby preventing the lightweight properties of the foam sheet from being impaired. In addition, when the content of the foam nucleating agent is 0.25% by mass to 2.5% by mass, the amount of the foam nucleating agent is small, reducing the environmental load, and preventing the foam sheet from becoming embrittled.
<<その他の成分>>
前記ポリ乳酸樹脂組成物における前記その他の成分としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記ポリ乳酸樹脂以外の樹脂成分、各種添加剤などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
<<Other ingredients>>
The other components in the polylactic acid resin composition are not particularly limited as long as they do not impair the effects of the present invention and can be appropriately selected depending on the purpose, and examples thereof include resin components other than the polylactic acid resin, various additives, etc. These may be used alone or in combination of two or more.
-ポリ乳酸樹脂以外の樹脂成分-
前記ポリ乳酸樹脂以外の樹脂成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレタン樹脂、ポリエステル樹脂、アクリル系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、ブタジエン系樹脂、スチレン-ブタジエン系樹脂、塩化ビニル系樹脂、アクリルスチレン系樹脂、アクリルシリコーン系樹脂などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
- Resin components other than polylactic acid resin -
The resin component other than the polylactic acid resin is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include urethane resin, polyester resin, acrylic resin, vinyl acetate resin, styrene resin, butadiene resin, styrene-butadiene resin, vinyl chloride resin, acrylic styrene resin, acrylic silicone resin, etc. These may be used alone or in combination of two or more.
-添加剤-
前記添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱安定剤、酸化防止剤、可塑剤、滑剤、結晶化促進剤、増粘剤などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記増粘剤としては、重量平均分子量が100万以上の高分子量成分などが挙げられる。
-Additives-
The additives are not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include heat stabilizers, antioxidants, plasticizers, lubricants, crystallization promoters, thickeners, etc. These may be used alone or in combination of two or more.
The thickener may be a high molecular weight component having a weight average molecular weight of 1,000,000 or more.
前記その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ポリ乳酸樹脂組成物における有機物の総量に対して2質量%未満が好ましい。この場合、生分解性やリサイクル性がより良好になる。 The content of the other components is not particularly limited and can be selected appropriately depending on the purpose, but it is preferably less than 2 mass% of the total amount of organic matter in the polylactic acid resin composition. In this case, biodegradability and recyclability will be improved.
なお、前記ポリ乳酸樹脂組成物中の各成分の含有量は、該ポリ乳酸樹脂組成物からなる発泡シート中の各成分の含有量と同義である。 The content of each component in the polylactic acid resin composition is the same as the content of each component in a foamed sheet made of the polylactic acid resin composition.
以上のように、本発明においては、熱成型性に優れる発泡シートを得る為に、高い結晶性のポリ乳酸樹脂組成物を、低い結晶化度を維持して発泡シートに成型する点に特徴がある。前記特徴を実現するために、前記ポリ乳酸樹脂組成物の混練から押出までの温度を、前記ポリ乳酸樹脂組成物の融点から-20℃以上の比較的高い温度に維持する必要があるが、これは先行文献に開示されるようなポリ乳酸樹脂組成物を冷却することで発泡に適した粘度範囲に調整する方法が困難であることを意味する。したがって、本発明におけるポリ乳酸樹脂組成物は、前記ポリ乳酸樹脂組成物の融点から-20℃以上の比較的高い温度で発泡剤を保持できるように、高い溶融粘度を有する特徴がある。 As described above, the present invention is characterized in that a highly crystalline polylactic acid resin composition is molded into a foamed sheet while maintaining a low degree of crystallinity in order to obtain a foamed sheet with excellent thermoformability. In order to achieve this characteristic, the temperature of the polylactic acid resin composition from kneading to extrusion must be maintained at a relatively high temperature of at least -20°C below the melting point of the polylactic acid resin composition, but this means that it is difficult to adjust the viscosity range of the polylactic acid resin composition to a range suitable for foaming by cooling it, as disclosed in prior art documents. Therefore, the polylactic acid resin composition of the present invention is characterized by having a high melt viscosity so that the foaming agent can be maintained at a relatively high temperature of at least -20°C below the melting point of the polylactic acid resin composition.
本発明の発泡シートは、そのまま使用されてもよいし、成型した成型体(製造物)として使用されてもよい。本発明の発泡シートは、成型性、耐熱性、断熱性、及び生分解性に優れるため、食品用容器、食器などとして好適に用いられる。また、耐熱性食品用容器として好適であるが、このような用途に限定されるものではない。また、本発明の発泡シートにそのまま印字などをして使用してもよい。 The foamed sheet of the present invention may be used as it is, or may be molded and used as a molded body (product). The foamed sheet of the present invention is excellent in moldability, heat resistance, heat insulation, and biodegradability, and is therefore suitable for use as food containers, tableware, and the like. It is also suitable as a heat-resistant food container, but is not limited to such uses. The foamed sheet of the present invention may also be used as it is after printing, etc.
(発泡シートの製造方法)
本発明における発泡シートは、前記ポリ乳酸樹脂組成物を押出発泡して得られる。
以下に本発明における発泡シートの製造工程について、より詳細な説明を行う。
本発明における発泡シートの製造工程は、少なくとも混練工程と、含浸工程と、発泡工程とを含むことが好ましく、更に必要に応じて、その他の工程を含む。
(Method of manufacturing foam sheet)
The foamed sheet of the present invention is obtained by extrusion foaming the polylactic acid resin composition.
The process for producing the foamed sheet of the present invention will be described in more detail below.
The process for producing the foamed sheet in the present invention preferably includes at least a kneading step, an impregnation step, and a foaming step, and may further include other steps as necessary.
前記押出発泡に用いられる押出機としては、例えば、単軸押出機、二軸押出機、また、これらを組み合わせたタンデム型押出機等を用いることができる。これらの中でも、前記ポリ乳酸樹脂、更に必要に応じて、前記鎖伸長剤、前記発泡核剤、前記その他の成分、発泡剤等の発泡シートの原材料を効率的に溶融混練し、これら溶融混合物を所定の温度に冷却して押し出すことができる観点からタンデム型押出機を用いることが好ましく、溶融混練、冷却の効率性の観点から二軸押出機と単軸押出機とを組合せたタンデム型押出機が最も好ましい。また、必要に応じて二軸押出機と単軸押出機の間や、押出機とダイの間にギヤポンプ等の流量調整機構を設置してもよい。 The extruder used for the extrusion foaming may be, for example, a single screw extruder, a twin screw extruder, or a tandem extruder that combines these. Among these, it is preferable to use a tandem extruder from the viewpoint of efficiently melt-kneading the raw materials of the foamed sheet, such as the polylactic acid resin and, if necessary, the chain extender, the foaming nucleating agent, the other components, and the foaming agent, and cooling the molten mixture to a predetermined temperature before extruding. From the viewpoint of efficiency of melt-kneading and cooling, a tandem extruder that combines a twin screw extruder and a single screw extruder is most preferable. In addition, a flow rate control mechanism such as a gear pump may be installed between the twin screw extruder and the single screw extruder or between the extruder and the die, if necessary.
前記押出機の先端には、Tダイあるいはサーキュラーダイ(「丸ダイ」とも称することがある)と呼ばれる環状ダイを接続して前記溶融混合物を押出し、発泡シートを得ることができる。 A circular die called a T-die or circular die (sometimes called a "round die") is connected to the tip of the extruder to extrude the molten mixture and obtain a foamed sheet.
かさ密度の低い発泡シートを得ようとする場合、コルゲートを緩和しやすい観点からサーキュラーダイを用いて発泡シートを製造することが好ましい。この場合、サーキュラーダイから押し出される筒状の発泡体を、冷却したマンドレルに沿わせながら引き取って冷却し、更に外周からは空気を吹き付けて迅速に冷却することが好ましい。このような冷却を行うことで、発泡シートの押出し後の結晶化を抑制することができ、熱成型性に優れた発泡シートを得ることができる。 When attempting to obtain a foamed sheet with low bulk density, it is preferable to produce the foamed sheet using a circular die from the viewpoint of making it easier to alleviate corrugation. In this case, it is preferable to take the tubular foam extruded from the circular die along a cooled mandrel, take it up and cool it, and further blow air onto the outer periphery to cool it quickly. By cooling in this manner, crystallization of the foamed sheet after extrusion can be suppressed, and a foamed sheet with excellent thermoformability can be obtained.
また、必要に応じて二軸押出機と単軸押出機の間や、押出機とダイの間にギヤポンプ等の流量調整機構を設置してもよい。 If necessary, a flow rate control mechanism such as a gear pump may be installed between the twin-screw extruder and the single-screw extruder, or between the extruder and the die.
<<発泡剤>>
前記発泡シートは、好ましくは、前記ポリ乳酸樹脂組成物と発泡剤とを溶融混練した後、押出発泡することで得ることができる。前記発泡剤としては、公知の物理発泡剤を用いることができる。
例えば、物理発泡剤としては、エタン、ブタン、ペンタン、ヘキサン、ヘプタン、エチレン、プロピレン、石油エーテルといった炭化水素類;塩化メチル、モノクロロトリフルオロメタン、ジクロロジフルオロメタン、ジクロロテトラフルオロエタンといったハロゲン系発泡剤;空気;二酸化炭素;窒素などを挙げることができる。
<<Foaming agent>>
The foamed sheet can be obtained by melt-kneading the polylactic acid resin composition and a foaming agent, followed by extrusion foaming. As the foaming agent, a known physical foaming agent can be used.
For example, physical blowing agents include hydrocarbons such as ethane, butane, pentane, hexane, heptane, ethylene, propylene, and petroleum ether; halogen-based blowing agents such as methyl chloride, monochlorotrifluoromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane; air; carbon dioxide; and nitrogen.
本発明においては環境負荷が低く、また作業安全性が高く、取り扱いが容易な点から二酸化炭素、窒素が好ましく、窒素と比べると二酸化炭素の方が、ポリ乳酸樹脂組成物への溶解性の観点から好ましい。 In the present invention, carbon dioxide and nitrogen are preferred because they have a low environmental impact, are highly safe to work with, and are easy to handle. Carbon dioxide is more preferred than nitrogen in terms of its solubility in the polylactic acid resin composition.
一方、二酸化炭素は炭化水素系発泡剤と比べて蒸気圧が高く、ポリ乳酸樹脂組成物中での拡散速度も大きいことが知られている。したがって、二酸化炭素を発泡剤に用いて発泡シートを製造する場合、微細な発泡状態が得られるような高い発泡剤濃度では、発泡が急激に起こりコルゲートと呼ばれる筋状の外観不良や、破泡による表面のざらつき、発泡倍率の低下が起こりやすい傾向にある。 On the other hand, carbon dioxide has a higher vapor pressure than hydrocarbon-based blowing agents, and is known to have a high diffusion rate in polylactic acid resin compositions. Therefore, when producing a foamed sheet using carbon dioxide as a blowing agent, at a high blowing agent concentration that would result in a finely foamed state, foaming tends to occur rapidly, resulting in streaky appearance defects known as corrugation, surface roughness due to broken cells, and a decrease in the foaming ratio.
発泡シートの表面性を損なわずに発泡する手段としては、発泡剤の濃度を下げる方法が知られているが、過飽和度が小さくなるため発泡径が粗大化する。粗大な気泡は溶融状態のポリ乳酸樹脂組成物を突き破って系外へ放出されて壊泡することで、発泡倍率が上がらず、断熱性が悪化する。したがって、従来の方法では、発泡シートの表面性と断熱性に係る特性がトレードオフになる問題があった。 A method of reducing the concentration of the foaming agent is known as a means of foaming without impairing the surface properties of the foamed sheet, but this reduces the degree of supersaturation and results in coarse foam diameters. The coarse bubbles break through the molten polylactic acid resin composition and are released outside the system, causing the bubbles to break, preventing an increase in the foaming ratio and worsening the insulation properties. Therefore, with conventional methods, there is a problem of a trade-off between the properties related to the surface properties and insulation properties of the foamed sheet.
これに対し、本発明の発泡シートの製造方法では、前記ポリ乳酸樹脂と共に用いる前記鎖伸長剤(架橋剤)について、適切な範囲のエポキシ当量及び重量平均分子量(Mw)を持った鎖伸長剤(架橋剤)を好適に用いることで、前記ポリ乳酸樹脂組成物の溶融状態の粘度が上がり、低発泡剤領域でも破泡が抑えられて、表面性と断熱性を両立した発泡シートを得ることができる。同時に、適切な範囲のエポキシ当量及び重量平均分子量(Mw)を持った鎖伸長剤(架橋剤)は低添加濃度でも効果を発揮するため、前記ポリ乳酸樹脂組成物中のポリ乳酸樹脂の含有量を多くすることができるために生分解性が損なわれることもない。 In contrast, in the method for producing a foamed sheet of the present invention, the chain extender (crosslinker) used together with the polylactic acid resin is suitably selected to have an appropriate range of epoxy equivalent and weight average molecular weight (Mw), thereby increasing the viscosity of the molten polylactic acid resin composition and suppressing cell breakage even in the low foaming agent range, thereby making it possible to obtain a foamed sheet that has both surface properties and heat insulation properties. At the same time, since the chain extender (crosslinker) with an appropriate range of epoxy equivalent and weight average molecular weight (Mw) is effective even at a low addition concentration, the content of polylactic acid resin in the polylactic acid resin composition can be increased without impairing biodegradability.
タンデム型の押出機を用いる場合、前記発泡剤は一段目の押出機に注入することが好ましい。前記発泡剤を一段目の押出機に注入することで、前記発泡剤と前記ポリ乳酸樹脂組成物とが接触する時間を長くすることができ、溶け残った発泡剤が膨張する事による気泡の部分的な粗大化や、ピンホール等の不具合を抑制できる傾向にある。 When a tandem extruder is used, it is preferable to inject the foaming agent into the first-stage extruder. By injecting the foaming agent into the first-stage extruder, the time during which the foaming agent and the polylactic acid resin composition are in contact can be extended, and there is a tendency to suppress defects such as partial coarsening of bubbles and pinholes caused by the expansion of undissolved foaming agent.
本発明において、前記発泡剤の添加量は、前記ポリ乳酸樹脂組成物100質量部に対して、2質量部以上5質量部以下であり、2質量部以上4質量部以下が好ましい。前記発泡剤の添加量が前記ポリ乳酸樹脂組成物100質量部に対して、2質量部未満であると、前記ポリ乳酸樹脂組成物の可塑化が限定的になるという不具合や発泡倍率が高くできないといった不具合が生じる。また、前記発泡剤の添加量が前記ポリ乳酸樹脂組成物100質量部に対して、5質量部を超えると、急激な発泡による表面性の不良が生じる。 In the present invention, the amount of the foaming agent added is 2 parts by mass or more and 5 parts by mass or less, and preferably 2 parts by mass or more and 4 parts by mass or less, relative to 100 parts by mass of the polylactic acid resin composition. If the amount of the foaming agent added is less than 2 parts by mass relative to 100 parts by mass of the polylactic acid resin composition, problems such as limited plasticization of the polylactic acid resin composition and inability to increase the foaming ratio occur. Furthermore, if the amount of the foaming agent added exceeds 5 parts by mass relative to 100 parts by mass of the polylactic acid resin composition, poor surface properties occur due to rapid foaming.
<混練工程>
前記混練工程は、前記ポリ乳酸樹脂と、更に必要に応じて、前記鎖伸長剤と、前記発泡核剤と、前記その他の成分とを含む混合物を溶融及び混練し、発泡に適した粘度のポリ乳酸樹脂組成物を得る工程である。前記混練工程は、更に圧縮性流体を含むことが好ましい。前記圧縮性流体は、前記ポリ乳酸樹脂組成物を可塑化し、装置負荷を低減する目的で配合するが、後続の含浸工程を省略できる観点から前記発泡剤と同一であることが好ましい。
<Kneading process>
The kneading step is a step of melting and kneading a mixture containing the polylactic acid resin and, if necessary, the chain extender, the foaming nucleating agent, and the other components to obtain a polylactic acid resin composition having a viscosity suitable for foaming. The kneading step preferably further includes a compressive fluid. The compressive fluid is blended for the purpose of plasticizing the polylactic acid resin composition and reducing the load on the device, and is preferably the same as the foaming agent from the viewpoint of omitting the subsequent impregnation step.
前記ポリ乳酸樹脂に前記鎖伸長剤を添加した場合、前記混練工程では、前記ポリ乳酸樹脂と、前記鎖伸長剤との反応により前記ポリ乳酸樹脂組成物の粘度が調整される。 When the chain extender is added to the polylactic acid resin, the viscosity of the polylactic acid resin composition is adjusted in the kneading process by the reaction between the polylactic acid resin and the chain extender.
本発明においては、前記鎖伸長剤として前記分子内に2つ以上のエポキシ基を有する化合物が好適に用いられるため、前記混練工程の温度としては、前記ポリ乳酸樹脂組成物の融点以上240℃以下が好ましく、220℃以上240℃以下がより好ましい。前記混練工程の温度がポリ乳酸樹脂組成物の融点以上240℃以下であると、前記ポリ乳酸樹脂組成物の粘度を効果的に向上でき、更に未反応の前記分子内に2つ以上のエポキシ基を有する化合物の溶出を少なくすることができる。 In the present invention, since a compound having two or more epoxy groups in the molecule is preferably used as the chain extender, the temperature of the kneading process is preferably from the melting point of the polylactic acid resin composition to 240°C, more preferably from 220°C to 240°C. When the temperature of the kneading process is from the melting point of the polylactic acid resin composition to 240°C, the viscosity of the polylactic acid resin composition can be effectively improved, and furthermore, the elution of unreacted compounds having two or more epoxy groups in the molecule can be reduced.
<含浸工程>
前記含浸工程は、前記ポリ乳酸樹脂組成物と前記発泡剤とを溶融及び混練し、発泡性ポリ乳酸樹脂組成物を得る工程である。前記ポリ乳酸樹脂組成物に対する前記発泡剤の溶解性(溶解度、及び溶解速度)は、前記含浸工程の温度及び圧力によって異なる。前記含浸工程の温度及び圧力は、前記発泡シートの状態を観察しながら適宜設定すればよいが、一般に圧力を高くする、前記ポリ乳酸樹脂組成物の温度を低くすることで前記発泡剤の前記ポリ乳酸樹脂組成物に対する溶解度を高くすることができる。
<Impregnation process>
The impregnation step is a step of melting and kneading the polylactic acid resin composition and the foaming agent to obtain a foamable polylactic acid resin composition. The solubility (solubility and dissolution rate) of the foaming agent in the polylactic acid resin composition varies depending on the temperature and pressure of the impregnation step. The temperature and pressure of the impregnation step may be appropriately set while observing the state of the foamed sheet, but generally, the solubility of the foaming agent in the polylactic acid resin composition can be increased by increasing the pressure and decreasing the temperature of the polylactic acid resin composition.
本発明において、「発泡性ポリ乳酸樹脂組成物」とは、前記ポリ乳酸樹脂組成物に前記発泡剤を溶解及び/又は分散させた状態の組成物を指し、後述する発泡工程で押出機内の圧力から大気圧へ解圧させると発泡する状態の組成物である。 In the present invention, the term "expandable polylactic acid resin composition" refers to a composition in which the foaming agent is dissolved and/or dispersed in the polylactic acid resin composition, and is a composition that foams when the pressure inside the extruder is released to atmospheric pressure in the foaming step described below.
前記含浸工程は、前記発泡性ポリ乳酸樹脂組成物を緩やかに冷却しながら行うことが好ましい。二軸押出機及び単軸押出機を組み合わせたタンデム型押出機は、単軸押出機でポリ乳酸樹脂組成物を緩やかに冷却しながら発泡剤を溶解でき、本発明の発泡シートの製造に適している。 The impregnation step is preferably carried out while slowly cooling the expandable polylactic acid resin composition. A tandem extruder combining a twin-screw extruder and a single-screw extruder can dissolve the foaming agent while slowly cooling the polylactic acid resin composition with the single-screw extruder, and is suitable for producing the foamed sheet of the present invention.
<発泡工程>
前記発泡工程は、前記含浸工程で得られた発泡性ポリ乳酸樹脂組成物を押出機から吐出して発泡体を得る工程であり、好ましくは、前記含浸工程で得られた前記発泡性ポリ乳酸樹脂組成物に溶解していた発泡剤としての圧縮性流体を気化させて除去し、前記ポリ乳酸樹脂組成物に気泡を発生させ、発泡させると共に、前記ポリ乳酸樹脂組成物を押出機から吐出して成型する工程である。前記発泡工程においては、押出機内の圧力と大気圧との圧力差を駆動力に発泡が起こる。
<Foaming process>
The foaming step is a step of discharging the expandable polylactic acid resin composition obtained in the impregnation step from an extruder to obtain a foam, and is preferably a step of vaporizing and removing the compressive fluid as a foaming agent dissolved in the expandable polylactic acid resin composition obtained in the impregnation step, generating bubbles in the polylactic acid resin composition to foam it, and discharging the polylactic acid resin composition from the extruder to mold it. In the foaming step, foaming occurs using the pressure difference between the pressure inside the extruder and the atmospheric pressure as a driving force.
前記発泡性ポリ乳酸樹脂組成物は、前記発泡工程において150℃~170℃程度に調整されていることが好ましい。ここで、前記発泡工程の温度とは、ダイの設定温度を指す。前記発泡工程の温度を前記範囲とすることで、結晶化を抑制しながらも、前記発泡性ポリ乳酸樹脂組成物の粘度を発泡に適した範囲に調整することができる。 The expandable polylactic acid resin composition is preferably adjusted to about 150°C to 170°C in the expansion process. Here, the temperature in the expansion process refers to the set temperature of the die. By setting the temperature in the expansion process in this range, the viscosity of the expandable polylactic acid resin composition can be adjusted to a range suitable for expansion while suppressing crystallization.
ダイを130℃程度まで冷却した場合、結晶化が進行し、前記発泡シートの熱成型性を損なう傾向や、ダイが結晶により閉塞する傾向がある。前記発泡工程の温度を前記範囲とすることで、結晶化を抑制しながらも、前記発泡性ポリ乳酸組成物の粘度を発泡に適した範囲に調整することができる。 If the die is cooled to about 130°C, crystallization will progress, tending to impair the thermoformability of the foamed sheet and tending to cause the die to become clogged with crystals. By setting the temperature of the foaming step within the above range, it is possible to adjust the viscosity of the foamable polylactic acid composition to a range suitable for foaming while suppressing crystallization.
前記混練工程と前記含浸工程とは同時に行ってもよく、前記混練工程のみを実施してポリ乳酸樹脂組成物を得た後に、前記含浸工程と前記発泡工程により発泡体を得てもよい。 The kneading step and the impregnation step may be carried out simultaneously, or the kneading step alone may be carried out to obtain a polylactic acid resin composition, and then the impregnation step and the foaming step may be carried out to obtain a foam.
前記混練工程のみを実施して得られる非発泡性のポリ乳酸樹脂組成物は、マスターバッチ、又は単にポリ乳酸樹脂組成物と称することもある。 The non-foamable polylactic acid resin composition obtained by carrying out only the kneading process is sometimes called a master batch, or simply a polylactic acid resin composition.
次に、前記混練工程を行う装置の一例について、図面を用いて説明するが、本発明における前記混練工程はこれに限られるものではない。
図2は、本発明の発泡シートの製造装置における混練手段の一例としての二軸押出装置(連続式混練装置)100を示す概略図である。例えば、二軸押出装置100は、スクリュー口径が42mmであり、押出機長さ(L)と前記スクリュー口径(D)との比[L/D]を48とする。本例では、第一の供給部1及び第二の供給部2から原材料混合及び溶融部aに、例えば、ポリ乳酸樹脂、発泡核剤、鎖伸長剤等の原材料が供給され、混合及び溶融される。前記ポリ乳酸樹脂組成物が、前記原材料以外の成分(無機粒子等)を含む場合には、前記原材料以外の成分も供給され、溶融及び混合される。前記ポリ乳酸樹脂組成物が3つ以上の成分からなる場合は、供給部を適宜増やすか、前記ポリ乳酸樹脂と事前に混合するなどして供給部から原材料混合及び溶融部aに供給する。
Next, an example of an apparatus for carrying out the kneading step will be described with reference to the drawings, but the kneading step in the present invention is not limited to this.
FIG. 2 is a schematic diagram showing a twin-screw extrusion apparatus (continuous kneading apparatus) 100 as an example of a kneading means in the manufacturing apparatus for the foamed sheet of the present invention. For example, the twin-screw extrusion apparatus 100 has a screw diameter of 42 mm, and the ratio [L/D] of the extruder length (L) to the screw diameter (D) is 48. In this example, raw materials such as polylactic acid resin, foaming nucleating agent, and chain extender are supplied from the first supply section 1 and the second supply section 2 to the raw material mixing and melting section a, and mixed and melted. When the polylactic acid resin composition contains components other than the raw materials (inorganic particles, etc.), the components other than the raw materials are also supplied, melted and mixed. When the polylactic acid resin composition is composed of three or more components, the number of supply sections is appropriately increased, or the components are mixed with the polylactic acid resin in advance and supplied from the supply sections to the raw material mixing and melting section a.
混合及び溶融された原材料は、圧縮性流体供給部bで圧縮性流体貯留部3から、好ましくは圧縮性流体の状態の二酸化炭素が供給される。次いで、圧縮性流体を含む混合物は混練部cにて混練される。次いで、前記混合物は圧縮性流体除去部dにて圧縮性流体Fが除去された後、成型加工部eで、例えば、ペレット化されて樹脂ペレットPとなる。このようにして、ポリ乳酸樹脂組成物(マスターバッチ)を得ることができる。 The mixed and melted raw materials are supplied with carbon dioxide, preferably in a compressible fluid state, from compressible fluid storage section 3 in compressible fluid supply section b. The mixture containing the compressible fluid is then kneaded in kneading section c. The mixture is then subjected to compressible fluid removal section d to remove compressible fluid F, and then is pelletized in molding section e to become, for example, resin pellets P. In this manner, a polylactic acid resin composition (master batch) can be obtained.
なお、圧縮性流体は、例えば、冷却して液化したものを計量ポンプで供給し、また樹脂ペレットや発泡核剤などの固体の原材料は、例えば、定量フィーダーで供給することができる。 The compressible fluid can be, for example, cooled and liquefied and then supplied by a metering pump, and solid raw materials such as resin pellets and foam nucleating agents can be supplied by, for example, a fixed-volume feeder.
前記混練工程と前記含侵工程、前記発泡工程を一貫して行う場合、前記圧縮性流体としては発泡剤を用いるのが好ましく、圧縮性流体除去部dにおいて圧縮性流体Fの除去は行わない。 When the kneading process, the impregnation process, and the foaming process are performed in a continuous manner, it is preferable to use a foaming agent as the compressible fluid, and the compressible fluid F is not removed in the compressible fluid removal section d.
次に図2に示した混練装置の各部で行われる工程について説明する。 Next, we will explain the processes carried out in each part of the kneading device shown in Figure 2.
-原材料混合及び溶融部a-
前記原材料混合及び溶融部aでは、樹脂ペレットと必要に応じて添加するポリ乳酸樹脂以外の成分の混合と昇温を行う。加熱温度は樹脂の溶融温度以上に設定し、次の圧縮性流体供給部bで、圧縮性流体Fと均一に混合できる状態にする。
-Raw material mixing and melting section a-
In the raw material mixing and melting section a, the resin pellets and the components other than the polylactic acid resin that are added as necessary are mixed and heated. The heating temperature is set to a temperature equal to or higher than the melting temperature of the resin, and the resin is made to be in a state where it can be uniformly mixed with the compressible fluid F in the next compressible fluid supply section b.
-圧縮性流体供給部b-
前記圧縮性流体供給部bでは、樹脂ペレットが加熱により溶融状態となったところに、圧縮性流体Fを供給し、溶融樹脂を可塑化させる。
--Compressible fluid supply unit b--
In the compressible fluid supplying section b, compressible fluid F is supplied to the resin pellets which have been heated to a molten state, thereby plasticizing the molten resin.
-混練部c-
前記混練部cでは、ポリ乳酸樹脂中にポリ乳酸樹脂以外の成分を均一に分散させる。設定温度は、反応装置の仕様や負荷の状況等で適宜変更してよいが、ポリ乳酸樹脂組成物の融点以上240℃以下が好ましい。
--Kneading section c--
In the kneading section c, components other than the polylactic acid resin are uniformly dispersed in the polylactic acid resin. The set temperature may be appropriately changed depending on the specifications of the reaction device, the load condition, etc., but is preferably from the melting point of the polylactic acid resin composition to 240° C.
次に、前記混練及び前記発泡を連続して行う場合の前記発泡シートの製造装置(連続式発泡シート製造装置110)の一例を図3に示す。 Next, FIG. 3 shows an example of a foam sheet manufacturing apparatus (continuous foam sheet manufacturing apparatus 110) in which the kneading and foaming are performed continuously.
連続式発泡シート製造装置110としては、混練装置10と単軸押出機20とを連結したタンデム型押出機を用いることができる。連続式発泡シート製造装置110では、例えば、第一の供給部1及び第二の供給部2から原材料混合及び溶融部aにポリ乳酸樹脂、発泡核剤、鎖伸長剤等の原材料が供給され、混合及び溶融される。 The continuous foamed sheet manufacturing apparatus 110 may be a tandem extruder in which a kneading device 10 and a single screw extruder 20 are connected. In the continuous foamed sheet manufacturing apparatus 110, for example, raw materials such as polylactic acid resin, foam nucleating agent, and chain extender are supplied from a first supply section 1 and a second supply section 2 to the raw material mixing and melting section a, where they are mixed and melted.
混合及び溶融された原材料は、圧縮性流体供給部bで圧縮性流体貯留部3から発泡剤としての圧縮性流体が供給される。次いで、発泡剤としての圧縮性流体を含む混合物は混練部cで混練され、発泡性ポリ乳酸樹脂組成物となる。 The mixed and melted raw materials are supplied with a compressible fluid as a foaming agent from the compressible fluid storage section 3 in the compressible fluid supply section b. The mixture containing the compressible fluid as a foaming agent is then kneaded in the kneading section c to become a foamable polylactic acid resin composition.
前記発泡性ポリ乳酸樹脂組成物は、温度調整部fに供給され、温度調整部fにおいて発泡に適した温度に調整すると共に、発泡剤を更に溶解させる。次いで、ダイから大気中に押出発泡させ、得られる筒状発泡体4を冷却マンドレル5上に沿わせながら、かつ、外周から空冷しながら冷却する。更に、一部を回転刃に拠って切り開き、平坦化した後、ロール状に巻き取って本発明の発泡シートを得ることができる。 The expandable polylactic acid resin composition is supplied to a temperature adjustment section f, where the temperature is adjusted to a temperature suitable for expansion and the foaming agent is further dissolved. Next, the composition is extruded from a die into the atmosphere and foamed, and the resulting cylindrical foam 4 is cooled while being placed on a cooling mandrel 5 and air-cooled from the outer periphery. A portion of the foam is then cut open with a rotary blade, flattened, and wound into a roll to obtain the foam sheet of the present invention.
本発明においては、混練部cがポリ乳酸樹脂組成物の融点以上240℃以下、より好ましくは220℃以上240℃以下である。また、温度調整部fはポリ乳酸樹脂組成物の融点-20℃以上であることが好ましい。 In the present invention, the kneading section c has a temperature between the melting point of the polylactic acid resin composition and 240°C, and more preferably between 220°C and 240°C. In addition, the temperature control section f is preferably at least 20°C below the melting point of the polylactic acid resin composition.
本例では、混練装置10により混練工程を行い、単軸押出機20により前記発泡工程を行っている。しかし、本発明ではこのような構成に制限されるものではない。例えば、前記混練工程と前記発泡工程を行う領域を適宜変更することができる。 In this example, the kneading process is performed by a kneading device 10, and the foaming process is performed by a single screw extruder 20. However, the present invention is not limited to this configuration. For example, the areas in which the kneading process and the foaming process are performed can be changed as appropriate.
(成型体)
本発明の成型体の一実施形態は、本発明の発泡シートを含有するものである。これは、本発明の発泡シートからなる成型体であってもよく、更に必要に応じて、その他の成分を含んでいてもよい。
また、本発明の成型体の別の一実施形態は、本発明の発泡シートを熱成型してなるものであり、更に必要に応じて、その他の成分を含んでいてもよい。
前記その他の成分としては、通常の樹脂製品に用いられるものであれば、特に制限はなく、目的に応じて適宜選択することができる。
(Molded body)
One embodiment of the molded article of the present invention contains the foamed sheet of the present invention. This may be a molded article made of the foamed sheet of the present invention, and may further contain other components as necessary.
Another embodiment of the molded article of the present invention is obtained by thermoforming the foamed sheet of the present invention, and may further contain other components, if necessary.
The other components are not particularly limited as long as they are used in ordinary resin products, and can be appropriately selected depending on the purpose.
前記発泡シートの熱成型としては、特に制限されるものではなく、例えば、型を用いて熱成型して製品を得るプロセスに供してもよい。型を用いた発泡シートの熱成型方法としては、特に制限はなく、従来公知の熱可塑性樹脂の方法を用いることができ、例えば、真空成型、圧空成型、真空圧空成型、プレス成型などが挙げられる。 The thermoforming of the foamed sheet is not particularly limited, and may be, for example, a process of thermoforming using a mold to obtain a product. The thermoforming method of the foamed sheet using a mold is not particularly limited, and any conventionally known method for thermoplastic resins may be used, such as vacuum molding, pressure molding, vacuum pressure molding, and press molding.
前記成型体(製造物、消費材などとも称される)としては、例えば、生活用品として、容器、袋、包装容器、トレー、食器、カトラリー、文房具、緩衝材などが挙げられる。この成型体の概念には、成型体を加工するための中間体として、前記発泡シートをロール状にした原反や、単体としての成型体のみでなく、トレーの取っ手のような成型体からなる部品や、取っ手が取り付けられたトレーのような成型体を備えた製品なども含まれる。 Examples of the molded body (also called a manufactured product, consumer product, etc.) include daily necessities such as containers, bags, packaging containers, trays, tableware, cutlery, stationery, and cushioning materials. The concept of molded body includes intermediates for processing molded bodies, such as rolled raw material of the foam sheet, and molded bodies as stand-alone bodies, as well as parts made of molded bodies such as tray handles, and products equipped with molded bodies such as trays with handles attached.
前記容器の形態としては、特に制限なく選択できる。例えば、トレーなどの蓋なしの容器としてもよく、シュリンクフィルムやトップシール、勘合蓋等で開口部を閉じる形態での容器としてもよい。また、本発明の容器には容器の蓋も含み、容器の蓋として利用することも可能である。 The form of the container can be selected without any particular limitations. For example, it may be a container without a lid, such as a tray, or a container in a form in which the opening is closed with a shrink film, a top seal, a fitting lid, or the like. The container of the present invention also includes a container lid, and can be used as a container lid.
前記袋としては、例えば、レジ袋、ショッピングバッグ、ごみ袋などが挙げられる。 Examples of such bags include plastic bags, shopping bags, and garbage bags.
前記文房具としては、例えば、クリアファイル、ワッペンなどが挙げられる。 Examples of stationery items include clear files and badges.
また、前記成型体は、前記生活用品以外の用途としても適用でき、例えば、工業用資材、日用品、農業用品、食品用、医薬品用、化粧品等のシート、包装材などの用途として幅広く適用することができる。 The molded body can also be used for purposes other than the above-mentioned household goods, such as industrial materials, daily necessities, agricultural products, food, pharmaceutical, cosmetic sheets, packaging materials, etc.
また、前記発泡シートは、必要に応じてラミネートやコーティング等の加工を施してもよい。発泡シート製造時の巻き取り前に加工を行っても、巻き取った発泡シートに対して後から加工を施してもよい。ラミネートフィルムやコーティング剤等の種類や加工方法は特に制限なく選択できる。 The foamed sheet may be processed, such as laminated or coated, as necessary. The processing may be performed before the foamed sheet is wound up during production, or after the foamed sheet has been wound up. There are no particular limitations on the type of laminating film or coating agent, and the processing method.
このような成型体においては、前記発泡シートの性状を維持していない場合もあるが、前記発泡シートを原材料として使用している限り、本発明の範囲内である。 In such molded products, the properties of the foamed sheet may not be maintained, but as long as the foamed sheet is used as a raw material, it is within the scope of the present invention.
<成型体の製造方法及び成型体の製造装置>
前記成型体の製造方法としては、特に制限はなく、所望の成型体の形状などに応じて適宜選択することができるが、熱成型方法によって成型体を製造する場合、加熱工程と、加熱成型工程と、を含むことが好ましく、更に必要に応じて、その他の工程を含む。
前記成型体の製造装置としては、特に制限はなく、所望の成型体の形状などに応じて適宜選択することができるが、加熱手段と、加熱成型手段と、を有することが好ましく、更に必要に応じて、その他の手段を有する。
前記成型体の製造方法は、前記成型体の製造装置によって好適に行われる。
<Molded body manufacturing method and molded body manufacturing device>
The method for producing the molded body is not particularly limited and can be appropriately selected depending on the shape of the desired molded body, etc., but when the molded body is produced by a thermoforming method, it is preferable that the method includes a heating step and a thermoforming step, and further includes other steps as necessary.
The manufacturing apparatus for the molded body is not particularly limited and can be appropriately selected depending on the shape of the desired molded body, but it is preferable that the manufacturing apparatus has a heating means and a heat molding means, and further has other means as necessary.
The method for producing the molded body is suitably carried out by an apparatus for producing the molded body.
<<加熱工程及び加熱手段>>
前記加熱工程は、本発明の発泡シートを成型する前に、前記発泡シートを加熱し軟化させる工程である。
前記加熱手段は、本発明の発泡シートを成型する前に、前記発泡シートを加熱し軟化させる手段である。
前記加熱工程は、前記加熱手段により好適に行われる。
<<Heating step and heating means>>
The heating step is a step of heating and softening the foamed sheet before molding the foamed sheet of the present invention.
The heating means is a means for heating and softening the foamed sheet of the present invention before molding the foamed sheet.
The heating step is preferably carried out by the heating means.
前記加熱工程において、前記発泡シートを加熱する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記発泡シートの上下、若しくは、前記発泡シートの上面と下面のいずれか一方に、前記加熱手段を配置して加熱する方法などが挙げられる。 In the heating step, the method of heating the foam sheet is not particularly limited and can be appropriately selected depending on the purpose. For example, the foam sheet may be heated by arranging the heating means above and below the foam sheet, or on either the upper or lower surface of the foam sheet.
前記加熱手段としては、特に制限はなく、公知の加熱部材の中から目的に応じて適宜選択することができ、例えば、電熱ヒーター、加熱板、IR(赤外線)ヒーターなどが挙げられる。 The heating means is not particularly limited and can be appropriately selected from known heating elements according to the purpose, examples of which include an electric heater, a heating plate, and an IR (infrared) heater.
前記加熱工程では、前記酸発泡シートの成型前にポリ乳酸樹脂の結晶化を進めずに、次の加熱成型工程で前記ポリ乳酸樹脂の結晶化を進めることが、耐熱性の向上の点で好ましい。そのため、前記加熱工程としては、短時間で前記発泡シートを加熱することができる方法が好ましく、前記発泡シートの上下にIR(赤外線)ヒーターを配置して加熱する方法が特に好ましい。 In the heating step, it is preferable from the viewpoint of improving heat resistance to not advance the crystallization of the polylactic acid resin before molding the acid foam sheet, but to advance the crystallization of the polylactic acid resin in the subsequent heat molding step. Therefore, in the heating step, a method capable of heating the foam sheet in a short time is preferable, and a method of heating the foam sheet by arranging IR (infrared) heaters above and below the foam sheet is particularly preferable.
前記加熱工程における前記発泡シートの加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ポリ乳酸樹脂のガラス転移温度以上の温度が好ましく、60℃以上の温度で行うことがより好ましく、80℃以上の温度で行うことが更に好ましい。また、前記ポリ乳酸樹脂の冷結晶化温度近傍で加熱すると、前記加熱工程中に結晶化が進んでしまうため、前記加熱工程における前記発泡シートの加熱温度は、最大でも110℃以下の温度で加熱することが好ましい。前記加熱温度の下限値と上限値とは適宜組み合わせることができるが、前記加熱工程における前記発泡シートの加熱温度は、60℃以上100℃以下がより好ましく、80℃以上100℃以下が特に好ましい。 The heating temperature of the foam sheet in the heating step is not particularly limited and can be appropriately selected depending on the purpose, but is preferably a temperature equal to or higher than the glass transition temperature of the polylactic acid resin, more preferably 60°C or higher, and even more preferably 80°C or higher. In addition, if the foam sheet is heated near the cold crystallization temperature of the polylactic acid resin, crystallization will progress during the heating step, so the heating temperature of the foam sheet in the heating step is preferably at most 110°C or lower. The lower and upper limits of the heating temperature can be appropriately combined, but the heating temperature of the foam sheet in the heating step is more preferably 60°C or higher and 100°C or lower, and particularly preferably 80°C or higher and 100°C or lower.
なお、前記加熱温度は、前記発泡シート自体の温度を意味する。前記加熱工程における前記発泡シートの加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、結晶化を進め過ぎないという観点から、15秒間以内が好ましく、10秒間以内がより好ましく、5秒間以内が更に好ましい。 The heating temperature means the temperature of the foamed sheet itself. The heating time of the foamed sheet in the heating step is not particularly limited and can be appropriately selected depending on the purpose, but from the viewpoint of not promoting crystallization too much, it is preferably within 15 seconds, more preferably within 10 seconds, and even more preferably within 5 seconds.
<<加熱成型工程>>
前記加熱成型工程は、前記加熱工程によって軟化した前記発泡シートを、型、好ましくは金型を用いて成型する工程であり、容器の形状に賦形する工程であることが好ましい。
<<Heat molding process>>
The heat molding step is a step of molding the foamed sheet softened by the heating step using a mold, preferably a metal die, and is preferably a step of forming the foamed sheet into the shape of a container.
前記型を用いた成型方法としては、特に制限はなく、従来公知の熱可塑性樹脂の熱成型方法を用いることができ、例えば、真空成型法、圧空成型法、真空圧空成型法、マッチモールド成型法などが挙げられるが、成型過程で前記発泡シートのポリ乳酸樹脂の結晶化を進めて耐熱性を向上させる観点から、マッチモールド成型法が特に好ましい。 There are no particular limitations on the molding method using the mold, and any conventionally known thermoplastic resin heat molding method can be used, such as vacuum molding, pressure molding, vacuum-pressure molding, and match mold molding. However, the match mold molding method is particularly preferred from the viewpoint of promoting crystallization of the polylactic acid resin of the foam sheet during the molding process and improving heat resistance.
前記加熱成型工程における前記型の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記発泡シートにおける前記ポリ乳酸樹脂の結晶化が進むように、前記ポリ乳酸樹脂の冷結晶化温度近傍で行うことが好ましい。 The mold temperature in the heat molding process is not particularly limited and can be selected appropriately depending on the purpose, but it is preferable to perform the process at a temperature close to the cold crystallization temperature of the polylactic acid resin so that the crystallization of the polylactic acid resin in the foamed sheet proceeds.
本発明において、「ポリ乳酸樹脂の冷結晶化温度近傍」とは、前記ポリ乳酸樹脂の冷結晶化温度に対して+20℃以下を意味する。具体的には、前記加熱成型工程における前記型の温度としては、100℃以上120℃以下が好ましく、100℃以上110℃以下が更に好ましい。前記加熱成型工程における前記型の温度を前記ポリ乳酸樹脂の冷結晶化温度近傍で行うことで、耐熱性に優れた成型体を得ることができる。 In the present invention, "near the cold crystallization temperature of the polylactic acid resin" means a temperature 20°C or lower than the cold crystallization temperature of the polylactic acid resin. Specifically, the temperature of the mold in the heat molding process is preferably 100°C or higher and 120°C or lower, and more preferably 100°C or higher and 110°C or lower. By setting the temperature of the mold in the heat molding process near the cold crystallization temperature of the polylactic acid resin, a molded body with excellent heat resistance can be obtained.
前記加熱成型工程における加熱成型時間としては、特に制限はなく、目的に応じて適宜選択することができるが、前記発泡シートが結晶化するのに十分な時間を確保することが好ましく、5秒間以上がより好ましく、7秒間以上が更に好ましい。前記加熱成型時間の上限値としては、特に制限はないが、耐熱性の点から10秒間以下であることが好ましい。前記加熱成型時間の下限値と上限値とは適宜組み合わせることができ、前記加熱成型時間は、5秒間以上10秒間以下が好ましく、7秒間以上10秒間以下がより好ましい。 The heat molding time in the heat molding step is not particularly limited and can be appropriately selected depending on the purpose, but it is preferable to ensure sufficient time for the foamed sheet to crystallize, more preferably 5 seconds or more, and even more preferably 7 seconds or more. There is no particular limit to the upper limit of the heat molding time, but it is preferably 10 seconds or less from the viewpoint of heat resistance. The lower limit and upper limit of the heat molding time can be appropriately combined, and the heat molding time is preferably 5 seconds or more and 10 seconds or less, and more preferably 7 seconds or more and 10 seconds or less.
<<その他の工程及びその他の手段>>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記型から前記成型体を取り外す離形工程、前記発泡シートから前記成型体を打ち抜く工程、前記成型体以外の前記発泡シートの余分な部分を切り落とす工程、などが挙げられる。
<<Other steps and other means>>
The other steps are not particularly limited and may be appropriately selected depending on the purpose. Examples of the other steps include a demolding step of removing the molded body from the mold, a step of punching the molded body from the foamed sheet, and a step of cutting off excess portions of the foamed sheet other than the molded body.
以下に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例及び比較例において、別段の断りない限り、「部」は「質量部」を示し、「%」は、評価基準中のものを除き「質量%」を示す。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following examples and comparative examples, unless otherwise specified, "parts" refers to "parts by mass" and "%" refers to "% by mass" except in the evaluation criteria.
(実施例1)
<発泡シートの作製>
-原材料混合及び溶融工程-
図3に示すタンデム型の連続式発泡シート製造装置110を用い、混練装置10の原材料混合及び溶融部aに、ポリ乳酸樹脂、発泡核剤としての無機粒子、及び鎖伸長剤を含有するポリ乳酸樹脂組成物が20kg/時間になるように、ポリ乳酸樹脂98.1部(REVODE190、HISUN社製)、無機粒子としてのシリル化シリカ1部(AEROSIL(登録商標)RY300、平均疎水化度:67.2体積%、炭素含有量:6.0質量%~8.5質量%、日本アエロジル株式会社製)、及び鎖伸長剤0.9部(マープルーフ(登録商標)G-0250SP、日油株式会社製)の割合で供給した。
Example 1
<Preparation of foam sheet>
-Raw material mixing and melting process-
Using a tandem type continuous foamed sheet manufacturing apparatus 110 shown in FIG. 3, a polylactic acid resin composition containing a polylactic acid resin, inorganic particles as a foaming nucleating agent, and a chain extender was supplied to the raw material mixing and melting section a of the kneading device 10 at a rate of 20 kg/hour, in the following proportions: 98.1 parts of polylactic acid resin (REVODE190, manufactured by HISUN Corporation), 1 part of silylated silica as inorganic particles (AEROSIL (registered trademark) RY300, average hydrophobicity: 67.2% by volume, carbon content: 6.0% by mass to 8.5% by mass, manufactured by Nippon Aerosil Co., Ltd.), and 0.9 parts of a chain extender (Marproof (registered trademark) G-0250SP, manufactured by NOF Corporation).
-圧縮性流体供給工程及び混練・含侵工程-
次いで、発泡剤としての圧縮性流体である二酸化炭素を0.76kg/時間(ポリ乳酸樹脂組成物100部に対して3.8部に相当)で混練装置10の圧縮性流体供給部bに供給し、これらを混練部cで混合、溶融、及び混練し、単軸押出機20に供給した。
-Compressive fluid supplying process and kneading/impregnation process-
Next, carbon dioxide, a compressible fluid serving as a foaming agent, was supplied to the compressible fluid supply section b of the kneading device 10 at 0.76 kg/hour (corresponding to 3.8 parts per 100 parts of the polylactic acid resin composition), and these were mixed, melted, and kneaded in the kneading section c, and supplied to the single-screw extruder 20.
-発泡工程-
次いで、前記ポリ乳酸樹脂組成物を、単軸押出機20の温度調整部fで、樹脂温度が160℃になるまで冷却し、単軸押出機20の先端に取り付けたスリット口径70mm、ギャップ0.5mmのサーキュラーダイから大気中に吐出して二酸化炭素を気化させることで押出発泡させた。
- Foaming process -
Next, the polylactic acid resin composition was cooled in the temperature control section f of the single-screw extruder 20 until the resin temperature reached 160°C, and then discharged into the atmosphere from a circular die having a slit diameter of 70 mm and a gap of 0.5 mm attached to the tip of the single-screw extruder 20 to vaporize the carbon dioxide, thereby performing extrusion foaming.
-成型工程-
得られた筒状の発泡シートを、冷却マンドレル5上に沿わせると共に、その外面にエアーを吹き付けて強制冷却し、回転刃式カッターによりシートを切開して、平坦なシート状発泡体(以下、実施例1の「発泡シート」と称することがある)を得た。
- Molding process -
The obtained cylindrical foamed sheet was placed on a cooling mandrel 5 and forcedly cooled by blowing air onto its outer surface, and the sheet was cut with a rotary blade cutter to obtain a flat sheet-like foam (hereinafter, sometimes referred to as the "foamed sheet" of Example 1).
実施例1において、各部の温度は下記の通りとした。
・ 混練装置の原材料混合及び溶融部a:200℃
・ 混練装置の圧縮性流体供給部b:240℃
・ 混練装置の混練部c:240℃
・ 単軸押出機の温度調整部f:180℃から160℃へ冷却
・ サーキュラーダイ:155℃
In Example 1, the temperatures of each part were as follows:
Raw material mixing and melting section a of the kneading device: 200°C
Compressive fluid supply section b of the kneading device: 240° C.
Kneading section c of the kneading device: 240° C.
- Temperature control section f of single screw extruder: Cooling from 180°C to 160°C - Circular die: 155°C
また、実施例1において、各部の圧力は下記の通りとした。
・ 混練装置の圧縮性流体供給部b:7MPa~10MPa
・ 混練装置の混練部c:8MPa~20MPa
・ 単軸押出機の温度調整部f:8MPa~38MPa
In Example 1, the pressures at each part were as follows:
Compressive fluid supply section b of the kneading device: 7 MPa to 10 MPa
Kneading section c of the kneading device: 8 MPa to 20 MPa
Temperature control section f of single screw extruder: 8MPa to 38MPa
(実施例2~4、7~9、及び13)
実施例1において、ポリ乳酸樹脂組成物の処方を下記表1~表3に示す処方に変更したこと以外は、実施例1と同様の方法で実施例2~4、7~9、及び13の発泡シートを得た。
(Examples 2 to 4, 7 to 9, and 13)
The foamed sheets of Examples 2 to 4, 7 to 9, and 13 were obtained in the same manner as in Example 1, except that the formulation of the polylactic acid resin composition in Example 1 was changed to the formulations shown in Tables 1 to 3 below.
(実施例5、6、10、及び12)
実施例1において、発泡シート作製工程の条件を下記表2及び表3に示す条件に変更したこと以外は、実施例1と同様の方法で実施例5、6、10、及び12の発泡シートを得た。
(Examples 5, 6, 10, and 12)
Foam sheets of Examples 5, 6, 10, and 12 were obtained in the same manner as in Example 1, except that the conditions of the foam sheet preparation step in Example 1 were changed to those shown in Tables 2 and 3 below.
(実施例11)
実施例1において、ポリ乳酸樹脂組成物の処方、及び発泡シート作製工程の条件を下記表3に示す処方に変更したこと以外は、実施例1と同様の方法で実施例11の発泡シートを得た。
(Example 11)
A foamed sheet of Example 11 was obtained in the same manner as in Example 1, except that the formulation of the polylactic acid resin composition and the conditions of the foamed sheet preparation process in Example 1 were changed to those shown in Table 3 below.
(比較例1~5)
実施例1において、ポリ乳酸樹脂組成物の処方及び発泡シート作製工程の条件を下記表4に示す処方及び条件に変更したこと以外は、実施例1と同様の方法で比較例1~5の発泡シートを得た。
(Comparative Examples 1 to 5)
The foamed sheets of Comparative Examples 1 to 5 were obtained in the same manner as in Example 1, except that the formulation of the polylactic acid resin composition and the conditions of the foamed sheet preparation process in Example 1 were changed to the formulation and conditions shown in Table 4 below.
<物性の測定>
実施例1~13及び比較例1~5の発泡シートについて、以下の方法で、「発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量」、「発泡シート中のポリ乳酸樹脂を構成する乳酸のD体及び乳酸のL体のモル比率」、「発泡シート中のポリ乳酸樹脂の融点」、「発泡シート中のポリ乳酸樹脂の再結晶化温度」、「発泡シート中のポリ乳酸樹脂のガラス転移温度」、「発泡シート中のポリ乳酸樹脂の冷結晶化温度」、「鎖伸長剤(架橋剤)のエポキシ当量」、「鎖伸長剤(架橋剤)の重量平均分子量(Mw)」、「発泡シートの断面のTD方向の最表面形状」、「発泡シートのかさ密度」、「発泡シートの発泡径(メジアン径)」、及び「発泡シートの冷結晶化エンタルピー」を測定し、結果を下記表1~表4に示した。
また、実施例1~13及び比較例1~5の発泡剤供給工程及び混練工程で得られたポリ乳酸樹脂組成物について、「ポリ乳酸樹脂組成物の重量平均分子量」及び「ポリ乳酸樹脂組成物の再結晶化エンタルピー」を測定し、結果を下記表1~表4に示した。
<Measurement of physical properties>
For the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5, the following measurements were made using the following methods: "content of polylactic acid resin relative to the total amount of organic matter in the foamed sheet", "molar ratio of D-type lactic acid and L-type lactic acid constituting the polylactic acid resin in the foamed sheet", "melting point of polylactic acid resin in the foamed sheet", "recrystallization temperature of polylactic acid resin in the foamed sheet", "glass transition temperature of polylactic acid resin in the foamed sheet", "cold crystallization temperature of polylactic acid resin in the foamed sheet", "epoxy equivalent of chain extender (crosslinker)", "weight average molecular weight (Mw) of chain extender (crosslinker)", "outermost surface shape in the TD direction of the cross section of the foamed sheet", "bulk density of the foamed sheet", "foaming diameter (median diameter) of the foamed sheet" and "cold crystallization enthalpy of the foamed sheet". The results are shown in Tables 1 to 4 below.
In addition, for the polylactic acid resin compositions obtained in the foaming agent supplying step and the kneading step in Examples 1 to 13 and Comparative Examples 1 to 5, the "weight average molecular weight of the polylactic acid resin composition" and the "recrystallization enthalpy of the polylactic acid resin composition" were measured, and the results are shown in Tables 1 to 4 below.
<<発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量の測定>>
実施例1~13及び比較例1~5の発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量は以下の手順で測定した。
<<Measurement of polylactic acid resin content relative to total amount of organic matter in foam sheet>>
The content of polylactic acid resin relative to the total amount of organic matter in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 was measured by the following procedure.
-溶媒の調製-
測定に用いる溶媒は、内部標準物質として1,3,5-トリメトキシベンゼン標準品(定量NMR用、富士フイルム和光純薬株式会社製)を約100mg量り取り、10mLメスフラスコにて重クロロホルム(テトラメチルシラン(TMS)0.3体積%含有)で溶解させたものを用いた。
- Preparation of solvent -
The solvent used in the measurement was prepared by weighing out about 100 mg of 1,3,5-trimethoxybenzene standard (for quantitative NMR, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as an internal standard substance and dissolving it in deuterated chloroform (containing 0.3 vol.% tetramethylsilane (TMS)) in a 10 mL measuring flask.
-試料の調製-
実施例1~13及び比較例1~5の発泡シートの濃度が10mg/mLとなるように、発泡シートに前記溶媒を加え、卓上振盪機(MSI-60、アズワン株式会社製)で半日程度振盪して溶解した。この際、蒸発による試料濃度の変化を最小限に留めるために、容器としては可能な限り小さいものを選んだ。上記方法で調製した試料を直径5mmの試料管に封じてNMRに供した。
-Sample preparation-
The above-mentioned solvent was added to the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 so that the concentration of the foamed sheets was 10 mg/mL, and the foamed sheets were dissolved by shaking for about half a day using a tabletop shaker (MSI-60, AS ONE Corporation). In this case, the smallest possible container was selected in order to minimize the change in sample concentration due to evaporation. The samples prepared by the above method were sealed in sample tubes with a diameter of 5 mm and subjected to NMR.
-測定-
下記測定装置及び測定条件で、JIS K 0138:2018(定量核磁気共鳴分光法通則(qNMR通則))に準拠して、1H核のNMR測定(1H-NMR測定)を行った。
[[測定装置及び測定条件]]
・ 核磁気共鳴(NMR)装置:JNM-ECX-500 FT-NMR(日本電子株式会社製)
・ 観測核:1H
・ 測定温度:30℃
・ スピン:オフ
・ デジタル分解能:0.25Hz
・ 観測範囲:-0.5~15ppm
・ パルス角:90°
・ 緩和時間:60秒
・ 積算回数:16回(本測定の前にダミースキャンを2回行う)
・ 13Cデカップリング:有
-measurement-
1 H NMR measurement ( 1 H-NMR measurement) was carried out in accordance with JIS K 0138:2018 (General rules for quantitative nuclear magnetic resonance spectroscopy (qNMR general rules)) using the following measuring device and under the following measuring conditions.
[Measurement equipment and conditions]
・Nuclear magnetic resonance (NMR) device: JNM-ECX-500 FT-NMR (manufactured by JEOL Ltd.)
Observed nucleus: 1H
Measurement temperature: 30°C
Spin: Off Digital resolution: 0.25Hz
Observation range: -0.5 to 15 ppm
Pulse angle: 90°
Relaxation time: 60 seconds. Number of scans: 16 (two dummy scans were performed before the actual measurement).
・13C decoupling: Yes
-解析-
得られたデータについて、下記化学シフトのピークに対する積分を行い、下記式(4)により積分比を計算した。
積分1(ポリ乳酸樹脂由来):5.2ppm
積分2(内部標準由来):6.1ppm
積分比=積分1/(積分2×試料質量) ・・・ 式(4)
-analysis-
The obtained data was integrated with respect to the peaks of the following chemical shifts, and the integral ratio was calculated according to the following formula (4).
Integral 1 (derived from polylactic acid resin): 5.2 ppm
Integral 2 (from internal standard): 6.1 ppm
Integral ratio = integral 1 / (integral 2 × sample mass) ... formula (4)
純度既知のポリ乳酸樹脂について、前記試料と共通の溶媒を用いて同様のNMR測定を行い、純度既知のポリ乳酸樹脂について前記式(4)より得られた積分比と、前記試料についての積分比との比を取り、下記式(5)により発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量を算出した。
ポリ乳酸樹脂の含有量[質量%]=100×純度既知のポリ乳酸樹脂の純度[質量%]×(試料の積分比)/(純度既知のポリ乳酸樹脂の積分比) ・・・ 式(5)
A similar NMR measurement was performed on a polylactic acid resin of known purity using the same solvent as the sample, and the ratio of the integral ratio obtained from the formula (4) for the polylactic acid resin of known purity to the integral ratio for the sample was calculated, and the content of the polylactic acid resin relative to the total amount of organic matter in the foamed sheet was calculated using the following formula (5).
Content of polylactic acid resin [mass %]=100×purity of polylactic acid resin of known purity [mass %]×(integral ratio of sample)/(integral ratio of polylactic acid resin of known purity) (5)
前記試料の調製から解析までの工程を3回行い、得られたポリ乳酸樹脂の含有量の算術平均を、実施例1~13及び比較例1~5の発泡シート中の有機物の総量に対するポリ乳酸樹脂の含有量とした。 The process from sample preparation to analysis was carried out three times, and the arithmetic average of the obtained polylactic acid resin content was taken as the polylactic acid resin content relative to the total amount of organic matter in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5.
<<発泡シート中のポリ乳酸樹脂を構成する乳酸のD体及び乳酸のL体のモル比率の測定>>
実施例1~13及び比較例1~5の発泡シートを凍結粉砕し、凍結粉砕した該発泡シートの粉末を精密天秤にて三角フラスコに200mg量り取り、1Nの水酸化ナトリウム水溶液30mLを加えた。次に、三角フラスコを振盪しながら65℃に加熱して、ポリ乳酸樹脂を完全に溶解させた。続いて、1Nの塩酸を用いてpHが7となるように調整し、メスフラスコを用いて所定の体積に希釈してポリ乳酸樹脂溶解液を得た。次に、前記ポリ乳酸樹脂溶解液を0.45μmのメンブレンフィルターで濾過した後、下記測定条件で液体クロマトグラフィーにより分析した。
[[測定装置及び測定条件]]
・ HPLC装置(液体クロマトグラフ):PU-2085Plus型システム(日本分光株式会社製)
・ カラム:Chromolith(登録商標) coated with SUMICHIRAL OA-5000(内径4.6mm、長さ250mm)(株式会社住友分析センター製)
・ カラム温度:25℃
・ 移動相:2mM CuSO4水溶液と2-プロパノールとの混合液(CuSO4水溶液:2-プロパノール(体積比)=95:5)
・ 移動相流量:1.0mL/分間
・ 検出器:UV254nm
・ 注入量:20μL
<<Measurement of the Molar Ratio of D-Lactic Acid and L-Lactic Acid Constituting the Polylactic Acid Resin in the Foam Sheet>>
The foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were freeze-pulverized, and 200 mg of the freeze-pulverized powder of the foamed sheets was weighed out using a precision balance and placed in an Erlenmeyer flask, to which 30 mL of 1N aqueous sodium hydroxide solution was added. The Erlenmeyer flask was then heated to 65°C while being shaken to completely dissolve the polylactic acid resin. The pH was then adjusted to 7 using 1N hydrochloric acid, and the solution was diluted to a predetermined volume using a measuring flask to obtain a polylactic acid resin solution. The polylactic acid resin solution was then filtered through a 0.45 μm membrane filter, and analyzed by liquid chromatography under the following measurement conditions.
[Measurement equipment and conditions]
HPLC device (liquid chromatograph): PU-2085Plus system (manufactured by JASCO Corporation)
Column: Chromolith (registered trademark) coated with SUMICHIRAL OA-5000 (inner diameter 4.6 mm, length 250 mm) (manufactured by Sumitomo Analysis Center Co., Ltd.)
Column temperature: 25°C
Mobile phase: a mixture of 2 mM CuSO4 aqueous solution and 2-propanol ( CuSO4 aqueous solution: 2-propanol (volume ratio) = 95:5)
Mobile phase flow rate: 1.0 mL/min Detector: UV 254 nm
Injection volume: 20 μL
得られたチャートに基づいて、乳酸のD体由来のピーク面積及び乳酸のL体由来のピーク面積と、これらの合計面積とから、乳酸のD体由来のピーク面積比及び乳酸のL体由来のピーク面積比をそれぞれ算出し、これを存在比として、D体量比及びL体量比を算出した。上記操作を3回行って得られた結果の算術平均した値を、発泡シートにおけるポリ乳酸樹脂を構成する乳酸のD体量及び乳酸のL体量とした。結果は、「モル比率(L体:D体)」として、下記表1~表4に示した。 Based on the obtained chart, the peak area ratios of the D-form of lactic acid and the L-form of lactic acid were calculated from the peak areas of the D-form of lactic acid and the L-form of lactic acid, respectively, and the total area of these peak areas was used to calculate the D-form amount ratio and the L-form amount ratio. The above procedure was carried out three times, and the arithmetic mean of the results was taken as the amount of the D-form of lactic acid and the amount of the L-form of lactic acid constituting the polylactic acid resin in the foamed sheet. The results are shown in Tables 1 to 4 below as "molar ratio (L:D)".
<<発泡シート中のポリ乳酸樹脂の融点の測定>>
実施例1~13及び比較例1~5の発泡シート中のポリ乳酸樹脂の融点は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(Q-2000型、TAインスツルメント社製)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温して測定した。
ガラス転移温度より高温側で観測される結晶の溶融に伴う吸熱ピークのピークトップ温度(融解ピーク温度、Tpm)を発泡シート中のポリ乳酸樹脂の融点として測定した。また、ガラス転移温度より高温側で複数の吸熱ピークが観察された場合は、面積が最大となるピークのピークトップ温度を発泡シート中のポリ乳酸樹脂の融点とした。
<<Measurement of the melting point of polylactic acid resin in foam sheet>>
The melting points of the polylactic acid resins in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet was placed in a container of a differential scanning calorimeter (Q-2000 model, manufactured by TA Instruments) and the temperature was increased from 10° C. to 200° C. at a rate of 10° C./min. for measurement.
The peak top temperature (melting peak temperature, Tpm) of the endothermic peak associated with the melting of crystals observed on the higher temperature side than the glass transition temperature was measured as the melting point of the polylactic acid resin in the foamed sheet. When multiple endothermic peaks were observed on the higher temperature side than the glass transition temperature, the peak top temperature of the peak with the largest area was determined as the melting point of the polylactic acid resin in the foamed sheet.
<<発泡シート中のポリ乳酸樹脂の再結晶化温度の測定>>
実施例1~13及び比較例1~5の発泡シート中のポリ乳酸樹脂の再結晶化温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(Q-2000型、TAインスツルメント社製)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温し10分間保持後、200℃から10℃まで10℃/分間で降温した。この際、発熱ピークのピークトップ温度を発泡シート中のポリ乳酸樹脂の再結晶化温度として測定した。なお、結晶化ピークが明確に見えないものは、下記表1~表4において「不明瞭」と記載した。
<<Measurement of recrystallization temperature of polylactic acid resin in foam sheet>>
The recrystallization temperatures of the polylactic acid resins in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperature of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet was placed in the container of a differential scanning calorimeter (Q-2000 model, manufactured by TA Instruments), heated from 10° C. to 200° C. at a heating rate of 10° C./min, held for 10 minutes, and then cooled from 200° C. to 10° C. at a heating rate of 10° C./min. In this case, the peak top temperature of the exothermic peak was measured as the recrystallization temperature of the polylactic acid resin in the foamed sheet. In addition, samples in which the crystallization peak was not clearly visible were marked as "unclear" in Tables 1 to 4 below.
<<発泡シート中のポリ乳酸樹脂のガラス転移温度の測定>>
実施例1~13及び比較例1~5の発泡シート中のポリ乳酸樹脂のガラス転移温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(Q-2000型、TAインスツルメント社製)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温して測定した。
<<Measurement of glass transition temperature of polylactic acid resin in foam sheet>>
The glass transition temperatures of the polylactic acid resins in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring glass transition temperatures of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet was placed in a container of a differential scanning calorimeter (Q-2000 model, manufactured by TA Instruments) and the temperature was increased from 10° C. to 200° C. at a rate of 10° C./min. for measurement.
<<発泡シート中のポリ乳酸樹脂の冷結晶化温度の測定>>
実施例1~13及び比較例1~5の発泡シート中のポリ乳酸樹脂の冷結晶化温度は、JIS K 7121:2012(プラスチックの転移温度測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、前記発泡シートから切り出した5mg~10mgの試料を、示差走査熱量計装置(Q-2000型、TAインスツルメント社製)の容器に入れ、10℃から200℃まで昇温速度10℃/分間で昇温した。この際、ガラス転移温度以上の温度域で観測される発熱ピークのピークトップ温度を発泡シート中のポリ乳酸樹脂の冷結晶化温度として測定した。
<<Measurement of cold crystallization temperature of polylactic acid resin in foam sheet>>
The cold crystallization temperatures of the polylactic acid resins in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7121:2012 (Method for measuring transition temperatures of plastics).
Specifically, a sample of 5 mg to 10 mg cut out from the foamed sheet was placed in a container of a differential scanning calorimeter (Q-2000 type, manufactured by TA Instruments) and heated from 10° C. to 200° C. at a heating rate of 10° C./min. In this case, the peak top temperature of the exothermic peak observed in a temperature range equal to or higher than the glass transition temperature was measured as the cold crystallization temperature of the polylactic acid resin in the foamed sheet.
<<鎖伸長剤(架橋剤)のエポキシ当量の測定>>
鎖伸長剤(架橋剤)のエポキシ当量の測定は、JIS K 7236:2001(エポキシ樹脂のエポキシ当量の求め方)に準拠して下記方法により行った。
<<Measurement of epoxy equivalent of chain extender (crosslinker)>>
The epoxy equivalent of the chain extender (crosslinking agent) was measured by the following method in accordance with JIS K 7236:2001 (method for determining epoxy equivalent of epoxy resin).
-試料の調製-
0.1g~0.3gの鎖伸長剤(架橋剤)としてのエポキシ基を有する化合物にクロロホルム10mLを加え、マグネティックスターラーで攪拌しながら完全に溶解させた。20mLの酢酸、及び臭化テトラエチルアンモニウムのクロロホルム溶液10mL(濃度:0.25g/mL)を加えて測定用試料とした。
-Sample preparation-
10 mL of chloroform was added to 0.1 g to 0.3 g of a compound having an epoxy group as a chain extender (crosslinking agent), and the mixture was completely dissolved by stirring with a magnetic stirrer. 20 mL of acetic acid and 10 mL of a chloroform solution of tetraethylammonium bromide (concentration: 0.25 g/mL) were added to prepare a measurement sample.
-測定-
下記測定装置及び測定条件で、調製した測定用試料のエポキシ当量を測定した。
[[測定装置及び測定条件]]
・ 装置:自動滴定装置 COM-A-19(株式会社HIRANUMA製)
・ 標準液:0.1mol/L過塩素酸-酢酸標準液
・ 電極:ガラス電極 GTRS10B
比較電極 GTPH1B(内部液は飽和過塩素酸ナトリウム/酢酸溶液)
・ 測定モード:変曲点検出
・ 微分判定値:100mV/mL
・ 計算式:1,000×S/((A1-BL)×M×f)
ここで、Sはエポキシ基を有する化合物の質量(g)を示し、A1は変曲点の滴下量(mL)を示し、BLはブランク測定の結果(mL)を示し、Mは標準液の濃度(mol/L)、fは標準液のファクターを示す。ブランク測定は2回行い、2回測定の平均値を用いた。
-measurement-
The epoxy equivalent of the prepared measurement sample was measured using the following measurement device and under the following measurement conditions.
[Measurement equipment and conditions]
・ Equipment: Automatic titration equipment COM-A-19 (manufactured by HIRANUMA Co., Ltd.)
・ Standard solution: 0.1 mol/L perchloric acid-acetic acid standard solution ・ Electrode: Glass electrode GTRS10B
Reference electrode GTPH1B (internal solution is saturated sodium perchlorate/acetic acid solution)
Measurement mode: Inflection point detection Differential judgment value: 100 mV/mL
・ Calculation formula: 1,000×S/((A1-BL)×M×f)
Here, S represents the mass (g) of the compound having an epoxy group, A1 represents the amount of dripping at the inflection point (mL), BL represents the result of the blank measurement (mL), M represents the concentration of the standard solution (mol/L), and f represents the factor of the standard solution. The blank measurement was performed twice, and the average value of the two measurements was used.
<<鎖伸長剤(架橋剤)の重量平均分子量(Mw)の測定>>
鎖伸長剤(架橋剤)の重量平均分子量(Mw)の測定は下記方法により行った。
<<Measurement of weight average molecular weight (Mw) of chain extender (crosslinker)>>
The weight average molecular weight (Mw) of the chain extender (crosslinker) was measured by the following method.
-試料の調製-
鎖伸長剤(架橋剤)としてのエポキシ基を有する化合物とクロロホルムとを、エポキシ基を有する化合物の濃度が2mg/mL程度になるように混合し、卓上振盪機(MSI-60、アズワン株式会社製)で半日程度振盪し、エポキシ基を有する化合物が溶解したことを確認した後、0.45μmのメンブレンフィルターにてろ過した濾液を測定用試料として用いた。
-Sample preparation-
A compound having an epoxy group as a chain extender (crosslinking agent) and chloroform were mixed so that the concentration of the compound having an epoxy group was about 2 mg/mL, and the mixture was shaken for about half a day using a tabletop shaker (MSI-60, AS ONE Corporation). After confirming that the compound having an epoxy group had dissolved, the mixture was filtered through a 0.45 μm membrane filter, and the filtrate was used as a measurement sample.
-測定-
下記測定装置及び測定条件で、調製した測定用試料の重量平均分子量(Mw)を測定した。
[[測定装置及び測定条件]]
・ 装置:HLC-8320GPC(東ソー・テクノシステム株式会社製)
・ カラム:TSKgel(登録商標) guardcolumn SuperHZ-L及びTSKgel SuperHZM-M×4本
・ 検出器:RI
・ 測定温度:40℃
・ 移動相:クロロホルム
・ 流量:0.45mL/分間
・ 注入量:20μL
-measurement-
The weight average molecular weight (Mw) of the prepared measurement sample was measured using the following measurement device and under the following measurement conditions.
[Measurement equipment and conditions]
・ Apparatus: HLC-8320GPC (manufactured by Tosoh Technosystems Co., Ltd.)
Column: TSKgel (registered trademark) guard column SuperHZ-L and TSKgel SuperHZM-M x 4 Detector: RI
Measurement temperature: 40°C
Mobile phase: chloroform Flow rate: 0.45 mL/min Injection volume: 20 μL
<<ポリ乳酸樹脂組成物の重量平均分子量の測定>>
実施例1~13及び比較例1~5の発泡剤供給工程及び混練工程で得られたポリ乳酸樹脂組成物の重量平均分子量(Mw)の測定は下記方法により行った。
<<Measurement of weight average molecular weight of polylactic acid resin composition>>
The weight average molecular weight (Mw) of the polylactic acid resin compositions obtained in the foaming agent supplying step and the kneading step in Examples 1 to 13 and Comparative Examples 1 to 5 was measured by the following method.
-試料の調製-
ポリ乳酸樹脂組成物とクロロホルムとを、ポリ乳酸樹脂組成物の濃度が2mg/mL程度になるように混合し、卓上振盪機(MSI-60、アズワン株式会社製)で半日程度振盪し、ポリ乳酸樹脂組成物が溶解したことを確認した後、0.45μmのメンブレンフィルターにてろ過した濾液を測定用試料として用いた。
-Sample preparation-
The polylactic acid resin composition and chloroform were mixed so that the concentration of the polylactic acid resin composition was about 2 mg/mL, and the mixture was shaken for about half a day using a tabletop shaker (MSI-60, manufactured by AS ONE Corporation). After confirming that the polylactic acid resin composition had dissolved, the mixture was filtered through a 0.45 μm membrane filter, and the filtrate was used as a measurement sample.
-測定-
鎖伸長剤(架橋剤)の重量平均分子量(Mw)の測定の[[測定装置及び測定条件]]と同様の測定装置及び測定条件で、調製した測定用試料の重量平均分子量(Mw)を測定した。
-measurement-
The weight average molecular weight (Mw) of the prepared measurement sample was measured using the same measurement device and measurement conditions as those used in the measurement of the weight average molecular weight (Mw) of the chain extender (crosslinking agent) [[measurement device and measurement conditions]].
<<ポリ乳酸樹脂組成物の再結晶化エンタルピーの測定>>
実施例1~13及び比較例1~5の発泡剤供給工程及び混練工程で得られたポリ乳酸樹脂組成物の再結晶化エンタルピーは、JIS K 7122:2012(プラスチックの転移熱測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、ポリ乳酸樹脂組成物を5mg~10mgとり、65℃に熱したホットプレート上で銅製の丸棒(直径20mm程度、丸棒も同様に65℃に熱しておいた)により1秒間~3秒間プレス(500gf程度の荷重に拠る)して平坦化して試料を作製した。この試料を、下記測定装置及び測定条件にて測定し、下記解析方法で解析した。なお、再結晶化エンタルピーは、試料の調製から解析までを5回行って得られた結果の算術平均を用いた。
[[測定装置及び測定条件]]
・ 装置:Q-2000(TAインスツルメント社製)
・ 温度プログラム:10℃/分間の昇温速度で10℃から200℃まで走査し(1st heating)、200℃で1分間保持した後、10℃/分間の降温速度で200℃から25℃まで走査した(1st cooling)。
・ 再結晶化エンタルピーの解析:1st coolingにおいて観察される結晶化に伴う発熱ピークについて、積分により面積を求めて再結晶化エンタルピーとした。結晶化に伴う発熱ピークの位置は、おおよそ100℃~130℃の範囲であった。積分のベースラインは、発熱ピークの前後を結ぶ直線とした。
<<Measurement of recrystallization enthalpy of polylactic acid resin composition>>
The recrystallization enthalpy of the polylactic acid resin compositions obtained in the foaming agent supplying step and the kneading step in Examples 1 to 13 and Comparative Examples 1 to 5 was determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7122:2012 (Method for measuring heat of transition of plastics).
Specifically, 5 mg to 10 mg of the polylactic acid resin composition was taken and flattened on a hot plate heated to 65° C. by pressing (at a load of about 500 gf) for 1 to 3 seconds with a copper rod (diameter about 20 mm, the rod was also heated to 65° C.) to prepare a sample. This sample was measured using the following measuring device and measuring conditions, and analyzed by the following analytical method. The recrystallization enthalpy was calculated by the arithmetic average of the results obtained by performing the process from sample preparation to analysis five times.
[Measurement equipment and conditions]
・ Apparatus: Q-2000 (manufactured by TA Instruments)
Temperature program: Scanning from 10° C. to 200° C. at a heating rate of 10° C./min (1st heating), holding at 200° C. for 1 minute, and then scanning from 200° C. to 25° C. at a cooling rate of 10° C./min (1st cooling).
Analysis of recrystallization enthalpy: The area of the exothermic peak associated with crystallization observed in the first cooling was determined by integration to obtain the recrystallization enthalpy. The position of the exothermic peak associated with crystallization was in the range of approximately 100°C to 130°C. The baseline for integration was a straight line connecting the front and rear of the exothermic peak.
<<発泡シートの断面のTD方向の最表面形状>>
実施例1~13及び比較例1~5の発泡シートの断面のTD方向の最表面形状は以下の方法で評価した。
<<Outer surface shape in the TD direction of the cross section of the foam sheet>>
The outermost surface shape in the TD direction of the cross section of the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 was evaluated by the following method.
-試料-
発泡シートのTD方向の中央部を5cm×5cmの正方形に切り出し、下記3次元計測器のステージに両面テープで該発泡シートが浮かないよう固定し、測定用試料とした。
なお、測定用試料は、発泡シートから切り出す場所を変えて、同様の方法で3個作製した。
-sample-
The central portion of the foam sheet in the TD direction was cut into a 5 cm x 5 cm square, which was then fixed to the stage of the three-dimensional measuring device described below with double-sided tape so that the foam sheet would not float, to prepare a measurement sample.
Three measurement samples were prepared in the same manner by cutting out different locations from the foamed sheet.
-うねりに対する処理-
粗さ曲線要素の平均長さRSmを評価した際に10mm以上の数値が計測される場合には、うねりのカットオフ(λc)を10mmに設定して計測を行った。
- Treatment for swells -
When the average length RSm of the roughness curve elements was evaluated and a value of 10 mm or more was measured, the waviness cutoff (λc) was set to 10 mm and measurement was performed.
-測定-
下記測定装置及び測定条件で、3個の測定用試料の厚み方向かつTD方向の、一方の表面のTD方向の形状を観察し、付属のソフトを用いて、それぞれJIS B 0601:2013に準拠して算出した算術平均粗さRa及び粗さ曲線要素の平均長さRSmを得た後、その平均値を算出した。また、算術平均粗さRa(平均値)と、粗さ曲線要素の平均長さRSm(平均値)との比[Ra/RSm]を算出した。
[[測定装置及び測定条件]]
・ 装置:3次元計測器 VR-3200(Keyence社製)
・ 観察倍率:12倍
・ 測定モード:スタンダード
・ 測定方向:両側
・ 測定用明るさ調整:オート(設定値:80)
・ 基準面設定:画面のx方向、y方向のそれぞれを選択して実施
-measurement-
Using the following measuring device and measuring conditions, the TD shape of one surface of the three measuring samples in the thickness direction and TD direction was observed, and the arithmetic mean roughness Ra and the average length RSm of the roughness curve element were calculated using the attached software in accordance with JIS B 0601:2013, and then the average value was calculated. In addition, the ratio [Ra/RSm] of the arithmetic mean roughness Ra (average value) to the average length RSm of the roughness curve element (average value) was calculated.
[Measurement equipment and conditions]
・ Equipment: 3D measuring device VR-3200 (Keyence)
Observation magnification: 12x Measurement mode: Standard Measurement direction: Both sides Measurement brightness adjustment: Auto (Set value: 80)
- Reference plane setting: Select and execute for each of the x and y directions of the screen
<<発泡シートのかさ密度の測定>>
実施例1~13及び比較例1~5の発泡シートを温度23℃、相対湿度50%に調整された環境下で24時間以上静置し、50mm×50mmの試験片を切り出した。切り出した試験片に対して、自動比重計(DSG-1、株式会社東洋精機製作所製)を用い、液中秤量法を用いてかさ密度を求めた。液中秤量法においては、発泡シートの試験片の大気中の質量(g)を精秤し、次いで発泡シートの試験片の水中での質量(g)を精秤し、下記式(1)により算出した。
かさ密度[g/cm3]=水の密度[g/cm3]×大気中の試験片の質量[g]/(大気中の試験片の質量[g]-液体中の試験片の質量[g]) ・・・ 式(1)
<<Measurement of bulk density of foam sheet>>
The foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were left to stand for 24 hours or more in an environment adjusted to a temperature of 23° C. and a relative humidity of 50%, and test pieces of 50 mm×50 mm were cut out. The cut test pieces were subjected to a liquid weighing method to determine the bulk density using an automatic specific gravity meter (DSG-1, manufactured by Toyo Seiki Seisakusho Co., Ltd.). In the liquid weighing method, the mass (g) of the foamed sheet test piece in air was precisely weighed, and then the mass (g) of the foamed sheet test piece in water was precisely weighed, and the mass was calculated according to the following formula (1).
Bulk density [g/cm 3 ]=density of water [g/cm 3 ]×mass of test piece in air [g]/(mass of test piece in air [g]−mass of test piece in liquid [g]) Equation (1)
<<発泡シートの発泡径(メジアン径)の測定>>
実施例1~13及び比較例1~5の発泡シートを鋭利なカミソリ(76カミソリ、日新EM株式会社製)を用いて断面切削を行い、走査電子顕微鏡(SEM)(3Dリアルサーフェスビュー顕微鏡 VE-9800、KEYENCE社製)を用いて、発泡シート断面の拡大倍率20倍から50倍の走査電子顕微鏡(SEM)観察を行った。得られた画像は、画像解析ソフトImageJ(フリーソフト)のMorphoLibJプラグインを用い、watershed法(Morphological segmetation)による領域分割を行った。この際、Toleranceは分割が妥当になるように画像毎に調整した。領域の分割線を2値画像として出力し、画像端部に接する気泡は解析から除外しながら画像解析ソフトの粒子径解析機能により気泡面積の分布を求めた。気泡面積の累積分布を表計算ソフト(Excel、Microsoft社製)で作成し、累積分布が50%になる面積を求め、該面積の円相当径を計算し、発泡径(メジアン径)として用いた。
<<Measurement of foam diameter (median diameter) of foam sheet>>
The cross-sections of the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were cut using a sharp razor (76 razor, manufactured by Nisshin EM Co., Ltd.), and the cross-sections of the foamed sheets were observed with a scanning electron microscope (SEM) (3D real surface view microscope VE-9800, manufactured by KEYENCE Co., Ltd.) at a magnification of 20 to 50 times. The obtained images were subjected to area division by the watershed method (morphological segmentation) using the MorphoLibJ plug-in of the image analysis software ImageJ (free software). At this time, the tolerance was adjusted for each image so that the division was appropriate. The dividing lines of the regions were output as binary images, and the distribution of the bubble area was obtained by the particle size analysis function of the image analysis software while excluding bubbles in contact with the end of the image from the analysis. The cumulative distribution of the bubble area was created using a spreadsheet software (Excel, manufactured by Microsoft Corporation), and the area where the cumulative distribution was 50% was determined. The circle equivalent diameter of this area was calculated and used as the bubble diameter (median diameter).
<<発泡シートの冷結晶化エンタルピーの測定>>
実施例1~13及び比較例1~5の発泡シート中の冷結晶化エンタルピーは、JIS K 7122:2012(プラスチックの転移熱測定方法)に準拠した示差走査熱量(DSC)測定から求めた。
具体的には、前記発泡シートから5mg~10mgの試料を切り出し、65℃に熱したホットプレート上で銅製の丸棒(直径20mm程度、丸棒も同様に65℃に熱しておいた)により、500gfの荷重で1秒間~3秒間プレスして平坦化して試料を作製した。この試料を示差走査熱量計装置(Q-2000型、TAインスツルメント社製)の容器に入れ、下記測定装置及び測定条件にて測定し、下記解析方法で解析した。なお、前記発泡シート中のポリ乳酸樹脂の冷結晶化エンタルピーは、試料の調製から解析までを5回行って得られた結果の算術平均とした。
[[測定装置及び測定条件]]
・ 装置:Q-2000(TAインスツルメント社製)
・ 温度プログラム:10℃/分間の昇温速度で10℃から200℃まで走査した(1st heating)。
・ 冷結晶化エンタルピーの解析:1st heatingの60℃~100℃において観察される結晶化に伴う発熱ピークについて積分により面積を求めて冷結晶化エンタルピーとした。積分のベースラインは、該発熱ピークの前後を結ぶ直線とした。
<<Measurement of cold crystallization enthalpy of foam sheet>>
The cold crystallization enthalpy in the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 was determined by differential scanning calorimetry (DSC) measurement in accordance with JIS K 7122:2012 (Method for measuring heat of transition of plastics).
Specifically, a sample of 5 mg to 10 mg was cut out from the foamed sheet, and pressed with a copper rod (diameter about 20 mm, the rod was also heated to 65° C.) for 1 to 3 seconds under a load of 500 gf on a hot plate heated to 65° C. to prepare a sample. The sample was placed in a container of a differential scanning calorimeter (Q-2000 type, manufactured by TA Instruments) and measured with the following measuring device and under the following measuring conditions, and analyzed by the following analytical method. The cold crystallization enthalpy of the polylactic acid resin in the foamed sheet was taken as the arithmetic average of the results obtained by performing the process from sample preparation to analysis five times.
[Measurement equipment and conditions]
・ Apparatus: Q-2000 (manufactured by TA Instruments)
Temperature program: Scanning was performed from 10° C. to 200° C. at a heating rate of 10° C./min (1st heating).
Analysis of cold crystallization enthalpy: The cold crystallization enthalpy was determined by integrating the area of the exothermic peak associated with crystallization observed at 60° C. to 100° C. during the first heating. The baseline for integration was a straight line connecting the front and back of the exothermic peak.
<評価>
実施例1~13及び比較例1~5の発泡シートについて、以下の方法で「成型性」、「耐熱性」、「断熱性」、及び「生分解性」を評価した。評価結果は、下記表1~表4に示した。
<Evaluation>
The foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were evaluated for "moldability,""heatresistance,""thermalinsulation," and "biodegradability" by the following methods. The evaluation results are shown in Tables 1 to 4 below.
<<成型性>>
実施例1~13及び比較例1~5の発泡シートを予備加熱後、マッチモールド型加熱金型で110℃、10秒間かけてカップ焼きそば容器(開口部の直径180mm、底部の直径110mm、深さ60mm)の形状に成型した。得られたカップ焼きそば容器の成型体を専門評価者が観察し、成型性を下記評価基準に基づき評価した。評価結果はAが最も良く、許容範囲はA又はBとした。
-成型性の評価基準-
A:破れや薄くなっている場所がなく均一な厚みの容器が成型できている
B:破れはないが、薄くなり破れかけている場所が確認される
C:大きな破れが発生した
<<Moldability>>
The foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were preheated and then molded into the shape of a cup yakisoba container (opening diameter 180 mm, bottom diameter 110 mm, depth 60 mm) in a match mold type heating die at 110°C for 10 seconds. The obtained molded cup yakisoba containers were observed by a specialist evaluator, and the moldability was evaluated based on the following evaluation criteria. The evaluation result was A, which was the best, and A or B was within the acceptable range.
- Evaluation criteria for moldability -
A: There are no tears or thin areas, and the container is formed with a uniform thickness. B: There are no tears, but there are areas that have become thin and are close to being torn. C: A large tear has occurred.
<<耐熱性>>
実施例1~13及び比較例1~5の発泡シートを予備加熱後、マッチモールド型加熱金型で110℃、10秒間かけてカップ焼きそば容器(開口部の直径180mm、底部の直径110mm、深さ60mm)の形状に成型した。25℃の水を、実施例1~13及び比較例1~5の発泡シートの成型体(カップ焼きそば容器)の開口部のすりきりまで入れ、成型体内に入れた水の質量を測定し、25℃における水の密度で体積に換算した値を成型体の「初期体積」とした。
次に、実施例1~13及び比較例1~5の発泡シートの成型体を120℃で10分間加熱後に、25℃の水を開口部のすりきりまで入れ、成型体内に入れた水の質量を測定し、25℃における水の密度で体積に換算した値を成型体の「加熱後体積」とした。
下記式(9)により成型体の加熱前後の体積変化率を算出し、この体積変化率を成型体の耐熱性の指標として、下記評価基準に基づき評価した。評価結果はAが最も良く、許容範囲はA又はBとした。
体積変化率(%)=(初期体積-加熱後体積)/初期体積×100 ・・・ 式(9)
-耐熱性の評価基準-
A:体積変化率が3%未満である
B:体積変化率が3%以上10%未満である
C:体積変化率が10%以上である、若しくは、元の形状が認められないほど変形している
<<Heat resistance>>
The foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were preheated and then molded into the shape of a cup yakisoba container (opening diameter 180 mm, bottom diameter 110 mm, depth 60 mm) in a match mold type heating die at 110° C. for 10 seconds. Water at 25° C. was poured into the opening of the molded product (cup yakisoba container) of the foamed sheet of Examples 1 to 13 and Comparative Examples 1 to 5 up to the top, the mass of the water poured into the molded product was measured, and the value converted into volume using the density of water at 25° C. was regarded as the "initial volume" of the molded product.
Next, the molded foam sheets of Examples 1 to 13 and Comparative Examples 1 to 5 were heated at 120° C. for 10 minutes, and then water at 25° C. was poured into the opening up to the top of the opening. The mass of the water poured into the molded body was measured, and the value converted into volume using the density of water at 25° C. was regarded as the "volume after heating" of the molded body.
The volume change rate of the molded body before and after heating was calculated using the following formula (9), and the heat resistance of the molded body was evaluated based on the following evaluation criteria, with A being the best result and A or B being the acceptable range.
Volume change rate (%)=(initial volume−volume after heating)/initial volume×100 Equation (9)
- Heat resistance evaluation criteria -
A: The volume change rate is less than 3%. B: The volume change rate is 3% or more and less than 10%. C: The volume change rate is 10% or more, or the deformation is so great that the original shape cannot be recognized.
<<断熱性>>
実施例1~13及び比較例1~5の発泡シートから50mm×50mmの試験片を切り出した。切り出した試験片を100℃に加熱したホットプレート上に置いて3分間静置した。静置後、加熱面とは反対側の面に熱電対を付けて発泡シート表面温度を計測し、発泡シート表面温度を断熱性の指標として下記評価基準に基づき評価した。評価結果はAが最も良く、許容範囲はA、B、又はCとした。
-断熱性の評価基準-
A:発泡シートの表面温度が45℃未満である
B:発泡シートの表面温度が45℃以上55℃未満である
C:発泡シートの表面温度が55℃以上65℃未満である
D:発泡シートの表面温度が65℃以上である
<<Thermal insulation>>
Test pieces measuring 50 mm x 50 mm were cut out from the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5. The cut test pieces were placed on a hot plate heated to 100°C and left to stand for 3 minutes. After standing, a thermocouple was attached to the surface opposite to the heated surface to measure the surface temperature of the foamed sheet, and the foamed sheet surface temperature was used as an index of thermal insulation and evaluated based on the following evaluation criteria. The evaluation result was A, which was the best, and the acceptable range was A, B, or C.
-Insulation evaluation criteria-
A: The surface temperature of the foam sheet is less than 45° C. B: The surface temperature of the foam sheet is 45° C. or more and less than 55° C. C: The surface temperature of the foam sheet is 55° C. or more and less than 65° C. D: The surface temperature of the foam sheet is 65° C. or more
<<生分解性>>
実施例1~13及び比較例1~5の発泡シートの生分解性は、JIS K 6953-2:2010(プラスチック-制御されたコンポスト条件下の好気的究極生分解度の求め方-発生二酸化炭素量の測定による方法-第2部:実験室規模における発生二酸化炭素の質量測定方法)に準拠して求め、下記評価基準に基づき評価した。評価結果はAが最も良く、許容範囲はA又はBとした。
-生分解性の評価基準-
A:45日間で生分解度60%以上
B:6か月間で生分解度60%以上
C:6か月間で生分解度60%未満
<<Biodegradability>>
The biodegradability of the foamed sheets of Examples 1 to 13 and Comparative Examples 1 to 5 was determined in accordance with JIS K 6953-2:2010 (Plastics - Determination of ultimate aerobic biodegradability under controlled compost conditions - Method by measurement of the amount of carbon dioxide generated - Part 2: Method for measuring the mass of carbon dioxide generated on a laboratory scale) and was evaluated based on the following evaluation criteria. The best evaluation result was A, and the acceptable range was A or B.
- Biodegradability evaluation criteria -
A: Biodegradability of 60% or more in 45 days B: Biodegradability of 60% or more in 6 months C: Biodegradability of less than 60% in 6 months
本発明の態様としては、例えば、以下のものなどが挙げられる。
<1> ポリ乳酸樹脂を含有する組成物からなる発泡シートであって、
前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、
前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、
前記発泡シートのかさ密度が0.063g/cm3以上0.250g/cm3以下であり、
前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下であることを特徴とする発泡シートである。
<2> 前記比[Ra/RSm]が0.030以下である、前記<1>に記載の発泡シートである。
<3> 前記発泡シートのかさ密度が0.063g/cm3以上0.125g/cm3以下である、前記<1>又は<2>に記載の発泡シートである。
<4> 前記ポリ乳酸樹脂を含有する組成物がエポキシ基を有する化合物を含有し、
前記エポキシ基を有する化合物のエポキシ当量が250以上350以下であり、
前記エポキシ基を有する化合物の重量平均分子量(Mw)が10,000以上20,000以下である、前記<1>から<3>のいずれかに記載の発泡シートである。
<5> 前記エポキシ基を有する化合物が分子内に2つ以上のエポキシ基を有する化合物である、前記<4>に記載の発泡シートである。
<6> 前記ポリ乳酸樹脂を含有する組成物が無機粒子を含有し、
前記無機粒子の平均疎水化度が65体積%以上、かつ前記無機粒子の炭素含有量が4質量%以上である、前記<1>から<4>のいずれかに記載の発泡シートである。
<7> 前記無機粒子がシリカである、前記<6>に記載の発泡シートである。
<8> 前記発泡シートの発泡径がメジアン径で800μm以下である、前記<1>から<7>のいずれかに記載の発泡シートである。
<9> 前記発泡シートは冷結晶化エンタルピーが20J/g以上である、前記<1>から<8>のいずれかに記載の発泡シートである。
<10> 前記<1>から<9>のいずれかに記載の発泡シートを熱成型してなることを特徴とする成型体である。
<11> 前記<1>から<9>のいずれかに記載の発泡シートを含有することを特徴とする成型体である。
<12> 前記<1>から<9>のいずれかに記載の発泡シートの製造方法であって、
ポリ乳酸樹脂を含有する組成物を、該ポリ乳酸樹脂を含有する組成物100質量部に対して、2質量部以上5質量部以下の発泡剤の存在下で混練する工程と、
前記ポリ乳酸樹脂を含有する組成物から前記発泡剤を気化して前記ポリ乳酸樹脂を含有する組成物を発泡させる工程と、
を含むことを特徴とする発泡シートの製造方法である。
<13> 前記二酸化炭素が圧縮性流体である、前記<12>に記載の発泡シートの製造方法である。
The aspects of the present invention include, for example, the following.
<1> A foamed sheet made of a composition containing a polylactic acid resin,
The polylactic acid resin contains 98 mol % or more of either D-lactic acid or L-lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin;
The content of the polylactic acid resin relative to the total amount of organic matter in the foamed sheet is 98% by mass or more,
The bulk density of the foamed sheet is 0.063 g/ cm3 or more and 0.250 g/ cm3 or less,
The foamed sheet is characterized in that, with respect to a shape of at least one surface of the foamed sheet in a direction perpendicular to the extrusion direction of the foamed sheet as viewed from a cross section in the thickness direction of the foamed sheet and in a direction perpendicular to the extrusion direction of the foamed sheet, a ratio [Ra/RSm] of an arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to an average length RSm of roughness curve elements calculated in accordance with JIS B 0601:2013 is 0.050 or less.
<2> The foamed sheet according to <1>, wherein the ratio [Ra/RSm] is 0.030 or less.
<3> The foamed sheet according to <1> or <2>, wherein the foamed sheet has a bulk density of 0.063 g/ cm3 or more and 0.125 g/ cm3 or less.
<4> The composition containing the polylactic acid resin contains a compound having an epoxy group,
the epoxy equivalent of the compound having an epoxy group is 250 or more and 350 or less,
The foamed sheet according to any one of <1> to <3>, wherein the compound having an epoxy group has a weight average molecular weight (Mw) of 10,000 or more and 20,000 or less.
<5> The foamed sheet according to <4>, wherein the compound having an epoxy group is a compound having two or more epoxy groups in the molecule.
<6> The composition containing the polylactic acid resin contains inorganic particles,
The foamed sheet according to any one of <1> to <4>, wherein the inorganic particles have an average hydrophobicity of 65% by volume or more and a carbon content of the inorganic particles of 4% by mass or more.
<7> The foamed sheet according to <6>, wherein the inorganic particles are silica.
<8> The foamed sheet according to any one of <1> to <7>, wherein the foamed sheet has a median foam diameter of 800 μm or less.
<9> The foamed sheet according to any one of <1> to <8>, wherein the foamed sheet has a cold crystallization enthalpy of 20 J/g or more.
<10> A molded product obtained by thermoforming the foamed sheet according to any one of <1> to <9>.
<11> A molded article comprising the foamed sheet according to any one of <1> to <9>.
<12> A method for producing a foamed sheet according to any one of <1> to <9>,
kneading a composition containing a polylactic acid resin in the presence of 2 parts by mass or more and 5 parts by mass or less of a foaming agent relative to 100 parts by mass of the composition containing the polylactic acid resin;
a step of vaporizing the foaming agent from the composition containing the polylactic acid resin to foam the composition containing the polylactic acid resin;
The method for producing a foamed sheet is characterized by comprising the steps of:
<13> The method for producing a foamed sheet according to <12>, wherein the carbon dioxide is a compressible fluid.
前記<1>から<9>のいずれかに記載の発泡シート、前記<10>又は<11>に記載の成型体、及び前記<12>から<13>のいずれかに記載の発泡シートの製造方法は、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。 The foamed sheet described in any one of <1> to <9>, the molded body described in <10> or <11>, and the method for producing the foamed sheet described in any one of <12> to <13> can solve the above-mentioned problems in the past and achieve the object of the present invention.
1 第一の供給部
2 第二の供給部
3 圧縮性流体貯留部
4 筒状発泡体
5 冷却マンドレル
10 混練装置
20 単軸押出機
100 二軸押出装置(連続式混練装置)
110 連続式発泡シート製造装置
a 原材料混合及び溶融部
b 圧縮性流体供給部
c 混練部
d 圧縮性流体除去部
e 成型加工部
f 温度調整部
F 圧縮性流体
P 樹脂ペレット
200 発泡シート
201 発泡シート200の厚み方向かつTD方向の断面
202 発泡シート200の一方の表面(最表面)
REFERENCE SIGNS LIST 1 First supply section 2 Second supply section 3 Compressible fluid storage section 4 Cylindrical foam 5 Cooling mandrel 10 Kneading device 20 Single screw extruder 100 Twin screw extruder (continuous kneading device)
110 Continuous foamed sheet manufacturing apparatus a Raw material mixing and melting section b Compressible fluid supply section c Kneading section d Compressible fluid removal section e Molding section f Temperature adjustment section F Compressible fluid P Resin pellets 200 Foamed sheet 201 Cross section of foamed sheet 200 in thickness direction and TD direction 202 One surface (outermost surface) of foamed sheet 200
Claims (8)
前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、
前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、
前記発泡シートのかさ密度が0.063g/cm3以上0.250g/cm3以下であり、
前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下であることを特徴とする発泡シート。 A foamed sheet made of a composition containing a polylactic acid resin,
The polylactic acid resin contains 98 mol % or more of either D-lactic acid or L-lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin;
The content of the polylactic acid resin relative to the total amount of organic matter in the foamed sheet is 98% by mass or more,
The bulk density of the foamed sheet is 0.063 g/ cm3 or more and 0.250 g/ cm3 or less,
A foamed sheet characterized in that, with respect to a shape of at least one surface of the foamed sheet in a direction perpendicular to the extrusion direction of the foamed sheet, as viewed from a cross section in the thickness direction of the foamed sheet and in a direction perpendicular to the extrusion direction of the foamed sheet, a ratio [Ra/RSm] of an arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to an average length RSm of roughness curve elements calculated in accordance with JIS B 0601:2013 is 0.050 or less.
前記エポキシ基を有する化合物のエポキシ当量が250以上350以下であり、
前記エポキシ基を有する化合物の重量平均分子量(Mw)が10,000以上20,000以下である、請求項1に記載の発泡シート。 The foamed sheet contains a compound having an epoxy group,
the epoxy equivalent of the compound having an epoxy group is 250 or more and 350 or less,
2. The foamed sheet according to claim 1, wherein the compound having an epoxy group has a weight average molecular weight (Mw) of 10,000 or more and 20,000 or less.
前記ポリ乳酸樹脂は、該ポリ乳酸樹脂の構成モノマー単位である乳酸のD体又は乳酸のL体のいずれか一方が該ポリ乳酸樹脂中98モル%以上であり、
前記発泡シートにおける有機物の総量に対する前記ポリ乳酸樹脂の含有量が98質量%以上であり、
前記発泡シートのかさ密度が0.063g/cm 3 以上0.250g/cm 3 以下であり、
前記発泡シートの厚み方向、かつ、前記発泡シートの押出方向に直行する方向の断面から見た、前記発泡シートの少なくとも一方の表面の、前記発泡シートの押出方向に直行する方向の形状について、JIS B 0601:2013に準拠して算出した算術平均粗さRaと、JIS B 0601:2013に準拠して算出した粗さ曲線要素の平均長さRSmとの比[Ra/RSm]が0.050以下であり、
前記発泡シートは冷結晶化エンタルピーが20J/g以上であることを特徴とする発泡シート。 A foamed sheet made of a composition containing a polylactic acid resin,
The polylactic acid resin contains 98 mol % or more of either D-lactic acid or L-lactic acid, which are constituent monomer units of the polylactic acid resin, in the polylactic acid resin;
The content of the polylactic acid resin relative to the total amount of organic matter in the foamed sheet is 98% by mass or more,
The bulk density of the foamed sheet is 0.063 g/cm3 or more and 0.250 g/cm3 or less,
With respect to a shape of at least one surface of the foamed sheet in a direction perpendicular to the extrusion direction of the foamed sheet as viewed from a cross section in the thickness direction of the foamed sheet and in a direction perpendicular to the extrusion direction of the foamed sheet, a ratio [Ra/RSm] of an arithmetic mean roughness Ra calculated in accordance with JIS B 0601:2013 to an average length RSm of roughness curve elements calculated in accordance with JIS B 0601:2013 is 0.050 or less,
The foamed sheet has a cold crystallization enthalpy of 20 J/g or more.
ポリ乳酸樹脂を含有する組成物を、該ポリ乳酸樹脂を含有する組成物100質量部に対して、2質量部以上5質量部以下の発泡剤の存在下で混練する工程と、
前記ポリ乳酸樹脂を含有する組成物から前記発泡剤を気化して前記ポリ乳酸樹脂を含有する組成物を発泡させる工程と、
を含むことを特徴とする発泡シートの製造方法。 A method for producing the foamed sheet according to claim 1 or 6 , comprising the steps of:
kneading a composition containing a polylactic acid resin in the presence of 2 parts by mass or more and 5 parts by mass or less of a foaming agent relative to 100 parts by mass of the composition containing the polylactic acid resin;
a step of vaporizing the foaming agent from the composition containing the polylactic acid resin to foam the composition containing the polylactic acid resin;
A method for producing a foamed sheet, comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023030405A JP7548355B1 (en) | 2023-02-28 | 2023-02-28 | Foamed sheet, method for producing foamed sheet, and molded product |
PCT/JP2024/005625 WO2024181186A1 (en) | 2023-02-28 | 2024-02-16 | Foam sheet, method for producing foam sheet, and molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023030405A JP7548355B1 (en) | 2023-02-28 | 2023-02-28 | Foamed sheet, method for producing foamed sheet, and molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7548355B1 true JP7548355B1 (en) | 2024-09-10 |
JP2024125453A JP2024125453A (en) | 2024-09-19 |
Family
ID=90236537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023030405A Active JP7548355B1 (en) | 2023-02-28 | 2023-02-28 | Foamed sheet, method for producing foamed sheet, and molded product |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7548355B1 (en) |
WO (1) | WO2024181186A1 (en) |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098104A (en) | 1999-09-30 | 2001-04-10 | Kanebo Ltd | Expanded particle having biodegradability and mold thereof |
JP2006328318A (en) | 2005-05-30 | 2006-12-07 | Cp Kasei Kk | Foamed sheet of thermoplastic resin and method for producing container made of the sheet |
JP2006348060A (en) | 2005-06-13 | 2006-12-28 | Cp Kasei Kk | Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet |
JP2007246610A (en) | 2006-03-14 | 2007-09-27 | Asahi Kasei Chemicals Corp | Aliphatic polyester resin composition excellent in heat resistance, and foamed sheet and molded product thereof |
KR100836496B1 (en) | 2007-04-03 | 2008-06-09 | 한일이화주식회사 | A biodegradable rigid foam |
JP2009235316A (en) | 2008-03-28 | 2009-10-15 | Toray Ind Inc | Polylactic acid-based resin foam |
WO2011068081A1 (en) | 2009-12-02 | 2011-06-09 | ユニチカ株式会社 | Polylactic acid-based resin composition, molded article and polylactic acid-based master batch pellets |
JP2012041400A (en) | 2010-08-16 | 2012-03-01 | Mitsui Chemicals Inc | Foaming molded product |
JP2016190950A (en) | 2015-03-31 | 2016-11-10 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
JP2021134348A (en) | 2020-02-26 | 2021-09-13 | 株式会社リコー | Foam, foam sheet, product, and method for producing foam sheet |
JP2022042177A (en) | 2020-09-02 | 2022-03-14 | 株式会社リコー | Foam, foam sheet, product, and foam manufacturing method |
JP2022142625A (en) | 2021-03-16 | 2022-09-30 | 株式会社リコー | Extrusion molding die, plastic manufacturing device, and plastic manufacturing method |
JP2022159976A (en) | 2021-04-05 | 2022-10-18 | 株式会社リコー | Extrusion molding die, plastic manufacturing apparatus, and plastic manufacturing method |
JP2022164470A (en) | 2021-04-16 | 2022-10-27 | 株式会社リコー | Die for extrusion molding, plastic manufacturing apparatus, and plastic manufacturing method |
JP2023143671A (en) | 2022-03-23 | 2023-10-06 | 株式会社リコー | Flow passage-forming apparatus, and extrusion molding apparatus |
JP2023143672A (en) | 2022-03-23 | 2023-10-06 | 株式会社リコー | Flow passage-forming apparatus, and extrusion molding apparatus |
JP7392881B1 (en) | 2023-02-28 | 2023-12-06 | 株式会社リコー | Foamed sheets, foamed sheet manufacturing methods, products, and molded bodies |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4845424B2 (en) | 2005-05-26 | 2011-12-28 | 三井化学東セロ株式会社 | Biodegradable polymer foam stretched film and laminated film |
JP2007046019A (en) | 2005-08-12 | 2007-02-22 | Unitika Ltd | Thermoplastic resin foam and method for producing the same |
JP4842745B2 (en) | 2005-09-27 | 2011-12-21 | 株式会社ジェイエスピー | Polylactic acid resin foam sheet molded body and method for producing the same |
JP5207277B2 (en) | 2007-12-10 | 2013-06-12 | 独立行政法人産業技術総合研究所 | Method for producing fine foam |
EP2251373B1 (en) | 2008-03-07 | 2013-08-28 | Toray Industries, Inc. | Heat-insulating material |
JP7246223B2 (en) | 2019-03-26 | 2023-03-27 | 積水化成品工業株式会社 | Polylactic acid resin foamed sheet, resin molded product, and method for producing polylactic acid resin foamed sheet |
JP2022083401A (en) * | 2020-11-24 | 2022-06-03 | 株式会社リコー | Foamed sheet, product, molded body, and method for producing foamed sheet |
JP2023030405A (en) | 2021-08-23 | 2023-03-08 | 富士フイルムビジネスイノベーション株式会社 | Image reading device |
-
2023
- 2023-02-28 JP JP2023030405A patent/JP7548355B1/en active Active
-
2024
- 2024-02-16 WO PCT/JP2024/005625 patent/WO2024181186A1/en unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098104A (en) | 1999-09-30 | 2001-04-10 | Kanebo Ltd | Expanded particle having biodegradability and mold thereof |
JP2006328318A (en) | 2005-05-30 | 2006-12-07 | Cp Kasei Kk | Foamed sheet of thermoplastic resin and method for producing container made of the sheet |
JP2006348060A (en) | 2005-06-13 | 2006-12-28 | Cp Kasei Kk | Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet |
JP2007246610A (en) | 2006-03-14 | 2007-09-27 | Asahi Kasei Chemicals Corp | Aliphatic polyester resin composition excellent in heat resistance, and foamed sheet and molded product thereof |
KR100836496B1 (en) | 2007-04-03 | 2008-06-09 | 한일이화주식회사 | A biodegradable rigid foam |
JP2009235316A (en) | 2008-03-28 | 2009-10-15 | Toray Ind Inc | Polylactic acid-based resin foam |
WO2011068081A1 (en) | 2009-12-02 | 2011-06-09 | ユニチカ株式会社 | Polylactic acid-based resin composition, molded article and polylactic acid-based master batch pellets |
JP2012041400A (en) | 2010-08-16 | 2012-03-01 | Mitsui Chemicals Inc | Foaming molded product |
JP2016190950A (en) | 2015-03-31 | 2016-11-10 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
JP2021134348A (en) | 2020-02-26 | 2021-09-13 | 株式会社リコー | Foam, foam sheet, product, and method for producing foam sheet |
JP2022042177A (en) | 2020-09-02 | 2022-03-14 | 株式会社リコー | Foam, foam sheet, product, and foam manufacturing method |
JP2022142625A (en) | 2021-03-16 | 2022-09-30 | 株式会社リコー | Extrusion molding die, plastic manufacturing device, and plastic manufacturing method |
JP2022159976A (en) | 2021-04-05 | 2022-10-18 | 株式会社リコー | Extrusion molding die, plastic manufacturing apparatus, and plastic manufacturing method |
JP2022164470A (en) | 2021-04-16 | 2022-10-27 | 株式会社リコー | Die for extrusion molding, plastic manufacturing apparatus, and plastic manufacturing method |
JP2023143671A (en) | 2022-03-23 | 2023-10-06 | 株式会社リコー | Flow passage-forming apparatus, and extrusion molding apparatus |
JP2023143672A (en) | 2022-03-23 | 2023-10-06 | 株式会社リコー | Flow passage-forming apparatus, and extrusion molding apparatus |
JP7392881B1 (en) | 2023-02-28 | 2023-12-06 | 株式会社リコー | Foamed sheets, foamed sheet manufacturing methods, products, and molded bodies |
Also Published As
Publication number | Publication date |
---|---|
WO2024181186A1 (en) | 2024-09-06 |
JP2024125453A (en) | 2024-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7392881B1 (en) | Foamed sheets, foamed sheet manufacturing methods, products, and molded bodies | |
JP4804179B2 (en) | Polylactic acid composition and molded product comprising the composition | |
JPWO2006095923A1 (en) | Polylactic acid composition and molded product comprising the composition | |
JP2006103098A (en) | Foamed multi-layer polylactic acid resin and foamed multi-layer polylactic acid resin molding | |
EP2380922A1 (en) | Polylactic acid foam composition | |
JP2022083401A (en) | Foamed sheet, product, molded body, and method for producing foamed sheet | |
JP4258758B2 (en) | Polylactic acid resin foam sheet for thermoforming | |
JP6519247B2 (en) | METHOD OF PRODUCING THERMOPLASTIC RESIN SHEET, THERMOPLASTIC RESIN SHEET, AND MOLDED ARTICLE OBTAINED BY HEAT MOLDING THE SAME | |
US20240141120A1 (en) | Foamed polylactic acid sheet, method of manufacturing foamed polylactic acid sheet, and product | |
US20230303830A1 (en) | Polylactic acid resin composition, foam sheet, method for producing the foam sheet, product including the foam sheet, and molded body | |
JP7548355B1 (en) | Foamed sheet, method for producing foamed sheet, and molded product | |
JP5517280B2 (en) | Polylactic acid resin foam molding | |
JP7548356B1 (en) | Foamed sheet, molded product, and method for producing foamed sheet | |
JP2024122720A (en) | Foamed sheet, method for producing foamed sheet, and molded product | |
EP4119606A1 (en) | Foam sheet, product, and method for producing foam sheet | |
Yousefi et al. | Investigating the Effects of Temperature, Azodicarbonamide, Boron Nitride, and Multilayer Film/Foam Coextrusion on the Properties of a Poly (Hydroxyalkanoate)/Poly (Lactic Acid) Blend | |
US20240034851A1 (en) | Method of manufacturing molded body | |
JP4570033B2 (en) | Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming | |
KR101438032B1 (en) | Polylactic acid based-biodegradable polymer blends with excellent compatibility, manufacturing method of heat resistant foamed sheet thereof and foam-molding product thereby | |
JP5302475B1 (en) | Stretched film made of polyester resin composition | |
US12043717B2 (en) | Foam sheet, product, formed product, and method for producing foam sheet | |
US20230340221A1 (en) | Aliphatic polyester resin composition, foamed sheet, method of manufacturing foamed sheet, and manufactured matter | |
JP2024065512A (en) | Polylactic acid foam sheet and method for producing the same, and product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230628 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240812 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7548355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |