JP7543887B2 - Latent heat storage device and method for producing supercooling prevention medium used therein - Google Patents

Latent heat storage device and method for producing supercooling prevention medium used therein Download PDF

Info

Publication number
JP7543887B2
JP7543887B2 JP2020203453A JP2020203453A JP7543887B2 JP 7543887 B2 JP7543887 B2 JP 7543887B2 JP 2020203453 A JP2020203453 A JP 2020203453A JP 2020203453 A JP2020203453 A JP 2020203453A JP 7543887 B2 JP7543887 B2 JP 7543887B2
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
supercooling prevention
aqueous solution
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020203453A
Other languages
Japanese (ja)
Other versions
JP2022090880A (en
Inventor
祐介 後藤
洋臣 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2020203453A priority Critical patent/JP7543887B2/en
Publication of JP2022090880A publication Critical patent/JP2022090880A/en
Application granted granted Critical
Publication of JP7543887B2 publication Critical patent/JP7543887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、潜熱蓄熱装置およびそれに用いる過冷却防止媒体の製造方法に関する。 The present invention relates to a latent heat storage device and a method for manufacturing a supercooling prevention medium used therein.

従来より、車両等の移動体のエンジンを始動する際に、暖機を促進して燃費向上や排ガスの浄化を行ったり、暖房性能を向上するために、移動体から排出される熱エネルギを蓄熱材に一時的に蓄えて使用する蓄熱装置が種々提案されている。 Conventionally, various heat storage devices have been proposed that temporarily store thermal energy emitted from a moving object such as a vehicle in a heat storage material and use it to promote warming up when starting the engine, improve fuel efficiency, purify exhaust gas, and improve heating performance.

例えば、特許文献1には、加熱溶融後の放冷時に過冷却状態を生じさせる潜熱型蓄熱物質を納めた蓄熱容器と、蓄熱物質への伝熱手段と、過冷却状態を崩壊させる結晶核形成物質を納めた種結晶容器と、蓄熱容器と種結晶容器との各内部を連通させる連通手段と、この連通手段の連通断続手段とを備えた蓄熱装置が記載されている。この蓄熱装置は、種結晶容器内の、連通手段から最も隔った個所に結晶核形成物質を充填すると共に、残余の空間に潜熱型蓄熱物質を満したことを特徴とするものである。 For example, Patent Document 1 describes a heat storage device that includes a heat storage container containing a latent heat storage material that creates a supercooled state when allowed to cool after being heated and melted, a heat transfer means to the heat storage material, a seed crystal container containing a crystal nucleus forming material that breaks down the supercooled state, a communication means that connects the inside of the heat storage container and the seed crystal container, and a communication interruption means for the communication means. This heat storage device is characterized in that the crystal nucleus forming material is filled in the portion of the seed crystal container that is furthest from the communication means, and the remaining space is filled with a latent heat storage material.

特許文献1に記載されているような過冷却タイプの潜熱型蓄熱物質の蓄熱原理は、固相の状態でその融点以上に加熱されると、液相に変態する。この液相は融点以下に冷却しても再結晶化することなく、過冷却状態として液相を保ちつづけ、加熱時の吸収熱が潜熱として蓄えられる。この吸収熱を利用したい時に、過冷却状態を崩壊させる働きをもった結晶核形成物質を蓄熱物質に触れさせることによって、再結晶化することから、蓄積潜熱は液相から固相への状態変化に伴う放散熱として、極く短時間で取り出すことができる。 The heat storage principle of supercooled latent heat storage materials as described in Patent Document 1 is that when the material is heated above its melting point in a solid phase, it transforms into a liquid phase. This liquid phase does not recrystallize even when cooled below the melting point, but continues to remain in a supercooled liquid state, and the heat absorbed during heating is stored as latent heat. When it is desired to utilize this absorbed heat, the material is brought into contact with a crystal nucleus-forming material that acts to break down the supercooled state, causing it to recrystallize, and the stored latent heat can be extracted in an extremely short time as dissipated heat accompanying the change in state from liquid to solid.

特開昭63-68418号公報Japanese Unexamined Patent Publication No. 63-68418

このように、過冷却状態にある液相の蓄熱物質を任意のタイミングで発核させて、固相に相変化させるためには、種結晶が必要である。その種結晶を安定して保持するために、融点以下では蓄熱物質を強制的に固体へと相変化させる過冷却防止剤を用いることが知られている。 Thus, seed crystals are necessary to nucleate the heat storage material in the supercooled liquid phase at any time and cause it to change into a solid phase. In order to stably hold the seed crystals, it is known to use a supercooling prevention agent that forces the heat storage material to change into a solid phase below the melting point.

しかしながら、特許文献1に記載されている蓄熱装置において、種結晶容器に過冷却防止剤を用いると、放熱時に蓄熱容器と種結晶容器を連通させ、蓄熱容器内の蓄熱物質が種結晶容器側に流れる際、蓄熱物質に過冷却防止剤が溶出すると、蓄熱容器内へ過冷却防止剤が混入し、蓄熱容器での蓄熱ができなくなるという問題がある。 However, in the heat storage device described in Patent Document 1, if a supercooling prevention agent is used in the seed crystal container, the heat storage container and the seed crystal container are connected during heat release, and when the heat storage material in the heat storage container flows toward the seed crystal container, if the supercooling prevention agent dissolves into the heat storage material, the supercooling prevention agent will get mixed into the heat storage container, making it impossible to store heat in the heat storage container.

特に、蓄熱物質への伝熱時に蓄熱容器だけでなく種結晶容器までも温度が上昇してしまうと、過冷却防止剤の溶出が大きくなるため、過冷却防止剤を収容する種結晶容器を蓄熱容器から遠ざけて配置する必要があり、よって、蓄熱装置をコンパクトにできないという課題があった。 In particular, if the temperature of not only the heat storage container but also the seed crystal container rises during heat transfer to the heat storage material, the dissolution of the supercooling prevention agent increases, so the seed crystal container that holds the supercooling prevention agent needs to be positioned away from the heat storage container, which poses the problem that the heat storage device cannot be made compact.

そこで本発明は、上記の問題点に鑑み、過冷却防止剤が潜熱蓄熱材へ溶出することによる蓄熱の不具合を抑止できるとともに、過冷却防止剤を伝熱手段の近傍に配置することが可能で、潜熱蓄熱装置をコンパクトにできる潜熱蓄熱装置およびそれに用いる過冷却防止媒体の製造方法を提供することを目的とする。 In view of the above problems, the present invention aims to provide a latent heat storage device that can prevent heat storage problems caused by the dissolution of a supercooling prevention agent into the latent heat storage material, and that can place the supercooling prevention agent near the heat transfer means, thereby making the latent heat storage device compact, as well as a method for manufacturing a supercooling prevention medium used therein.

上記の目的を達成するために、本発明は、その一態様として、アルカリ土類金属の陽イオンを含有する水溶液と、前記アルカリ土類金属の陽イオンと反応して水に不溶性又は難溶性の塩を生成する陰イオンを含有する水溶液とを混合し、過冷却防止剤として水に不溶性又は難溶性の塩を生成する、潜熱蓄熱装置に用いる過冷却防止媒体の製造方法であって、この方法は、前記陽イオンを含有する水溶液および前記陰イオンを含有する水溶液の一方の水溶液に、多孔質体を浸漬する工程と、前記陽イオンを含有する水溶液および前記陰イオンを含有する水溶液の他方の水溶液を、前記多孔質体が浸漬されている水溶液に添加し、水に不溶性又は難溶性の塩を前記多孔質体に担持させる工程とを含む。 In order to achieve the above object, the present invention, as one embodiment thereof, is a method for producing a supercooling prevention medium for use in a latent heat storage device, which comprises mixing an aqueous solution containing an alkaline earth metal cation with an aqueous solution containing an anion that reacts with the alkaline earth metal cation to produce a salt that is insoluble or poorly soluble in water, and producing a salt that is insoluble or poorly soluble in water as a supercooling prevention agent, and includes the steps of immersing a porous body in one of the aqueous solutions containing the cation and the aqueous solution containing the anion, and adding the other aqueous solution containing the cation and the aqueous solution containing the anion to the aqueous solution in which the porous body is immersed, thereby supporting the water-insoluble or poorly soluble salt on the porous body.

また、本発明は、別の態様として、潜熱蓄熱装置であって、水に不溶性又は難溶性のアルカリ土類金属の塩を多孔質体に担持させた過冷却防止媒体を収納した種結晶部と、前記種結晶部と断続可能に連通する潜熱蓄熱材を収容した蓄熱部と、前記潜熱蓄熱材への伝熱部とを備える。 In another aspect, the present invention provides a latent heat storage device, which includes a seed crystal section that houses a supercooling prevention medium in which a water-insoluble or poorly soluble alkaline earth metal salt is supported on a porous body, a heat storage section that houses a latent heat storage material that is in intermittent communication with the seed crystal section, and a heat transfer section to the latent heat storage material.

このように本発明よれば、多孔質体の細孔中に、アルカリ土類金属の陽イオン又はそれと反応して水に不溶性又は難溶性の塩を生成する陰イオンが十分に含浸した状態で、水に不溶性又は難溶性の塩の生成反応が起こるため、過冷却防止剤である水に不溶性又は難溶性の塩を多孔質体に確実に担持させることができる。そして、過冷却防止剤を多孔質体に担持させた過冷却防止媒体を潜熱蓄熱装置の種結晶部に収納することで、過冷却防止剤が潜熱蓄熱材へ溶出することによる蓄熱の不具合を抑止できるとともに、この過冷却防止媒体は伝熱部の近傍に配置することが可能で、よって、潜熱蓄熱装置をコンパクトにできる。 Thus, according to the present invention, the reaction to produce a salt that is insoluble or poorly soluble in water occurs in a state in which the pores of the porous body are sufficiently impregnated with alkaline earth metal cations or anions that react with the cations to produce a salt that is insoluble or poorly soluble in water, so that the supercooling prevention agent, a salt that is insoluble or poorly soluble in water, can be reliably supported in the porous body. Then, by storing a supercooling prevention medium in which the supercooling prevention agent is supported in a porous body in the seed crystal section of the latent heat storage device, it is possible to prevent heat storage problems caused by the supercooling prevention agent dissolving into the latent heat storage material, and this supercooling prevention medium can be placed near the heat transfer section, thereby making it possible to make the latent heat storage device compact.

本発明に係る過冷却防止媒体の製造方法の一実施の形態を模式的に説明するフロー図である。FIG. 1 is a flow diagram for explaining a method for producing a supercooling prevention medium according to an embodiment of the present invention. 本発明に係る潜熱蓄熱装置の一実施の形態を模式的に示す断面図である。1 is a cross-sectional view showing a schematic diagram of an embodiment of a latent heat storage device according to the present invention. 図2に示す潜熱蓄熱装置の蓄熱および放熱を模式的に説明するフロー図である。FIG. 3 is a flow diagram for explaining heat storage and heat release in the latent heat storage device shown in FIG. 2 . 従来の潜熱蓄熱装置の蓄熱時の課題を模式的に示す断面図である。FIG. 1 is a cross-sectional view that illustrates a problem that occurs during heat storage in a conventional latent heat storage device. 本発明に係る潜熱蓄熱装置の別の実施の形態を模式的に示す断面図である。FIG. 4 is a cross-sectional view illustrating a schematic diagram of another embodiment of a latent heat storage device according to the present invention.

以下、添付図面を参照して、本発明に係る潜熱蓄熱装置およびそれに用いる過冷却防止媒体の製造方法の一実施の形態について説明する。 Below, an embodiment of the latent heat storage device and the method for manufacturing the supercooling prevention medium used therein according to the present invention will be described with reference to the attached drawings.

本実施の形態の過冷却防止媒体の製造方法は、図1に示すように、アルカリ土類金属の陽イオンを含有する水溶液1(単に「陽イオン含有水溶液」とも呼ぶ)に、多孔質体2を浸漬する浸漬工程(図1(a))と、アルカリ土類金属の陽イオンと反応して水に不溶性又は難溶性の塩を生成する陰イオンを含有する水溶液3(単に「陰イオン含有水溶液」とも呼ぶ)を、多孔質体2が浸漬されている陽イオン含有水溶液1に添加し、水に不溶性又は難溶性の塩(過冷却防止剤)を多孔質体に担持させる担持工程(図1(c))とを主に含むものである。これによって、多孔質体に過冷却防止剤が担持された過冷却防止媒体5を得ることができる(図1(d))。各工程について更に詳細に説明する。 As shown in FIG. 1, the method for producing the supercooling prevention medium of this embodiment mainly includes an immersion step (FIG. 1(a)) in which a porous body 2 is immersed in an aqueous solution 1 containing alkaline earth metal cations (also simply referred to as a "cation-containing aqueous solution"), and a support step (FIG. 1(c)) in which an aqueous solution 3 containing anions (also simply referred to as an "anion-containing aqueous solution") that reacts with the alkaline earth metal cations to produce a salt that is insoluble or poorly soluble in water is added to the cation-containing aqueous solution 1 in which the porous body 2 is immersed, and the water-insoluble or poorly soluble salt (supercooling prevention agent) is supported on the porous body. This allows the supercooling prevention medium 5 in which the supercooling prevention agent is supported on the porous body to be obtained (FIG. 1(d)). Each step will be described in more detail.

浸漬工程では、図1(a)に示すように、スクリュー瓶等の容器10に、アルカリ土類金属の陽イオンを含有する水溶液1を入れる。アルカリ土類金属としては、過冷却防止剤ないし過冷却防止媒体として優れた過冷却防止効果を奏するとともに、水に不溶性又は難溶性の塩を生成するという観点から、ストロンチウムやバリウムなどが好ましい。また、その水溶液としては、多孔質体を浸漬するとともに、水に不溶性又は難溶性の塩を生成するという観点から、塩化アルカリ土類金属水溶液や、水酸化アルカリ土類金属水溶液、硝酸アルカリ土類金属水溶液などが好ましい。陽イオン含有水溶液1の濃度は、特に限定されないが、例えば、0.1~1.5mol/Lが好ましく、1~1.2mol/Lがより好ましい。 In the immersion step, as shown in FIG. 1(a), an aqueous solution 1 containing alkaline earth metal cations is placed in a container 10 such as a screw bottle. As the alkaline earth metal, strontium, barium, etc. are preferred from the viewpoint of providing an excellent supercooling prevention effect as a supercooling prevention agent or supercooling prevention medium and generating a salt that is insoluble or poorly soluble in water. In addition, as the aqueous solution, an aqueous solution of alkaline earth metal chloride, an aqueous solution of alkaline earth metal hydroxide, an aqueous solution of alkaline earth metal nitrate, etc. are preferred from the viewpoint of immersing the porous body and generating a salt that is insoluble or poorly soluble in water. The concentration of the cation-containing aqueous solution 1 is not particularly limited, but is preferably 0.1 to 1.5 mol/L, and more preferably 1 to 1.2 mol/L, for example.

多孔質体2としては、過冷却防止剤が担持される細孔を有するものであれば特に限定されないが、例えば、活性炭を用いてもよいし、樹脂多孔質膜などの有機多孔体を用いてもよいし、多孔質セラミック、ゼオライト、シリカゲルなどの無機多孔体を用いてもよい。活性炭は、原料の種類で大別されることがあるが、木質系でも石炭系でもよく、例えば、椰子殻、石炭、石油ピッチなどでよい。多孔質体2の形状として、特に限定されず、例えば、粒状、直方体状、板状、ペレット状であってもよいし、蓄熱装置内の部材の表面コーティングなどでもよい。 The porous body 2 is not particularly limited as long as it has pores that carry the supercooling prevention agent, but may be, for example, activated carbon, an organic porous body such as a resin porous membrane, or an inorganic porous body such as porous ceramic, zeolite, or silica gel. Activated carbon is sometimes broadly classified by the type of raw material, but may be wood-based or coal-based, for example, coconut shell, coal, or petroleum pitch. The shape of the porous body 2 is not particularly limited, and may be, for example, granular, rectangular, plate-like, or pellet-like, or may be a surface coating of a member inside the heat storage device.

なお、多孔質体2は、水分等が吸着していると、過冷却防止剤の担持の妨げとなる可能性があるため、容器10に投入する前に、多孔質体2を加熱真空脱気する工程を行い、予め水分等を飛ばしておいてもよい。加熱温度は、特に限定されないが、例えば、80~100℃とすることが好ましい。加熱真空脱気は、例えば、真空乾燥機などで行うことができる。 In addition, if the porous body 2 absorbs moisture or the like, this may hinder the support of the supercooling prevention agent, so a process of heating and vacuum degassing the porous body 2 may be performed before placing it in the container 10 to remove moisture or the like in advance. The heating temperature is not particularly limited, but is preferably, for example, 80 to 100°C. Heating and vacuum degassing can be performed, for example, using a vacuum dryer.

容器10に多孔質体2を入れて、陽イオン含有水溶液1に多孔質体2を浸漬させる。この時、アルカリ土類金属の陽イオンが多孔質体2の細孔内に十分に浸透するように、図1(b)に示すように、陽イオン含有水溶液1に多孔質体2を浸漬させた状態で保温する工程を行ってもよい。保温工程では、容器10の開口は蓋11で閉じるとともに、容器10を恒温槽12内の温水に浸す。保温の温度は、例えば、60~70℃とすることが好ましい。保温の時間は、例えば、5~30分間とすることが好ましい。これより、多孔質体2へのアルカリ土類金属の陽イオンの含浸を促進することができる。また、含浸を促進するために、蓋11を閉じた容器10全体を振動させる等してもよい。 The porous body 2 is placed in a container 10, and the porous body 2 is immersed in the cation-containing aqueous solution 1. At this time, as shown in FIG. 1(b), a step of keeping the porous body 2 immersed in the cation-containing aqueous solution 1 may be performed so that the alkaline earth metal cations are sufficiently permeated into the pores of the porous body 2. In the keeping step, the opening of the container 10 is closed with a lid 11, and the container 10 is immersed in warm water in a thermostatic bath 12. The temperature of the keeping is preferably, for example, 60 to 70°C. The time of keeping is preferably, for example, 5 to 30 minutes. This can promote the impregnation of the alkaline earth metal cations into the porous body 2. In addition, in order to promote the impregnation, the entire container 10 with the lid 11 closed may be vibrated.

担持工程では、図1(c)に示すように、アルカリ土類金属の陽イオンと反応して水に不溶性又は難溶性の塩を生成する陰イオンを含有する水溶液3を容器10に入れる。このような陰イオンとしては、アルカリ土類金属の陽イオンを含有する水溶液1の種類によって異なるが、例えば、硫酸イオンや、炭酸イオン、酸化物イオンなどが好ましい。また、陰イオン含有水溶液3の濃度は、陽イオン含有水溶液1の濃度に合わせて、水に不溶性又は難溶性の塩が生成するのに必要な理論量でよい。 In the loading step, as shown in FIG. 1(c), an aqueous solution 3 containing anions that react with alkaline earth metal cations to produce salts that are insoluble or poorly soluble in water is placed in a container 10. Such anions vary depending on the type of aqueous solution 1 containing alkaline earth metal cations, but are preferably, for example, sulfate ions, carbonate ions, oxide ions, etc. The concentration of the anion-containing aqueous solution 3 may be the theoretical amount required to produce salts that are insoluble or poorly soluble in water, depending on the concentration of the cation-containing aqueous solution 1.

これにより、陽イオン含有水溶液1中のアルカリ土類金属の陽イオンと、陰イオン含有水溶液3中の陰イオンとが反応し、水に不溶性又は難溶性の塩が生成する。この水に不溶性又は難溶性の塩が、過冷却防止剤として機能する。この反応の一例として、陽イオン含有水溶液1が塩化ストロンチウム水溶液、陰イオン含有水溶液3が希硫酸である場合の反応式を、以下に示す。この反応では、硫酸ストロンチウムが過冷却防止剤として生成する。
SrCl+HSO→SrSOHCl
As a result, the cations of the alkaline earth metal in the cation-containing aqueous solution 1 react with the anions in the anion-containing aqueous solution 3 to produce a salt that is insoluble or poorly soluble in water. This salt that is insoluble or poorly soluble in water functions as a supercooling inhibitor. As an example of this reaction, the reaction formula when the cation-containing aqueous solution 1 is an aqueous strontium chloride solution and the anion-containing aqueous solution 3 is dilute sulfuric acid is shown below. In this reaction, strontium sulfate is produced as the supercooling inhibitor.
SrCl 2 +H 2 SO 4 →SrSO 4 + 2 HCl

また、多孔質体2の細孔に浸透している陽イオンが反応して過冷却防止剤が生成することから、この過冷却防止剤は多孔質体2に担持されることとなる。よって、図1(d)に示すように、多孔質体に過冷却防止剤が担持された過冷却防止媒体5を得ることができる。 In addition, the cations that have penetrated the pores of the porous body 2 react to generate a supercooling prevention agent, which is then supported by the porous body 2. As a result, as shown in FIG. 1(d), a supercooling prevention medium 5 can be obtained in which the supercooling prevention agent is supported by the porous body.

過冷却防止剤としては、上記の硫酸ストロンチウムの他、例えば、炭酸ストロンチウム、硫酸バリウム、炭酸バリウム等が挙げられる。そして、この過冷却防止剤が水に不溶性又は難溶性の塩であることから、過冷却防止剤が多孔質体から流出することを防ぐことができる。 In addition to the above-mentioned strontium sulfate, examples of the supercooling prevention agent include strontium carbonate, barium sulfate, barium carbonate, etc. Furthermore, since this supercooling prevention agent is a salt that is insoluble or poorly soluble in water, it is possible to prevent the supercooling prevention agent from leaking out of the porous body.

なお、本明細書において、「水に不溶性」とは、常温(25℃)で水100gに対する溶解度が0.01g以下のものをいう。また、「水に難溶性」とは、常温(25℃)で水100gに対する溶解度が0.1g以下で0.01g超のものをいう。硫酸ストロンチウムの溶解度は0.014g/水100mlであり、水に難溶性である。炭酸ストロンチウムの溶解度は0.0011g/水100mlであり、水に不溶性である。硫酸バリウムの溶解度は、2.5×10-4g/水100mlであり、水に不溶性である。 In this specification, "water-insoluble" refers to a substance having a solubility of 0.01 g or less in 100 g of water at room temperature (25°C). "Poorly soluble in water" refers to a substance having a solubility of 0.1 g or less and more than 0.01 g in 100 g of water at room temperature (25°C). Strontium sulfate has a solubility of 0.014 g/100 ml of water, making it poorly soluble in water. Strontium carbonate has a solubility of 0.0011 g/100 ml of water, making it insoluble in water. Barium sulfate has a solubility of 2.5 x 10 -4 g/100 ml of water, making it insoluble in water.

なお、図1に示す実施の形態では、浸漬工程において、陽イオン含有水溶液1と多孔質体2を容器10に入れて浸漬を行ったが、本発明はこれに限定されず、陽イオン含有水溶液1ではなく、陰イオン含有水溶液3を容器10に入れて、多孔質体2を浸漬させてもよい。この場合、担持工程では、陰イオン含有水溶液3ではなく、陽イオン含有水溶液1を容器10に入れることで、水に不溶性又は難溶性の塩を多孔質体に担持させることができる。但し、陰イオン含有水溶液として、濃度の高い希硫酸などを用いる場合、担持工程で、陽イオン含有水溶液を添加する際に、水溶液が発熱して希硫酸などが飛び跳ねる可能性があることから取り扱いに注意を要する。また、濃度の高い希硫酸などを用いる場合、多孔質体への硫酸イオン等の陰イオンの含浸を促進するために保温や振動など行う際にも、取り扱いに注意を要する。更に、多孔質体の種類によっては、希硫酸などに浸漬すると腐食することもある。 In the embodiment shown in FIG. 1, the cation-containing aqueous solution 1 and the porous body 2 are placed in the container 10 and immersed in the immersion step, but the present invention is not limited to this. Instead of the cation-containing aqueous solution 1, the anion-containing aqueous solution 3 may be placed in the container 10 and the porous body 2 may be immersed in the anion-containing aqueous solution 3. In this case, in the carrying step, the cation-containing aqueous solution 1 is placed in the container 10 instead of the anion-containing aqueous solution 3, so that the porous body can carry a salt that is insoluble or poorly soluble in water. However, when a highly concentrated dilute sulfuric acid or the like is used as the anion-containing aqueous solution, the aqueous solution may generate heat when the cation-containing aqueous solution is added in the carrying step, and the dilute sulfuric acid or the like may splash, so care must be taken when handling it. In addition, when a highly concentrated dilute sulfuric acid or the like is used, care must be taken when warming or vibrating the porous body to promote the impregnation of anions such as sulfate ions into the porous body. Furthermore, depending on the type of porous body, immersion in dilute sulfuric acid or the like may cause corrosion.

次に、本発明に係る潜熱蓄熱装置の一実施の形態について説明する。 Next, we will explain one embodiment of the latent heat storage device according to the present invention.

本実施の形態の潜熱蓄熱装置20は、図2に示すように、水に不溶性又は難溶性のアルカリ土類金属の塩を多孔質体に担持させた過冷却防止媒体25を収納した種結晶容器22と、種結晶容器と断続可能に連通する潜熱蓄熱材26を収容した蓄熱容器21とを主に備える。なお、種結晶容器22にも、潜熱蓄熱材26が収容されている。 As shown in FIG. 2, the latent heat storage device 20 of this embodiment mainly comprises a seed crystal container 22 containing a supercooling prevention medium 25 in which a water-insoluble or poorly soluble alkaline earth metal salt is supported on a porous body, and a heat storage container 21 containing a latent heat storage material 26 that is in intermittent communication with the seed crystal container. The seed crystal container 22 also contains a latent heat storage material 26.

潜熱蓄熱材26としては、固相の状態でその融点以上に加熱されると、液相に状態変化し、その後、融点以下に冷却しても過冷却状態として液相を保ちつづけ、加熱時の吸収熱を潜熱として蓄えることができる物質であれば、特に限定されないが、例えば、塩化カルシウム水和物や、酢酸ナトリウム水和物、硫酸ナトリウム水和物などが好ましい。 The latent heat storage material 26 is not particularly limited as long as it is a substance that changes from a solid phase to a liquid phase when heated above its melting point, and then maintains the liquid phase in a supercooled state even when cooled below its melting point, and can store the heat absorbed during heating as latent heat. For example, calcium chloride hydrate, sodium acetate hydrate, sodium sulfate hydrate, etc. are preferred.

蓄熱容器21および種結晶容器22は、潜熱蓄熱材26を固相および液相の間で状態変化させるための加熱および冷却に耐え得るものでよく、従来の潜熱蓄熱装置における潜熱蓄熱材を収容する容器の素材や構造を用いてもよい。例えば、素材としては、熱伝導性が良好なことから、ステンレス鋼や、アルミニウム合金、真鍮等が挙げられ、構造としては、直方体や、その他の任意の立体形状でよい。また、潜熱蓄熱装置20の外周面には、潜熱蓄熱材26への伝熱手段として、例えば、伝熱面積増大用フィンなどの伝熱部(図示省略)が取り付けである。フィンとしては、ヒレ状フィンや、コルゲートフィンなどを採用してよい。 The heat storage container 21 and the seed crystal container 22 may be capable of withstanding the heating and cooling required to change the state of the latent heat storage material 26 between the solid and liquid phases, and may use the same material and structure as the container for accommodating the latent heat storage material in a conventional latent heat storage device. For example, the material may be stainless steel, aluminum alloy, brass, etc., which have good thermal conductivity, and the structure may be a rectangular parallelepiped or any other three-dimensional shape. In addition, a heat transfer part (not shown), such as a fin for increasing the heat transfer area, is attached to the outer periphery of the latent heat storage device 20 as a heat transfer means to the latent heat storage material 26. As the fin, a fin-shaped fin, a corrugated fin, etc. may be used.

蓄熱容器21と種結晶容器22と間には、ソレノイドバルブ等の開閉バルブ23を備え、これによって、蓄熱容器21と種結晶容器22との間を液相の潜熱蓄熱材26が断続可能に連通することができる。開閉バルブ23の開閉は、潜熱蓄熱装置20の制御回路(図示省略)によって制御される。 Between the heat storage container 21 and the seed crystal container 22, an on-off valve 23 such as a solenoid valve is provided, which allows the liquid phase latent heat storage material 26 to be intermittently connected between the heat storage container 21 and the seed crystal container 22. The on-off valve 23 is opened and closed by a control circuit (not shown) of the latent heat storage device 20.

また、種結晶容器22内には、容器内を2つの区画に仕切るフィルター部24を備える。2つの区画のうちの一方は、開閉バルブ23の流路とは接しない区画であり、この開閉バルブ23の流路とは接しない区画に、上述した製造方法で得た過冷却防止媒体25が配置されている。フィルター部24は、潜熱蓄熱材26が自由に通過できるものの、過冷却防止媒体25が通過できないものであれば特に限定されず、例えば、スポンジや、金属メッシュ、不織布等を用いることができる。フィルター部24によって、過冷却防止媒体25が、開閉バルブ23の流路と接する種結晶容器22内の他方の区画に移動するのを防ぐことができ、よって、過冷却防止媒体25を種結晶容器22に収納することができる。 The seed crystal container 22 is provided with a filter section 24 that divides the container into two compartments. One of the two compartments is not in contact with the flow path of the on-off valve 23, and the supercooling prevention medium 25 obtained by the above-mentioned manufacturing method is placed in this compartment that is not in contact with the flow path of the on-off valve 23. The filter section 24 is not particularly limited as long as it allows the latent heat storage material 26 to pass freely but does not allow the supercooling prevention medium 25 to pass through, and for example, a sponge, a metal mesh, a nonwoven fabric, etc. can be used. The filter section 24 can prevent the supercooling prevention medium 25 from moving to the other compartment in the seed crystal container 22 that is in contact with the flow path of the on-off valve 23, and therefore the supercooling prevention medium 25 can be stored in the seed crystal container 22.

このような構成を有する潜熱蓄熱装置20の蓄熱および放熱について、図3を参照して説明する。先ず、蓄熱が完了しており、放熱を行う前の状態の潜熱蓄熱装置20は、図3(a)に示すように、開閉バルブ23が閉じられ、蓄熱容器21内には液相の潜熱蓄熱材26Lが収容されている。種結晶容器22内には過冷却防止媒体25が配置されていることから、種結晶容器22内は、固相の潜熱蓄熱材26S、すなわち、種結晶となっている。 The heat storage and heat release of the latent heat storage device 20 having such a configuration will be described with reference to FIG. 3. First, in the latent heat storage device 20 in a state where heat storage is completed and heat release is not yet performed, as shown in FIG. 3(a), the opening and closing valve 23 is closed and liquid phase latent heat storage material 26L is contained in the heat storage container 21. Since a supercooling prevention medium 25 is placed in the seed crystal container 22, the inside of the seed crystal container 22 contains solid phase latent heat storage material 26S, i.e., seed crystals.

次に、潜熱蓄熱装置20の放熱を行う場合、潜熱蓄熱装置20は、図3(b)に示すように、開閉バルブ23を開くと、蓄熱容器21内の液相の潜熱蓄熱材26Lが、種結晶容器22内に流れ、種結晶容器22内の種結晶となっている固相の潜熱蓄熱材26Sと接触する。これによって、液相の潜熱蓄熱材26Lが発核して固相となり、放熱が起こる。 Next, when dissipating heat from the latent heat storage device 20, as shown in FIG. 3(b), when the opening/closing valve 23 of the latent heat storage device 20 is opened, the liquid-phase latent heat storage material 26L in the heat storage container 21 flows into the seed crystal container 22 and comes into contact with the solid-phase latent heat storage material 26S that serves as a seed crystal in the seed crystal container 22. As a result, the liquid-phase latent heat storage material 26L nucleates and becomes solid, causing heat dissipation.

放熱が完了すると、図3(c)に示すように、蓄熱容器21内は固相の潜熱蓄熱材26Sとなる。この状態で、潜熱蓄熱装置20の蓄熱を開始する。蓄熱容器21内も種結晶容器22内も全て固相の潜熱蓄熱材26Sであるため、開閉バルブ23を閉じることはできない。 When the heat dissipation is complete, as shown in FIG. 3(c), the heat storage container 21 contains solid-phase latent heat storage material 26S. In this state, heat storage in the latent heat storage device 20 begins. Because both the heat storage container 21 and the seed crystal container 22 contain solid-phase latent heat storage material 26S, the opening and closing valve 23 cannot be closed.

蓄熱が完了すると、図3(d)に示すように、蓄熱容器21内および種結晶容器22内の潜熱蓄熱材26は、融点以上に加熱されているため、いずれも液相の潜熱蓄熱材26Lとなっている。この状態になったら、開閉バルブ23を閉める。 When heat storage is completed, as shown in FIG. 3(d), the latent heat storage material 26 in the heat storage container 21 and the seed crystal container 22 is heated to above its melting point, and both become liquid phase latent heat storage material 26L. When this state is reached, the opening/closing valve 23 is closed.

その後、潜熱蓄熱装置20が融点以下に冷却されると、種結晶容器22内の潜熱蓄熱材26は、過冷却防止媒体25が配置されているため、固相に状態変化する。よって、再び、図3(a)に示すように、放熱を行う準備状態となる。このように本実施の形態の潜熱蓄熱装置20は放熱と蓄熱を繰り返し行うことができる。 After that, when the latent heat storage device 20 is cooled below its melting point, the latent heat storage material 26 in the seed crystal container 22 changes to a solid phase because the supercooling prevention medium 25 is placed therein. Therefore, as shown in FIG. 3(a), it is again in a state of preparation for heat release. In this way, the latent heat storage device 20 of this embodiment can repeatedly release and store heat.

一方、過冷却防止剤が多孔質体に担持されておらず、過冷却防止剤が潜熱蓄熱材に混入してしまうような図4に示す潜熱蓄熱装置40では、蓄熱完了時、種結晶容器42内の液相の潜熱蓄熱材46Lに、潜熱蓄熱材と過冷却防止剤からなる種結晶47が残り、この種結晶47が、開閉バルブ43の流路を通って、蓄熱容器41内の液相の潜熱蓄熱材46Lにまで流れてくるおそれがある。蓄熱容器41内に過冷却防止剤が混入してしまうと、蓄熱容器41内の液相の潜熱蓄熱材46Lが過冷却状態にならず、蓄熱できなくなってしまうという問題が発生する。 On the other hand, in the latent heat storage device 40 shown in FIG. 4, in which the supercooling prevention agent is not supported on the porous body and the supercooling prevention agent is mixed into the latent heat storage material, when heat storage is completed, seed crystals 47 consisting of latent heat storage material and supercooling prevention agent remain in the liquid phase latent heat storage material 46L in the seed crystal container 42, and there is a risk that this seed crystal 47 will flow through the flow path of the opening and closing valve 43 to the liquid phase latent heat storage material 46L in the heat storage container 41. If the supercooling prevention agent is mixed into the heat storage container 41, the liquid phase latent heat storage material 46L in the heat storage container 41 will not be in a supercooled state, and a problem will occur in which heat storage will not be possible.

本実施の形態の潜熱蓄熱装置20では、過冷却防止剤が多孔質体に担持された過冷却防止媒体25として種結晶容器22内に存在し、また、水に不溶性または難溶性の塩であることから、多孔質体から潜熱蓄熱材へ流出することがなく、よって、過冷却防止剤が蓄熱容器21内に混入することを防ぐことができる。なお、過冷却防止媒体25は、多孔質体のような固体形状であることから、フィルター部24などによって容易に蓄熱容器21への移動を防ぐことができる。 In the latent heat storage device 20 of this embodiment, the supercooling prevention agent is present in the seed crystal container 22 as the supercooling prevention medium 25 supported on the porous body, and since it is a salt that is insoluble or poorly soluble in water, it does not flow out of the porous body into the latent heat storage material, and therefore the supercooling prevention agent can be prevented from being mixed into the heat storage container 21. In addition, since the supercooling prevention medium 25 has a solid form like a porous body, it can be easily prevented from moving into the heat storage container 21 by the filter part 24 or the like.

なお、図2、図3に示す実施の形態では、蓄熱容器21と種結晶容器22とが同じ容積の容器であるが、本発明はこれに限定されず、例えば、種結晶容器22は蓄熱容器21よりも容積を小さくしてよい。また、図2、図3に示す実施の形態では、過冷却防止媒体25として、粒状のものを示したが、本発明はこれに限定されず、例えば、図5に示すように、過冷却防止媒体50を、潜熱蓄熱装置20Aの種結晶容器22の内面を覆う表面コーティングにしてもよい。この場合、種結晶容器22の内面を多孔質体で覆い、この多孔質に過冷却防止剤を担持させることで、表面コーティング層としての過冷却防止媒体50を得ることができる。 In the embodiment shown in Figures 2 and 3, the heat storage container 21 and the seed crystal container 22 are containers of the same volume, but the present invention is not limited to this. For example, the seed crystal container 22 may have a smaller volume than the heat storage container 21. In addition, in the embodiment shown in Figures 2 and 3, the supercooling prevention medium 25 is shown as a granular material, but the present invention is not limited to this. For example, as shown in Figure 5, the supercooling prevention medium 50 may be a surface coating that covers the inner surface of the seed crystal container 22 of the latent heat storage device 20A. In this case, the inner surface of the seed crystal container 22 is covered with a porous body, and the porous body is made to carry a supercooling prevention agent, thereby obtaining the supercooling prevention medium 50 as a surface coating layer.

また、図2、図3に示す実施の形態では、過冷却防止媒体を収納した種結晶容器22と潜熱蓄熱材26を収容する蓄熱容器21との2つの容器を備える潜熱蓄熱装置20を示したが、本発明はこれに限定されず、一つの容器に、過冷却防止媒体を収納した種結晶部と、種結晶部と断続可能に連通する潜熱蓄熱材を収容する蓄熱部とを備えてもよい。 In the embodiment shown in Figures 2 and 3, a latent heat storage device 20 is shown that has two containers, a seed crystal container 22 that contains a supercooling prevention medium and a heat storage container 21 that contains a latent heat storage material 26. However, the present invention is not limited to this, and one container may have a seed crystal section that contains a supercooling prevention medium and a heat storage section that contains a latent heat storage material that is in intermittent communication with the seed crystal section.

以下、本発明の実施例および比較例について説明する。 The following describes examples of the present invention and comparative examples.

[過冷却防止媒体の調製:過冷却防止剤の多孔質体への担持]
先ず、多孔質体として用いる椰子殻活性炭に水分等が吸着していると、担持の妨げとなる可能性があるため、真空乾燥機(ETTAS社製)を使用して、椰子殻活性炭を100℃で加熱真空脱気して水分等を飛ばした。次に、塩化ストロンチウム(SrCl)水溶液をスクリュー瓶に入れ、更に予め加熱真空脱気した椰子殻活性炭(約1cm角)を入れて、塩化ストロンチウム水溶液に椰子殻活性炭を浸漬し、保持した。この際、過冷却防止剤が椰子殻活性炭の細孔内に十分に浸透するように、約65℃で保温した。
[Preparation of supercooling prevention medium: Supporting supercooling prevention agent on porous body]
First, since moisture and the like adsorbed on the coconut shell activated carbon used as the porous body may hinder the loading, the coconut shell activated carbon was heated and vacuum degassed at 100°C using a vacuum dryer (manufactured by ETTAS) to remove moisture and the like. Next, an aqueous solution of strontium chloride (SrCl 2 ) was placed in a screw bottle, and coconut shell activated carbon (approximately 1 cm square) that had been previously heated and vacuum degassed was placed in it, and the coconut shell activated carbon was immersed in the aqueous solution of strontium chloride and held there. At this time, the temperature was kept at approximately 65°C so that the supercooling inhibitor would sufficiently penetrate into the pores of the coconut shell activated carbon.

そして、この椰子殻活性炭が浸漬している塩化ストロンチウム水溶液に、10wt%希硫酸を加えることで、椰子殻活性炭に担持する硫酸ストロンチウム(SrSO)を生成させた。そして、硫酸ストロンチウムが担持した椰子殻活性炭(すなわち、過冷却防止媒体)をスクリュー瓶から取り出した。 Then, 10 wt % dilute sulfuric acid was added to the aqueous strontium chloride solution in which the coconut shell activated carbon was immersed, thereby generating strontium sulfate (SrSO 4 ) supported on the coconut shell activated carbon. The coconut shell activated carbon supported by strontium sulfate (i.e., supercooling prevention medium) was then removed from the screw bottle.

同様の手順で、炭酸ストロンチウム(SrCO)を椰子殻活性炭に担持させた。なお、炭酸ストロンチウムの担持では、水酸化ストロンチウム水溶液に二酸化炭素を添加した。 Strontium carbonate (SrCO 3 ) was supported on coconut shell activated carbon in the same manner, except that carbon dioxide was added to the aqueous solution of strontium hydroxide.

また、以下の手順で酢酸ナトリウム3水和物(CNaO・3HO)、塩化ナトリウム(NaCl)、塩化ストロンチウム6水和物(SrCl・6HO)をそれぞれ椰子殻活性炭に担持させた。先ず、酢酸ナトリウム3水和物、塩化ナトリウム、塩化ストロンチウム6水和物の各水溶液に椰子殻活性炭を浸漬し、保持した。この際にも約65℃で保温した。そして各水溶液から椰子殻活性炭を取り出し、真空乾燥機に入れて乾燥させた。 In addition, sodium acetate trihydrate ( C2H3NaO2.3H2O ), sodium chloride ( NaCl ), and strontium chloride hexahydrate ( SrCl2.6H2O ) were supported on coconut shell activated carbon by the following procedure. First, coconut shell activated carbon was immersed in and held in each aqueous solution of sodium acetate trihydrate, sodium chloride, and strontium chloride hexahydrate. The temperature was also kept at about 65°C during this process. The coconut shell activated carbon was then removed from each aqueous solution and placed in a vacuum dryer to dry it.

[過冷却防止効果の評価試験(発核試験)]
過冷却防止剤の候補である上記の5種類の物質について、過冷却防止効果の評価試験を行った。これら物質をそれぞれ担持した椰子殻活性炭(約0.03g)と、潜熱蓄熱材として塩化カルシウム6水和物(CaCl・6HO)(約20g)とをスクリュー瓶に入れ、塩化カルシウム6水和物の融点である30℃以上に加熱した。その後、チラーを用いて2~5℃に設定された冷却プレート上にスクリュー瓶を設置し、発核するかを調査した。冷却プレートは、冷却プレートとスクリュー瓶との伝熱を促進するために、水に浸し、設置したスクリュー瓶の底付近は水に浸り、効率よく冷却させた。この加熱と冷却の操作を、5回繰り返し(n=5)、発核回数を調べた。その結果を表1に示す。また、試験を通して潜熱蓄熱材の発核の様子や、椰子殻活性炭の形状変化なども観察した。
[Evaluation test of supercooling prevention effect (nucleation test)]
The above five types of substances, which are candidates for the supercooling prevention agent, were subjected to an evaluation test of the supercooling prevention effect. Coconut shell activated carbon (approximately 0.03 g) carrying each of these substances and calcium chloride hexahydrate (CaCl 2.6H 2 O) (approximately 20 g) as a latent heat storage material were placed in a screw bottle and heated to 30°C or higher, which is the melting point of calcium chloride hexahydrate. After that, the screw bottle was placed on a cooling plate set to 2-5°C using a chiller, and it was investigated whether nucleation occurred. The cooling plate was immersed in water to promote heat transfer between the cooling plate and the screw bottle, and the bottom of the installed screw bottle was immersed in water to efficiently cool it. This heating and cooling operation was repeated five times (n=5), and the number of nucleation times was examined. The results are shown in Table 1. In addition, the state of nucleation of the latent heat storage material and the change in shape of the coconut shell activated carbon were also observed through the test.

[過冷却防止剤の流出確認試験(流出試験)]
潜熱蓄熱材の加熱と冷却の繰り返し操作によって、椰子殻活性炭から過冷却防止剤の候補物質が流出しているかを確認する試験を行った。上記の過冷却防止効果の評価試験が終わった後のスクリュー瓶から、上澄み液だけを分離し、この上澄み液について、加熱と冷却の繰り返し操作(n=5)をして発核するか調べた。そして、5回発核した場合、過冷却防止剤の候補物質が椰子殻活性炭から流出していると推測され、「×」と評価した。1~4回発核した場合、一部流出していると推測され、「△」と評価した。1回も発核しなかった場合、流出が無いと推測され、「○」と評価した。評価結果を表1に示す。
[Supercooling prevention agent leakage confirmation test (leakage test)]
A test was conducted to confirm whether the candidate substance for the supercooling prevention agent had flowed out from the coconut shell activated carbon by repeatedly heating and cooling the latent heat storage material. After the above-mentioned evaluation test of the supercooling prevention effect was completed, only the supernatant liquid was separated from the screw bottle, and this supernatant liquid was repeatedly heated and cooled (n=5) to check whether nucleation occurred. If nucleation occurred five times, it was assumed that the candidate substance for the supercooling prevention agent had flowed out from the coconut shell activated carbon, and it was evaluated as "X". If nucleation occurred one to four times, it was assumed that some of the substance had flowed out, and it was evaluated as "△". If nucleation did not occur even once, it was assumed that no leakage had occurred, and it was evaluated as "○". The evaluation results are shown in Table 1.

表1に示すように、酢酸ナトリウム3水和物は、過冷却防止効果があることは認められたものの、椰子殻活性炭から流出してしまったことから、本発明の過冷却防止媒体としては使用することはできず、総合評価としては「×」とした。また、塩化ナトリウムも、過冷却防止効果があることは認められたものの、椰子殻活性炭から一部流出してしまったことから、本発明の過冷却防止媒体としては不適当であり、総合評価としては「×」とした。塩化ストロンチウム6水和物は、速やかに発核し、優れた過冷却防止効果があったものの、椰子殻活性炭から一部流出が認められ、本発明の過冷却防止媒体としては使用することはできず、総合評価としては「×」とした。 As shown in Table 1, although sodium acetate trihydrate was found to have a supercooling prevention effect, it was found to have flowed out from the coconut shell activated carbon, and therefore it could not be used as a supercooling prevention medium of the present invention, and was given an overall rating of "x". Furthermore, although sodium chloride was found to have a supercooling prevention effect, it was found to have flowed out in part from the coconut shell activated carbon, and therefore it was unsuitable as a supercooling prevention medium of the present invention, and was given an overall rating of "x". Although strontium chloride hexahydrate nucleated quickly and had an excellent supercooling prevention effect, it was found to have flowed out in part from the coconut shell activated carbon, and therefore it could not be used as a supercooling prevention medium of the present invention, and was given an overall rating of "x".

一方、炭酸ストロンチウムは、椰子殻活性炭から流出が認められなかったものの、発核に数分から数時間の時間がかかり、総合評価としては「○」とした。硫酸ストロンチウムは、速やかに発核し、優れた過冷却防止効果が認められ、且つ椰子殻活性炭からの流出は認められず、よって、総合評価を「◎」とした。 On the other hand, although no leakage was observed from the coconut shell activated carbon, strontium carbonate took several minutes to several hours to nucleate, and was therefore given an overall rating of "○". Strontium sulfate nucleated quickly, was found to have an excellent effect in preventing supercooling, and was not observed to leak from the coconut shell activated carbon, so it was given an overall rating of "◎".

なお、流出試験の結果から、流出試験で「×」や「△」と評価された多孔質体担持の酢酸ナトリウム3水和物、塩化ナトリウム、塩化ストロンチウム6水和物はいずれも水に可溶性の物質であった。一方、流出試験で「○」と評価された炭酸ストロンチウムと硫酸ストロンチウムは、水に不溶性または難溶性であり、よって、水に不溶性または難溶性の塩であれば、加熱と冷却を繰り返しても、多孔質体から潜熱蓄熱材へ流出しないと推測される。 The results of the outflow test showed that the sodium acetate trihydrate, sodium chloride, and strontium chloride hexahydrate supported on the porous body, which were evaluated as "x" or "△", were all water-soluble substances. On the other hand, strontium carbonate and strontium sulfate, which were evaluated as "○" in the outflow test, are insoluble or poorly soluble in water. Therefore, it is presumed that salts that are insoluble or poorly soluble in water will not flow out of the porous body into the latent heat storage material even when repeatedly heated and cooled.

また、上記の5種類の他の物質として、硫酸バリウムや炭酸バリウムは、硫酸ストロンチウムや炭酸ストロンチウムと結晶構造が斜方晶で共通し、単位格子も非常に近いことから、発核試験において、硫酸ストロンチウムや炭酸ストロンチウムと同等の評価のものと推測される。また、硫酸バリウムや炭酸バリウムは、水に不溶性である。よって、硫酸バリウムと炭酸バリウムも、本発明の過冷却防止媒体として硫酸ストロンチウムや炭酸ストロンチウムと同等の効果が得られるものと推測される。 In addition, barium sulfate and barium carbonate, which are among the five types of substances mentioned above, share the same orthorhombic crystal structure as strontium sulfate and strontium carbonate, and their unit lattices are also very similar, so they are presumed to be evaluated as equivalent to strontium sulfate and strontium carbonate in nucleation tests. Also, barium sulfate and barium carbonate are insoluble in water. Therefore, it is presumed that barium sulfate and barium carbonate will also provide the same effect as strontium sulfate and strontium carbonate as a supercooling prevention medium of the present invention.

1 アルカリ土類金属の陽イオンを含有する水溶液
2 多孔質体
3 水に不溶性又は難溶性の塩を生成する陰イオンを含有する水溶液
10 スクリュー瓶
11 蓋
12 恒温槽
20 潜熱蓄熱装置
21 蓄熱容器
22 種結晶容器
23 開閉バルブ
24 フィルター部
25 過冷却防止媒体
26 潜熱蓄熱材
47 種結晶
50 過冷却防止媒体
REFERENCE SIGNS LIST 1 Aqueous solution containing alkaline earth metal cations 2 Porous body 3 Aqueous solution containing anions that form salts that are insoluble or poorly soluble in water 10 Screw bottle 11 Lid 12 Thermostatic bath 20 Latent heat storage device 21 Heat storage container 22 Seed crystal container 23 Opening/closing valve 24 Filter section 25 Supercooling prevention medium 26 Latent heat storage material 47 Seed crystal 50 Supercooling prevention medium

Claims (6)

アルカリ土類金属の陽イオンを含有する水溶液と、前記アルカリ土類金属の陽イオンと反応して水に不溶性又は難溶性の塩を生成する陰イオンを含有する水溶液とを混合し、過冷却防止剤として水に不溶性又は難溶性の塩を生成する、潜熱蓄熱装置に用いる過冷却防止媒体の製造方法であって、
前記陽イオンを含有する水溶液および前記陰イオンを含有する水溶液の一方の水溶液に、多孔質体を浸漬する工程と、
前記陽イオンを含有する水溶液および前記陰イオンを含有する水溶液の他方の水溶液を、前記多孔質体が浸漬されている水溶液に添加し、水に不溶性又は難溶性の塩を前記多孔質体に担持させる工程と
を含む潜熱蓄熱装置に用いる過冷却防止媒体の製造方法。
A method for producing a supercooling prevention medium for use in a latent heat storage device, comprising mixing an aqueous solution containing an alkaline earth metal cation with an aqueous solution containing an anion that reacts with the alkaline earth metal cation to produce a salt that is insoluble or poorly soluble in water, and producing the salt that is insoluble or poorly soluble in water as a supercooling prevention agent, comprising:
immersing a porous body in one of the aqueous solution containing the cations and the aqueous solution containing the anions;
adding the other of the aqueous solution containing the cations and the aqueous solution containing the anions to an aqueous solution in which the porous body is immersed, thereby causing the porous body to support a salt that is insoluble or poorly soluble in water.
前記多孔質体に予め加熱真空脱気処理を施す工程を更に含む請求項1に記載の潜熱蓄熱装置に用いる過冷却防止媒体の製造方法。 The method for producing a supercooling prevention medium for use in a latent heat storage device according to claim 1 further comprises a step of subjecting the porous body to a heating and vacuum degassing treatment in advance. 前記陽イオンがストロンチウムイオンであり、前記陰イオンが硫酸イオンである請求項1又は2に記載の潜熱蓄熱装置に用いる過冷却防止媒体の製造方法。 A method for producing a supercooling prevention medium for use in a latent heat storage device according to claim 1 or 2, wherein the cation is a strontium ion and the anion is a sulfate ion. 水に不溶性又は難溶性のアルカリ土類金属の塩を多孔質体に担持させた過冷却防止媒体を収納した種結晶部と、
前記種結晶部と断続可能に連通する潜熱蓄熱材を収容した蓄熱部と、
前記潜熱蓄熱材への伝熱部と
を備えた潜熱蓄熱装置であって、前記種結晶部と前記蓄熱部とが一つの容器に備わっている潜熱蓄熱装置
a seed crystal portion containing a supercooling prevention medium in which a water-insoluble or poorly soluble alkaline earth metal salt is supported on a porous body;
A heat storage section containing a latent heat storage material that is in intermittent communication with the seed crystal section;
a heat transfer section to the latent heat storage material, wherein the seed crystal section and the heat storage section are provided in a single container .
水に不溶性又は難溶性のアルカリ土類金属の塩を多孔質体に担持させた過冷却防止媒体を収納した種結晶部と、
前記種結晶部と断続可能に連通する潜熱蓄熱材を収容した蓄熱部と、
前記潜熱蓄熱材への伝熱部と
を備えた潜熱蓄熱装置であって、前記過冷却防止媒体が、前記種結晶部の内面の表面コーティング層である潜熱蓄熱装置。
a seed crystal portion containing a supercooling prevention medium in which a water-insoluble or poorly soluble alkaline earth metal salt is supported on a porous body;
A heat storage section containing a latent heat storage material that is in intermittent communication with the seed crystal section;
A heat transfer portion to the latent heat storage material;
wherein the supercooling prevention medium is a surface coating layer on an inner surface of the seed crystal portion.
前記水に不溶性又は難溶性のアルカリ土類金属の塩が、硫酸ストロンチウムであり、前記潜熱蓄熱材が塩化カルシウム水和物である請求項4又は5に記載の潜熱蓄熱装置。 6. The latent heat storage device according to claim 4, wherein the water-insoluble or poorly soluble alkaline earth metal salt is strontium sulfate, and the latent heat storage material is calcium chloride hydrate.
JP2020203453A 2020-12-08 2020-12-08 Latent heat storage device and method for producing supercooling prevention medium used therein Active JP7543887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020203453A JP7543887B2 (en) 2020-12-08 2020-12-08 Latent heat storage device and method for producing supercooling prevention medium used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020203453A JP7543887B2 (en) 2020-12-08 2020-12-08 Latent heat storage device and method for producing supercooling prevention medium used therein

Publications (2)

Publication Number Publication Date
JP2022090880A JP2022090880A (en) 2022-06-20
JP7543887B2 true JP7543887B2 (en) 2024-09-03

Family

ID=82060923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020203453A Active JP7543887B2 (en) 2020-12-08 2020-12-08 Latent heat storage device and method for producing supercooling prevention medium used therein

Country Status (1)

Country Link
JP (1) JP7543887B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228377A (en) 2001-02-06 2002-08-14 Nax Co Ltd Heat storage apparatus and heat storage method
US20050167079A1 (en) 2004-02-04 2005-08-04 Zhang Tony T. Method and apparatus for automobile warming-up
JP2010138047A (en) 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
JP2013067720A (en) 2011-09-22 2013-04-18 Panasonic Corp Supercooling inhibitor, heat storage method, and heat storage system
US20130105727A1 (en) 2011-11-02 2013-05-02 Ralph Rieger Heat storage composition comprising a cationic polyelectrolyte and calcium chloride hexahydrate
JP2013194970A (en) 2012-03-19 2013-09-30 Furukawa Electric Co Ltd:The Heat accumulator and trigger unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228377A (en) 2001-02-06 2002-08-14 Nax Co Ltd Heat storage apparatus and heat storage method
US20050167079A1 (en) 2004-02-04 2005-08-04 Zhang Tony T. Method and apparatus for automobile warming-up
JP2010138047A (en) 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
JP2013067720A (en) 2011-09-22 2013-04-18 Panasonic Corp Supercooling inhibitor, heat storage method, and heat storage system
US20130105727A1 (en) 2011-11-02 2013-05-02 Ralph Rieger Heat storage composition comprising a cationic polyelectrolyte and calcium chloride hexahydrate
JP2013194970A (en) 2012-03-19 2013-09-30 Furukawa Electric Co Ltd:The Heat accumulator and trigger unit

Also Published As

Publication number Publication date
JP2022090880A (en) 2022-06-20

Similar Documents

Publication Publication Date Title
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
US4154292A (en) Heat exchange method and device therefor for thermal energy storage
JP6832117B2 (en) Heat storage method, heat storage device, and manufacturing method of heat storage device
JP2006219557A (en) Heat storage material composition, heat storage body using the same and heat storage apparatus
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
JP2017166729A (en) Thermal storage system
JPH09291272A (en) Heat accumulating material
JP2010230268A (en) Chemical heat pump device and method of using the same
JP2016006370A (en) Crystal nucleus forming method in latent heat storage material, and heat storage device
EP0074612B1 (en) Heat-storing apparatus
WO1991017392A1 (en) Methods and apparatuses for providing cool thermal storage and/or water purification
JP7543887B2 (en) Latent heat storage device and method for producing supercooling prevention medium used therein
US5448892A (en) Methods and apparatuses for providing cool thermal storage and/or water purification
JP2013067720A (en) Supercooling inhibitor, heat storage method, and heat storage system
JP2019157830A (en) Heat storage system
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JPH05501891A (en) heat storage medium
JPH05215369A (en) Cooling or heating method utilizing latent heat
JP2009103341A (en) Heat storage device
JP2018526610A (en) Mixture used for absorber
EP0532683B1 (en) Heat accumulator, method for the production thereof and energy system provided with such a heat accumulator
JPS6351478B2 (en)
JPS6134075B2 (en)
KR20230151110A (en) Subzero phase change material with multiple crystallization events
JPS6147190B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240805

R150 Certificate of patent or registration of utility model

Ref document number: 7543887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150