JP7535361B2 - AC voltage source proximity detector - Google Patents

AC voltage source proximity detector Download PDF

Info

Publication number
JP7535361B2
JP7535361B2 JP2020189918A JP2020189918A JP7535361B2 JP 7535361 B2 JP7535361 B2 JP 7535361B2 JP 2020189918 A JP2020189918 A JP 2020189918A JP 2020189918 A JP2020189918 A JP 2020189918A JP 7535361 B2 JP7535361 B2 JP 7535361B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
human body
voltage source
voltage detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020189918A
Other languages
Japanese (ja)
Other versions
JP2022079006A (en
JP2022079006A5 (en
Inventor
洋治 大浦
正巳 小島
隆好 関根
龍三 野田
和顕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CDN Corp
Original Assignee
CDN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CDN Corp filed Critical CDN Corp
Priority to JP2020189918A priority Critical patent/JP7535361B2/en
Publication of JP2022079006A publication Critical patent/JP2022079006A/en
Publication of JP2022079006A5 publication Critical patent/JP2022079006A5/ja
Application granted granted Critical
Publication of JP7535361B2 publication Critical patent/JP7535361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

この発明は、ビルや工場等の電気設備の点検作業や、改修工事等の電気工事の際に、作業者の感電事故や設備事故を防ぐために、交流電圧源に作業者が接近した際警報を発する交流電圧源の接近検知検電器に関するものである。 This invention relates to an AC voltage source approach detection voltage detector that issues an alarm when a worker approaches an AC voltage source in order to prevent electric shock accidents or equipment accidents during electrical work such as inspection work or repair work on electrical equipment in buildings and factories, etc.

従来の交流電圧源の検電器は、図17に示すように、大地と静電容量結合した人体を基準とし、被測定物である充電部に検電器の電極を接近させた際、充電部と検電器との間の静電容量C1、検電器と作業者との間の静電容量C2及び作業者と大地との間の静電容量C3を通じて流れる微小電流を検電器の検出回路が検出し、当該電流が一定値以上であれば、前記被測定物に電圧があると判定し、それを表示又は警報している。 As shown in Figure 17, a conventional AC voltage source voltage detector uses a human body capacitively coupled to the ground as a reference, and when the electrodes of the voltage detector are brought close to the live part (the object to be measured), the detection circuit of the voltage detector detects a minute current flowing through the capacitance C1 between the live part and the voltage detector, the capacitance C2 between the voltage detector and the operator, and the capacitance C3 between the operator and the ground. If the current is equal to or greater than a certain value, it determines that the object to be measured has a voltage and displays or warns of this fact.

この方式の検電器は従来広く使用されており、特許文献1は、検電器を手首に装着し、検電器本体から手先方向に電極を突出させたものであり、当該検電器を被測定物に接近させて、検電するものである。また、特許文献2は工具の柄の部分に検電器の検電電極を密着させ、当該工具を握って作業者が工具を被測定物に接近させ、被測定物の電圧を検出、警報するものである。 This type of voltage detector has been widely used in the past, and in Patent Document 1, a voltage detector is worn on the wrist with electrodes protruding from the main body of the voltage detector toward the hand tip, and the voltage detector is brought close to the object to be measured to detect voltage. In Patent Document 2, the voltage detector's voltage detection electrode is attached to the handle of a tool, and the worker holds the tool and brings it close to the object to be measured, detecting the voltage of the object and issuing an alarm.

特開平8-220151号公報Japanese Patent Application Publication No. 8-220151 特許第6467447号公報Patent No. 6467447

これらの検電器は、被測定物に作業者が装着した検電器をかざしたり、手に持った工具を接近させなければならない。即ち、作業者は検電を行うことを失念することなく、検電器を正しく使うことが要求される。これらのどちらかが欠けても前記事故につながる可能性が高くなる。 These voltage testers require the worker to hold the tester over the object being measured, or to bring a tool held in hand close to it. In other words, the worker must use the tester correctly, without forgetting to perform voltage testing. Missing either of these steps increases the likelihood of the above-mentioned accidents.

そこで、この発明は上述の課題を解決するため、作業者の体に装着するだけで作業者の意識に関係なく、電圧源が近くにあることを注意喚起できる検電器を提供することを目的としたものである。 The purpose of this invention is to solve the above-mentioned problems by providing a voltage detector that can alert a worker to the presence of a voltage source nearby, regardless of the worker's awareness, simply by wearing it on the worker's body.

従来の検電器は、電線等の交流電圧源の電圧を測定対象とし、前記電圧源と静電容量結合した人体への流入電流を測っているが、この発明の検電器は、図2に示す交流電圧源のVと、充電部と人体との間の静電容量C01と、人体と大地の間の静電容量C02によって人体に生じる電圧V02を測定対象とし、当該電圧によって生じる人体からの流出電流を測る点で大きく異なる。 Conventional voltage detectors measure the voltage of an AC voltage source such as an electric wire, and measure the current flowing into the human body which is capacitively coupled to the voltage source. However, the voltage detector of the present invention is significantly different in that it measures the voltage V02 generated in the human body due to V0 of the AC voltage source shown in FIG. 2, the capacitance C01 between the charging part and the human body, and the capacitance C02 between the human body and the ground, and measures the current flowing out of the human body due to this voltage.

具体的には、請求項1の発明は、交流電圧源の接近を検知する検電器において、検出回路は交流電圧源への接近によって人体に誘起された電圧を測定対象とした第1電極と、大地に対する静電容量を介した電圧を測定対象とした第2電極とを有し、前記交流電圧源に人体が接近した際前記検出回路から信号を出力する回路を備え、前記第1電極は人体との間に誘電体を介して一定面積を有する板から成り、第2電極は前記第1電極に対する垂直投影面積を小さくし、かつ、大地に対する面積を大きくした形状とした、交流電圧源接近検知検電器とした。
Specifically, the invention of claim 1 is a voltage tester for detecting the approach of an AC voltage source, the detection circuit having a first electrode for measuring the voltage induced in the human body by the approach to the AC voltage source, and a second electrode for measuring the voltage via capacitance to the ground, and a circuit for outputting a signal from the detection circuit when the human body approaches the AC voltage source, the first electrode consisting of a plate having a certain area with a dielectric between it and the human body, and the second electrode having a shape which reduces the vertical projection area relative to the first electrode and increases its area relative to the ground.

また、請求項2の発明は、前記人体との間に介在する誘電体は、前記第1電極、第2電極を収納する絶縁容器と作業服、ヘルメット、靴、ベルトの内の何れかである、請求項1に記載の交流電圧源接近検知検電器とした。 The invention of claim 2 is an AC voltage source approach detection voltage detector as described in claim 1, in which the dielectric interposed between the human body is an insulating container that houses the first electrode and the second electrode, and any one of work clothes, a helmet, shoes, and a belt.

また、請求項3に発明は、前記第1電極は平板とし、前記第2電極は第1電極の平板の上に起立したポール形状である、請求項1又は2に記載の交流電圧源接近検知検電器とした。 Furthermore, the invention of claim 3 is an AC voltage source approach detection voltage detector as described in claim 1 or 2, in which the first electrode is a flat plate and the second electrode is a pole-shaped electrode standing on the flat plate of the first electrode.

また、請求項4の発明は、前記第1電極は平板とし、前記第2電極は第1電極の平板の上に起立した円筒形状である、請求項1又は2に記載の交流電圧源接近検知検電器とした。 The invention of claim 4 is an AC voltage source approach detection voltage detector as described in claim 1 or 2, in which the first electrode is a flat plate and the second electrode is a cylindrical shape standing on the flat plate of the first electrode.

また、請求項5の発明は、前記第1電極、第2電極及び検出回路が絶縁容器に収納されている、請求項1~4のいずれかに記載の交流電圧源接近検知検電器とした。 The invention of claim 5 is an AC voltage source approach detection voltage detector as described in any one of claims 1 to 4, in which the first electrode, the second electrode, and the detection circuit are housed in an insulating container.

請求項1の発明によれば、人体のどこかに当該検電器を装着しておけば、当該検電器を装着した作業員が電圧源に近づくと信号を出力する。従って、電気工事等において、作業者の失念によって充電部に近づいた場合でも、注意喚起が可能となり、感電等の事故を未然に防ぐことが出来る。 According to the invention of claim 1, if the voltage detector is attached somewhere on the human body, a signal is output when the worker wearing the voltage detector approaches a voltage source. Therefore, even if a worker forgets to approach a live part during electrical work, etc., it is possible to alert the worker and prevent accidents such as electric shock.

また、請求項2の発明によれば、前記作業服、ヘルメット、靴、ベルトは電気工事の際必ず作業者が着用するものであり、これらのいずれかに、第1電極と第2電極が収納された絶縁容器を装着すればよく、検電器の作業者への装着が容易である。 Furthermore, according to the invention of claim 2, the work clothes, helmet, shoes, and belt are all worn by the worker when performing electrical work, and the insulating container containing the first and second electrodes can be attached to any of these items, making it easy for the worker to attach the voltage tester.

また、請求項3及び4の発明によれば、電極1と電極2との間に発生する電圧が大きくなり、人体に生じる電圧V02を確実に捉えることができる。 According to the third and fourth aspects of the present invention, the voltage generated between the electrodes 1 and 2 becomes large, and the voltage V02 generated in the human body can be reliably detected.

また、請求項5の発明によれば、検電器が絶縁容器に収納されているため、当該絶縁容器を作業者に容易に装着でき便利である。 Furthermore, according to the invention of claim 5, the voltage detector is housed in an insulating container, which is convenient and can be easily attached to the worker.

電圧源に人体が接近した際の人体に流れる電流及び人体から流れる電流が生じることを示す原理説明図である。1 is a diagram illustrating the principle of current flowing through and from a human body when the human body approaches a voltage source; この発明の実施の形態例1の人体に誘起される電圧に関する主回路の原理概略図である。1 is a schematic diagram showing the principle of a main circuit related to a voltage induced in a human body in accordance with a first embodiment of the present invention; (a)図はこの発明の実施の形態例1の検電器の検出回路の原理を示す概略構成図、(b)図は同等価回路図である。FIG. 1A is a schematic diagram showing the principle of a detection circuit of a voltage detector according to a first embodiment of the present invention, and FIG. (a)図はこの発明の実施の形態例1の検電器の外観正面図、(b)図は同検電器の人体への装着状態図、(c)図は同検電器の電極の分解図である。FIG. 1A is a front view of the appearance of a voltage detector according to a first embodiment of the present invention, FIG. 1B is a diagram showing the voltage detector attached to a human body, and FIG. この発明の実施の形態例1の検電器の第2電極の形状例を示す斜視図である。FIG. 2 is a perspective view showing an example of the shape of a second electrode of the voltage detector according to the first embodiment of the present invention. この発明の実施の形態例1の検電器の第2電極の形状による感度の比較を示す比較表図である。FIG. 2 is a comparison table showing a comparison of sensitivity depending on the shape of the second electrode of the electroscope according to the first embodiment of the present invention. この発明の実施の形態例1の検電器の検出回路の構成図である。1 is a configuration diagram of a detection circuit of a voltage detector according to a first embodiment of the present invention; この発明の実施の形態例2の検電器の一例を示す概略縦断面図である。FIG. 11 is a schematic vertical cross-sectional view showing an example of a voltage detector according to a second embodiment of the present invention. この発明の実施の形態例2の検電器の一例の電極を示す斜視図である。FIG. 11 is a perspective view showing an example of an electrode of a voltage detector according to a second embodiment of the present invention. この発明の実施の形態例2の検電器の他の例を示す概略縦断面図である。FIG. 11 is a schematic vertical sectional view showing another example of the voltage detector according to the second embodiment of the present invention. この発明の実施の形態例2の検電器の他の例の電極を示す斜視図である。FIG. 11 is a perspective view showing another example of an electrode of the voltage detector according to the second embodiment of the present invention. この発明の実施の形態例2の検電器を作業者のヘルメットに装着した状態を示す側面図であり、(a)図はクリップ留め、(b)図はバンド留めの図である。1A and 1B are side views showing a state in which a voltage detector according to a second embodiment of the present invention is attached to a worker's helmet, in which FIG. 1A shows a clip fastening and FIG. この発明の実施の形態例2の検電器を作業靴に装着した状態を示す側面図であり、(a)図は検電器をかかとにクリップで止めた図、(b)図は検電器をつま先にバンドで留めた図である。1A and 1B are side views showing a state in which a voltage detector according to a second embodiment of the present invention is attached to a work shoe, in which (a) shows the voltage detector fastened to the heel with a clip, and (b) shows the voltage detector fastened to the toe with a band. 各電圧における電圧源と人体との距離に対する電界強度を測定した値の表及びグラフ図であるFIG. 1 is a table and graph showing the electric field strength measured for each voltage with respect to the distance between the voltage source and the human body. 電圧3.3kVの活線を電圧源とした場合の人体及び頭部周辺空間の電界強度の測定結果を示すグラフ図である。1 is a graph showing the measurement results of the electric field strength in the space around the human body and head when a live line of 3.3 kV is used as a voltage source. この発明の実施の形態例2の検電器を用いて電圧3.3kVの活線を電圧源とした場合の人体との距離に対する警報音の状態を測定した表である。13 is a table showing the state of an alarm sound measured using a voltage detector according to the second embodiment of the present invention, the state being related to the distance from the human body when a live line of 3.3 kV was used as a voltage source. 従来の検電器の概略原理図である。FIG. 1 is a schematic diagram illustrating the principle of a conventional voltage detector.

(実施の形態例1)
まず、この発明の実施の形態例1の検電方法及び検電器を図に基づいて説明する前に、人体の各部の電位を測定した。なお、実施の形態例1の検電器の主回路では、電圧や静電容量を示す場合にVやCに「」を入れて表示するが、検出回路ではVやCに「」を入れないで表示する。
(Embodiment Example 1)
First, before explaining the voltage detection method and voltage detector of the first embodiment of the present invention with reference to the drawings, the potential of each part of the human body was measured. Note that in the main circuit of the voltage detector of the first embodiment, a " 0 " is inserted into V or C to indicate voltage or capacitance, but in the detection circuit, V or C is not displayed with a " 0 ".

まず、人体の電位分布がどのようになっているかを検討した。これには、図1に示すように、AC電位無線測定器を用いてAC電線に近づいた人体の両手首、両足首、頭部の電位を測った。 First, we investigated the distribution of electric potential on the human body. To do this, we used an AC potential wireless meter to measure the electric potential at both wrists, both ankles, and the head of a human body that was close to an AC power line, as shown in Figure 1.

その測定結果で、AC電線側に伸ばした手に電位が生じるのは当然の結果であるが、反対側の手にも電位が生じていることが確認できた。また、AC電線側に伸ばした手よりも、足側の電位が大きい体位が多くあった。これにより、人体全体で電位が生じていることが分かった。また、人体は大地から浮いた電位になっており、その電位は人体各部で異なっているということが分かった。 The measurement results showed that, naturally, an electric potential was generated in the hand that was extended towards the AC power line, but it was also confirmed that an electric potential was generated in the hand on the opposite side. Furthermore, there were many body positions in which the electric potential was greater on the feet than on the hand that was extended towards the AC power line. This demonstrated that an electric potential is generated throughout the entire human body. It was also discovered that the human body was at an electric potential that was floating above the ground, and that this electric potential differed in different parts of the body.

しかし、人体は数kΩの導体であり、AC電線や大地からは数MΩ以上のインピーダンスで隔離されていることを考えると、人体内で検電器が動作するような数十V以上の電位差が生じることは考えられない。 However, considering that the human body is a conductor of several kΩ and is isolated from AC power lines and the earth by an impedance of several MΩ or more, it is inconceivable that a potential difference of several tens of volts or more that would cause a voltage detector to operate could occur inside the human body.

検討の結果、測定したAC電位無線測定器は大地からの電極電位を測っているのではなく、電極を通過する電流レベルを示していることが分かった。また、人体電位は大地から浮いているが、人体自体は同電位状態で、周辺のインピーダンス関係に応じて人体各部を流れる電流値に大小が生じており、その電流値に応じてAC電位無線測定器の測定値が変化していた。 As a result of the investigation, it was found that the radio AC potential meter was not measuring the electrode potential from the ground, but rather indicating the current level passing through the electrode. Furthermore, while the human body potential was floating above the ground, the human body itself was at the same potential, and the current values flowing through various parts of the body varied depending on the surrounding impedance relationships, and the measurements of the radio AC potential meter changed depending on the current value.

図1示すように、人体Hが100VのAC電線Wに近づくと、腕、胴体、頭を通じてAC電線Wからi、i、iの電流が人体Hに流れ込む。この電流によって人体Hは大地GからAC電圧を持った状態になる。ここでは30Vである。そして、その人体電位によって人体Hと大地G間容量を通じてAC電線Wと逆側の腕、両足、頭を通じて電流i、電流i、電流i、電流iが流れ出す。 As shown in Figure 1, when a human body H approaches a 100V AC electric wire W, currents i1 , i2 , and i3 flow from the AC electric wire W into the human body H through the arms, torso, and head. This current puts the human body H in a state where it has an AC voltage from the ground G. In this case, it is 30V. Then, due to the electric potential of the human body, currents i4 , i5 , i6 , and i7 flow through the arms, both legs, and head on the opposite side of the AC electric wire W via the capacitance between the human body H and the ground G.

その電流比率は、AC電線Wと人体Hと大地Gの関係によって大きく変動するが、片手をAC電線Wに近づけてAC電線Wの反対側に壁が有る環境では、図1に示したような電流値になった。i=0.1μA、i=0.2μA、i=0.1μA、i=0.02μA、i=0.18μA、i=0.18μA、i=0.02μAである。この結果、AC電線Wと反対側の腕に検電器を持っても検電動作ができ、さらにその腕よりも足の方が感度が良い状態となると考えらえる。 The current ratio varies greatly depending on the relationship between the AC power line W, the human body H, and the earth G, but in an environment where one hand is brought close to the AC power line W and there is a wall on the other side of the AC power line W, the current values are as shown in Figure 1. i1 = 0.1 μA, i2 = 0.2 μA, i3 = 0.1 μA, i4 = 0.02 μA, i5 = 0.18 μA, i6 = 0.18 μA, i7 = 0.02 μA. As a result, it is possible to detect a voltage even if the voltage detector is held on the arm opposite the AC power line W, and it is also thought that the foot will have better sensitivity than the arm.

従来の一般の検電器では、AC電線に近づいた場合の電線からの電流i、iレベルを検知するように設定されているため、電流i、iの様な低レベルの人体からの流出電流を検知できずにいる。また、人体=大地電位モデルで考えているため、電流レベルが比較的大きい電流i、iの流れを利用せずにいる。なお、図1では代表的な電流分布を示した。実際にはもっと多様な人体部位で電流の入出力が生じているのが現実である。 Conventional general voltage detectors are set to detect the current levels i1 and i2 from an AC power line when the person approaches the line, and are therefore unable to detect low-level currents such as i4 and i7 flowing out of the human body. In addition, because they are based on the model that the human body is equal to the earth potential, they do not utilize the flows of currents i5 and i6 , which have relatively large current levels. Note that Figure 1 shows a typical current distribution. In reality, currents are input and output from a much more diverse range of parts of the human body.

また、人体の絶縁が悪く、人体が大地と同電位となるような条件では電流i、i、iの流入電流しか利用できないので、人体電位を検電することは出来ない。実際に裸足で人体を大地と同電位にしたところ、AC電線と反対側の検電器は反応しなかった。 In addition, when the human body has poor insulation and is at the same potential as the earth, only the inflow currents i1 , i2 , and i3 can be used, so the human body potential cannot be detected. When a barefoot human body was actually brought to the same potential as the earth, the voltage detector on the opposite side to the AC power line did not react.

この様に、人体が電圧源に近づくと、腕、胴体、頭を通じて電圧源から電流が人体に流れ込み、この電流によって人体は大地からAC電位を持った状態になり、その人体電位によって人体と大地間容量を通じて電圧源と逆側の腕、両足、頭を通じて電流が流れ出すことが分かった。 In this way, when the human body approaches a voltage source, current flows from the voltage source into the body through the arms, torso, and head, and this current puts the body in a state where it has an AC potential from the ground, and it was found that the body potential causes current to flow through the arms, legs, and head on the opposite side of the voltage source via the capacitance between the body and the ground.

この原理に基づいてこの発明はなされたものである。図2に示す電圧源Wから人体Hを通って大地Gに流れる閉回路(以下、主回路と言う)の合成容量(C01とC02の直列接続)Cは、次式1、2となる。なお、Vは電圧源Wの大地Gに対する電位、V01は電圧源Wと人体Hとの間の静電容量C01による電位、V02は人体Hの大地Gに対する静電容量C02による電位を示す。 This invention has been made based on this principle. The combined capacitance C0 (series connection of C01 and C02) of the closed circuit (hereinafter referred to as the main circuit) flowing from the voltage source W through the human body H to the ground G shown in Fig. 2 is given by the following equations 1 and 2. Note that V0 is the potential of the voltage source W with respect to the ground G, V01 is the potential due to the electrostatic capacitance C01 between the voltage source W and the human body H, and V02 is the potential due to the electrostatic capacitance C02 of the human body H with respect to the ground G.

Figure 0007535361000001
Figure 0007535361000001

Figure 0007535361000002
Figure 0007535361000002

よって式3及び式4となり、人体Hは大地Gに対して電位(V02)を有することが分かる。 Therefore, equations 3 and 4 are obtained, and it is found that the human body H has a potential (V 02 ) with respect to the ground G.

Figure 0007535361000003
Figure 0007535361000003

Figure 0007535361000004
Figure 0007535361000004

また、式5、式6であるから、人体Hが充電部に近づく程(C01のdが小さくなり、C01が大きくなる)V02が大きくなる。これにより、V02を検出できれば、「人(人体H)が充電部に近づくこと」を検出できる。 Furthermore, because of equations 5 and 6, the closer the human body H is to the charging part (the smaller d of C01 becomes, and C01 becomes larger), the larger V02 becomes. As a result, if V02 can be detected, it can be detected that "a person (human body H) is approaching the charging part."

Figure 0007535361000005
Figure 0007535361000005

Figure 0007535361000006
Figure 0007535361000006

また、図3の(a)図は、図2のA部、即ち本発明の検電器Aの検出原理を示す概略構成図である。この検電器Aは人体Hの腕に巻き付ける腕章型であり、第1電極1と第2電極2により構成されている。ここでCは人体Hと第1電極1間の静電容量、C21は第1電極1と第2電極2間の静電容量、C22は人体Hと第2電極2間の静電容量、C31は第1電極1と大地G間の静電容量、C32は第2電極2と大地G間の静電容量である。 3(a) is a schematic diagram showing the detection principle of part A in FIG. 2, that is, the voltage detector A of the present invention. This voltage detector A is an armband type that is wrapped around the arm of a human body H, and is composed of a first electrode 1 and a second electrode 2. Here, C1 is the capacitance between the human body H and the first electrode 1, C21 is the capacitance between the first electrode 1 and the second electrode 2, C22 is the capacitance between the human body H and the second electrode 2, C31 is the capacitance between the first electrode 1 and the ground G, and C32 is the capacitance between the second electrode 2 and the ground G.

また、第1電極1と第2電極2の間に検出回路4が設けられている。そして、図4に示すように、腕章型の帯状体5の表面に前記第1電極1、第2電極2及び検出回路4が取り付けられ、帯状体5の端部の表裏面に夫々設けた雄雌の面ファスナー5a、5bによって、作業者の腕に装着できるようになっている。 A detection circuit 4 is provided between the first electrode 1 and the second electrode 2. As shown in FIG. 4, the first electrode 1, the second electrode 2, and the detection circuit 4 are attached to the surface of an armband-shaped band 5, and the band 5 can be worn on the worker's arm by male and female hook-and-loop fasteners 5a, 5b provided on the front and back ends, respectively.

この検電器Aの全体の合成容量は、次式の式7となることが予想される。また、第1電極1と第2電極2の間に発生する電圧VC2は式8となる。このVC2が検出を可能にする電圧である。 The overall combined capacitance of this electroscope A is expected to be expressed by the following formula 7. Moreover, the voltage V C2 generated between the first electrode 1 and the second electrode 2 is expressed by formula 8. This V C2 is the voltage that enables detection.

Figure 0007535361000007
Figure 0007535361000007

Figure 0007535361000008
Figure 0007535361000008

上記式8から、Cを大きくし、かつCを小さくすれば、VC2が大きくなり、検出に有効なVC2を得ることが出来る。また、C32が大きければ、さらに有効なVC2を得られる。また、C22が小さければ、検出回路4に流れる電流を大きくすることができ、検出に有利となる。 From the above formula 8, if C1 is increased and C2 is decreased, V C2 becomes large, and it is possible to obtain a V C2 effective for detection. Furthermore, if C32 is large, an even more effective V C2 can be obtained. Furthermore, if C22 is small, it is possible to increase the current flowing through the detection circuit 4, which is advantageous for detection.

そこで、C=εS/dの「S」を大きくし、かつ、「d」を小さくすることにより前記Cを大きくする。このため第1電極1を、大きな面積を有し、かつ、人体Hに巻き付くような可とう性のある電極とし、第2電極2と接する電極形状を細くすることでC=εS/dの「S」を小さくし、前記C21を小さくした。図4に示す第1電極1は両側の電極板1aを四方形として面積を大きくし、これらの電極板1a、1aを繋ぐ接続部1bを帯状の細い電極板とし、全体を可とう性を有するものとした。 Therefore, "S" in C=εS/d is increased and "d" is decreased to increase C1. For this reason, the first electrode 1 is made a flexible electrode having a large area so as to be wrapped around the human body H, and the shape of the electrode in contact with the second electrode 2 is made thin to decrease "S " in C=εS/d and to decrease C21 . The first electrode 1 shown in Fig. 4 has electrode plates 1a on both sides in a rectangular shape to increase the area, and the connection portion 1b connecting these electrode plates 1a, 1a is made of a thin, band-like electrode plate to make the whole flexible.

また、第2電極2は、第1電極1に対する垂直投影面積を小さくして上記「S」を小さくし、前記C21を小さくする。また、人体に対する垂直投影面積を小さくして上記「S」を小さくし、前記C22を小さくする。また、空間(大地)に対する面積(側面積)を確保し、これによってC32を大きくする。図4に示す第2電極2は円筒形状とし、前記第1電極1の接続部1bに起立させたものである。 The second electrode 2 has a smaller vertical projection area relative to the first electrode 1, which reduces the "S" and reduces the C21 . The second electrode 2 has a smaller vertical projection area relative to the human body, which reduces the "S" and reduces the C22 . The second electrode 2 also has an area (side area) relative to the space (ground), which increases the C32 . The second electrode 2 shown in FIG. 4 has a cylindrical shape and stands upright on the connection portion 1b of the first electrode 1.

これらの構成によって、第1電極1と第2電極2の間に発生する電圧VC2を大きくし、検出を可能にしている。また、前記第1電極1を人体Hに直に当てて密着させた場合、前記Cは無限大となり、前記式8に示すようにVc2は大きくなり、感度が良くなる。 These configurations increase the voltage Vc2 generated between the first electrode 1 and the second electrode 2, making detection possible. When the first electrode 1 is directly applied to the human body H and in close contact with it, C1 becomes infinite, and Vc2 becomes large as shown in the formula 8, improving sensitivity.

なお、前記第1電極1の形状は図4に示すものに限らない。また、前記第2電極2の形状についても円筒形状に限らない。例えば、図5の(a)図に示すように円板形状のものや、図5の(b)図に示すように、2枚の半円板を十字形状にクロスさせたものでも良い。図5の(c)図は前記円筒形状の第2電極2を示す。これらの各第2電極2は夫々絶縁材から成る基板3を介して前記第1電極1の接続部1bに載置される。 The shape of the first electrode 1 is not limited to that shown in FIG. 4. The shape of the second electrode 2 is also not limited to a cylindrical shape. For example, it may be a disk shape as shown in FIG. 5(a), or two semicircular plates crossed in a cross shape as shown in FIG. 5(b). FIG. 5(c) shows the cylindrical second electrode 2. Each of these second electrodes 2 is placed on the connection portion 1b of the first electrode 1 via a substrate 3 made of an insulating material.

図6はこれらの第2電極2が図5の(a)図のもの、(b)図のもの、(c)図のものから成る各検出器Aを装着した人が、人体側(検出器Aを装着していない腕の側)から一定の電圧を有する電圧源に近づいたとき、及びセンサ側(検出器Aを装着した腕の側)から前記電圧源に近づいた際、警報ブザーが鳴った距離を測った。 Figure 6 shows the distance at which an alarm buzzer sounds when a person wearing each of the detectors A, whose second electrodes 2 are those shown in Figures 5(a), 5(b), and 5(c), approaches a voltage source with a certain voltage from the human body side (the side of the arm not wearing detector A) and when the person approaches the voltage source from the sensor side (the side of the arm wearing detector A).

その結果、3種類の第2電極2では、図5の(c)図に示した円筒形状の第2電極2が一番感度が良いことが実証された。 As a result, it was demonstrated that, among the three types of second electrodes 2, the cylindrical second electrode 2 shown in Figure 5(c) had the best sensitivity.

また、前記検出回路4の構成は、図7に示すように、前記第1電極1と第2電極2間のC21に流れる電流信号によって生じた電圧VC2を増幅する増幅回路6、基準電圧発生回路7が夫々設けられ、前記増幅回路6の出力信号と前記基準電圧発生回路7の出力信号とを比較する比較回路8により、信号が出力された場合にのみ音声発生回路9及び点灯表示回路10が作動する。また、当該検出回路4には電源11を備えており、当該電源11のスイッチ12をオンにすることにより各回路に電源が供給される。 7, the detection circuit 4 is provided with an amplifier circuit 6 for amplifying the voltage V C2 generated by the current signal flowing through C21 between the first electrode 1 and the second electrode 2, and a reference voltage generation circuit 7, and a sound generation circuit 9 and a light display circuit 10 are operated only when a signal is output by a comparison circuit 8 for comparing the output signal of the amplifier circuit 6 with the output signal of the reference voltage generation circuit 7. The detection circuit 4 is provided with a power supply 11, and power is supplied to each circuit by turning on a switch 12 of the power supply 11.

次に、本発明の検電器Aによる交流電圧源の接近警報方法の説明をする。
当該検電器Aを装着した作業者は、作業に際して、まず、検出回路4のスイッチ12をオンにする。そして当該作業者が交流電圧源に接近すると、作業者に微小電流が流入する。この電流により人体はV02の電位となる。第1電極1は電位V02から静電容量Cを経由して分圧されて電位Vとなる。第2電極2の電圧は電位Vにより流出する電流がC21とC32によって分圧された電位となる。この流出電流iによって生じた静電容量C21間の電位差VC2を検出回路4が検知し、流出電流iによる静電容量C21の電位差VC2を増幅した出力信号が基準電圧より大きければ、音声発生回路9から警報音が発せられ、また、点灯表示回路10が点灯する。これにより検電器Aを装着した作業者は交流電圧源に接近したことが分かる。また、作業者は前記スイッチ12をオン状態にしていても、交流電圧源に接近しなければ前記音声発生回路9及び点灯表示回路10は作動しない。
Next, a method for warning the approach of an AC voltage source using the voltage detector A of the present invention will be described.
When a worker wearing the voltage detector A starts working, he or she first turns on the switch 12 of the detection circuit 4. When the worker approaches an AC voltage source, a minute current flows into the worker. This current causes the human body to have a potential of V02 . The first electrode 1 is divided from the potential V02 through the capacitance C1 to a potential V2 . The voltage of the second electrode 2 is a potential obtained by dividing the current flowing out due to the potential V2 by C21 and C32 . The detection circuit 4 detects the potential difference VC2 across the capacitance C21 caused by this outflow current i, and if the output signal obtained by amplifying the potential difference VC2 across the capacitance C21 caused by the outflow current i is greater than the reference voltage, an alarm is generated from the sound generation circuit 9 and the light display circuit 10 is turned on. This tells the worker wearing the voltage detector A that he or she is approaching an AC voltage source. Even if the operator turns on the switch 12, the sound generating circuit 9 and the light display circuit 10 will not operate unless the operator approaches an AC voltage source.

なお、上記実施の形態例1では検電器Aを腕章型としたが、これに限らず、人体の頭、首、胴、足、上半身、下半身のいずれかの部位に装着されるものであれば良い。また、上記実施の形態例1では検電器Aを腕章型の帯状体5に取付けているが、これに限らず、第1電極1のみを人体に巻き付け、この第1電極1と第2電極2とを離して、第2電極2を別途人体の他の部位に取付ける構成としてもよい。また、第1電極1は可とう性のある平板としたが、これに限らず、編組導体等、広く導体であればよい。 In the above embodiment 1, the voltage detector A is in the form of an armband, but this is not limiting and any part of the human body may be worn on the head, neck, torso, legs, upper body, or lower body. In the above embodiment 1, the voltage detector A is attached to an armband-shaped band 5, but this is not limiting and the voltage detector may be configured such that only the first electrode 1 is wrapped around the human body, the first electrode 1 and the second electrode 2 are separated, and the second electrode 2 is attached separately to another part of the human body. In addition, the first electrode 1 is a flexible flat plate, but this is not limiting and any conductor such as a braided conductor may be used.

(実施の形態例2)
次にこの発明の実施の形態例2の検電器Bについて図8~図13に基づいて説明する。
(Embodiment 2)
Next, a voltage detector B according to a second embodiment of the present invention will be described with reference to FIGS.

前記実施の形態例1では第1電極1を、大きな面積を有し、かつ、人体Hに巻き付くような可とう性のある電極とし、第2電極2と接する電極形状を細くすることでC=εS/dの「S」を小さくし、前記C21を小さくした。しかしながら、第1電極を人体Hに密着させない場合でも前述の原理で検電が可能であることが分かった。これが実施の形態例2である。 In the first embodiment, the first electrode 1 is a flexible electrode having a large area so as to be wrapped around the human body H, and the shape of the electrode in contact with the second electrode 2 is made thin to reduce "S" in C=εS/d and to reduce the above-mentioned C21 . However, it has been found that voltage detection is possible based on the above-mentioned principle even when the first electrode is not in close contact with the human body H. This is the second embodiment.

実施の形態例2における検電器Bの一つの例は、図8及び図9に示すように、箱型の絶縁ケース15の内部に円板から成る第1電極16が収納され、当該第1電極16の一面中央部に、垂直に棒状の第2電極17が設けられ、さらに、これらの第1電極及び第2電極の間に、実施の形態例1と同じ検出回路4が設けられている。また、前記絶縁ケース15の側面にはクリップ15aが設けられている。 As shown in Figures 8 and 9, one example of the voltage detector B in embodiment 2 has a first electrode 16 made of a disk housed inside a box-shaped insulating case 15, a rod-shaped second electrode 17 is provided vertically in the center of one side of the first electrode 16, and a detection circuit 4, the same as in embodiment 1, is provided between the first and second electrodes. Also, a clip 15a is provided on the side of the insulating case 15.

また、実施の形態例2における検電器Bの他の例は、図10及び図11に示すように、箱型の絶縁ケース15の内部に円板から成る第1電極18が収納され、当該第1電極18の一面中央部に、垂直に筒状の第2電極19が設けられ、さらに、これらの第1電極及び第2電極の間に、実施の形態例1と同じ検出回路4が設けられている。また、前記絶縁ケース15の側面にはクリップ15aが設けられている。 In another example of the voltage detector B in the second embodiment, as shown in Figures 10 and 11, a first electrode 18 made of a disk is stored inside a box-shaped insulating case 15, a second electrode 19 in the shape of a cylinder is provided vertically in the center of one side of the first electrode 18, and a detection circuit 4 similar to that in the first embodiment is provided between the first and second electrodes. Also, a clip 15a is provided on the side of the insulating case 15.

そして、この検電器Bは、図12の(a)図に示すように、絶縁ケース15がクリップ15aにより作業用ヘルメット20の後部に取り付けられる。なお、この(a)図のクリップ15aは前記図8及び図10の構成とは多少異なるクリップであるが、把持機能は同じである。また、(b)図に示すように、絶縁ケース15がバンド21により作業用ヘルメット20に取り付けられる場合もある。また、図13の(a)に示すように作業靴22のかかとに、絶縁ケース15がクリップ15aにより取り付けることもできる。また、(b)図に示すように作業靴22のつま先の甲側にバンド23により絶縁ケース15が取り付けることもできる。 As shown in Fig. 12(a), the insulating case 15 of this voltage detector B is attached to the rear of the work helmet 20 by a clip 15a. The clip 15a in Fig. 12(a) is slightly different from the clips in Figs. 8 and 10, but has the same gripping function. As shown in Fig. 12(b), the insulating case 15 may be attached to the work helmet 20 by a band 21. As shown in Fig. 13(a), the insulating case 15 may also be attached to the heel of a work shoe 22 by a clip 15a. As shown in Fig. 13(b), the insulating case 15 may also be attached to the instep of the toe of the work shoe 22 by a band 23.

この様に、第1電極16又は18は誘電体であるヘルメット20や作業靴22及び絶縁ケース15を介して人体Hに装着されるが、電圧源Wに人体Hが近づくと、作業者である人体Hに微小電流が流入する。そこで、人体Hと第1電極16又は18間の静電容量Cは、実施の形態例1と比べて小さくなるが、第1電極16又は18と第2電極17又は19との間で電流が生じ、これを検出回路14でとらえて、警報が発せられる。 In this way, the first electrode 16 or 18 is attached to the human body H via the helmet 20, work shoes 22, and insulating case 15, which are dielectric materials, and when the human body H approaches the voltage source W, a minute current flows into the human body H, who is the worker. Thus, although the electrostatic capacitance C1 between the human body H and the first electrode 16 or 18 is smaller than that in the first embodiment, a current is generated between the first electrode 16 or 18 and the second electrode 17 or 19, which is detected by the detection circuit 14 and an alarm is issued.

以下、検電器Bについて実証試験を行った。
まず、交流電圧源の各電圧について距離と電界強度の状況を測定した。
Below, a demonstration test was conducted on voltage detector B.
First, the distance and electric field strength were measured for each voltage of the AC voltage source.

電界強度は、デジタル電磁波測定器(GM3120)を使用して測定した。人体帯電は電極部を体に押し当てて電界強度を測定した。また、測定器のGNDはケーブルでGNDに接続している。 The electric field strength was measured using a digital electromagnetic wave meter (GM3120). The human body charge was measured by pressing the electrode part against the body to measure the electric field strength. The GND of the meter was also connected to the GND by a cable.

図14はその測定結果を示す各電圧における電圧源と人体との距離に対する電界強度の値を示す表及びグラフ図である。これらを見ると、交流電圧源が電圧1kVの場合、電圧源と人体との距離が110cmでは96V/mが測定され、3kVの場合は240V/mが測定された。これにより1kV以上の電圧源に対し約1m離れた距離で96V/mの電界強度が検出されることが分かった。 Figure 14 shows the results of the measurement in a table and graph that show the electric field strength values for each voltage and the distance between the voltage source and the human body. Looking at these, when the AC voltage source is 1 kV, 96 V/m was measured when the distance between the voltage source and the human body was 110 cm, and 240 V/m was measured when the AC voltage source was 3 kV. This shows that an electric field strength of 96 V/m can be detected at a distance of about 1 m for a voltage source of 1 kV or more.

次に、交流電圧源を3kVの活線とした場合の人体及び頭部周辺空間の電界強度を測定した結果を図15に示す。また、図16は、前記検電器Bをヘルメットの後部に付けた場合であって、第1電極及び第2電極の形状による、前記3kVの電源からの距離によって警報音がどのように動作するかを測定した。 Next, Figure 15 shows the results of measuring the electric field strength in the space around the human body and head when the AC voltage source is a live 3 kV line. Figure 16 shows the results when the voltage detector B is attached to the rear of the helmet, and measures how the alarm sound operates depending on the shape of the first and second electrodes and the distance from the 3 kV power source.

なお、図16において、「センサ側電極」は第2電極を指し、「人体側電極」は第1電極を示す。また、「前向接近」は活線に向かって前向きに人体が接近した場合、「後向接近」は活線に後ろ向きで接近した場合を示す。「短連」はほぼ連続音、「短4」は10秒間に4回警報音が鳴る場合、「短10」は10秒間に10回警報音が鳴り、「短30」は10秒間に30回警報音が鳴ることを意味する。従って、「短4」は電界強度が弱く、「短連」は電界強度が強いことを意味する。 In FIG. 16, "sensor side electrode" refers to the second electrode, and "human body side electrode" refers to the first electrode. "Forward approach" refers to when a human body approaches a live line facing forward, and "backward approach" refers to when the human body approaches a live line facing backward. "Short series" means that the sound is almost continuous, "Short 4" means that the alarm sounds four times in 10 seconds, "Short 10" means that the alarm sounds 10 times in 10 seconds, and "Short 30" means that the alarm sounds 30 times in 10 seconds. Therefore, "Short 4" means that the electric field strength is weak, and "Short series" means that the electric field strength is strong.

この表から、番号3の第2電極が長さ10mmの棒型で、第1電極が60×30mmの方形板型のものは「前向接近」では110cmの距離で毎10秒間で5回の警報音がなり、「後向接近」では210cmの距離で毎10秒間で5回の警報音が鳴る。また、番号1の第2電極が長さ20mmの棒型で、第1電極が直径40mmの円板型のものは「前向接近」で70cmの距離で「短30」の警報音がなり、「後向接近」では230cmで「短4」の警報音が鳴る。 From this table, the second electrode number 3, which is a rod-shaped electrode with a length of 10 mm, and the first electrode, which is a square plate-shaped electrode with a diameter of 60 x 30 mm, will sound an alarm 5 times every 10 seconds at a distance of 110 cm in the case of a "forward approach," and will sound an alarm 5 times every 10 seconds at a distance of 210 cm in the case of a "reverse approach." Also, the second electrode number 1, which is a rod-shaped electrode with a length of 20 mm, and the first electrode, which is a disk-shaped electrode with a diameter of 40 mm, will sound an alarm "short 30" at a distance of 70 cm in the case of a "forward approach," and will sound an alarm "short 4" at a distance of 230 cm in the case of a "reverse approach."

また、番号2の第2電極が直径35mm、高さが7mmの円筒型、第1電極が直径40mmの円板型のものは「前向接近」でも190cmの距離で「短21」の警報音がなり、「後向接近」では330cmで「短15」の警報音が鳴る。また、番号4の第2電極が長さ10mmの棒型、第1電極が直径40mmの円板型のものが「前向接近」でも190cmの距離で「短27」の警報音がなり、「後向接近」では330cmで「短4」の警報音が鳴る。 In addition, for the number 2, where the second electrode is a cylinder with a diameter of 35 mm and a height of 7 mm, and the first electrode is a disk-shaped electrode with a diameter of 40 mm, the alarm will sound a "short 21" at a distance of 190 cm even in a "forward approach," and a "short 15" at a distance of 330 cm in a "reverse approach." In addition, for the number 4, where the second electrode is a rod-shaped electrode with a length of 10 mm, and the first electrode is a disk-shaped electrode with a diameter of 40 mm, the alarm will sound a "short 27" at a distance of 190 cm even in a "forward approach," and a "short 4" at a distance of 330 cm in a "reverse approach."

この様に、交流電源が1000V以上、好ましくは3000V以上であれば、第1電極が人体に密着しておらず、第1電極がヘルメットや検知器の絶縁ケース等の誘電体を介している場合でも、検電器の機能を充分発揮する。第1電極を人体に密着させる場合は、汗等の影響で検出が不確実になる恐れもあるが、このように誘電体を介した場合は汗等の影響を受けない。 In this way, if the AC power supply is 1000V or more, preferably 3000V or more, the voltage detector will function satisfactorily even if the first electrode is not in close contact with the human body and is placed through a dielectric such as a helmet or an insulating case for the detector. If the first electrode is placed in close contact with the human body, there is a risk that detection will become unreliable due to the effects of sweat, etc., but if the electrode is placed through a dielectric like this, it will not be affected by sweat, etc.

しかしながら、上記図16の表の結果から、電気工事での当該検電器の使用では、電源から100cm離れた箇所で警報音が鳴りだす、番号3、2、4の構成の検電器が実用的である。 However, based on the results of the table in Figure 16 above, when using the voltage detector in question in electrical work, voltage detectors with configurations 3, 2, and 4, which start to sound an alarm 100 cm away from the power source, are practical.

なお、上記実施の形態例1及び2では検電器A又はBに音声発生回路9及び点灯表示回路10を設けたが、これらを設けずに、比較回路8からの出力を送信部(図示省略)で受けて外部に無線で信号を飛ばし、検電器Aとは別に設けた通信機器や端末機器でこれを受信し、当該機器で警報や表示する構成にすることもできる。 In the above-mentioned first and second embodiments, the voltage detector A or B is provided with a sound generating circuit 9 and a light display circuit 10, but it is also possible to configure the voltage detector A or B without providing these circuits, so that the output from the comparison circuit 8 is received by a transmitter (not shown) and a signal is wirelessly transmitted to the outside, which is then received by a communication device or terminal device provided separately from the voltage detector A, and an alarm or display is issued by that device.

以上、実施の形態例1及び2を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。この発明はその他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことが出来る。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The above describes embodiment examples 1 and 2, but these are presented as examples and are not intended to limit the scope of the invention. This invention can be embodied in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, as well as in the scope of the invention and its equivalents described in the claims.

A 検電器 B 検電器
G 大地 H 人体
W 電圧源
1 第1電極 1a 電極板
1b 接続部 2 第2電極
3 基板 4 検出回路
5 帯状体 5a 面ファスナー
5b 面ファスナー 6 増幅回路
7 基準電流発生回路 8 比較回路
8 音声発生回路 9 点灯表示回路
11 電源 12 スイッチ
15 絶縁ケース 15a クリップ
16 第1電極 17 第2電極
18 第1電極 19 第2電極
20 ヘルメット 21 バンド
22 作業靴 23 バンド
A Voltage detector B Voltage detector G Earth H Human body W Voltage source
REFERENCE SIGNS LIST 1 First electrode 1a Electrode plate 1b Connection portion 2 Second electrode 3 Substrate 4 Detection circuit
5 Belt 5a Hook-and-loop fastener 5b Hook-and-loop fastener 6 Amplification circuit 7 Reference current generating circuit 8 Comparison circuit 8 Sound generating circuit 9 Lighting display circuit 11 Power supply 12 Switch 15 Insulating case 15a Clip 16 First electrode 17 Second electrode 18 First electrode 19 Second electrode 20 Helmet 21 Band 22 Work shoes 23 Band

Claims (5)

交流電圧源の接近を検知する検電器において、検出回路は交流電圧源への接近によって人体に誘起された電圧を測定対象とした第1電極と、大地に対する静電容量を介した電圧を測定対象とした第2電極とを有し、前記交流電圧源に人体が接近した際前記検出回路から信号を出力する回路を備え、前記第1電極は人体との間に誘電体を介して一定面積を有する板から成り、第2電極は前記第1電極に対する垂直投影面積を小さくし、かつ、大地に対する面積を大きくした形状としたことを特徴とする、交流電圧源接近検知検電器。 1. A voltage detector for detecting the approach of an AC voltage source, comprising: a detection circuit having a first electrode for measuring a voltage induced in a human body due to approach to the AC voltage source; and a second electrode for measuring a voltage via electrostatic capacitance to the ground; and a circuit for outputting a signal from said detection circuit when a human body approaches said AC voltage source, said first electrode consisting of a plate having a certain area with a dielectric between it and the human body, and said second electrode having a shape which reduces its vertical projection area relative to the first electrode and increases its area relative to the ground. 前記人体との間に介在する誘電体は、前記第1電極、第2電極を収納する絶縁容器と、作業服、ヘルメット、靴、ベルトの内の何れかであることを特徴とする、請求項1に記載の交流電圧源接近検知検電器。 The AC voltage source approach detection voltage detector according to claim 1, characterized in that the dielectric material interposed between the human body is an insulating container that houses the first electrode and the second electrode, and any one of work clothes, a helmet, shoes, and a belt. 前記第1電極は平板とし、前記第2電極は第1電極の平板の上に起立したポール形状であることを特徴とする、請求項1又は2に記載の交流電圧源接近検知検電器。 The AC voltage source approach detection voltage detector according to claim 1 or 2, characterized in that the first electrode is a flat plate, and the second electrode is a pole-shaped electrode standing on the flat plate of the first electrode. 前記第1電極は平板とし、前記第2電極は第1電極の平板の上に起立した円筒形状であることを特徴とする、請求項1又は2に記載の交流電圧源接近検知検電器。 The AC voltage source approach detection voltage detector according to claim 1 or 2, characterized in that the first electrode is a flat plate and the second electrode is a cylindrical shape standing on the flat plate of the first electrode. 前記第1電極、第2電極及び検出回路が絶縁容器に収納されていることを特徴とする、請求項1~4のいずれかに記載の交流電圧源接近検知検電器。

5. The AC voltage source approach detection voltage detector according to claim 1, wherein the first electrode, the second electrode and the detection circuit are housed in an insulating container.

JP2020189918A 2020-11-14 2020-11-14 AC voltage source proximity detector Active JP7535361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020189918A JP7535361B2 (en) 2020-11-14 2020-11-14 AC voltage source proximity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020189918A JP7535361B2 (en) 2020-11-14 2020-11-14 AC voltage source proximity detector

Publications (3)

Publication Number Publication Date
JP2022079006A JP2022079006A (en) 2022-05-26
JP2022079006A5 JP2022079006A5 (en) 2023-11-17
JP7535361B2 true JP7535361B2 (en) 2024-08-16

Family

ID=81707419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020189918A Active JP7535361B2 (en) 2020-11-14 2020-11-14 AC voltage source proximity detector

Country Status (1)

Country Link
JP (1) JP7535361B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183966B2 (en) 1992-04-20 2001-07-09 マツダ株式会社 Vehicle travel control device
US20050264427A1 (en) 2000-03-03 2005-12-01 The Gov. Of The Usa As Repres. By The Secretary Of The Dept. Of Health And Human Services Electrical injury protection system
JP2010203961A (en) 2009-03-04 2010-09-16 Mitsubishi Electric Plant Engineering Corp Voltage alarm
JP5079477B2 (en) 2007-12-06 2012-11-21 株式会社井之商 Daylighting equipment
JP2017161525A (en) 2016-03-08 2017-09-14 株式会社関電工 Power failure confirmation circuit member
JP7306872B2 (en) 2019-05-16 2023-07-11 株式会社関電工 AC voltage source proximity detection method and detection voltage detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183966B2 (en) 1992-04-20 2001-07-09 マツダ株式会社 Vehicle travel control device
US20050264427A1 (en) 2000-03-03 2005-12-01 The Gov. Of The Usa As Repres. By The Secretary Of The Dept. Of Health And Human Services Electrical injury protection system
JP5079477B2 (en) 2007-12-06 2012-11-21 株式会社井之商 Daylighting equipment
JP2010203961A (en) 2009-03-04 2010-09-16 Mitsubishi Electric Plant Engineering Corp Voltage alarm
JP2017161525A (en) 2016-03-08 2017-09-14 株式会社関電工 Power failure confirmation circuit member
JP7306872B2 (en) 2019-05-16 2023-07-11 株式会社関電工 AC voltage source proximity detection method and detection voltage detector

Also Published As

Publication number Publication date
JP2022079006A (en) 2022-05-26

Similar Documents

Publication Publication Date Title
US11002770B2 (en) Shock detector
EP3876209B1 (en) Digital voltage detection device
US3774110A (en) Static electric field detector
US6762917B1 (en) Method of monitoring ESC levels and protective devices utilizing the method
CN107607798B (en) Electric shock risk monitoring method and wearable device
JP2011123059A5 (en)
TWI647459B (en) Electric field adjustment system and electric field adjustment method
JP7535361B2 (en) AC voltage source proximity detector
JP7306872B2 (en) AC voltage source proximity detection method and detection voltage detector
KR20160035853A (en) Apparatus for measuring a body-impedance and the system including the same
JP2022182256A (en) Method for detecting electric field proximity and electroscope
CN101435846A (en) Portable high voltage electric shock-proof detection alarming device
JP2016017873A (en) Discharge current measuring device
JP7117897B2 (en) Examining defibrillator electrodes
US6650125B1 (en) Leak and pipe detection method and system
JP2017187376A (en) Electric field detection output device
CN103645374A (en) Non-contact electricity measurement device
JP2023057971A (en) Method and sensor for preventing erroneous disconnection of live line
WO2018178476A4 (en) Method for testing the correct operation of electrodes in electrostimulation garments and device for carrying out said method
US20190007098A1 (en) Live electrical powerline simulation system
US20240329088A1 (en) Voltage source approach detection voltage detector
US20200349822A1 (en) Fall detection using the triboelectric effect
KR101603764B1 (en) Measuring device human body impedance
JP2009244131A (en) Line voltage measuring apparatus
JP2010175412A (en) Voltage measuring apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240801

R150 Certificate of patent or registration of utility model

Ref document number: 7535361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150