JP7541238B2 - End Mills - Google Patents
End Mills Download PDFInfo
- Publication number
- JP7541238B2 JP7541238B2 JP2020217137A JP2020217137A JP7541238B2 JP 7541238 B2 JP7541238 B2 JP 7541238B2 JP 2020217137 A JP2020217137 A JP 2020217137A JP 2020217137 A JP2020217137 A JP 2020217137A JP 7541238 B2 JP7541238 B2 JP 7541238B2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- child
- parent
- gash
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 description 95
- 230000002093 peripheral effect Effects 0.000 description 9
- 230000001154 acute effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Milling Processes (AREA)
Description
本発明は、エンドミル本体を回転軸方向先端側から見たときに半径方向に連続し、中低勾配角が付いた切れ刃が高硬度鋼の中仕上げ加工する上で、被削材に対する加工面品位の低下を抑制する形態のエンドミルに関するものである。 The present invention relates to an end mill with a cutting edge that is continuous in the radial direction when viewed from the tip side in the direction of the rotary shaft and has a medium to low gradient angle, which suppresses deterioration of the machined surface quality of the workpiece when semi-finishing high-hardness steel.
エンドミル本体の回転軸方向(軸方向)先端部に回転方向に配列し、半径方向に連続する、先端面側から見たときの長さが大きい親刃と小さい子刃の区別がある、複数枚の切れ刃を有するエンドミルがある(特許文献1~3参照)。
There are end mills with multiple cutting edges that are arranged in the direction of rotation at the tip of the end mill body in the axial direction (axial direction), are continuous in the radial direction, and have a distinction between a parent blade that is longer when viewed from the tip face side and a child blade that is shorter (see
エンドミル本体の先端部を先端面側から見たときの子刃と親刃の切れ刃長さの相違に伴い、逃げ面の広さに対応した肉厚の相違もあり、逃げ面を含めた厚さを有する子刃部分の回転方向の剛性は、逃げ面を含めた親刃部分の回転方向の剛性より低くなる。 When looking at the tip of the end mill body from the tip face side, the cutting edge length of the child blade and the parent blade differs, and there is also a difference in thickness corresponding to the width of the flank, so the rigidity in the rotational direction of the child blade part, which has a thickness including the flank, is lower than the rigidity in the rotational direction of the parent blade part, which includes the flank.
各切れ刃の実際に被削材を切削する部分(切削区間)が、先端部を先端側から見たときの切れ刃長さに対応した長さを有する場合、すなわち切れ刃長さと切削区間が実質的に比例関係にあれば、子刃部分が被削材から受ける抵抗は親刃部分が被削材から受ける抵抗より小さい。この場合、子刃部分と親刃部分の抵抗の差はそれぞれの剛性の差に対応した大きさ(差)になるため、振動数の差が顕著になることはなく、問題視されることもない。 If the portion of each cutting edge that actually cuts the workpiece (cutting section) has a length that corresponds to the length of the cutting edge when viewed from the tip, i.e., if the cutting edge length and the cutting section are substantially proportional, the resistance that the child blade section receives from the workpiece is smaller than the resistance that the parent blade section receives from the workpiece. In this case, the difference in resistance between the child blade section and the parent blade section is a magnitude (difference) that corresponds to the difference in their respective rigidities, so the difference in vibration frequency is not noticeable and is not considered a problem.
一方、多くのスクエアエンドミルやラジアスエンドミルのように子刃と親刃に中低勾配角(すかし角)が付く場合(特許文献2の図5、図6)には、子刃と親刃の見かけ上の長さは相違しながらも、親刃の中心付近は被削材には接触しない状態になる。すなわち、子刃部分と親刃部分の剛性が相違しながらも、それぞれが被削材から受ける抵抗に差が生じないことがある。 On the other hand, when the child blade and parent blade have a medium to low gradient angle (concave angle), as in many square end mills and radius end mills (Figs. 5 and 6 of Patent Document 2), even though the apparent lengths of the child blade and parent blade are different, the center of the parent blade does not come into contact with the workpiece. In other words, even though the rigidity of the child blade portion and parent blade portion differs, there may be no difference in the resistance that each receives from the workpiece.
このため、子刃と親刃が実際に被削材を切削する部分(切削区間)の長さは、子刃と親刃とでは実質的に変わらず、親刃部分が被削材から受ける抵抗と子刃部分が受ける抵抗に差が生じないことがある。親刃部分の抵抗と子刃部分の抵抗に差がなければ、親刃部分の剛性と子刃部分の剛性の差がそのままそれぞれの振動数の差になり、相対的に子刃部分の振動数が多くなるため、被削材の加工面品位に影響が表われる。 Because of this, the length of the part where the child blade and parent blade actually cut the workpiece (cutting section) is essentially the same for the child blade and parent blade, and there may be no difference in the resistance that the parent blade receives from the workpiece and the resistance that the child blade receives. If there is no difference in the resistance of the parent blade and the child blade, the difference in stiffness between the parent blade and the child blade will directly result in a difference in their respective vibration frequencies, and the vibration frequency of the child blade will be relatively higher, which will affect the machined surface quality of the workpiece.
子刃部分の抵抗と親刃部分の抵抗に差がないにも拘わらず、子刃部分の剛性が親刃部分の剛性より小さければ、子刃が被削材を切削するときに子刃部分に生じる振動数が、親刃部分に生じる振動数より多くなり易い。子刃部分の振動数が親刃部分の振動数より多いことは、被削材を切削するときに子刃部分が親刃部分より多く振動することであるから、被削材の加工面品位の低下を招き易い。また子刃部分の振動数が多くなり易いことで、子刃のいずれかの部分に欠けが生じ易くもなる。 Even if there is no difference between the resistance of the child blade portion and the resistance of the parent blade portion, if the rigidity of the child blade portion is less than that of the parent blade portion, the frequency of vibration generated in the child blade portion when the child blade cuts the workpiece is likely to be greater than the frequency of vibration generated in the parent blade portion. If the frequency of vibration of the child blade portion is greater than that of the parent blade portion, the child blade portion vibrates more than the parent blade portion when cutting the workpiece, which is likely to lead to a decrease in the quality of the machined surface of the workpiece. In addition, if the frequency of vibration of the child blade portion is likely to be high, chipping is likely to occur in one of the child blade portions.
本発明は上記背景より、振動数差に影響する親刃部分と子刃部分の剛性差を極力、小さくし、剛性差に起因する、被削材に対する加工面品位の低下を低減する形態のエンドミルを提案するものである。 In light of the above background, the present invention proposes an end mill that minimizes the difference in rigidity between the parent blade and child blade, which affects the difference in vibration frequency, and reduces the deterioration of the machined surface quality of the workpiece caused by the difference in rigidity.
請求項1に記載の発明のエンドミルは、、エンドミル本体の軸方向の先端側に、半径方向中心側から外周側へかけて連続する親刃と、この親刃に前記エンドミル本体の回転方向に隣り合い、前記エンドミル本体を軸方向の先端側から見たときに前記親刃より短い子刃とを備え、前記親刃と前記子刃の各回転方向後方側にギャッシュが形成され、前記各ギャッシュから前記軸方向後端側に切屑排出溝が連続し、
前記子刃の回転方向後方側の前記ギャッシュは前記軸方向の先端側に位置する子刃先端側ギャッシュと、前記軸方向の後端側に位置する子刃後端側ギャッシュとに区分され、
前記子刃先端側ギャッシュと前記子刃後端側ギャッシュとの間の境界線の回転方向前方側の端部は、前記子刃の、逃げ角が最大の逃げ面より回転方向後方側に位置し、
前記親刃の回転方向後方側の前記ギャッシュは前記軸方向の先端側に位置する親刃先端側ギャッシュと、前記軸方向の後端側に位置する親刃後端側ギャッシュとに区分され、
前記親刃先端側ギャッシュと前記親刃後端側ギャッシュとの間の境界線の回転方向後方側の端部は、前記親刃の回転方向後方側に位置する前記子刃の半径方向中心側の端部より前記中心側に位置していることを特徴とする。
The end mill of the invention described in
The gash on the rear side in the rotational direction of the child blade is divided into a child blade tip side gash located on the tip side in the axial direction and a child blade rear end side gash located on the rear end side in the axial direction,
a front end of a boundary between the gash on the tip end side of the child blade and the gash on the rear end side of the child blade is located rearward in the rotational direction from a clearance face of the child blade having a maximum clearance angle ,
The gash on the rear side in the rotational direction of the parent blade is divided into a parent blade tip side gash located on the tip side in the axial direction and a parent blade rear end side gash located on the rear end side in the axial direction,
The present invention is characterized in that the rear end of the boundary line between the gash at the tip end of the parent blade and the gash at the rear end of the parent blade is located closer to the center in the radial direction than the end of the child blade located rearward in the rotational direction of the parent blade .
請求項1の「先端側から見たとき」とは、図1、図4に示すようにエンドミル本体(工具本体)を先端側から回転軸O反対側のシャンク部3側に向かって見たときの状況を言う。以下では「回転軸O方向」を単に「軸方向」とも言い、「回転軸O」を半径方向の中心Oとも言う。請求項1の「回転軸方向の先端側」と「回転軸方向の後端側」は工具本体を先端側から見たときの、それぞれ「半径方向中心側」と「半径方向外周側」である。回転方向rはエンドミル本体(工具本体)が被削材を切削するときに回転軸O回りに回転する向きを言う。請求項1の「子刃の、逃げ角が最大の逃げ面」とは、子刃逃げ面の内、逃げ角が最大の逃げ面であり、子刃の逃げ面が1面(2番面)である場合には、その逃げ面を指し、複数面、形成される場合には、最も逃げ角が大きい逃げ面を指す。
In
本発明におけるエンドミルは、少なくとも、エンドミル本体を先端側から見たときに切れ刃が存在していればよく、先端側から見たときの切れ刃は底刃のみの場合も、コーナーR刃のみの場合もあり、それらの組み合わせを含む。「親刃」は回転方向に配列する複数枚の切れ刃の内、工具本体(切れ刃)を先端側から見たときの切れ刃長さ(刃自体の長さ)が最も大きい切れ刃を指し、「子刃」は親刃より切れ刃長さが相対的に小さい残りの切れ刃を指す。親刃は1枚の場合と複数枚の場合がある。切れ刃はエンドミル本体に複数枚、形成されるから、子刃は親刃の枚数に応じ、複数枚の場合と1枚の場合がある。親刃が複数枚ある場合、切れ刃長さが最も大きい同一長さの切れ刃が複数枚あることになる。子刃が複数枚ある場合、子刃の切れ刃長さは等しい場合と等しくない場合がある。切れ刃数が3枚の場合の図8に示す例では、1枚の親刃の回転方向前方側と回転方向後方側のそれぞれに、切れ刃長さの相違する子刃が形成されている。 The end mill in the present invention is sufficient if there is at least a cutting edge when the end mill body is viewed from the tip side, and the cutting edge when viewed from the tip side may be only a bottom edge or only a corner R edge, and includes a combination of these. The "parent edge" refers to the cutting edge that has the longest cutting edge length (the length of the blade itself) when the tool body (cutting edge) is viewed from the tip side among the multiple cutting edges arranged in the rotation direction, and the "child edge" refers to the remaining cutting edge that has a relatively shorter cutting edge length than the parent edge. There may be one parent edge or multiple parent edges. Since multiple cutting edges are formed on the end mill body, there may be multiple child edges or one child edge depending on the number of parent edges. When there are multiple parent edges, there will be multiple cutting edges of the same length with the longest cutting edge length. When there are multiple child edges, the cutting edge lengths of the child edges may or may not be equal. In the example shown in Figure 8, where there are three cutting edges, child blades with different cutting edge lengths are formed on both the front and rear sides of a single parent blade in the direction of rotation.
「親刃」と「子刃」は外周刃6を含み得る。コーナーR刃5の外周側には外周刃6が連続する。親刃41と子刃42がコーナーR刃5を有する場合、エンドミル1は図示するようなラジアスエンドミルになるが、親刃41とコーナーR刃5の境界、及び子刃42とコーナーR刃5の境界は必ずしも明確には表れないこともある。コーナーR刃5がなく、親刃41と子刃42の外周側に外周刃6が連続する場合、エンドミル1はスクエアエンドミルになる。
The "parent blade" and "child blade" may include an outer
「子刃の回転方向後方側のギャッシュが回転軸O方向の先端部側に位置する子刃先端側ギャッシュ8と、回転軸O方向の後端側に位置する子刃後端側ギャッシュ10とに区分され」とは、子刃先端側ギャッシュ8が相対的に軸方向先端側に、子刃後端側ギャッシュ10が軸方向後端側にそれぞれ位置し、図2-(b)に例示するように2段に形成されていることを言う。親刃の回転方向後方側のギャッシュ(親刃先端側ギャッシュ9と親刃後端側ギャッシュ11)も同様である(請求項2)。
"The gash on the rear side of the rotational direction of the child blade is divided into a child
子刃が被削材を切削するときに被削材から抵抗を受けて振動する部分は、子刃の逃げ面を含み、子刃42と、子刃の回転方向後方側の子刃先端側ギャッシュ8とで区画された領域(部分)であると考えることができる。この子刃部分はまた、子刃のすくい面42aから子刃逃げ面42bの回転方向後方側のギャッシュ面(子刃先端側ギャッシュ面8aと子刃後端側ギャッシュ面10a)までの領域(部分)であるとも言える。以下、子刃が振動する部分である「子刃のすくい面から逃げ面の回転方向後方側のギャッシュ面までの領域」を子刃部分と言い、「切れ刃部分」とも言う。
The part of the blade that vibrates when it receives resistance from the workpiece when cutting the workpiece includes the flank of the blade, and can be considered to be the area (part) partitioned by the
同様に親刃が被削材を切削するときに被削材から抵抗を受けて振動する部分は、親刃の逃げ面を含み、親刃41と、親刃の回転方向後方側の親刃先端側ギャッシュ9とで区画された領域(部分)であると言える。親刃部分はまた、親刃のすくい面41aから親刃逃げ面41bの回転方向後方側のギャッシュ面(親刃先端側ギャッシュ面9aと親刃後端側ギャッシュ面11a)までの領域(部分)であるとも言える。以下、親刃が振動する部分である「親刃のすくい面から逃げ面の回転方向後方側のギャッシュ面までの領域」を親刃部分と言い、「切れ刃部分」とも言う。
Similarly, the part of the parent blade that vibrates when it receives resistance from the workpiece when cutting the workpiece includes the flank of the parent blade, and can be said to be the area (part) partitioned by the
ここで、子刃先端側ギャッシュ8と子刃後端側ギャッシュ10との間の境界線82の回転方向前方側(切屑排出溝7側)の端部が子刃逃げ面の内、最も逃げ角が大きい逃げ面(42c)より回転方向後方側に位置することで(請求項1)、境界線82が逃げ面に接続する場合(例えば、図1、図2、図4、図5中、二点鎖線で示す軌跡を描く場合)より、子刃部分の体積と、子刃部分の回転方向後方側と軸方向後端側の肉厚が増すため、子刃部分の回転方向の剛性が大きくなる。この結果、子刃が被削材を切削するときの、子刃部分の振動数が、境界線82の回転方向前方側の端部が、子刃逃げ面に接続している場合より低下し、振動しにくくなる。「境界線82の回転方向前方側の端部が、逃げ角が最大の逃げ面より回転方向後方側に位置する」とは、切れ刃を先端側から見たときの状況を述べている。
Here, the end of the
子刃部分の振動部分が、子刃と子刃先端側ギャッシュ8とで区画された領域によってある程度、決められることの考えに立てば、子刃部分の剛性は境界線82の回転方向前方側端部の切屑排出溝7との接続位置によって、または境界線82自体の軌跡の描き方等によって調整可能である、とも言える。とすれば、境界線82の回転方向前方側の端部が切屑排出溝7と軸方向後端側、または回転方向後方側で交わる程、子刃部分の肉厚が増すため、子刃部分の剛性が増すことになる。
If we consider that the vibration part of the child blade part is determined to some extent by the area partitioned by the child blade and the
境界線82の回転方向前方側の端部が切屑排出溝7と軸方向後端側で交わる程、子刃先端側ギャッシュ8の最も深い部分(線)を含む平面、または親刃に回転方向に対向する子刃先端側ギャッシュ面8aの、図2-(b)に示す回転軸Oとのなす鋭角の角度θ1が、切屑排出溝7側に位置する子刃後端側ギャッシュ面10aがなす角度θ2より相対的に大きくなる。結果として、子刃先端側ギャッシュ8の占める容積が増え、子刃部分全体の肉厚が大きくなる。
The closer the front end of the
境界線82の端部が子刃の、逃げ角が最大の逃げ面よりも回転方向後方側(切屑排出溝7側)(実線で示す位置)にあれば、上記した逃げ面に接続する(二点鎖線の位置にある)場合より、子刃部分の剛性が増す、または剛性の調整ができることで、子刃部分の剛性と親刃部分の剛性との差を縮めることが可能である。従って親刃部分が被削材から受ける抵抗と、子刃部分が受ける抵抗に差があまり、あるいはほとんどない場合でも、子刃部分の剛性の調整により、子刃部分と親刃部分の振動数差を低減することが可能になる。
If the end of
「親刃部分と子刃部分が受ける抵抗に差がない場合」とは、親刃41と子刃42の切削に寄与する区間(切削区間)が同等程度で、それぞれが被削材から受ける抵抗に差がない場合を言う。このような状況は例えば図2-(a)に示すように親刃と子刃が、半径方向の中心O側に向かうに従って、軸方向に直交する平面に対して回転軸方向の後端側に向かって傾斜している(中低勾配角(すかし角)αが付く)場合に生じる(請求項3)。請求項3の「親刃及び子刃は、半径方向外周側から中心側に向かうに従い、軸方向先端側から後端側に向かって延在している」は親刃と子刃に中低勾配角αが付くことを述べている。このような場合、親刃部分の剛性と子刃部分の剛性の差がそのまま振動数差として表れるため、被削材の加工面への影響が生じ易い。
"When there is no difference in the resistance received by the parent blade portion and the child blade portion" refers to a case where the sections (cutting sections) that contribute to cutting of the
それに対し、境界線82の位置によって子刃部分の剛性と親刃部分の剛性の差を減少させられることで、親刃部分が被削材から受ける抵抗と、子刃部分が受ける抵抗に差があまりない場合でも、子刃部分の振動数と親刃部分の振動数に差を生じさせないようにすることが可能になる。子刃部分と親刃部分の振動数差を生じさせないことで、仕上げ加工や中仕上げ加工における被削材に対する加工面品位の向上が図られる。また子刃部分の剛性を通常より増し、振動数を低減することができることで、子刃のいずれかの部分の欠けを回避することも可能になる。
By reducing the difference in rigidity between the child blade portion and the parent blade portion depending on the position of
子刃の回転方向後方側に位置するギャッシュと同様に、親刃の回転方向後方側のギャッシュが、回転軸O方向の先端部側(半径方向中心側)に位置する親刃先端側ギャッシュ9と、回転軸O方向の後端側(半径方向外周側)に位置する親刃後端側ギャッシュ11とに区分されることもある(請求項2)。この場合、図1、図4に示すように親刃先端側ギャッシュ9と親刃後端方側ギャッシュ11との間に境界線91が形成される。
Similar to the gash located on the rear side of the child blade in the rotational direction, the gash on the rear side of the parent blade in the rotational direction may be divided into parent blade
この場合に、子刃後方のギャッシュの境界線82の回転方向前方側の端部を、逃げ角が最大の子刃の逃げ面よりも回転方向後方側に位置させつつ(請求項1)、親刃後方のギャッシュの境界線91の回転方向前方側の端部を、親刃のいずれかの逃げ面(41b、または41d)に接続すれば(請求項2)、子刃部分の剛性と親刃部分の剛性との差を縮小させることになる。「境界線91の回転方向前方側の端部が親刃のいずれかの逃げ面に接続する」とは、切れ刃を先端側から見たときの状況を述べている。
In this case, if the forward end in the direction of rotation of the
子刃と親刃を軸方向先端側から見たときの切れ刃長さの相違にのみ注目すれば、子刃部分の剛性が親刃部分の剛性より小さくなるが、境界線91端部の接続位置の調整により親刃部分の体積(肉厚)を子刃部分の体積(肉厚)より抑えることができるため、それぞれの剛性差が縮められることになる。「境界線91の回転方向前方側の端部」は境界線91の切屑排出溝7側の端部でもある。「境界線91の回転方向前方側の端部を親刃の逃げ面に接続する」とは、親刃を先端側から見たときに境界線91の端部がいずれかの逃げ面のいずれかの部分に接続することを言う。
If one focuses only on the difference in cutting edge length when the child blade and parent blade are viewed from the axial tip side, the rigidity of the child blade portion is smaller than that of the parent blade portion, but by adjusting the connection position of the
更に親刃先端側ギャッシュ9と親刃後端側ギャッシュ11との間の境界線91の回転方向後方側の端部を子刃42の半径方向中心側の端部より回転軸O(半径方向中心)側に位置させることで(請求項1)、親刃部分の領域の拡大との剛性の増大をより抑えることが可能になる。この結果、親刃部分の剛性の調整が可能になるため、子刃部分の剛性との差をより縮小させることが可能になる。なお、境界線91の回転方向後方側の端部は子刃側の端部とも言える。「境界線91の回転方向後方側の端部が子刃の半径方向中心側の端部より回転軸O側に位置する」とは、切れ刃を先端側から見たときの状況を述べている。
Furthermore, by positioning the rear end of the
境界線91の回転方向後方側の端部の位置の調整によって親刃部分の剛性が更に調整されることで(請求項1)、上記した子刃逃げ面42bの形成状態のみでは子刃部分の剛性が親刃部分の剛性より小さくなるような場合でも、親刃部分の剛性と子刃部分の剛性との差を小さくすることが可能になる。境界線91の回転方向後方側の端部を子刃より回転軸O寄りに位置させること(請求項1)は、境界線91の回転方向前方側の端部が親刃逃げ面41bに接続すること(請求項2)と同時になされる(並存する)場合と、独立する場合がある。
By further adjusting the position of the end portion on the rear side in the rotational direction of the
子刃部分の剛性と親刃部分の剛性の差を縮めることは、端的に言えば、各子刃部分の体積と親刃部分の体積が等しくなるように、または同等程度になるように、境界線82と境界線91の端部の位置、または境界線82、91の軌跡を調整(設定)すればよいことになる。親刃の切れ刃長さは子刃のそれより大きいから、親刃部分の体積と子刃部分の体積を等しくなるようにするには、切れ刃長さに応じ、相対的に親刃部分の肉厚を小さめにする一方、子刃部分の肉厚を大きめに調整すればよいことになる。この課題解決の一手法が境界線82と境界線91の端部位置、または軌跡の調整である(請求項1、2)。「各子刃部分」とは、切れ刃長さが同一とは限らない各子刃部分のことを言う。
To reduce the difference in rigidity between the child blade portion and the parent blade portion, simply adjust (set) the end positions of the
子刃42の切れ刃長さが相違する図8に示す3枚刃の例では、親刃41の回転方向後方側のギャッシュ9、11間の境界線91の回転方向前方側の端部を親刃の逃げ面に接続している(請求項2)。同時に、親刃の回転方向前方側に位置する、切れ刃長さの最も小さい子刃42の回転方向後方側のギャッシュ8、10間の境界線82の回転方向前方側の端部を逃げ角が最大の子刃逃げ面42cの回転方向後方側に位置させている(請求項1)。
In the three-blade example shown in Figure 8, in which the cutting edge lengths of the
また切れ刃長さが最小の子刃42より切れ刃長さが大きい子刃(親刃の回転方向後方側に位置する子刃42)の回転方向後方側のギャッシュ8、10間の境界線82の回転方向前方側の端部を逃げ角が最大の子刃逃げ面42cの回転方向後方側の端部に接続し、境界線82の回転方向後方側の端部を切れ刃長さが最小の子刃42の(切れ刃)区間に接続している。
In addition, the front end of the
いずれにしても、親刃と子刃を含め、切れ刃の枚数に関係なく、各切れ刃部分の体積が同等になるように境界線82、91の端部や軌跡を調整し、中心Oから、切れ刃の枚数に応じた複数の半径方向に、各切れ刃の長さ方向を向ければよいことになる。結果として、各切れ刃部分の体積(質量)が中心に関して回転方向に均等に分散し、質量の偏りがなくなるため、いずれかの切れ刃部分が他の切れ刃部分より振動し易くなることがなくなり、各切れ刃部分の剛性差が解消される。図8に示す3枚刃の例では隣接する切れ刃(親刃と子刃)間の中心角は120°である。
In any case, regardless of the number of cutting blades, including parent and child blades, the ends and trajectories of the
工具本体先端部に形成された切れ刃長さが大きい親刃より相対的に切れ刃長さが小さい子刃の回転方向後方側のギャッシュを子刃先端側ギャッシュと子刃後端方側ギャッシュとに区分し、それらの境界線の回転方向前方側の端部を、子刃の、逃げ角が最大の逃げ面より回転方向後方側に位置させているため、子刃部分の肉厚を増すことができる。従って親刃部分の剛性に合わせて子刃部分の剛性を高め、調整することができる。 The gash on the rear side in the direction of rotation of the child blade, which has a relatively shorter cutting edge length than the parent blade, which is formed at the tip of the tool body, is divided into a gash on the tip side of the child blade and a gash on the rear side of the child blade, and the front end of the boundary between them in the direction of rotation is positioned rearward in the direction of rotation from the clearance face of the child blade with the maximum clearance angle, so that the thickness of the child blade portion can be increased. Therefore, the rigidity of the child blade portion can be increased and adjusted to match the rigidity of the parent blade portion.
この結果、中低勾配角が付き、切れ刃長さが異なる親刃と子刃を有しているエンドミルのように、親刃部分が被削材から受ける抵抗と、子刃部分が受ける抵抗に差があまり、あるいはほとんどない場合でも、子刃部分の剛性を調整することで、親刃と子刃との振動数差を低減することができる。 As a result, even in cases where there is little or no difference between the resistance received by the parent blade portion from the workpiece and the resistance received by the child blade portion, such as in the case of end mills that have parent and child blades with medium to low gradient angles and different cutting edge lengths, the difference in vibration frequency between the parent and child blades can be reduced by adjusting the rigidity of the child blade portion.
図1~図6はエンドミル本体の回転軸O方向の先端側に、半径方向中心側から外周側へかけて連続する親刃と、親刃にエンドミル本体の回転方向rに隣り合い、エンドミル本体を回転軸O方向の先端側から見たときに親刃より短い切れ刃の子刃とを有する切れ刃部2とを備えたエンドミル1の製作例を示す。各親刃と各子刃の回転方向後方側にギャッシュが形成され、エンドミル本体の回転方向rに隣り合う親刃と子刃との間に、各ギャッシュから回転軸O方向後端側に連続する切屑排出溝7が形成される。前記のようにエンドミル1は少なくとも、エンドミル本体を先端側から見たときに切れ刃があればよく、この切れ刃は底刃のみの場合と、コーナーR刃のみの場合と、底刃とコーナーR刃の組み合わせからなる場合がある。
Figures 1 to 6 show an example of the manufacture of an
図面ではまた、図7に示すような金型の隅部の加工に適する、首下長の長い小径エンドミルの例を示しているが、本発明のエンドミル1は図7に示す形態には限られない。図1~図6は図7に示す切れ刃部2の軸方向反対側のシャンク部3を除いた切れ刃部2側の先端部分を示している。図面では特に親刃41と子刃42が共に、底刃とこれに連続するコーナーR刃5とこれに連続する外周刃6を有する場合(エンドミル1がラジアスエンドミルの場合)の例を示しているが、コーナーR刃5がない場合(エンドミル1がスクエアエンドミルの場合)もある。。
The drawings also show an example of a small diameter end mill with a long neck length suitable for machining the corners of a mold as shown in FIG. 7, but the
(003)
親刃41は基本的に図1、図4、図8に示すように切れ刃部2を回転軸O方向の先端面側から見たときの半径方向中心(回転軸)O、もしくはその付近から外周側の端部まで連続する。但し、親刃41は切れ刃部2を先端面側から見たときに相対的に子刃42より切れ刃長さが大きければよく、必ずしも中心O付近から形成されている必要はない。切れ刃長さが親刃41より小さい切れ刃は子刃42になる。「回転O方向の先端面」は工具本体(エンドミル1)の先端面のことを言う。以下では「回転軸O方向」と「先端面」をそれぞれ「軸方向」と「端面」とも言う。子刃42は親刃41に工具本体の回転方向rに間隔を置き、切れ刃部2を軸方向の端面側から見たときの半径方向中心Oより外周寄りの位置から外周側へかけて連続する。
(003)
The
図1、図4に示す4枚刃の場合、親刃41と子刃42はそれぞれ、主に中心(回転軸)Oに関して対(点対称)になるように形成される。親刃41の中心O側の部分は中心Oか、その付近まで連続することから、図面では工具本体の先端部を端面側から見たとき、親刃41の逃げ面41b(以下、親刃逃げ面41b)を、中心Oを挟んだ側に位置する親刃逃げ面41bに帯状に連続させている。この場合、中心Oを挟んで両側に位置する(対になる)親刃逃げ面41b、41bが回転方向rに幅を持ったまま連続した場合、親刃41に一定の剛性が確保される。「親刃逃げ面41b」は図面では親刃2番面である。
In the case of the four-blade tool shown in Figs. 1 and 4, the
ギャッシュは隣り合う2つの切れ刃の逃げ面間に位置する。ギャッシュを規定する面は、隣り合う2つの切れ刃のうち回転方向後方側に位置する切れ刃のすくい面(41a、42a)を少なくとも含む。図1~図3はギャッシュが平面によって規定されている場合を示しており、すくい面(41a、42a)と、すくい面以外の面(ギャッシュ面8a、9a、10a、11a)との境界が明確に表れている。 The gash is located between the clearance faces of two adjacent cutting edges. The surfaces that define the gash include at least the rake face (41a, 42a) of the cutting edge that is located rearward in the direction of rotation of the two adjacent cutting edges. Figures 1 to 3 show a case where the gash is defined by a plane, and the boundary between the rake face (41a, 42a) and the surfaces other than the rake face (gash faces 8a, 9a, 10a, 11a) is clearly visible.
一方、図4~図6はギャッシュが凹曲面によって規定されている場合を示しており、一方の切れ刃から回転後方前方に向かって他方の切れ刃の逃げ面に至るまで、ギャッシュを規定する面に境界が明確に表れていない例を示している。なお、コーナーR刃5が形成された場合、図2、図3、図5、図6に示すようにすくい面(41a、42a)の半径方向外周側にコーナーR刃5のすくい面5aが連続し、すくい面5aの軸方向後端側に外周刃6のすくい面6aが連続する。外周刃6の回転方向後方側には逃げ面(2番面)6bが形成される。
On the other hand, Figures 4 to 6 show cases where the gash is defined by a concave curved surface, and show examples where there is no clear boundary on the surface that defines the gash from one cutting edge toward the rear and forward of rotation to the flank of the other cutting edge. When a
図2、図3、図5、図6に示すように、ギャッシュは軸方向の先端側(半径方向中心側)に位置する先端側ギャッシュ8、9と、軸方向の後端側(半径方向外周側)に位置する後端側ギャッシュ10、11とに区分される。図2-(b)に示すように、先端側ギャッシュ8、9を規定する面と後端側ギャッシュ10、11を規定する面との間には、表面側(半径方向外周側)に凸の稜線となる境界線82、91が存在する。言い換えれば、ギャッシュ8、10(9、11)を、先端側ギャッシュの先端と後端側ギャッシュの後端とを通り、且つ軸方向に平行な断面で見たとき、境界線82、91に対応する点は、先端側ギャッシュ8、9を構成する直線の先端と、後端側ギャッシュ10、11を構成する直線の後端とを結んだ直線に対して、ギャッシュ側(エンドミル本体側と反対側)に位置する。
As shown in Figures 2, 3, 5, and 6, the gashes are divided into leading
後端側ギャッシュ10、11は、先端側ギャッシュ8、9と切屑排出溝7に空間的に連続し、先端側ギャッシュ8、9を規定する面とは異なる面によって規定される。後端側ギャッシュ10、11は、図2、図3、図5、図6に例示するように、すくい面41a、42a、またはすくい面41a、42a、及びコーナーR刃5のすくい面5aと、すくい面41a、42aから回転方向前方に延在して切屑排出溝7に至る後端側ギャッシュ面10a、11aとによって規定される。図2、図3は後端側ギャッシュ面10a、11aが平面の場合を、図5、図6は後端側ギャッシュ10a、11aが曲面の場合を示している。
The rear end gashes 10, 11 are spatially continuous with the front end gashes 8, 9 and the
子刃42の回転方向後方側に位置するギャッシュの内、軸方向先端側に位置する子刃先端側ギャッシュ8は、図2に示すようにギャッシュが平面によって規定されている場合、親刃すくい面41aと、親刃すくい面41aから回転方向前方に延在し、子刃逃げ面(子刃2番面42b、子刃3番面42c)に至る子刃先端側ギャッシュ面8aとによって規定される。図5に示すように、ギャッシュが曲面によって規定されている場合も同様に、子刃先端側ギャッシュ8は、親刃すくい面41aと、子刃先端側ギャッシュ面8aとによって規定されているが、親刃すくい面41aと子刃先端側ギャッシュ面8aとは明確な境界線がなく、単一な面ともみなせる。子刃3番面42cは子刃42に連続するコーナーR刃5の逃げ面(2番面)5bの回転方向後方側に位置するため、コーナーR刃5の3番面を兼ねる。
When the gash is defined by a flat surface as shown in FIG. 2, the
親刃41の回転方向後方側に位置するギャッシュの内、軸方向先端側に位置する親刃先端側ギャッシュ9は、図3に示すように親刃41の回転方向後方側に位置する子刃42のすくい面42aと、子刃42aのすくい面42aから回転方向前方側に向かって延在して親刃逃げ面41bに至る親刃先端側ギャッシュ面9aとによって規定される場合もあれば、図5に示すように子刃42のすくい面42aを含まず、子刃の回転方向後方側に位置する子刃先端側ギャッシュ8を規定する先端側ギャッシュ面8aに直接隣接し、その先端側ギャッシュ面8aから回転方向前方に向かって延在する親刃先端側ギャッシュ面9aによって規定される場合もある。親刃先端側ギャッシュ9を規定する面は、図2に示すように平面であっても、図6に示すように曲面であってもよい。
The parent
境界線81は子刃先端側ギャッシュ8と親刃先端側ギャッシュ9との間で、軸方向に直交する平面に対して軸方向先端側に凸の稜線をなし、境界線81を挟んで子刃先端側ギャッシュ8側の面と親刃先端側ギャッシュ9側の面がそれぞれ子刃先端側ギャッシュ8と親刃先端側ギャッシュ9を規定する。境界線81を挟んだ両側の面は凹面をなす。凹面は平面と曲面を含む。
The
親刃先端側ギャッシュ9は親刃逃げ面41bの子刃42側の境界線41cに沿って形成される。親刃先端側ギャッシュ9の領域、すなわち先端部(切れ刃部2)の端面を見たときの親刃先端側ギャッシュ9の平面積は境界線41cに沿った区間の長さが大きい程、大きくなり、切屑収容能力が増す。このため、切屑収容能力を増す上では境界線41cのより長い区間、例えば境界線41cの全長の内、少なくとも半分以上の区間に沿って形成されることが適切である。図面では親刃先端側ギャッシュ9が境界線41cの全長に沿って形成された場合、すなわち境界線41cの全長が親刃逃げ面41bと親刃先端側ギャッシュ9との境界線である場合の例を示している。
The parent
前記した子刃先端側ギャッシュ8と子刃後端側ギャッシュ10との間の境界線82の回転方向前方側(切屑排出溝7側)の端部は、子刃42と子刃逃げ面42bを含む、厚さを有する部分の剛性を高め、または調整する目的から、子刃42の、逃げ角が最大の逃げ面の回転方向後方側端部よりより回転方向後方側(コーナーR刃5側)に位置させられる。「子刃42の、逃げ角が最大の逃げ面」は図示するように子刃逃げ面42bの回転方向後方側に子刃3番面42cを有する場合には、子刃3番面42cを指し、子刃3番面42cを有しない場合は子刃2番面42bを指す。
The end of the
子刃42部分の「剛性を調整する」とは、子刃42部分の剛性と親刃41部分の剛性の差が、それぞれが被削材から受ける抵抗の差に応じて子刃42部分の剛性を調整することを言う。子刃42部分の剛性を高める、または調整することは、親刃41部分の剛性との差を抑制する、あるいは剛性差に伴う振動数差を低減する意味がある。
"Adjusting the rigidity" of the
子刃42部分の剛性が親刃41部分の剛性より小さくても、子刃42部分が被削材から受ける抵抗が、親刃41部分が被削材から受ける抵抗より小さければ、剛性差が直接、被削材の加工面への影響が大きくなることはない。子刃42部分と親刃41部分の剛性差がそれぞれの抵抗差に応じた差であれば、子刃42部分の振動数と親刃41部分の振動数の差として明確に表れることはなく、実質的に振動数差に起因して被削材の加工面品位の低下を招くことはない。子刃42部分の振動数が親刃41部分の振動数より多ければ、子刃42部分の振動が被削材の加工面を粗くし易い。
Even if the rigidity of the
これに対し、図2-(a)に示すように子刃42と親刃41に中低勾配角αが付く場合、子刃42の半径方向中心部分と同様に、親刃41の半径方向中心部分は被削材に接触せず、接触しない部分は抵抗を受けないため、子刃42部分の抵抗と親刃41部分の抵抗に差が生じないか、生じにくくなる。抵抗差がないにも拘わらず、子刃42部分の剛性が親刃41部分の剛性より小さく、剛性差があれば、子刃42部分の振動数と親刃41部分の振動数に差が生じるため、被削材の加工面品位を低下させる可能性が高まる。このような場合に、子刃42部分の剛性を増すか、親刃41部分の剛性との差が縮まるように調整すれば、振動数差を低減することができる。
In contrast, when the
図1、図2に示す例のように子刃先端側ギャッシュ8と子刃後端側ギャッシュ10、または各ギャッシュ面8a、10aが平坦面(平面)であると仮定した場合、図2-(b)に示すように子刃先端側ギャッシュ面8aと回転軸Oとがなす鋭角の角度θ1より、子刃後端側ギャッシュ面10aと回転軸Oとがなす鋭角の角度θ2が小さくなる(θ1<θ2)。
Assuming that the
この関係で、図1、図2、図4、図5に示す、子刃先端側ギャッシュ8と子刃後端側ギャッシュ10との境界線82が二点鎖線で示す位置にある場合、子刃後端側ギャッシュ10が子刃先端側ギャッシュ8側へ入り込む形になり、子刃42部分の肉厚(体積)が小さくなるため、子刃42部分の剛性が小さくなり易い。この場合、親刃41前のギャッシュは角度θ2の小さい子刃後端側ギャッシュ10が優勢になる。それに対し、境界線82が実線で示す位置にあれば、子刃先端側ギャッシュ8が子刃後端側ギャッシュ10側へ張り出す形になり、二点鎖線の場合より子刃42部分の肉厚(体積)が増すため、子刃42部分の剛性を大きくし易い。この場合、親刃41前のギャッシュは角度θ1の大きい子刃先端側ギャッシュ8が優勢になる。
In this relationship, when the
このように境界線82の回転方向前方側の端部が二点鎖線で示す子刃逃げ面42b、または子刃3番面42cの回転方向後方側端部より回転方向後方側に位置していれば、二点鎖線の場合より子刃42部分の剛性を大きくすることができるため、想定する剛性の大きさに応じて境界線82の回転方向前方側の端部の位置は任意に設定(調整)される。境界線82の回転方向後方側の端部は図示するように親刃すくい面41a、またはコーナーR刃のすくい面5aに交わる(接続する)。
In this way, if the end of the
境界線82の回転方向前方側の端部が子刃逃げ面42b、または子刃3番面42cの回転方向後方側端部より回転方向後方側に位置することは、境界線82の切屑排出溝7側の端部が、子刃逃げ面42b(子刃3番面42c)より切れ刃部2の軸方向反対側のシャンク部3側の位置で切屑排出溝7の境界線71に交わって(接続して)いる、とも言える。境界線82の端部が切屑排出溝7の境界線71に交わることで、子刃後端側ギャッシュ10の容積を小さくできることからも、子刃42部分の剛性が向上することが言える。
The fact that the front end of the
子刃42部分の剛性の調整は境界線82の親刃すくい面41a側、またはすくい面5a側の端部の位置と、切屑排出溝7側の端部の中間区間の軌跡の描き方によっても調整される。図1~図6は境界線82の回転方向前方側の端部が切屑排出溝7の境界線71に交わり、回転方向後方側の端部が親刃すくい面41a、またはすくい面5aに交わっている場合の例を示している。
The rigidity of the
子刃42前(親刃42後方側)のギャッシュが親刃先端側ギャッシュ9と親刃後端側ギャッシュ11とに区分される場合、子刃42部分の剛性に応じ、親刃41部分の剛性を調整する上では、前記した境界線91の回転方向後方側(子刃42側)の端部を子刃42の半径方向中心側の端部より半径方向中心O寄りに位置させることが適切である。境界線91は親刃先端側ギャッシュ9と親刃後端側ギャッシュ11との間の境界線である。
When the gash in front of the child blade 42 (rear side of the parent blade 42) is divided into the parent blade
切れ刃部2を軸方向の端面側から見たとき、境界線91の回転方向後方側(子刃42側)の端部が子刃42の半径方向中心側の端部より半径方向中心O寄りに位置する(回転軸Oに近い)ことで、子刃42の半径方向外周側に位置する場合より、親刃41部分の肉厚(体積)を抑制し、親刃41部分の剛性の増大を抑制することができる。親刃41部分の剛性が抑制(調整)される結果、子刃42部分の剛性との差を縮小させることが可能になる。
When the
図1~図3は図3に示すように境界線91の子刃42側の端部が子刃すくい面42aに接続し、親刃先端側ギャッシュ9が子刃すくい面42aによって規定(区画)されている場合の例を示している。図4~図6は図6に示すように境界線91の子刃42側の端部が子刃すくい面42aに接続せず、親刃先端側ギャッシュ9が子刃すくい面42aによって規定(区画)されていない場合の例を示している。この例では、境界線91は子刃先端側ギャッシュを規定するギャッシュ面8aと親刃先端側ギャッシュを規定するギャッシュ面9aとの境界線81に接続している。
Figures 1 to 3 show an example in which the end of the
切れ刃部2を軸方向の端面側から見たとき、境界線91の子刃42側の端部が子刃42の半径方向中心側の端部より半径方向中心O寄りに位置する(回転軸Oに近い)ことは、図1、図4に示すように切れ刃部2を軸方向の端面側から見たとき、境界線91の子刃42側の端部が、子刃先端側ギャッシュ8と親刃先端側ギャッシュ9との境界線81に交わる、とも言える。この関係で、親刃先端側ギャッシュ9は図3、図6が示すように子刃すくい面42aより半径方向の中心O寄りに位置し、子刃先端側ギャッシュ8の回転方向r前方側に隣接している。
When the
この場合、親刃先端側ギャッシュ9が子刃先端側ギャッシュ8の回転方向r前方側に位置することで、親刃41が切削し、子刃先端側ギャッシュ8内に入り込んだ切屑の一部は親刃先端側ギャッシュ9内に入り(回り)込み得る状態にある。このため、子刃先端側ギャッシュ8内の切屑は子刃先端側ギャッシュ8の切屑排出溝7側に隣接する子刃後端側ギャッシュ10と親刃先端側ギャッシュ9に分散し得る。
In this case, the parent
親刃41部分の剛性を調整し、または抑制し、子刃42部分と親刃41部分の振動数差が拡大しないようにする上ではまた、境界線91の回転方向前方側(切屑排出溝7側)の端部を、親刃41の回転方向後方側に隣接する逃げ面(親刃逃げ面)41b、または親刃3番面41dのいずれかの部分に接続することが適切である。
In order to adjust or suppress the rigidity of the
この場合、境界線91の回転方向前方側の端部が親刃逃げ面41b、または親刃3番面41dに接続することで、境界線91の端部が親刃逃げ面41b、または親刃3番面41dの回転方向後方側の端部より回転方向後方側に位置する場合よりは、親刃41部分の剛性は抑えられる。その上、境界線91の子刃42側(回転方向後方側)の端部が子刃42の半径方向中心側の端部より回転軸O(半径方向中心)寄りに位置している場合には、境界線91自体の軌跡の描き方次第で、親刃41部分の剛性の調整が可能になる。この結果、子刃42部分と親刃41部分の剛性差を低減し、子刃42部分と親刃41部分の振動数差を縮める(圧縮する)ことが可能になる。
In this case, by connecting the front end of the
図1~図3は境界線91の回転方向前方側の端部が、親刃3番面41dと親刃先端側ギャッシュ面9aとの境界線に交わるように境界線91を形成した場合の例を示す。図4~図6は境界線91の回転方向前方側の端部が親刃逃げ面41bと境界線41cとの交点、または境界線41cと親刃3番面41dとの交点に交わるように境界線91を形成した場合の例を示す。
Figures 1 to 3 show an example where the
図8は1枚の親刃41と2枚の子刃42の3枚刃の切れ刃部2を形成した場合の例を示している。ここでは親刃41の回転方向前方側の第1子刃42の切れ刃長さが最も小さく、親刃41の回転方向後方側の第2子刃42の切れ刃長さは最小の第1子刃42の切れ刃長さより大きい。この例でも、第1子刃42の回転方向後方側に位置するギャッシュ8、10の境界線82の回転方向前方側の端部は、第1子刃42の、逃げ角が最大の逃げ面である子刃3番面42cの回転方向後方側端部より回転方向後方側に位置し、親刃41の回転方向後方側に位置するギャッシュ9、11の境界線91の回転方向前方側の端部は、親刃逃げ面(親刃2番面41b、または親刃3番面41d)に接続している。
Figure 8 shows an example of a
このようにすることで、中低勾配角が付与され、親刃と子刃とが受ける切削抵抗に差があまりないような場合でも、親刃の剛性と子刃の剛性とを近づけ、剛性差を抑制することができる。また、工具を軸方向先端側から見たときに、境界線91の回転方向後方側の端部が、第2子刃の回転軸O側の端部よりも、回転軸Oに近くなるように、境界線91は形成されている。このような構成とすることで、親刃の剛性を抑え、子刃の剛性により近づけるように調整することが可能となる。
By doing so, even when a medium-low gradient angle is imparted and there is little difference in the cutting resistance experienced by the parent blade and the child blade, the rigidity of the parent blade and the child blade can be made closer to each other, suppressing the rigidity difference. Also, when the tool is viewed from the axial tip side, the
図8では切れ刃長さが最小でない子刃42の回転方向後方側の子刃先端側ギャッシュ8と子刃後端側ギャッシュ10との間の境界線82の回転方向前方側の端部を子刃3番面42cの回転方向後方側端部に接続し、境界線82の回転方向後方側の端部をその側に位置する子刃42の区間(子刃すくい面42a)に接続している。境界線82の回転方向前方側の端部は、詳しくは子刃3番面42cと子刃先端側ギャッシュ8との境界線の子刃後端側ギャッシュ10寄りに接続し、この接続点が子刃3番面42cと子刃先端側ギャッシュ面8aと子刃後端側ギャッシュ面10aとの交点になっている。
In FIG. 8, the front end of the
この例では切れ刃長さが最小の子刃42の回転方向後方側の境界線82の回転方向前方側の端部を子刃3番面42cより回転方向後方側に位置させながら、親刃41後の境界線91の回転方向前方側の端部を親刃逃げ面41b等に接続すると共に、境界線91の回転方向後方側の端部を子刃42の区間に位置させることで、切れ刃長さが最小の子刃42部分の剛性と、親刃41部分の剛性を同等程度に調整している。一方、切れ刃長さが最小でない子刃42の回転方向後方側の境界線82の回転方向前方側の端部を子刃3番面42cに接続し、境界線82の回転方向後方側の端部を子刃42の区間に接続することで、切れ刃長さが最小でない子刃42部分の剛性が、切れ刃長さが最小の子刃42部分の剛性と同等程度になるように調整している。
In this example, the front end of the
1……エンドミル(工具本体)、
2……切れ刃部、3……シャンク部、
41……親刃、41a……親刃のすくい面、41b……親刃の逃げ面(2番面)、41c……親刃41の逃げ面41bの子刃42側の境界線、41d……親刃の3番面、
42……子刃、42a……子刃のすくい面、42b……子刃の逃げ面(2番面)、42c……子刃の3番面、
5……コーナーR刃、5a……コーナーR刃のすくい面、5b……コーナーR刃の逃げ面、
6……外周刃、6a……外周刃のすくい面、6b……外周刃の逃げ面、
7……切屑排出溝、71……切屑排出溝7の切れ刃部2側の境界線、
8……子刃先端側ギャッシュ、8a……子刃先端側ギャッシュ面、81……子刃先端側ギャッシュ8の親刃先端側ギャッシュ9寄り(子刃先端側ギャッシュ8と親刃先端側ギャッシュ9との間)の境界線、82……子刃先端側ギャッシュ8と子刃後端側ギャッシュ10との間の境界線、
9……親刃先端側ギャッシュ、9a……親刃先端側ギャッシュ面、91……親刃先端側ギャッシュ9と親刃後端側ギャッシュ11との間の境界線、
10……子刃後端側ギャッシュ、10a……子刃後端側ギャッシュ面、
11……親刃後端側ギャッシュ、11a……親刃後端側ギャッシュ面。
1... End mill (tool body),
2: cutting edge portion, 3: shank portion,
41: Parent blade; 41a: Rake face of parent blade; 41b: Flank face (second face) of parent blade; 41c: Boundary line of
42: child blade, 42a: rake face of child blade, 42b: relief face (second face) of child blade, 42c: third face of child blade,
5: corner R blade; 5a: rake face of corner R blade; 5b: relief face of corner R blade;
6: peripheral cutting edge; 6a: cutting surface of peripheral cutting edge; 6b: relief surface of peripheral cutting edge;
7 ... chip discharge groove, 71 ... boundary line of the
8: gash on the tip side of the child blade; 8a: gash surface on the tip side of the child blade; 81: boundary line of the
9: parent blade tip gash, 9a: parent blade tip gash surface, 91: boundary between parent
10: Rear end gash of child blade; 10a: Rear end gash surface of child blade;
11...gash on the rear end side of the parent blade, 11a...gash surface on the rear end side of the parent blade.
Claims (3)
前記子刃の回転方向後方側の前記ギャッシュは前記軸方向の先端側に位置する子刃先端側ギャッシュと、前記軸方向の後端側に位置する子刃後端側ギャッシュとに区分され、
前記子刃先端側ギャッシュと前記子刃後端側ギャッシュとの間の境界線の回転方向前方側の端部は、前記子刃の、逃げ角が最大の逃げ面より回転方向後方側に位置し、
前記親刃の回転方向後方側の前記ギャッシュは前記軸方向の先端側に位置する親刃先端側ギャッシュと、前記軸方向の後端側に位置する親刃後端側ギャッシュとに区分され、
前記親刃先端側ギャッシュと前記親刃後端側ギャッシュとの間の境界線の回転方向後方側の端部は、前記親刃の回転方向後方側に位置する前記子刃の半径方向中心側の端部より前記中心側に位置していることを特徴とするエンドミル。 A parent blade is provided at the axial tip side of the end mill body, the parent blade being continuous from the radial center side to the radial outer periphery side, and a child blade is provided adjacent to the parent blade in the rotational direction of the end mill body and is shorter than the parent blade when the end mill body is viewed from the axial tip side, and a gash is formed on the rear side of each of the parent blade and the child blade in the rotational direction, and a chip discharge groove is continuous from each of the gashes to the axial rear end side,
The gash on the rear side in the rotational direction of the child blade is divided into a child blade tip side gash located on the tip side in the axial direction and a child blade rear end side gash located on the rear end side in the axial direction,
a front end of a boundary between the gash on the tip end side of the child blade and the gash on the rear end side of the child blade is located rearward in the rotational direction from a clearance face of the child blade having a maximum clearance angle ,
The gash on the rear side in the rotational direction of the parent blade is divided into a parent blade tip side gash located on the tip side in the axial direction and a parent blade rear end side gash located on the rear end side in the axial direction,
An end mill characterized in that the rear end of the boundary line between the gash at the tip end of the parent blade and the gash at the rear end of the parent blade is located closer to the center in the radial direction than the end of the child blade located rearward in the rotational direction of the parent blade .
前記親刃先端側ギャッシュと前記親刃後端側ギャッシュとの間の境界線の回転方向前方側の端部は、前記親刃の逃げ面に接続していることを特徴とする請求項1に記載のエンドミル。 The gash on the rear side in the rotational direction of the parent blade is divided into a parent blade tip side gash located on the tip side in the axial direction and a parent blade rear end side gash located on the rear end side in the axial direction,
The end mill according to claim 1, characterized in that a front end of the boundary between the gash on the tip side of the parent blade and the gash on the rear side of the parent blade in the rotational direction is connected to a flank surface of the parent blade.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020217137A JP7541238B2 (en) | 2020-12-25 | 2020-12-25 | End Mills |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020217137A JP7541238B2 (en) | 2020-12-25 | 2020-12-25 | End Mills |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022102421A JP2022102421A (en) | 2022-07-07 |
JP7541238B2 true JP7541238B2 (en) | 2024-08-28 |
Family
ID=82272965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020217137A Active JP7541238B2 (en) | 2020-12-25 | 2020-12-25 | End Mills |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7541238B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087859A (en) | 2012-10-29 | 2014-05-15 | Mitsubishi Materials Corp | End mill with coolant hole |
WO2016152611A1 (en) | 2015-03-20 | 2016-09-29 | 三菱日立ツール株式会社 | Square end mill |
-
2020
- 2020-12-25 JP JP2020217137A patent/JP7541238B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087859A (en) | 2012-10-29 | 2014-05-15 | Mitsubishi Materials Corp | End mill with coolant hole |
WO2016152611A1 (en) | 2015-03-20 | 2016-09-29 | 三菱日立ツール株式会社 | Square end mill |
Also Published As
Publication number | Publication date |
---|---|
JP2022102421A (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5744235B2 (en) | Radius end mill | |
EP1808248B1 (en) | Throwaway insert and milling tool equipped with the same | |
JP5346373B2 (en) | Cutting insert, cutting tool, and method of manufacturing a cut product using the same | |
JP5491505B2 (en) | Milling and cutting tips therefor | |
JP5568138B2 (en) | Cutting insert, cutting tool, and method of manufacturing a cut product using the same | |
JP4961423B2 (en) | Cutting insert | |
WO2014050438A1 (en) | Cutting insert and cutting edge replacement-type rotating cutting instrument | |
JP6221660B2 (en) | Roughing end mill | |
KR20160047546A (en) | End mill with coolant hole | |
JP6473761B2 (en) | End mill and method of manufacturing cut product | |
WO2012147836A1 (en) | Cutting insert and tip-replacement-type rotary cutting tool | |
WO2010055561A1 (en) | Throw-away cutting rotary tool | |
JP2011020192A (en) | Spiral radius end mill | |
KR20080009330A (en) | Helical cutting insert with axial clearance slash | |
JP7541238B2 (en) | End Mills | |
JP6902285B2 (en) | Cutting tools | |
JP5312538B2 (en) | Throwaway end mill | |
JP3105866B2 (en) | Circular saw blade | |
JP7491104B2 (en) | Ball End Mill | |
JP2008044040A (en) | Rotary cutting tool | |
JP4812537B2 (en) | Cutting inserts and turning tools | |
JP7235627B2 (en) | End mill and its manufacturing method | |
JP7460905B2 (en) | End Mills | |
JP7498406B2 (en) | End Mills | |
JP7491105B2 (en) | Ball End Mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7541238 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |