JP7528812B2 - Electrode materials, electrodes and batteries - Google Patents
Electrode materials, electrodes and batteries Download PDFInfo
- Publication number
- JP7528812B2 JP7528812B2 JP2021022651A JP2021022651A JP7528812B2 JP 7528812 B2 JP7528812 B2 JP 7528812B2 JP 2021022651 A JP2021022651 A JP 2021022651A JP 2021022651 A JP2021022651 A JP 2021022651A JP 7528812 B2 JP7528812 B2 JP 7528812B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- tungsten
- molybdenum
- composite oxide
- precipitate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007772 electrode material Substances 0.000 title claims description 25
- 239000002131 composite material Substances 0.000 claims description 30
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 24
- 229910052721 tungsten Chemical group 0.000 claims description 23
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 21
- 239000010937 tungsten Chemical group 0.000 claims description 21
- 229910052750 molybdenum Inorganic materials 0.000 claims description 20
- 239000011733 molybdenum Substances 0.000 claims description 18
- 239000000446 fuel Substances 0.000 claims description 9
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 22
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 20
- 239000000843 powder Substances 0.000 description 20
- 239000002244 precipitate Substances 0.000 description 18
- 239000010936 titanium Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 229910052719 titanium Inorganic materials 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 4
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910010062 TiCl3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、電極材料、電極及び電池に関する。 The present invention relates to an electrode material, an electrode, and a battery.
近年、環境問題への関心の高まりを受けて石油や石炭等の化石燃料から環境に負荷をかけない電力へのエネルギー源のシフトが進んでおり、電気分野だけでなく、自動車等の機械分野においても電池の使用が広がりをみせている。
様々な分野への電池の使用の広がりに伴い、より高性能な電池への要求が高まっており、そのような要求に応える電池の実現に向けて電池および電池を構成する様々な部材についての研究が活発に行われている。
In recent years, growing concern about environmental issues has led to a shift in energy sources from fossil fuels such as oil and coal to electricity, which places less of a burden on the environment. As a result, the use of batteries is expanding not only in the electrical field, but also in the mechanical field, such as automobiles.
2. Description of the Related Art As the use of batteries spreads to various fields, there is an increasing demand for higher performance batteries, and research into batteries and various components that constitute batteries is being actively conducted in order to realize batteries that meet such demands.
電池を構成する部材のうち、活発に研究が行われている部材の1つに電極がある。従来、電極の材料としてカーボンが広く使用されてきたが、燃料電池の電極にカーボンが使用された場合、高電位ではカーボンが水と反応して分解されるという不具合が生じる。このような不具合のない材料として、導電性に優れる金属酸化物に関する研究が活発に行われている。中でも二酸化モリブデンや二酸化タングステンは高導電性酸化物として知られており、例えば、モリブデン酸化物を含む乱層構造物質(特許文献1参照)、二酸化タングステンを負極活物質として含むリチウムイオンキャパシタ(特許文献2参照)等が開示されている。
またモリブデンやタングステンの酸化物はこれまで電極以外の分野でも使用されてきており、モリブデンやタングステンとチタンとの複合酸化物を皮膚外用剤や脱硝触媒に利用することが開示されている(特許文献3~5参照)。更に製造方法についても、所定の平均粒子径であり、かつ粒子形状が均整であって略球状または多面体状の粒子状であるモリブデンを含有する酸化チタン粒子の製造方法(特許文献6参照)や、チタン酸化物のチタンの一部をモリブデンやタングステン等の異なる金属で置換した金属酸化物微粒子の製造方法が開示されている(特許文献7参照)。
Among the components constituting a battery, electrodes are one of the components that are being actively researched. Conventionally, carbon has been widely used as an electrode material, but when carbon is used for the electrodes of a fuel cell, a problem occurs in that the carbon reacts with water and decomposes at high potential. As a material that does not have such a problem, research on metal oxides with excellent electrical conductivity is being actively conducted. Among them, molybdenum dioxide and tungsten dioxide are known as highly conductive oxides, and for example, a turbostratic structure material containing molybdenum oxide (see Patent Document 1), a lithium ion capacitor containing tungsten dioxide as a negative electrode active material (see Patent Document 2), etc. have been disclosed.
Furthermore, molybdenum and tungsten oxides have been used in fields other than electrodes, and it has been disclosed that composite oxides of molybdenum or tungsten and titanium are used in skin preparations and denitrification catalysts (see Patent Documents 3 to 5). Furthermore, with regard to production methods, a method for producing titanium oxide particles containing molybdenum, which have a predetermined average particle size and a uniform particle shape that is approximately spherical or polyhedral (see Patent Document 6), and a method for producing metal oxide fine particles in which part of the titanium in titanium oxide is replaced with a different metal such as molybdenum or tungsten (see Patent Document 7) have been disclosed.
上述のとおり電池の電極材料として二酸化モリブデンや二酸化タングステンが提案されている。これらは導電性に優れた物質であるが、酸化環境下では三酸化物(WoO3、MoO3)まで酸化されて導電性が消失してしまうという課題がある。燃料電池の電極は酸化環境に曝されるため、これらは燃料電池の電極材料として十分に適しているとはいえない。また、二酸化モリブデンや二酸化タングステンを一般的な製造方法で製造した場合、比表面積が1m2/g程度のものとなるが、電極として使用する場合、触媒となる貴金属を高分散に担持するほうが性能が高くなるためより比表面積が大きいほうが好ましく、この点でも二酸化モリブデンや二酸化タングステンは電極材料として改善の余地があった。 As described above, molybdenum dioxide and tungsten dioxide have been proposed as electrode materials for batteries. Although these are materials with excellent electrical conductivity, there is a problem that they are oxidized to trioxides (WoO 3 , MoO 3 ) in an oxidizing environment and lose their electrical conductivity. Since the electrodes of fuel cells are exposed to an oxidizing environment, these cannot be said to be fully suitable as electrode materials for fuel cells. In addition, when molybdenum dioxide and tungsten dioxide are manufactured by a general manufacturing method, the specific surface area is about 1 m 2 /g, but when used as an electrode, it is preferable to support the precious metal serving as a catalyst in a highly dispersed manner, since this improves performance, and in this respect, molybdenum dioxide and tungsten dioxide have room for improvement as electrode materials.
本発明は、上記現状に鑑み、導電性に優れ、酸化環境下においても優れた耐酸化性を示し、かつ、比表面積の大きいモリブデンやタングステンを含む電極材料を提供することを目的とする。 In view of the above-mentioned current situation, the present invention aims to provide an electrode material containing molybdenum or tungsten that has excellent electrical conductivity, excellent oxidation resistance even in an oxidizing environment, and a large specific surface area.
本発明者らは、モリブデンやタングステンを含む電極材料であって、酸化環境下においても導電性を維持することができ、かつ、一般的な製造方法で製造した二酸化モリブデンや二酸化タングステンよりも比表面積の大きい材料について検討し、モリブデン又はタングステンに対して金属元素としてチタンを加え、金属元素全体に対するモリブデン元素又はタングステン元素の割合を20~60mol%に調整した複合酸化物が導電性に優れ、かつ、酸化環境下において優れた耐酸化(組成安定)性を示し、電極材料として好適であることを見出した。更に本発明者は、この複合酸化物を、一般的な製造方法で製造した二酸化モリブデンや二酸化タングステンよりも比表面積の大きい材料として得ることができることも見出し、本発明を完成するに至った。 The inventors have investigated an electrode material containing molybdenum or tungsten that can maintain conductivity even in an oxidizing environment and has a larger specific surface area than molybdenum dioxide or tungsten dioxide produced by a general manufacturing method, and have found that a composite oxide in which titanium is added as a metal element to molybdenum or tungsten and the ratio of molybdenum or tungsten to the total metal elements is adjusted to 20 to 60 mol % has excellent conductivity and exhibits excellent oxidation resistance (composition stability) in an oxidizing environment, making it suitable as an electrode material. Furthermore, the inventors have also found that this composite oxide can be obtained as a material with a larger specific surface area than molybdenum dioxide or tungsten dioxide produced by a general manufacturing method, and have completed the present invention.
すなわち本発明は、下記式(1);
Ti(1-x)AxO2 (1)
(式中、Aはモリブデン又はタングステンを表す。xは、0.2~0.6の数である。)で表される複合酸化物を含むことを特徴とする電極材料である。
That is, the present invention relates to a compound represented by the following formula (1);
Ti (1-x) A x O 2 (1)
(wherein A represents molybdenum or tungsten, and x is a number from 0.2 to 0.6)
本発明はまた、本発明の電極材料を用いて形成されることを特徴とする電極でもある。 The present invention also relates to an electrode formed using the electrode material of the present invention.
本発明はまた、本発明の電極を用いて構成されることを特徴とする燃料電池でもある。 The present invention is also a fuel cell that is constructed using the electrode of the present invention.
本発明の電極材料は導電性に優れると共に酸化環境下において優れた耐酸化(組成安定)性を示し、かつ、一般的な製造方法で製造した二酸化モリブデンや二酸化タングステンよりも比表面積の大きい材料として得ることができるため、電池の電極、中でも電極が強い酸化環境下で使用される燃料電池の電極の材料として好適に用いることができる。 The electrode material of the present invention has excellent electrical conductivity and exhibits excellent oxidation resistance (compositional stability) in an oxidizing environment, and can be obtained as a material with a larger specific surface area than molybdenum dioxide or tungsten dioxide produced by general manufacturing methods, so it can be suitably used as a material for battery electrodes, especially electrodes for fuel cells used in a strongly oxidizing environment.
以下、本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 The following provides a detailed description of a preferred embodiment of the present invention, but the present invention is not limited to the following description, and can be modified as appropriate without departing from the spirit of the present invention.
1.電極材料
本発明の電極材料は、金属元素としてチタンと、モリブデン又はタングステンとを含み、金属元素全体に対するモリブデン元素又はタングステン元素の割合が20~60mol%である複合酸化物、具体的には、下記式(1);
Ti(1-x)AxO2 (1)
(式中、Aはモリブデン又はタングステンを表す。xは、0.2~0.6の数である。)で表される組成を有する複合酸化物を含む。
上記式(1)におけるxは、0.2~0.6であればよいが、0.3~0.5であることが好ましい。より好ましくは、0.4~0.5である。
このような複合酸化物は、二酸化モリブデンや二酸化タングステンに比べて酸化されにくく酸化環境下においても導電性を維持することができる。
1. Electrode Material The electrode material of the present invention is a composite oxide containing titanium and molybdenum or tungsten as metal elements, in which the ratio of molybdenum element or tungsten element to the total metal elements is 20 to 60 mol %, specifically, a composite oxide represented by the following formula (1);
Ti (1-x) A x O 2 (1)
(wherein A represents molybdenum or tungsten, and x is a number from 0.2 to 0.6).
In the above formula (1), x may be from 0.2 to 0.6, preferably from 0.3 to 0.5, and more preferably from 0.4 to 0.5.
Such composite oxides are less susceptible to oxidation than molybdenum dioxide or tungsten dioxide, and are therefore capable of maintaining electrical conductivity even in an oxidizing environment.
上記複合酸化物は、導電性複合酸化物であるが、体積抵抗率は、103/Ωcm以下あることが好ましい。より好ましくは、102/Ωcm以下である。更に好ましくは、101/Ωcm以下である。
複合酸化物の体積抵抗率は、後述する実施例に記載の方法で測定することができる。
The composite oxide is a conductive composite oxide, and the volume resistivity is preferably 10 3 /Ωcm or less, more preferably 10 2 /Ωcm or less, and even more preferably 10 1 /Ωcm or less.
The volume resistivity of the composite oxide can be measured by the method described in the Examples below.
上記複合酸化物は、一般的な製造方法で製造した二酸化モリブデンや二酸化タングステンよりも比表面積の大きい材料として得ることができるものであるが、比表面積は、5m2/g以上であることが好ましい。より好ましくは、10m2/g以上であり、更に好ましくは、20m2/g以上である。
複合酸化物の比表面積は、後述する実施例に記載の方法で測定することができる。
The composite oxide can be obtained as a material having a larger specific surface area than molybdenum dioxide or tungsten dioxide produced by a general production method, and the specific surface area is preferably 5 m 2 /g or more, more preferably 10 m 2 /g or more, and even more preferably 20 m 2 /g or more.
The specific surface area of the composite oxide can be measured by the method described in the Examples below.
上記複合酸化物は、pH値の低い環境下においても酸化環境下においても酸化に対する耐性が高く、導電性を維持することができる。また一般的な製造方法で製造した二酸化モリブデンや二酸化タングステンよりも比表面積が大きいため電極反応の触媒となる貴金属等を高分散に担持することができる。このため、上記複合酸化物は電極材料として好適であり、中でも動作時に電極がpH値が3以下の極めて強い酸化環境に曝される燃料電池の電極の材料として好適に用いることができる。また燃料電池と同様の仕組みの電気化学デバイスである電気分解セルの電極の材料としても好適に用いることができる。
このような、上記複合酸化物を含む本発明の電極材料を用いて形成される電極、及び、該電極を用いて構成される燃料電池や電気分解セル等の電気化学デバイスもまた、本発明の1つである。
The above composite oxide has high resistance to oxidation even in low pH environments and oxidizing environments, and can maintain electrical conductivity. In addition, since the specific surface area is larger than that of molybdenum dioxide or tungsten dioxide produced by a general production method, it can highly disperse and support precious metals and the like that serve as catalysts for electrode reactions. For this reason, the above composite oxide is suitable as an electrode material, and can be suitably used as an electrode material for fuel cells, in which the electrodes are exposed to an extremely strong oxidizing environment with a pH value of 3 or less during operation. It can also be suitably used as an electrode material for electrolysis cells, which are electrochemical devices with the same mechanism as fuel cells.
The present invention also includes an electrode formed using the electrode material of the present invention containing the above-mentioned complex oxide, and an electrochemical device, such as a fuel cell or an electrolysis cell, that is configured using the electrode.
本発明の電極材料は比表面積が大きく、電極反応の触媒となる貴金属等を高分散に担持することができるため、本発明の電極材料の表面に触媒が担持されてなる電極は本発明の電極の好適な実施形態の1つである。
また、本発明の電極を固体高分子電解質膜と組み合わせて用いる場合、本発明の電極材料を含む触媒層が固体高分子電解質膜の少なくとも一面に設けられた膜電極接合体を形成してもよく、そのような膜電極接合体もまた、本発明の電極の好適な実施形態の1つである。
The electrode material of the present invention has a large specific surface area and can support a highly dispersed precious metal or the like that serves as a catalyst for the electrode reaction. Therefore, an electrode in which a catalyst is supported on the surface of the electrode material of the present invention is one of the preferred embodiments of the electrode of the present invention.
Furthermore, when the electrode of the present invention is used in combination with a solid polymer electrolyte membrane, a membrane electrode assembly may be formed in which a catalyst layer containing the electrode material of the present invention is provided on at least one side of the solid polymer electrolyte membrane, and such a membrane electrode assembly is also one of the preferred embodiments of the electrode of the present invention.
2.複合酸化物の製造方法
本発明の電極材料が含む複合酸化物の製造方法は特に制限されないが、例えば、モリブデン若しくはタングステンのアンモニウム塩の水溶液、又は、モリブデン源若しくはタングステン源と塩基性水溶液との混合水溶液に、チタン源の水溶液を添加して混合水溶液を得る第一工程、混合水溶液のpHを1~7に調整して水酸化物の沈殿を得る第二工程、得られた沈殿を分離する第三工程、及び、分離した沈殿を還元雰囲気下で焼成する第四工程を含む方法で得ることができる。このような製造方法で製造することで、比表面積の大きい複合酸化物を得ることができる。
なお、第二工程では、モリブデンもしくはタングステンの水溶液とチタン水溶液をそれぞれ用意し、両液を混合することで、直接pHを1~7に調整する方法でも沈殿を生成することができる。
2. Method for Producing the Composite Oxide The method for producing the composite oxide contained in the electrode material of the present invention is not particularly limited, but it can be obtained by a method including, for example, a first step of adding an aqueous solution of a titanium source to an aqueous solution of an ammonium salt of molybdenum or tungsten, or a mixed aqueous solution of a molybdenum source or tungsten source and a basic aqueous solution to obtain a mixed aqueous solution, a second step of adjusting the pH of the mixed aqueous solution to 1 to 7 to obtain a hydroxide precipitate, a third step of separating the obtained precipitate, and a fourth step of firing the separated precipitate under a reducing atmosphere. By producing by such a production method, a composite oxide with a large specific surface area can be obtained.
In the second step, a precipitate can also be produced by preparing an aqueous solution of molybdenum or tungsten and an aqueous solution of titanium, mixing the two solutions, and directly adjusting the pH to 1 to 7.
上記第一工程において、モリブデン又はタングステンのアンモニウム塩を使用しない場合のモリブデン源やタングステン源としては、ナトリウム塩、カリウム塩、塩化物の他、モリブデン酸、タングステン酸等を用いることができる。 In the above first step, when an ammonium salt of molybdenum or tungsten is not used, the molybdenum source or tungsten source may be a sodium salt, a potassium salt, a chloride, or molybdic acid, tungstic acid, etc.
上記第一工程において用いる塩基性水溶液としては、特に限定されるものではないが、NH3水溶液、NaOH水溶液、炭酸ナトリウム水溶液等が挙げられる。 The basic aqueous solution used in the first step is not particularly limited, but examples thereof include an aqueous NH3 solution, an aqueous NaOH solution, and an aqueous sodium carbonate solution.
上記第一工程において用いるチタン源としては、塩化物、硫酸塩等を用いることができる。 The titanium source used in the first step can be a chloride, sulfate, or the like.
上記第一工程において使用するチタン源の量は、チタン元素の量が、第一工程において混合するモリブデン元素又はタングステン元素1モルに対して、0.6~4.0モルとなる量であることが好ましい。より好ましくは、0.7~3.0モルとなる量であり、更に好ましくは、1.0~3.0モルとなる量である。 The amount of titanium source used in the first step is preferably 0.6 to 4.0 moles of titanium element per mole of molybdenum element or tungsten element mixed in the first step. More preferably, it is 0.7 to 3.0 moles, and even more preferably, it is 1.0 to 3.0 moles.
上記第一工程において使用する溶媒の量は特に限定されないが、例えば、第一工程において使用するチタン源の量100重量部に対して、100~1000000重量部とすることが好ましい。より好ましくは500~100000重量部、更に好ましくは1000~50000重量部である。 The amount of the solvent used in the first step is not particularly limited, but for example, it is preferably 100 to 1,000,000 parts by weight per 100 parts by weight of the titanium source used in the first step. It is more preferably 500 to 100,000 parts by weight, and even more preferably 1,000 to 50,000 parts by weight.
上記第一工程における混合水溶液の温度は、原料の溶解性の点から0~100℃であることが好ましい。より好ましくは、20~100℃である。 The temperature of the mixed aqueous solution in the first step is preferably 0 to 100°C in terms of the solubility of the raw materials. More preferably, it is 20 to 100°C.
上記第二工程においては、混合水溶液のpHを1~7に調整すればよいが、より十分に沈殿を生成させる点からpHは2~6であることが好ましい。より好ましくは、4~6である。
上記第二工程において、pHを1~7に調整する際の混合水溶液の温度は、沈殿の生成速度と作業性の点から、2~100℃であることが好ましい。より好ましくは、10~70℃である。
In the second step, the pH of the mixed aqueous solution may be adjusted to 1 to 7, but in order to generate a precipitate more sufficiently, the pH is preferably 2 to 6. More preferably, it is 4 to 6.
In the second step, the temperature of the mixed aqueous solution when adjusting the pH to 1 to 7 is preferably 2 to 100° C., more preferably 10 to 70° C., from the viewpoints of the rate of precipitation and workability.
上記複合酸化物の製造方法では、第二工程でpHを所定の範囲に調整した後、第三工程の前に所定の時間、混合溶液をそのまま保持する工程を設けてもよい。この工程を設けることで、より十分に沈殿を生成させることができる。
この工程を行う時間は特に制限されないが、十分に沈殿を生成させることと複合酸化物製造の効率とを考慮すると、10~600分であることが好ましい。より好ましくは、30~180分である。
In the above-mentioned method for producing a composite oxide, a step of holding the mixed solution as it is for a predetermined time after adjusting the pH to a predetermined range in the second step and before the third step may be provided. By providing this step, it is possible to generate a precipitate more sufficiently.
The time for carrying out this step is not particularly limited, but in consideration of sufficient generation of precipitate and the efficiency of composite oxide production, it is preferably 10 to 600 minutes, and more preferably 30 to 180 minutes.
上記第三工程において第二工程で生成した水酸化物の沈殿を分離する方法は特に制限されず、ろ過、遠心分離、加熱下での蒸発等を使用することができる。 In the third step, the method for separating the hydroxide precipitate produced in the second step is not particularly limited, and filtration, centrifugation, evaporation under heating, etc. can be used.
上記第四工程において、還元雰囲気下で焼成する温度は第二工程で得られた水酸化物の焼成が十分に行われる限り特に制限されないが、200~800℃であることが好ましい。より好ましくは、400~600℃であり、更に好ましくは、500~600℃である。
焼成する時間も焼成が十分に行われる限り特に制限されないが、1~72時間であることが好ましい。より好ましくは、1~24時間であり、更に好ましくは、2~12時間である。
In the fourth step, the temperature for calcination in a reducing atmosphere is not particularly limited as long as the hydroxide obtained in the second step is sufficiently calcined, but is preferably 200 to 800° C., more preferably 400 to 600° C., and even more preferably 500 to 600° C.
The calcination time is not particularly limited as long as the calcination is sufficiently performed, but is preferably 1 to 72 hours, more preferably 1 to 24 hours, and even more preferably 2 to 12 hours.
上記第四工程における還元雰囲気としては、特に限定されず、水素(H2)雰囲気、一酸化炭素(CO)雰囲気、水素と不活性ガスとの混合ガス雰囲気等が挙げられる。中でも、効率よく複合酸化物を製造できることから、水素雰囲気であることが好ましい。水素濃度は5~100vol%の範囲にあることが好ましく、より好ましくは50vol%以上、更に好ましくは75vol%以上、特に好ましくは100vol%である。また還元雰囲気としては、還元が行われている反応場(系とも称する)に還元用ガスが連続して注入され流れている状態であることが望ましい。 The reducing atmosphere in the fourth step is not particularly limited, and examples thereof include a hydrogen (H 2 ) atmosphere, a carbon monoxide (CO) atmosphere, and a mixed gas atmosphere of hydrogen and an inert gas. Among these, a hydrogen atmosphere is preferred because it allows efficient production of a composite oxide. The hydrogen concentration is preferably in the range of 5 to 100 vol%, more preferably 50 vol% or more, even more preferably 75 vol% or more, and particularly preferably 100 vol%. In addition, the reducing atmosphere is preferably in a state in which a reducing gas is continuously injected and flows into the reaction field (also referred to as the system) where the reduction is performed.
上記複合酸化物の製造方法は、上述した第一~第三工程や、上述した第二工程後に混合溶液をそのまま保持する工程以外のその他の工程を含んでいてもよい。その他の工程としては、上記第三工程で水酸化物の沈殿を分離した後、第四工程の焼成の前に沈殿を水洗する工程や沈殿を乾燥する工程、沈殿を粉砕する工程、沈殿を分級する工程等が挙げられる。
第三工程で分離した沈殿を乾燥する工程における乾燥温度は、沈殿が乾燥される限り特に制限されないが、沈殿を十分に乾燥させる点から40~200℃であることが好ましい。より好ましくは、50~130℃であるが、複合酸化物の酸化を防止する観点から、低温での乾燥が特に好ましく、70℃以下での乾燥が特に好ましい。
また乾燥する時間は、沈殿の量により適宜調整すればよいが、1~72時間であることが好ましい。より好ましくは、2~24時間である。
The method for producing the composite oxide may include other steps in addition to the above-mentioned first to third steps and the step of holding the mixed solution as is after the above-mentioned second step. The other steps include a step of washing the hydroxide precipitate with water after separating the hydroxide precipitate in the third step and a step of drying the precipitate, a step of pulverizing the precipitate, a step of classifying the precipitate, and the like before the calcination in the fourth step.
The drying temperature in the step of drying the precipitate separated in the third step is not particularly limited as long as the precipitate is dried, but in order to sufficiently dry the precipitate, it is preferably 40 to 200° C., more preferably 50 to 130° C., but in order to prevent oxidation of the composite oxide, drying at a low temperature is particularly preferred, and drying at 70° C. or lower is particularly preferred.
The drying time may be adjusted appropriately depending on the amount of precipitate, but is preferably 1 to 72 hours, and more preferably 2 to 24 hours.
本発明を詳細に説明するために以下に具体例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「%」及び「wt%」とは「重量%(質量%)」を意味する。なお、各物性の測定、評価方法は以下の通りである。 Specific examples are given below to explain the present invention in detail, but the present invention is not limited to these examples. Unless otherwise specified, "%" and "wt%" mean "weight % (mass %)." The methods for measuring and evaluating each physical property are as follows.
<組成比>
リガク社製 走査型蛍光X線分析装置 ZSX Primus IIを使用し、蛍光X線法により測定した。
<体積抵抗率>
日東精工アナリテック社製 粉体抵抗測定システムMCP-PD51を使用し、四探針法により測定した。粉体抵抗測定システムは、油圧による粉体プレス部と四探針プローブ、高抵抗測定装置(同社製、ロレスターGX MCP-T700)から構成される。
以下の手順に従い、体積抵抗(Ω・cm)の値を求めた。
1)四探針プローブを底面に備えたプレス冶具(直径20mm)にサンプル粉末を投入し、粉体抵抗測定システムの加圧部にセットする。プローブと高抵抗測定装置とをケーブルで接続する。
2)ハンドプレスを用いて、20kNまで加圧する。粉体厚みをデジタルノギスで測定、抵抗値を高抵抗測定装置で測定する。
3)粉体の底面積、厚み、抵抗値から、下記数式1に基づき体積固有抵抗(Ω・cm)を求める。
JIS Z8830(2013年)の規定に準じ、試料を窒素雰囲気中、230℃で30分間熱処理した後、マイクロトラックベル社製 Belsorp IIを使用し、定容量式ガス吸着法により測定した。
<耐酸化評価>
(1)作用極の作製
測定対象のサンプルに、5重量%パーフルオロスルホン酸樹脂溶液(アルドリッチ社製)、イソプロピルアルコール(和光純薬工業社製)及びイオン交換水を加え、超音波により分散させてペーストを調製した。ペーストを回転グラッシーカーボンディスク電極に塗布し、充分に乾燥した。乾燥後の回転電極を作用極とした。
(2)サイクリックボルタンメトリー測定
Automatic Polarization System(北斗電工社製、商品名「HZ-7000」)に、回転電極装置(北斗電工社製、商品名「HR-301」)を接続し、作用極に、上記で得た測定サンプル付き電極を用い、対極と参照極には、それぞれ白金電極と可逆水素電極(RHE)電極を用いた。
測定サンプル付き電極のクリーニングのため、25℃で、電解液(0.1mol/lの過塩素酸水溶液)にアルゴンガスをバブリングしながら0.05Vから1.2Vまでサイクリックボルタンメトリーに供した。その後、25℃で、アルゴンガスを飽和させた電解液(0.1mol/l硫酸水溶液)で0.05Vから1.2Vまで掃引速度50mV/secで1000サイクルの試験を行い、酸化由来の電流発生の有無を確認した。
<Composition ratio>
The measurement was carried out by the X-ray fluorescence method using a scanning X-ray fluorescence analyzer ZSX Primus II manufactured by Rigaku Corporation.
<Volume resistivity>
Measurements were performed using the four-probe method using a powder resistivity measurement system MCP-PD51 manufactured by Nitto Seiko Analytech Co., Ltd. The powder resistivity measurement system is composed of a hydraulic powder press unit, a four-probe probe, and a high-resistance measurement device (Loresta GX MCP-T700 manufactured by the same company).
The volume resistivity (Ω·cm) was determined according to the following procedure.
1) A sample powder is placed in a press tool (diameter 20 mm) equipped with a four-point probe on the bottom, and the tool is set in the pressurizing section of the powder resistivity measurement system. The probe is connected to the high-resistance measurement device with a cable.
2) Using a hand press, apply a pressure of 20 kN. Measure the powder thickness with a digital caliper and measure the resistance value with a high resistance measuring device.
3) The volume resistivity (Ω·cm) is calculated from the base area, thickness, and resistance value of the powder according to the following formula 1.
In accordance with the provisions of JIS Z8830 (2013), the sample was heat-treated in a nitrogen atmosphere at 230° C. for 30 minutes, and then measured by a constant volume gas adsorption method using a Belsorp II manufactured by Microtrackbel.
<Oxidation resistance evaluation>
(1) Preparation of working electrode A 5% by weight perfluorosulfonic acid resin solution (manufactured by Aldrich Co.), isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) and ion-exchanged water were added to the sample to be measured, and the mixture was dispersed by ultrasonic waves to prepare a paste. The paste was applied to a rotating glassy carbon disk electrode and thoroughly dried. The rotating electrode after drying was used as the working electrode.
(2) Cyclic voltammetry measurement
A rotating electrode device (manufactured by Hokuto Denko Corporation, product name "HR-301") was connected to an Automatic Polarization System (manufactured by Hokuto Denko Corporation, product name "HZ-7000"), and the electrode with the measurement sample obtained above was used as the working electrode, and a platinum electrode and a reversible hydrogen electrode (RHE) electrode were used as the counter electrode and reference electrode, respectively.
To clean the electrode with the measurement sample, the electrode was subjected to cyclic voltammetry from 0.05 V to 1.2 V while bubbling argon gas in an electrolyte (0.1 mol/l aqueous perchloric acid solution) at 25° C. Then, a test was performed for 1000 cycles at 25° C. with an electrolyte (0.1 mol/l aqueous sulfuric acid solution) saturated with argon gas from 0.05 V to 1.2 V at a sweep rate of 50 mV/sec to confirm the presence or absence of a current due to oxidation.
実施例1
タングステン酸アンモニウムパラ五水和物(関東化学社製)6.7gと80℃に加熱したイオン交換水300gを混合撹拌し、タングステン溶液を得た。得られたタングステン溶液に三塩化チタン溶液(富士フィルム和光純薬社製、TiCl3含有量22wt%)47.3gを添加し混合撹拌したものを準備した(これを「混合水溶液」と称す)。
上記混合水溶液に1.0Nのアンモニア水を添加し、30℃に加熱保持しながら混合撹拌した。pH5.5になった時点で、アンモニア水の添加を止め、液温30℃に1時間加熱維持した後、得られた沈殿物を常法に従い濾過、水洗した後、60℃で18時間乾燥した。得られた粉末を水素雰囲気下、550℃まで昇温し、550℃で4時間保持した後、室温まで冷却して複合酸化物の黒色粉末1を得た。黒色粉末1の蛍光X線分析結果から、TiとWのモル比を確認した。結果を表1に示す。
Example 1
A tungsten solution was obtained by mixing and stirring 6.7 g of ammonium tungstate parapentahydrate (Kanto Chemical Co., Ltd.) and 300 g of ion-exchanged water heated to 80° C. The resulting tungsten solution was mixed with 47.3 g of titanium trichloride solution (Fujifilm Wako Pure Chemical Industries, Ltd., TiCl3 content 22 wt%) and stirred to prepare a solution (this is referred to as a "mixed aqueous solution").
1.0N ammonia water was added to the mixed aqueous solution, and the mixture was mixed and stirred while being heated to 30°C. When the pH reached 5.5, the addition of ammonia water was stopped, and the mixture was heated and maintained at 30°C for 1 hour. The precipitate obtained was filtered and washed in a conventional manner, and then dried at 60°C for 18 hours. The obtained powder was heated to 550°C in a hydrogen atmosphere, and then kept at 550°C for 4 hours, and then cooled to room temperature to obtain black powder 1 of a composite oxide. The molar ratio of Ti and W was confirmed from the results of fluorescent X-ray analysis of black powder 1. The results are shown in Table 1.
実施例2
タングステン酸アンモニウムパラ五水和物(関東化学社製)13.1g、三塩化チタン溶液31.6gを秤量した以外は実施例1と同様の方法により複合酸化物の黒色粉末2を得た。黒色粉末2の蛍光X線分析結果から、TiとWのモル比を確認した。結果を表1に示す。
Example 2
A black powder 2 of a composite oxide was obtained in the same manner as in Example 1, except that 13.1 g of ammonium tungstate parapentahydrate (manufactured by Kanto Chemical Co., Ltd.) and 31.6 g of titanium trichloride solution were weighed. From the results of fluorescent X-ray analysis of the black powder 2, the molar ratio of Ti and W was confirmed. The results are shown in Table 1.
実施例3
タングステン酸アンモニウムパラ五水和物の替わりにモリブデン酸アンモニウム四水和物(富士フィルム和光純薬社製)を使用し、モリブデン酸アンモニウム四水和物4.01g、三塩化チタン溶液47.3gを秤量した以外は実施例1と同様の方法により複合酸化物の黒色粉末3を得た。黒色粉末3の蛍光X線分析結果から、TiとMoのモル比を確認した。結果を表1に示す。
Example 3
A black powder 3 of a composite oxide was obtained in the same manner as in Example 1, except that ammonium molybdate tetrahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of ammonium tungstate parapentahydrate, and 4.01 g of ammonium molybdate tetrahydrate and 47.3 g of titanium trichloride solution were weighed. From the results of fluorescent X-ray analysis of the black powder 3, the molar ratio of Ti and Mo was confirmed. The results are shown in Table 1.
実施例4
モリブデン酸アンモニウム四水和物8.03g、三塩化チタン溶液31.6gを秤量した以外は実施例3と同様の方法により複合酸化物の黒色粉末4を得た。黒色粉末4の蛍光X線分析結果から、TiとMoのモル比を確認した。結果を表1に示す。
Example 4
A black powder 4 of a composite oxide was obtained in the same manner as in Example 3, except that 8.03 g of ammonium molybdate tetrahydrate and 31.6 g of titanium trichloride solution were weighed. The molar ratio of Ti and Mo was confirmed from the results of fluorescent X-ray analysis of the black powder 4. The results are shown in Table 1.
比較例1
モリブデン酸アンモニウム四水和物0.803g、三塩化チタン溶液24.7gを秤量した以外は実施例3と同様の方法により複合酸化物の灰色粉末5を得た。粉末5の蛍光X線分析結果から、TiとMoのモル比を確認した。結果を表1に示す。
Comparative Example 1
A gray composite oxide powder 5 was obtained in the same manner as in Example 3, except that 0.803 g of ammonium molybdate tetrahydrate and 24.7 g of titanium trichloride solution were weighed. The molar ratio of Ti and Mo was confirmed from the results of fluorescent X-ray analysis of powder 5. The results are shown in Table 1.
比較例2
三酸化モリブデン(富士フィルム和光純薬社製)5.0gを水素雰囲気下、500℃まで昇温し、500℃で4時間保持した後、室温まで冷却して黒色粉末6を得た。
Comparative Example 2
5.0 g of molybdenum trioxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was heated to 500° C. in a hydrogen atmosphere, held at 500° C. for 4 hours, and then cooled to room temperature to obtain black powder 6.
比較例3
三酸化タングステン(富士フィルム和光純薬社製)5.0gを水素雰囲気下、580℃まで昇温し、580℃で4時間保持した後、室温まで冷却して黒色粉末7を得た。
Comparative Example 3
5.0 g of tungsten trioxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was heated to 580° C. in a hydrogen atmosphere, held at 580° C. for 4 hours, and then cooled to room temperature to obtain black powder 7.
実施例1~4、比較例1で得られた複合酸化物の組成比、体積抵抗率、比表面積、及び、比較例2、3の酸化物の体積抵抗率、比表面積を上述した方法で測定し、更に上述した方法で耐酸化評価を行った。結果を表1に示す。 The composition ratio, volume resistivity, and specific surface area of the composite oxides obtained in Examples 1 to 4 and Comparative Example 1, and the volume resistivity and specific surface area of the oxides in Comparative Examples 2 and 3 were measured by the methods described above, and the oxidation resistance was evaluated by the method described above. The results are shown in Table 1.
電極材料は、体積抵抗率(Ωcm)が103オーダー以下、比表面積が5m2/g以上であることが望ましい。実施例1~4の複合酸化物はいずれもこの水準を満たし、また耐酸化性にも優れることが確認された。一方、比較例1の材料は体積抵抗率が大幅に大きく、酸化モリブデンや酸化タングステンを用いた比較例2、3の材料は比表面積が小さかった。
これらより、チタンと、モリブデン又はタングステンとを含み、金属元素全体に対するモリブデン元素又はタングステン元素の割合が所定の範囲である本発明の複合酸化物が電極材料として好適であることが確認された。
It is desirable for the electrode material to have a volume resistivity (Ωcm) of the order of 103 or less and a specific surface area of 5 m2 /g or more. All of the composite oxides of Examples 1 to 4 met these standards, and were confirmed to have excellent oxidation resistance. On the other hand, the material of Comparative Example 1 had a significantly high volume resistivity, and the materials of Comparative Examples 2 and 3, which used molybdenum oxide or tungsten oxide, had small specific surface areas.
From these, it was confirmed that the composite oxide of the present invention, which contains titanium and either molybdenum or tungsten and in which the ratio of molybdenum element or tungsten element to the total metal elements is within a predetermined range, is suitable as an electrode material.
Claims (3)
Ti(1-x)AxO2 (1)
(式中、Aはモリブデン又はタングステンを表す。xは、0.2~0.6の数である。)
で表される複合酸化物を含むことを特徴とする電極材料。 The following formula (1):
Ti (1-x) A x O 2 (1)
(In the formula, A represents molybdenum or tungsten, and x is a number from 0.2 to 0.6.)
An electrode material comprising a composite oxide represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022651A JP7528812B2 (en) | 2021-02-16 | 2021-02-16 | Electrode materials, electrodes and batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022651A JP7528812B2 (en) | 2021-02-16 | 2021-02-16 | Electrode materials, electrodes and batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022124801A JP2022124801A (en) | 2022-08-26 |
JP7528812B2 true JP7528812B2 (en) | 2024-08-06 |
Family
ID=82941959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021022651A Active JP7528812B2 (en) | 2021-02-16 | 2021-02-16 | Electrode materials, electrodes and batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7528812B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005087372A1 (en) | 2004-03-12 | 2005-09-22 | Toho Titanium Co., Ltd. | Titanium oxide photocatalyst and method for preparation thereof |
JP2007130267A (en) | 2005-11-10 | 2007-05-31 | Catalysts & Chem Ind Co Ltd | Deodorant made of tubular titanium oxide particle |
JP2009099522A (en) | 2007-09-25 | 2009-05-07 | Sanyo Electric Co Ltd | Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2015195193A (en) | 2014-03-20 | 2015-11-05 | 国立大学法人九州大学 | Anode electrode material for fuel battery, method of manufacturing the same, electrode for fuel battery, membrane electrode assembly, and solid polymer type fuel battery |
JP2016013954A (en) | 2014-07-03 | 2016-01-28 | Dic株式会社 | Titanium dioxide particles and method for producing the same |
JP2017073218A (en) | 2015-10-05 | 2017-04-13 | 日産自動車株式会社 | Conductive member, method for manufacturing the same, separator for fuel cell using the same, and solid polymer fuel cell |
-
2021
- 2021-02-16 JP JP2021022651A patent/JP7528812B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005087372A1 (en) | 2004-03-12 | 2005-09-22 | Toho Titanium Co., Ltd. | Titanium oxide photocatalyst and method for preparation thereof |
JP2007130267A (en) | 2005-11-10 | 2007-05-31 | Catalysts & Chem Ind Co Ltd | Deodorant made of tubular titanium oxide particle |
JP2009099522A (en) | 2007-09-25 | 2009-05-07 | Sanyo Electric Co Ltd | Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2015195193A (en) | 2014-03-20 | 2015-11-05 | 国立大学法人九州大学 | Anode electrode material for fuel battery, method of manufacturing the same, electrode for fuel battery, membrane electrode assembly, and solid polymer type fuel battery |
JP2016013954A (en) | 2014-07-03 | 2016-01-28 | Dic株式会社 | Titanium dioxide particles and method for producing the same |
JP2017073218A (en) | 2015-10-05 | 2017-04-13 | 日産自動車株式会社 | Conductive member, method for manufacturing the same, separator for fuel cell using the same, and solid polymer fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2022124801A (en) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Du et al. | Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene | |
CN109952675B (en) | Electrode material and method for producing same | |
JP5462150B2 (en) | Catalyst, method for producing the same and use thereof | |
CN102459085B (en) | Conducting metal oxide and metal nitride nanoparticles | |
JP5411123B2 (en) | Catalyst for fuel cell, production method thereof and use thereof | |
Esfahani et al. | Exceptionally durable Pt/TOMS catalysts for fuel cells | |
JP5623680B1 (en) | Tantalum-containing tin oxide for fuel cell electrode materials | |
Munawar et al. | Fabrication of fullerene-supported La 2 O 3–C 60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes | |
KR20170044146A (en) | Fuel cell electrode catalyst and manufacturing method thereof | |
EP2680351A1 (en) | Method for manufacturing electrode catalyst for fuel cell | |
Wang et al. | IrO 2-incorporated La 0.8 Sr 0.2 MnO 3 as a bifunctional oxygen electrocatalyst with enhanced activities | |
KR20180124921A (en) | Metal-doped tin oxide for electrocatalyst applications | |
Galal et al. | Voltammetry study of electrocatalytic activity of lanthanum nickel perovskite nanoclusters-based composite catalyst for effective oxidation of urea in alkaline medium | |
Pupo et al. | Sn@ Pt and Rh@ Pt core–shell nanoparticles synthesis for glycerol oxidation | |
TWI740006B (en) | Conductive materials and electrode materials | |
Butt et al. | B-site doping in lanthanum cerate nanomaterials for water electrocatalysis | |
CN114023934A (en) | Preparation method and application of metal/carbide/oxide composite nano material | |
JP5037696B2 (en) | Catalyst, method for producing the same and use thereof | |
Ali et al. | Facile route to achieve Co@ Mo2C encapsulated by N-doped carbon as efficient electrocatalyst for overall water splitting in alkaline media | |
JP5539892B2 (en) | Catalyst, method for producing the same and use thereof | |
TW201841684A (en) | Electrode material and application thereof | |
JP7528812B2 (en) | Electrode materials, electrodes and batteries | |
WO2022102580A1 (en) | Iridium-containing oxide, method for producing same and catalyst containing iridium-containing oxide | |
JPWO2018174142A1 (en) | Oxygen reduction catalyst, electrode, membrane electrode assembly and fuel cell | |
JPWO2020175114A1 (en) | Electrode material and electrodes using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7528812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |