JP7522681B2 - Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes - Google Patents

Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes Download PDF

Info

Publication number
JP7522681B2
JP7522681B2 JP2021026249A JP2021026249A JP7522681B2 JP 7522681 B2 JP7522681 B2 JP 7522681B2 JP 2021026249 A JP2021026249 A JP 2021026249A JP 2021026249 A JP2021026249 A JP 2021026249A JP 7522681 B2 JP7522681 B2 JP 7522681B2
Authority
JP
Japan
Prior art keywords
pipe
straight
large diameter
resin
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021026249A
Other languages
Japanese (ja)
Other versions
JP2022127983A (en
Inventor
豊 金平
孝輔 ▲高▼橋
晶 中村
智和 萩野
雅己 湯川
翔太 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2021026249A priority Critical patent/JP7522681B2/en
Publication of JP2022127983A publication Critical patent/JP2022127983A/en
Application granted granted Critical
Publication of JP7522681B2 publication Critical patent/JP7522681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、樹脂製可撓管を被覆する波形管、樹脂製可撓管と波形管を備えた複合管、この複合管の設置方法および製造方法に関する。 The present invention relates to a corrugated pipe that covers a flexible plastic pipe, a composite pipe that includes a flexible plastic pipe and a corrugated pipe, and a method for installing and manufacturing this composite pipe.

例えば給水給湯に用いられる樹脂製可撓管は表面が柔らかいため、そのまま配管施工すると構造物等に擦れて傷付く。そのため、樹脂製可撓管を可撓性の波形管で被覆した複合管が普及している。
特許文献1に開示されているように、波形管は、それぞれ断面円形の小径部(外部から見て環状の谷部となる)と大径部(外部から見て山部となる)を管軸方向に交互に配することにより構成されている。
For example, flexible plastic pipes used for hot and cold water supply have a soft surface, so if they are installed as piping, they will rub against structures and be damaged. For this reason, composite pipes in which a flexible plastic pipe is covered with a flexible corrugated pipe are becoming more common.
As disclosed in Patent Document 1, a corrugated pipe is constructed by alternately arranging small diameter sections (which become annular valley sections when viewed from the outside) and large diameter sections (which become peak sections when viewed from the outside) each having a circular cross section in the pipe axial direction.

特許6706158号公報Patent No. 6706158

特許文献1の複合管では、波形管の大径部と樹脂製可撓管との間はもちろんのこと、小径部と樹脂製可撓管との間にも隙間が形成されている。そのため、複合管を所定位置に設置したとしても、樹脂製可撓管の内部を通る流体の圧力、流量、温度などが急変した時に、樹脂製可撓管がばたつき、異音(いわゆるウォーターハンマー音や熱伸縮音)が発生しやすい。 In the composite pipe of Patent Document 1, gaps are formed not only between the large diameter section of the corrugated pipe and the flexible plastic pipe, but also between the small diameter section and the flexible plastic pipe. Therefore, even if the composite pipe is installed in a specified position, when the pressure, flow rate, temperature, etc. of the fluid passing through the flexible plastic pipe suddenly changes, the flexible plastic pipe is likely to flutter and generate abnormal noises (so-called water hammer noises and thermal expansion noises).

前記課題を解決するため、本発明の一態様は、樹脂製可撓管を被覆する可撓性の波形管であって、
発泡樹脂を含み、環状の大径部と小径部を管軸方向に交互に有し、前記大径部の断面形状が、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有し、前記小径部が、前記樹脂製可撓管を管径方向に拘束する拘束部を有することを特徴とする。
In order to solve the above problems, one aspect of the present invention is a flexible corrugated pipe that covers a flexible resin pipe,
The flexible resin tube includes a foamed resin, has annular large diameter portions and small diameter portions alternately in a tube axial direction, and a cross-sectional shape of the large diameter portion has a curved convex portion and a straight portion spaced apart from each other in a first direction, and a pair of side portions that are disposed between both ends of the curved convex portion and both ends of the straight portion and face each other in a second direction perpendicular to the first direction, and the small diameter portion has a restraining portion that restrains the flexible resin tube in the tube radial direction.

前記構成によれば、小径部の拘束部で樹脂製可撓管を抑えることができるので、樹脂製可撓管を流れる流体の圧力、流量、温度などが急変しても異音の発生を抑制することができる。
波形管が発泡樹脂を含むので、保温性を高めることができる。大径部において、直線部と一対の側部とが交差する隅部が、断熱空気層として追加されるので、大径部が円形の断面形状を有する波形管を用いる場合に比べて、保温性をさらに高めることができる。
大径部の直線部を建物構造体の面に沿わせることにより、複合管を安定して建物構造体に設置することも可能となる。
According to the above configuration, the flexible resin tube can be held down by the restraining portion of the small diameter portion, so that the generation of abnormal noise can be suppressed even if the pressure, flow rate, temperature, etc. of the fluid flowing through the flexible resin tube suddenly changes.
Since the corrugated pipe contains a foamed resin, heat retention can be improved. In the large diameter portion, the corners where the straight portion and the pair of side portions intersect are added as insulating air layers, so heat retention can be further improved compared to when a corrugated pipe having a large diameter portion with a circular cross section is used.
By aligning the straight portion of the large diameter section with the surface of the building structure, the composite pipe can be stably installed on the building structure.

本発明の他の態様は、樹脂製可撓管と、発泡樹脂からなり、環状の大径部と小径部を管軸方向に交互に有し、前記樹脂製可撓管を被覆する可撓性の波形管と、を備えた複合管であって、
前記大径部の断面形状が、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有し、前記小径部が、前記樹脂製可撓管を管径方向に拘束する拘束部を有することを特徴とする。
Another aspect of the present invention is a composite pipe including a flexible resin pipe and a flexible corrugated pipe made of foamed resin, the corrugated pipe having annular large diameter portions and small diameter portions alternately in the pipe axial direction, and covering the flexible resin pipe,
The cross-sectional shape of the large diameter portion has a curved convex portion and a straight portion that are spaced apart and opposed to each other in a first direction, and a pair of side portions that are arranged between both ends of the curved convex portion and both ends of the straight portion and that face each other in a second direction perpendicular to the first direction, and the small diameter portion has a restraining portion that restrains the flexible plastic tube in a tube diameter direction.

好ましくは、前記樹脂製可撓管は、前記小径部の前記拘束部によって、前記第1方向において前記大径部の前記湾曲凸部より前記直線部に近い位置で拘束されている。
前記構成によれば、波形管の大径部の湾曲凸部と樹脂製可撓管との間に厚い断熱空気層が形成される。しかも、直線部を建物構造体の面に沿わせて配置すれば、樹脂製可撓管と構造体の面との間への冷気侵入を抑制できることにより、複合管の保温機能をさらに高めることができる。建物構造体が断熱性、蓄熱性を有する場合には、樹脂製可撓管を建物構造体に近づけることにより、さらに保温性を高めることができるとともに、温度急変を緩和できるので異音発生のさらなる抑制にも寄与することができる。
Preferably, the flexible resin tube is restrained by the restraining portion of the small diameter portion at a position closer to the straight portion than the curved convex portion of the large diameter portion in the first direction.
According to the above configuration, a thick insulating air layer is formed between the curved convex portion of the large diameter portion of the corrugated pipe and the flexible plastic pipe. Moreover, by arranging the straight portion along the surface of the building structure, the intrusion of cold air between the flexible plastic pipe and the surface of the structure can be suppressed, thereby further improving the heat retention function of the composite pipe. If the building structure has insulating and heat storage properties, by bringing the flexible plastic pipe closer to the building structure, the heat retention can be further improved and sudden temperature changes can be mitigated, which contributes to further suppressing the generation of abnormal noise.

好ましくは、前記樹脂製可撓管は前記拘束部により、前記第2方向において前記大径部の前記一対の側部間の中央で拘束されている。
前記構成によれば、波形管の大径部の側部と樹脂製可撓管との間のそれぞれに、所定の断熱空気層を形成することができ、保温性をさらに高めることができる。
Preferably, the flexible resin tube is restrained by the restraining portion at a center between the pair of side portions of the large diameter portion in the second direction.
According to the above-mentioned configuration, a predetermined insulating air layer can be formed between each of the sides of the large diameter portion of the corrugated pipe and the flexible resin pipe, thereby further improving heat retention.

複合管の一実施形態では、前記小径部の断面形状が、前記大径部の前記湾曲凸部側に位置する第2湾曲凸部と、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部と、前記大径部の前記一対の側部に沿う一対の第2側部とを有し、前記第2湾曲凸部の中央部と前記第2直線部の中央部が前記拘束部として提供される。
前記構成によれば、小径部が拘束部のための特殊な形状例えば局所的に突出する凸部を有さず、しかも大径部と小径部が似た形状であるので、成形が容易になる。
In one embodiment of the composite pipe, the cross-sectional shape of the small diameter portion has a second curved convex portion located on the curved convex portion side of the large diameter portion, a second straight portion located on the straight portion side of the large diameter portion and parallel to the straight portion, and a pair of second side portions along the pair of side portions of the large diameter portion, and a central portion of the second curved convex portion and a central portion of the second straight portion are provided as the restraint portion.
According to the above-mentioned configuration, the small diameter portion does not have a special shape for a restraining portion, such as a locally protruding convex portion, and furthermore, the large diameter portion and the small diameter portion have similar shapes, so that molding is easy.

複合管の別の実施形態では、前記小径部が、周方向に離間した少なくとも3つの拘束部を有している。
前記構成によれば、安定して樹脂製可撓管を管径方向に拘束することができる。
In another embodiment of the compound pipe, the reduced diameter section has at least three circumferentially spaced apart constraints.
According to the above-mentioned configuration, the flexible resin tube can be stably restrained in the tube diameter direction.

前記別の実施形態において、好ましくは、前記小径部が、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部を有するとともに、前記第2直線部の両端から周方向に離間して径方向、内側に突出する2つの凸部を有し、前記第2直線部の中央部と前記凸部が、前記拘束部として提供される。
前記構成によれば、3箇所で安定して樹脂製可撓管を管径方向に拘束することができる。しかも凸部は2つで済み成形も良好に行える。
In the other embodiment, preferably, the small diameter portion has a second straight portion located on the straight portion side of the large diameter portion and parallel to the straight portion, and has two convex portions that are spaced apart in the circumferential direction from both ends of the second straight portion and protrude radially inward, and a central portion of the second straight portion and the convex portions are provided as the restraint portion.
According to the above-mentioned configuration, the flexible resin tube can be stably restrained in the tube diameter direction at three points. Moreover, only two protrusions are required, and molding can be performed smoothly.

本発明の他の態様は、複合管の設置方法において、複合管の前記大径部の前記直線部を建物構造体の面に沿わせ、取付部材の円弧形状の頂部を前記大径部の前記湾曲凸部に被せた状態で、前記取付部材の一対の固定部を前記建物構造体の面に固定することにより、前記複合管を前記建物構造体の面に設置することを特徴とする。
前記方法によれば、波形管の特殊な形状を利用して取付部材により建物構造体の面に安定して設置することができる。
Another aspect of the present invention is a method of installing a composite pipe, comprising the steps of: aligning the straight portion of the large diameter portion of the composite pipe with the surface of a building structure; placing the arc-shaped apex of a mounting member over the curved convex portion of the large diameter portion; and fixing a pair of fixing portions of the mounting member to the surface of the building structure, thereby installing the composite pipe on the surface of the building structure.
According to the above method, the special shape of the corrugated pipe can be utilized to stably install the pipe on the surface of the building structure using the mounting member.

本発明のさらに他の態様は、樹脂製可撓管と、環状の大径部と小径部が管軸方向に交互に形成され前記樹脂製可撓管を被覆する可撓性の波形管と、を備えた複合管を製造する方法であって、
前記樹脂製可撓管を押出ノズルの通過口から波形管成形部へ送り出し、前記波形管となる樹脂を所定の発泡倍率で発泡されるようにして前記押出ノズルに供給して、前記押出ノズルの前記通過口を囲む環状の押出口から前記樹脂を管状にして前記波形管成形部へ押し出し、前記波形管成形部は、前記大径部と前記小径部を管軸方向に交互に成形するための成形面を有し、前記成形面を管軸方向に移動させながら管状の樹脂を管径方向に拡げることにより、前記波形管を成形し、前記波形管の成形工程において、前記大径部の断面形状を、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有する形状にし、前記前記波形管の成形工程において、前記樹脂の発泡により前記小径部の内周面を管径方向内側に変位させ、これにより、前記樹脂製可撓管を管径方向に拘束する拘束部を形成することを特徴とする。
前記方法によれば、樹脂の発泡を利用して拘束部を形成することができる。
Yet another aspect of the present invention is a method for manufacturing a composite pipe including a flexible resin pipe and a flexible corrugated pipe having annular large diameter portions and small diameter portions alternately formed in an axial direction thereof and covering the flexible resin pipe, the method comprising the steps of:
the corrugated pipe is formed by expanding the tubular resin in the pipe radial direction while moving the forming surface in the pipe axial direction, and forming the corrugated pipe; the corrugated pipe is formed by forming a cross-sectional shape of the large diameter portion into a shape having a curved convex portion and a straight portion which are spaced apart from each other in a first direction, and a pair of side portions which are disposed between both ends of the curved convex portion and both ends of the straight portion and which face each other in a second direction perpendicular to the first direction; and the corrugated pipe is formed by forming an inner circumferential surface of the small diameter portion inward in the pipe radial direction by foaming the resin, thereby forming a restraining portion which restrains the flexible resin pipe in the pipe radial direction.
According to the above method, the restraining portion can be formed by utilizing foaming of the resin.

好ましくは、前記押出口が、前記第1方向に互いに離間対向する円弧形状の第1スリット部および直線状の第2スリット部と、前記第1スリット部の両端と前記第2スリット部の両端との間に配置されるとともに前記第2方向に対向する一対の第3スリット部とを有し、前記波形管成形部は、前記小径部を、前記大径部の前記湾曲凸部側に位置する第2湾曲凸部と、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部と、前記大径部の前記一対の側部に沿う一対の第2側部とを有する断面形状に成形し、前記樹脂の発泡により、前記第2湾曲凸部の中央部と前記第2直線部の中央部が、前記樹脂製可撓管を拘束する前記拘束部として提供される。
前記方法によれば、特殊形状の小径部と大径部を容易に成形することができる。
Preferably, the extrusion port has an arc-shaped first slit portion and a straight second slit portion spaced apart from each other in the first direction, and a pair of third slit portions arranged between both ends of the first slit portion and both ends of the second slit portion and facing each other in the second direction, and the corrugated pipe molding portion molds the small diameter portion into a cross-sectional shape having a second curved convex portion located on the curved convex portion side of the large diameter portion, a second straight portion located on the straight portion side of the large diameter portion and parallel to the straight portion, and a pair of second side portions along the pair of side portions of the large diameter portion, and by foaming of the resin, a central portion of the second curved convex portion and a central portion of the second straight portion are provided as the restraining portion that restrains the resin flexible tube.
According to the above method, small diameter portions and large diameter portions having special shapes can be easily formed.

本発明によれば、樹脂製可撓管内を通る流体の圧力、流量、温度の急変に伴う異音発生を抑制できるとともに、保温性を向上させることができる。 The present invention can suppress the generation of abnormal noise caused by sudden changes in the pressure, flow rate, and temperature of the fluid passing through a flexible resin tube, and can also improve heat retention.

本発明の第1実施形態に係る複合管を示す側断面図である。1 is a side cross-sectional view showing a composite pipe according to a first embodiment of the present invention. FIG. 図1におけるA―A断面図である。2 is a cross-sectional view taken along line A-A in FIG. 1 . 図1におけるB-B断面図である。This is a cross-sectional view taken along the line B-B in FIG. 同複合管の製造装置の概略側面図である。FIG. 2 is a schematic side view of the manufacturing apparatus for the composite pipe. 同製造装置の押出ノズル先端面において、樹脂製可撓管を挿通するための挿通口と、樹脂材料を押し出す押出口とを示す図である。1 is a diagram showing an insertion port for inserting a flexible resin tube and an extrusion port for extruding a resin material at the tip surface of the extrusion nozzle of the manufacturing apparatus. FIG. 本発明の第2実施形態に係る複合管を示す側断面図である。FIG. 5 is a side cross-sectional view showing a composite pipe according to a second embodiment of the present invention. 本発明の第3実施形態に係る複合管を示す図2相当断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 2 showing a composite pipe according to a third embodiment of the present invention. 同第3実施形態の複合管の平面図である。FIG. 11 is a plan view of the composite pipe of the third embodiment. 本発明の第4実施形態に係る複合管を示す図2相当断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 2 showing a composite pipe according to a fourth embodiment of the present invention. 本発明の第5実施形態に係る複合管を示す図2相当断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 2 showing a composite pipe according to a fifth embodiment of the present invention.

以下、本発明の実施形態を図面にしたがって説明する。
<第1実施形態(図1~図5)>
図1~図3は、本発明の第1実施形態に係る複合管1を示す。複合管1は、例えば給水給湯用の配管として用いられる。複合管1は、水や湯等の流体が通る樹脂製可撓管2と、この樹脂製可撓管2の外周を被覆する被覆層としての可撓性の波形管3(コルゲート管)と、を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First embodiment (FIGS. 1 to 5)
1 to 3 show a composite pipe 1 according to a first embodiment of the present invention. The composite pipe 1 is used, for example, as a pipe for supplying cold water or hot water. The composite pipe 1 includes a flexible resin pipe 2 through which fluids such as cold water or hot water pass, and a flexible corrugated pipe 3 (corrugated pipe) as a coating layer that coats the outer periphery of the flexible resin pipe 2.

樹脂製可撓管2の断面形状は、全長にわたって一定の円形をなす。樹脂製可撓管2の材質としては、架橋ポリエチレン(PE-X)、ポリエチレン(PE)、高耐熱ポリエチレン(PE-RT)、ポリブテン、ポリプロピレン(PP)その他の合成樹脂が挙げられる。さらに、樹脂製可撓管2は、ポリエチレン層を表皮に有した架橋ポリエチレン管(JISK6769のE種)であってもよく、金属強化多層構造などの金属を含む複合樹脂管であってもよい。樹脂製可撓管2の材質として、上記は例示であり、可撓性、流体流通性などの所要の性能を確保し得るものであれば、特に制限はない。 The cross-sectional shape of the flexible resin tube 2 is a constant circle over its entire length. Examples of materials for the flexible resin tube 2 include cross-linked polyethylene (PE-X), polyethylene (PE), high heat resistant polyethylene (PE-RT), polybutene, polypropylene (PP), and other synthetic resins. Furthermore, the flexible resin tube 2 may be a cross-linked polyethylene pipe (JIS K6769 Type E) with a polyethylene layer on the surface, or a composite resin pipe containing metal, such as a metal-reinforced multi-layer structure. The above are examples of materials for the flexible resin tube 2, and there are no particular limitations as long as the required performance, such as flexibility and fluid flowability, can be ensured.

波形管3は、非発泡樹脂層を有さず、単層の発泡樹脂によって構成されている。波形管3の樹脂材料としては、架橋ポリエチレン(PE-X)、ポリエチレン(PE)、高耐熱ポリエチレン(PE-RT)、ポリブテン、ポリプロピレン(PP)、熱可塑性エラストマー、熱硬化性エラストマー、プラストマーその他の合成樹脂が挙げられ、単一材質に限らず複数の材質を含む複合樹脂でもよい。上記は波形管3の材質の例示であり、可撓性、樹脂製可撓管2に対する保護性などの所要の性能を確保し得るものであれば、波形管3の材質として特に制限はない。 The corrugated pipe 3 does not have a non-foamed resin layer and is composed of a single layer of foamed resin. Resin materials for the corrugated pipe 3 include cross-linked polyethylene (PE-X), polyethylene (PE), high heat resistant polyethylene (PE-RT), polybutene, polypropylene (PP), thermoplastic elastomer, thermosetting elastomer, plastomer, and other synthetic resins, and are not limited to a single material but may be a composite resin containing multiple materials. The above are examples of materials for the corrugated pipe 3, and there are no particular restrictions on the material for the corrugated pipe 3 as long as it can ensure the required performance, such as flexibility and protection for the resin flexible pipe 2.

波形管3の発泡剤としては、例えば無機系の化学発泡剤や発泡性マイクロカプセルが用いられているが、これに限らず、フロンなどに代表される物理発泡剤や超臨界流体などを用いてよい。発泡剤の配合割合によって発泡倍率が調整される。波形管3を構成する発泡樹脂の発泡倍率は、好ましくは1.05倍~4倍であり、より好ましくは下限が1.1倍以上で、上限が2.0倍である。 The foaming agent for the corrugated pipe 3 is, for example, an inorganic chemical foaming agent or foamable microcapsules, but is not limited to these. Physical foaming agents such as fluorocarbons or supercritical fluids may also be used. The foaming ratio is adjusted by the mixing ratio of the foaming agent. The foaming ratio of the foamed resin that constitutes the corrugated pipe 3 is preferably 1.05 to 4 times, and more preferably has a lower limit of 1.1 times or more and an upper limit of 2.0 times.

図1に示すように、波形管3は、管軸に沿う縦断面形状が波形をなし、管軸に沿って所定ピッチで交互に配置された環状の大径部10および環状の小径部20と、これら大径部10と小径部20を連ねる連接部30とを有している。 As shown in FIG. 1, the corrugated pipe 3 has a corrugated cross-sectional shape along the pipe axis, and has annular large diameter sections 10 and annular small diameter sections 20 arranged alternately at a predetermined pitch along the pipe axis, and a connecting section 30 connecting these large diameter sections 10 and small diameter sections 20.

図2、図3に示すように、波形管3の大径部10の断面形状は、左右対称のいわゆる馬蹄形をなし、図において上下方向(第1方向)に対向する円弧部11(湾曲凸部)および直線部12と、図において左右方向(第1方向と直交する第2方向)に対向する一対の側部13とを有している。直線部12は第2方向に延びている。円弧部11はほぼ半円をなし、その中心は、直線部12の中心を通り上下方向に延びる線上に位置する。一対の側部13は円弧部11と直線部12の両端間に配置され、上下方向に直線状に延び直線部12と略直角をなしている。 As shown in Figures 2 and 3, the cross-sectional shape of the large diameter section 10 of the corrugated pipe 3 is a so-called horseshoe shape that is symmetrical on both sides, and has an arc section 11 (curved convex section) and a straight section 12 that face each other in the vertical direction (first direction) in the figure, and a pair of side sections 13 that face each other in the horizontal direction (second direction perpendicular to the first direction) in the figure. The straight section 12 extends in the second direction. The arc section 11 is approximately semicircular, and its center is located on a line that passes through the center of the straight section 12 and extends in the vertical direction. The pair of side sections 13 are located between both ends of the arc section 11 and the straight section 12, extend linearly in the vertical direction, and form approximately a right angle with the straight section 12.

本実施形態では、波形管3の小径部20の断面形状も大径部10と同様に馬蹄形をなしており、大径部10の円弧部11側に配された円弧部21(第2円弧部)と、直線部11側に配された直線部22(第2直線部)と、一対の側部13に沿う一対の側部23(第2側部)と、を有している。大径部10と小径部20の直線部12,22は互いに平行をなし、側部13,23も互いに平行をなしている。
円弧部11,21の中央の内面間の間隔D1は、直線部12、22の内面間の間隔D2より大である。
In this embodiment, the cross-sectional shape of the small diameter section 20 of the corrugated pipe 3 is also horseshoe-shaped like the large diameter section 10, and has an arc section 21 (second arc section) arranged on the arc section 11 side of the large diameter section 10, a straight section 22 (second straight section) arranged on the straight section 11 side, and a pair of side sections 23 (second side sections) along the pair of side sections 13. The straight sections 12, 22 of the large diameter section 10 and the small diameter section 20 are parallel to each other, and the side sections 13, 23 are also parallel to each other.
A distance D1 between the inner surfaces at the centers of the arcuate portions 11 and 21 is greater than a distance D2 between the inner surfaces of the straight portions 12 and 22 .

波形管3が樹脂製可撓管2を被覆した状態で、小径部20の円弧部21の中央部21a(拘束部)と直線部22の中央部22a(拘束部)の内面が、樹脂製可撓管2の外周面に接している。 When the corrugated pipe 3 covers the flexible plastic pipe 2, the inner surfaces of the central portion 21a (restraint portion) of the arc portion 21 of the small diameter portion 20 and the central portion 22a (restraint portion) of the straight portion 22 are in contact with the outer peripheral surface of the flexible plastic pipe 2.

複合管の配管施工
上記構成の複合管1を建物内で配管する際、樹脂製可撓管2が波形管3で被覆されているので、引き摺っても傷つかない。また、波形管3自身も発泡倍率が4倍以下であるので、耐傷性を確保できる。
樹脂製可撓管2を継手に接続する時には、波形管3を樹脂製可撓管2に対して管軸方向に滑らしながら縮めることで、樹脂製可撓管2の端部を露出させることができ、継手に楽に接続することができる。波形管3は単層の発泡樹脂からなるので、容易に縮めることができる。
When laying the composite pipe 1 in a building , the flexible resin pipe 2 is not damaged even when dragged because it is covered with the corrugated pipe 3. In addition, the corrugated pipe 3 itself has a foaming ratio of 4 times or less, so that scratch resistance can be ensured.
When connecting the flexible resin tube 2 to the joint, the corrugated tube 3 is slid along the axial direction of the flexible resin tube 2 while being contracted, thereby exposing the end of the flexible resin tube 2 and allowing easy connection to the joint. The corrugated tube 3 is made of a single layer of foamed resin, and can be easily contracted.

複合管の床面設置
図2、図3に示すように、複合管1は汎用のサドルバンド4(取付部材)により、コンクリート製の床面5(建物構造体の面)に固定される。サドルバンド4は、例えば金属板からなり、円弧形状の頂部4aと、その両側の脚部4bと、脚部4bの下端から直角に延びる固定部4cとを有している。波形管1の大径部10の直線部12を床面5にほぼ接するようにして沿わせ、円弧部11にサドルバンド4の頂部4aを被せた状態で、固定部4cを床面5に固定することにより、複合管1が床面5に設置される。壁面や天井面に複合管1を設置する場合も同様である。
2 and 3, the composite pipe 1 is fixed to a concrete floor surface 5 (the surface of a building structure) by a general-purpose saddle band 4 (mounting member). The saddle band 4 is made of, for example, a metal plate, and has an arc-shaped top 4a, legs 4b on both sides of the top 4a, and a fixing part 4c extending at a right angle from the lower end of the leg 4b. The straight part 12 of the large diameter part 10 of the corrugated pipe 1 is aligned so as to be almost in contact with the floor surface 5, and the top part 4a of the saddle band 4 is placed over the arc part 11, and the fixing part 4c is fixed to the floor surface 5, whereby the composite pipe 1 is installed on the floor surface 5. The same applies when the composite pipe 1 is installed on a wall surface or a ceiling surface.

複合管の異音抑制効果
上述したように、複合管1がサドルバンド4により床面5に設置された状態で、樹脂製可撓管2が波形管3により管径方向に拘束されている。すなわち、小径部20の円弧部21の中央部21a(拘束部)と直線部22の中央部22a(拘束部)の内面が、樹脂製可撓管2の外周面に接しているため、樹脂製可撓管2は上下方向に拘束されている。また、円弧部21と直線部22との間の間隔が、中央部21a、22aから左右に向かうにしたがって狭くなるため、樹脂製可撓管2は左右方向にも拘束されている。そのため、樹脂製可撓管2の内部を通る水や湯などの流体の圧力、流量、温度などが急変しても、樹脂製可撓管2のバタツキを抑制でき、ウォーターハンマー(水撃)音や熱伸縮音等の異音が発生するのを抑制することができる。
As described above, when the composite pipe 1 is placed on the floor surface 5 by the saddle band 4, the resin flexible pipe 2 is restrained in the pipe diameter direction by the corrugated pipe 3. That is, the inner surfaces of the central portion 21a (restrained portion) of the arc portion 21 of the small diameter portion 20 and the central portion 22a (restrained portion) of the straight portion 22 are in contact with the outer circumferential surface of the resin flexible pipe 2, so that the resin flexible pipe 2 is restrained in the up-down direction. In addition, the interval between the arc portion 21 and the straight portion 22 becomes narrower from the central portions 21a and 22a toward the left and right, so that the resin flexible pipe 2 is also restrained in the left-right direction. Therefore, even if the pressure, flow rate, temperature, etc. of the fluid such as water or hot water passing through the inside of the resin flexible pipe 2 suddenly changes, the fluttering of the resin flexible pipe 2 can be suppressed, and the generation of abnormal sounds such as water hammer sounds and thermal expansion sounds can be suppressed.

波形管3を構成する発泡樹脂が衝撃を吸収することによっても、異音発生をさらに抑制することができる。
樹脂製可撓管2は、蓄熱性を有するコンクリートの床面5に接近して配置されているので、温度の急変を緩和できる。また、異音を減衰することができる。この点からも、異音発生の抑制効果を高めることができる。
The foamed resin constituting the corrugated pipe 3 absorbs shocks, which further suppresses the generation of abnormal noise.
Since the flexible resin pipe 2 is placed close to the concrete floor surface 5, which has heat storage properties, it is possible to mitigate sudden temperature changes and to attenuate abnormal noise. This also contributes to an improved effect of suppressing the generation of abnormal noise.

複合管の保温機能
樹脂製可撓管2と大径部10の円弧部11との間の間隔D1が広いので、両者の間に厚い断熱空気層を形成することができる。また、樹脂製可撓管2と大径部10の側部13との間の間隔D3も、樹脂製可撓管2と直線部12との間隔D2より大きく、厚い断熱空気層が形成されている。樹脂製可撓管2と、小径部20の左右の側部23との間にも空気断熱層が形成されている。
さらに、大径部10の内部空間の下半分は、直線部12と一対の側部13により矩形状に画成されており、その両隅部にも断熱空気層が形成される。同様に、小径部20の両隅部にも断熱空気層が形成される。
上述したように大きな断面積の断熱空気層を確保することができるので、保温機能を高めることができる。
Since the distance D1 between the resin flexible tube 2 and the arcuate portion 11 of the large diameter portion 10 is wide, a thick insulating air layer can be formed between them. The distance D3 between the resin flexible tube 2 and the side portion 13 of the large diameter portion 10 is also larger than the distance D2 between the resin flexible tube 2 and the straight portion 12, forming a thick insulating air layer. An insulating air layer is also formed between the resin flexible tube 2 and the left and right side portions 23 of the small diameter portion 20.
Furthermore, the lower half of the internal space of the large diameter section 10 is defined in a rectangular shape by the straight section 12 and the pair of side sections 13, and insulating air layers are formed at both corners of the rectangular shape. Similarly, insulating air layers are formed at both corners of the small diameter section 20.
As described above, since an insulating air layer with a large cross-sectional area can be secured, the heat retention function can be improved.

波形管3の大径部10の直線部12が床面5と接するか僅かの隙間を介して対峙しており、また小径部20の直線部22と床面5との間の隙間も狭いので、これら直線部12,22と床面5との間への冷気の侵入を抑制することができる。さらに、床面5のコンクリートが断熱材として機能し、波形管3の発泡樹脂層も断熱層として機能する。そのため、保温機能をより一層高めることができる。 The straight section 12 of the large diameter section 10 of the corrugated pipe 3 is in contact with the floor surface 5 or faces it with a small gap therebetween, and the gap between the straight section 22 of the small diameter section 20 and the floor surface 5 is also narrow, so it is possible to prevent cold air from entering between these straight sections 12, 22 and the floor surface 5. Furthermore, the concrete of the floor surface 5 functions as a heat insulating material, and the foamed resin layer of the corrugated pipe 3 also functions as a heat insulating layer. This further enhances the heat retention function.

複合管の製造装置
図4は、複合管1の製造装置100を示す。製造装置100は、発泡樹脂供給部110と、押出ノズル120と、波形管成形部130とを備えている。
詳細な図示は省略するが、発泡樹脂供給部110は、波形管3の原料となる樹脂を受け入れるホッパー、樹脂を加熱溶融するヒータ、発泡剤の添加部、樹脂と発泡剤を混錬して押し出すシリンダー及びスクリューを含む。ホッパー投入前の原料樹脂に発泡剤が含まれていてもよい。なお、発泡樹脂供給部110は図示のように垂直に配置してもよいし、水平に配置してもよい。
4 shows a manufacturing apparatus 100 for the composite pipe 1. The manufacturing apparatus 100 includes a foaming resin supply section 110, an extrusion nozzle 120, and a corrugated pipe forming section .
Although detailed illustration is omitted, the foaming resin supplying section 110 includes a hopper for receiving the resin that is the raw material for the corrugated pipe 3, a heater for heating and melting the resin, a foaming agent adding section, and a cylinder and a screw for kneading and extruding the resin and the foaming agent. The raw material resin before being charged into the hopper may contain a foaming agent. The foaming resin supplying section 110 may be disposed vertically as shown in the figure, or horizontally.

図5に示すように、押出ノズル120は、樹脂製可撓管2が通過する通過口121と、この通過口121を囲むようにして形成された環状の押出口122とを有している。通過口121は円形をなし、その口径は、樹脂製可撓管2の外径とほぼ等しい。
押出口122は、いわゆる馬蹄形をなし、小径部20の円弧部21に対応する円弧形状の第1スリット部122aと、小径部20の直線部22に対応する直線状の第2スリット部122bと、小径部20の一対の側部23に対応する一対の第3スリット部122cと、を有している。
押出口122を画成する径方向外側の面122xは、上述した波形管3の小径部20の断面の外側輪郭とほぼ同形状、同サイズである。押出口122の径方向内側の面122yは、小径部20の断面の内側の輪郭より若干大きく、その第1スリット部122a、第2スリット部122bの中央と通過口121とは、例えば0.5~2mm離れている。
5, the extrusion nozzle 120 has a passage opening 121 through which the flexible resin tube 2 passes, and an annular extrusion opening 122 formed to surround the passage opening 121. The passage opening 121 is circular, and its diameter is approximately equal to the outer diameter of the flexible resin tube 2.
The extrusion port 122 is so-called horseshoe-shaped and has an arc-shaped first slit portion 122a corresponding to the arc portion 21 of the small diameter portion 20, a straight-line second slit portion 122b corresponding to the straight portion 22 of the small diameter portion 20, and a pair of third slit portions 122c corresponding to a pair of side portions 23 of the small diameter portion 20.
A radially outer surface 122x that defines the extrusion port 122 has approximately the same shape and size as the outer contour of the cross section of the small diameter portion 20 of the above-mentioned corrugated pipe 3. A radially inner surface 122y of the extrusion port 122 is slightly larger than the inner contour of the cross section of the small diameter portion 20, and the centers of the first slit portion 122a and the second slit portion 122b are spaced apart from the passage port 121 by, for example, 0.5 to 2 mm.

波形管成形部130(コルゲーター)は、押出ノズル120の押出し方向の下流側(図4において右側)に配置されている。波形管成形部130は、上下2つの長円形の環状軌道131、132と、環状軌道131、132に沿ってそれぞれ並べられ矢印で示すように循環する多数の割型133、134を備えている。2つの環状軌道131、132間に押出ノズル120の軸線が通っている。 The corrugated pipe forming section 130 (corrugator) is located downstream in the extrusion direction of the extrusion nozzle 120 (right side in Figure 4). The corrugated pipe forming section 130 is equipped with two upper and lower elliptical annular tracks 131, 132, and a large number of split dies 133, 134 that are aligned along the annular tracks 131, 132 and circulate as indicated by the arrows. The axis of the extrusion nozzle 120 passes between the two annular tracks 131, 132.

図において上側の環状軌道131に設けられた割型133は、例えば図1~図3に示す波形管20の約上半分を成形するための成形面(図示しない)を有しており、下側の環状軌道132に設けられた割型134は、波形管20の約下半分を成形するための成形面を有している。上下の割型133、134は、押出ノズル120近傍で合わさって筒状の金型対となり、その成形面により複数ピッチの大径部10と小径部20を成形することができる。割型133、134の各成形面において、大径部10を成形するための成形部には吸引口(図示しない)が形成されている。 In the figure, the split mold 133 provided on the upper annular track 131 has a molding surface (not shown) for molding approximately the upper half of the corrugated pipe 20 shown in Figures 1 to 3, for example, and the split mold 134 provided on the lower annular track 132 has a molding surface for molding approximately the lower half of the corrugated pipe 20. The upper and lower split molds 133, 134 are joined near the extrusion nozzle 120 to form a cylindrical mold pair, and the molding surfaces can mold large diameter sections 10 and small diameter sections 20 with multiple pitches. In the molding surfaces of each of the split molds 133, 134, a suction port (not shown) is formed in the molding section for molding the large diameter section 10.

複合管の製造工程
複合管1は、次のようにして製造される。
予め、樹脂製可撓管2を成形して硬化させたり入手したりするなどして、用意しておく。この樹脂製可撓管2が、押出ノズル120の通過口121を通り、押出ノズル120から波形管成形部130へと一定速度で送り出され、循環軌道131,132に並べられて同速度で移動する割型133,134間に送られる。
Manufacturing Process of Composite Pipe The composite pipe 1 is manufactured as follows.
The flexible resin tube 2 is prepared in advance by molding and hardening it, obtaining it, etc. This flexible resin tube 2 passes through a passage port 121 of the extrusion nozzle 120, and is sent out from the extrusion nozzle 120 to the corrugated pipe forming section 130 at a constant speed, and is sent between split dies 133 and 134 arranged on circulation tracks 131 and 132 and moving at the same speed.

発泡樹脂供給部110において、樹脂が加熱溶融され、かつ所定の配合比の発泡剤を添加され所定の発泡倍率(好ましくは1.2倍~4倍)で発泡するようにされたうえで、押出ノズル120へ供給され、押出ノズル120の押出口122から波形管成形部32へ向けて、樹脂製可撓管2と同じ速度で押し出される。 In the foaming resin supply section 110, the resin is heated and melted, and a foaming agent is added in a predetermined compounding ratio to foam at a predetermined expansion ratio (preferably 1.2 to 4 times), and then the resin is supplied to the extrusion nozzle 120, and extruded from the extrusion port 122 of the extrusion nozzle 120 toward the corrugated pipe molding section 32 at the same speed as the flexible resin pipe 2.

押出ノズル120内においては高圧のため樹脂は発泡を開始していない。押出によって樹脂に加わる圧力が低下するために、押出直後から発泡が開始される。
樹脂は、押出口122と実質的に同じ馬蹄形の断面形状の管となって押し出される。管状の樹脂の円弧部および直線部の中央の内面と樹脂製可撓管2の外周面との間には、0.5~2mmの間隙が形成されている。
The resin has not yet started to foam due to the high pressure inside the extrusion nozzle 120. Since the pressure applied to the resin decreases due to extrusion, foaming starts immediately after extrusion.
The resin is extruded into a tube having a horseshoe-shaped cross section that is substantially the same as that of the extrusion port 122. A gap of 0.5 to 2 mm is formed between the inner surface of the center of the arc portion and the straight portion of the tubular resin and the outer circumferential surface of the flexible resin tube 2.

管状の樹脂は、合わさった割型133,134の中に入り、割型133,134の吸引口からのバキュームによって、拡径されて割型133,134の成形面に至り波形管3に成形される。
波形管3は、波形管成形部130を通過する過程で発泡により厚みが管径方向内側に増大する。その結果、小径部20の円弧部21の中央部21aと直線部22の中央部22aが樹脂製可撓管2の外周面と接し、図1~図3に示す断面形状が完成する。
後述する第5実施形態を除き、割型133,134の合わせ面は、拘束部を回避して設けられている。パーティングラインは、拘束部にできないので、拘束部は、設計どおりの柔軟性を得ることができる。また、先に波形管3を作り、後に樹脂製可撓管2を差し込む際、バリが邪魔にならない。
The tubular resin enters the mated split dies 133 and 134 , and is expanded in diameter by the vacuum from the suction ports of the split dies 133 and 134 , reaching the molding surfaces of the split dies 133 and 134 , where it is molded into the corrugated pipe 3 .
The thickness of the corrugated pipe 3 increases radially inward due to foaming while passing through the corrugated pipe forming section 130. As a result, the central portion 21a of the arc portion 21 and the central portion 22a of the straight portion 22 of the small diameter portion 20 come into contact with the outer circumferential surface of the flexible resin pipe 2, completing the cross-sectional shape shown in Figures 1 to 3.
Except for the fifth embodiment described later, the mating surfaces of the split dies 133 and 134 are provided so as to avoid the restraint portion. Since the parting line cannot be a restraint portion, the restraint portion can obtain the flexibility as designed. In addition, when the corrugated pipe 3 is made first and then the flexible resin pipe 2 is inserted, no burrs are generated.

本実施形態では管状の樹脂の押出断面形状を小径部20に合わせて馬蹄形状にしたので、小径部20を成形する際の管状の樹脂の拡径量を実質的にゼロにするか減じることができ、大径部10も類似形状に拡径するので、成形性を高めることができる。
本実施形態において、管状の樹脂の押出断面形状は馬蹄形に制約されず円形または他の形状であってもよい。
In this embodiment, the extrusion cross-sectional shape of the tubular resin is made horseshoe-shaped to match the small diameter section 20, so that the amount of expansion of the tubular resin when molding the small diameter section 20 can be essentially reduced to zero, and the large diameter section 10 also expands to a similar shape, improving moldability.
In this embodiment, the cross-sectional shape of the extruded tubular resin is not limited to a horseshoe shape, but may be a circle or other shape.

次に、本発明の他の実施形態を説明する。以下の実施形態において既述の形態に相当する構成に関しては、図面に同一符号を付して説明を省略する。
<第2実施形態>
図6に示す第2実施形態は、基本的に第1実施形態と同様である。異なるのは、第1実施形態では、全ての小径部20の円弧部21の中央部が樹脂製可撓管2に接して樹脂製可撓管2を拘束していたが、本実施形態では1つおきまたは複数個おきの小径部20の円弧部21の中央部が樹脂製可撓管2に接し、他の小径部20Aの円弧部21Aは樹脂製可撓管2から離れている。この第2実施形態では小径部20と樹脂製可撓管2との間の断熱空気層を増やすことができ、保温性をさらに高めることができる。
Next, another embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the same components as those already described, and the description thereof will be omitted.
Second Embodiment
The second embodiment shown in Fig. 6 is basically the same as the first embodiment. The difference is that in the first embodiment, the centers of the arcuate portions 21 of all the small diameter portions 20 contact the flexible resin tube 2 to restrain the flexible resin tube 2, but in this embodiment, the centers of the arcuate portions 21 of every other or every several small diameter portions 20 contact the flexible resin tube 2, and the arcuate portions 21A of the other small diameter portions 20A are separated from the flexible resin tube 2. In this second embodiment, the insulating air layer between the small diameter portions 20 and the flexible resin tube 2 can be increased, and the heat retention can be further improved.

図6の実施形態では、全ての小径部20の直線部22の中央部が樹脂製可撓管2に接して樹脂製可撓管2を拘束したが、1つおきまたは複数個おきの小径部20の直線部22の中央部が樹脂製可撓管2に接し、他の小径部20の直線部が樹脂製可撓管2から離れていてもよい。 In the embodiment of FIG. 6, the center portions of the straight portions 22 of all small diameter portions 20 contact the flexible resin tube 2 to restrain the flexible resin tube 2, but the center portions of the straight portions 22 of every other or every several small diameter portions 20 may contact the flexible resin tube 2, and the straight portions of the other small diameter portions 20 may be separated from the flexible resin tube 2.

<第3実施形態>
図7、図8に示す第3実施形態では、小径部20Bの円弧部21Bの中央部が樹脂製可撓管2と接しない。その代わりに、円弧部21Bの両側部に管径方向内側に突出した凸部25(拘束部)が形成され、これら凸部25が樹脂製可撓管2と接している。
本実施形態では、直線部22の中央部22aと、この直線部22の両端から周方向に離れた2つの凸部25との3箇所で樹脂製可撓管2を安定して拘束することができる。
第3実施形態において、所定数おきの小径部20Bだけに凸部25を形成してもよい。
Third Embodiment
7 and 8, the center of the arc portion 21B of the small diameter portion 20B does not contact the flexible resin tube 2. Instead, convex portions 25 (restraining portions) that protrude inward in the tube radial direction are formed on both sides of the arc portion 21B, and these convex portions 25 contact the flexible resin tube 2.
In this embodiment, the flexible resin tube 2 can be stably restrained at three points: the central portion 22a of the straight portion 22 and two protruding portions 25 spaced circumferentially from both ends of the straight portion 22.
In the third embodiment, the protrusions 25 may be formed only on every predetermined number of small diameter portions 20B.

<第4実施形態>
図9に示す第4実施形態では、第3実施形態と同様に小径部20Cの円弧部21Cの両側に凸部25が形成されるとともに、直線部22Cの両側にも管径方向内側に突出する凸部26(拘束部)が形成されている。本実施形態では、周方向に離れた4つの凸部25,26が樹脂製可撓管2の外周面に接することにより、樹脂製可撓管2が管径方向に安定して拘束されている。
第4実施形態でも、1つおきまたは複数個おきの小径部だけに凸部25を形成し、他の所定数おきの小径部だけに凸部26を形成してもよい。
なお、本実施形態では、直線部22Cの中央部は樹脂製可撓管2に接してもよいし離れていてもよい。小径部20Cの基本形状は馬蹄形でなくてもよく、円形や四角形にしてもよい。
Fourth Embodiment
9, similarly to the third embodiment, convex portions 25 are formed on both sides of the arc portion 21C of the small diameter portion 20C, and convex portions 26 (restraining portions) that protrude inward in the tube diameter direction are also formed on both sides of the straight portion 22C. In this embodiment, the four convex portions 25, 26 spaced apart in the circumferential direction come into contact with the outer circumferential surface of the flexible resin tube 2, thereby stably restraining the flexible resin tube 2 in the tube diameter direction.
In the fourth embodiment as well, the protrusions 25 may be formed only on every other or every several small diameter portions, and the protrusions 26 may be formed only on the other small diameter portions every other predetermined number of small diameter portions.
In this embodiment, the center of the straight portion 22C may be in contact with or separated from the flexible resin tube 2. The basic shape of the small diameter portion 20C does not have to be a horseshoe shape, and may be a circle or a rectangle.

<第5実施形態>
図10に示す第5実施形態では、小径部20Dの断面形状が円形をなし全周にわたって樹脂製可撓管2の外周面に接している。すなわち、小径部20Dは全周にわたって拘束部を有している。
Fifth Embodiment
10, the small diameter portion 20D has a circular cross-sectional shape and is in contact with the outer circumferential surface of the flexible resin tube 2 over its entire circumference. That is, the small diameter portion 20D has a restraining portion over its entire circumference.

本発明は上記実施形態に制約されず、種々の態様を採用可能である。
小径部による樹脂製可撓管の拘束は、接する代わりに僅かな隙間を介在した状態での拘束を含む。
湾曲凸部は、上記実施形態の半径一定の円弧部に限らず、例えば3以上の直線で山形状としてもよいし、2つの放物線を連ねて山形状としてもよい。
樹脂製可撓管は、円形以外の断面形状であってもよい。例えば第1実施形態において、樹脂製可撓管が馬蹄形をなし、波形管も馬蹄形をなしてその全周が樹脂製可撓管に接していてもよい。
波形管3は、非発泡樹脂でもよく、複層構造であってもよい。
The present invention is not limited to the above-described embodiment, and various aspects can be adopted.
The constraint of the flexible resin tube by the small diameter portion includes a constraint in a state where a small gap is provided instead of contact.
The curved convex portion is not limited to the arc portion of a constant radius as in the above embodiment, but may be formed into a mountain shape by three or more straight lines, or may be formed into a mountain shape by joining two parabolas.
The flexible resin tube may have a cross-sectional shape other than a circle. For example, in the first embodiment, the flexible resin tube may be horseshoe-shaped, and the corrugated tube may also be horseshoe-shaped and be in contact with the flexible resin tube over its entire circumference.
The corrugated pipe 3 may be made of a non-foamed resin and may have a multi-layer structure.

本発明は、例えば給水給湯管に適用できる。 The present invention can be applied to water and hot water supply pipes, for example.

1 複合管
2 樹脂製可撓管
3 波形管
4 サドルバンド(取付部材)
4a 頂部
4c 固定部
5 床面(建物構造体の面)
10 大径部
11 円弧部(湾曲凸部)
12 直線部
13 側部
20、20A,20B,20C、20D 小径部
21 円弧部(第2湾曲凸部)
21a 円弧部の中央部(拘束部)
22 直線部(第2直線部)
22a 第2直線部の中央部(拘束部)
25,26 凸部(拘束部)
100 製造装置
110 発泡樹脂供給部
120 押出ノズル
121 通過口
122 押出口
130 波型菅成形部
1 Composite pipe 2 Flexible resin pipe 3 Corrugated pipe 4 Saddle band (mounting member)
4a Top portion 4c Fixed portion 5 Floor surface (surface of building structure)
10 Large diameter portion 11 Circular arc portion (curved convex portion)
12 Straight portion 13 Side portion 20, 20A, 20B, 20C, 20D Small diameter portion 21 Circular arc portion (second curved convex portion)
21a: Central portion of arc portion (restraint portion)
22 Straight line part (second straight line part)
22a: Central portion of second straight section (restraint section)
25, 26 Convex portion (restraint portion)
100 Manufacturing device 110 Foaming resin supply section 120 Extrusion nozzle 121 Passage port 122 Extrusion port 130 Corrugated tube molding section

Claims (10)

樹脂製可撓管を被覆する可撓性の波形管であって、
発泡樹脂を含み、環状の大径部と小径部を管軸方向に交互に有し、
前記大径部の断面形状が、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有し、
前記小径部が、前記樹脂製可撓管を管径方向に拘束する拘束部を有することを特徴とする波形管。
A flexible corrugated pipe covering a resin flexible pipe,
The tube includes a foamed resin and has annular large diameter portions and small diameter portions alternately in a tube axial direction.
a cross-sectional shape of the large diameter portion has a curved convex portion and a straight portion which are spaced apart from each other and face each other in a first direction, and a pair of side portions which are disposed between both ends of the curved convex portion and both ends of the straight portion and face each other in a second direction perpendicular to the first direction,
A corrugated pipe, wherein the small diameter portion has a restraining portion that restrains the flexible resin pipe in a pipe diameter direction.
樹脂製可撓管と、
発泡樹脂を含み、環状の大径部と小径部を管軸方向に交互に有し、前記樹脂製可撓管を被覆する可撓性の波形管と、
を備えた複合管であって、
前記大径部の断面形状が、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有し、
前記小径部が、前記樹脂製可撓管を管径方向に拘束する拘束部を有することを特徴とする複合管。
A resin flexible tube;
a flexible corrugated pipe that contains a foamed resin, has annular large diameter portions and small diameter portions alternately arranged in a pipe axial direction, and covers the flexible resin pipe;
A composite pipe comprising:
a cross-sectional shape of the large diameter portion has a curved convex portion and a straight portion which are spaced apart from each other and face each other in a first direction, and a pair of side portions which are disposed between both ends of the curved convex portion and both ends of the straight portion and face each other in a second direction perpendicular to the first direction,
A composite pipe, wherein the small diameter portion has a restraining portion that restrains the flexible resin pipe in a pipe diameter direction.
前記樹脂製可撓管は、前記小径部の前記拘束部によって、前記第1方向において前記大径部の前記湾曲凸部より前記直線部に近い位置で拘束されていることを特徴とする請求項2に記載の複合管。 The compound pipe according to claim 2, characterized in that the resin flexible pipe is restrained by the restraining portion of the small diameter portion at a position closer to the straight portion in the first direction than the curved convex portion of the large diameter portion. 前記樹脂製可撓管は前記拘束部により、前記第2方向において前記大径部の前記一対の側部間の中央で拘束されていることを特徴とする請求項3に記載の複合管。 The compound pipe according to claim 3, characterized in that the flexible resin pipe is restrained in the second direction by the restraining portion at the center between the pair of side portions of the large diameter portion. 前記小径部の断面形状が、前記大径部の前記湾曲凸部側に位置する第2湾曲凸部と、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部と、前記大径部の前記一対の側部に沿う一対の第2側部とを有し、前記第2湾曲凸部の中央部と前記第2直線部の中央部が前記拘束部として提供されることを特徴とする請求項4に記載複合管。 The compound pipe described in claim 4, characterized in that the cross-sectional shape of the small diameter portion has a second curved convex portion located on the curved convex portion side of the large diameter portion, a second straight portion located on the straight portion side of the large diameter portion and parallel to the straight portion, and a pair of second side portions along the pair of side portions of the large diameter portion, and the center of the second curved convex portion and the center of the second straight portion are provided as the restraint portion. 前記小径部が、周方向に離間した少なくとも3つの拘束部を有していることを特徴とする請求項4に記載の複合管。 The compound pipe according to claim 4, characterized in that the small diameter portion has at least three restraint portions spaced apart in the circumferential direction. 前記小径部が、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部を有するとともに、前記第2直線部の両端から周方向に離間して径方向、内側に突出する2つの凸部を有し、前記第2直線部の中央部と前記凸部が、前記拘束部として提供されることを特徴とする請求項6に記載の複合管。 The compound pipe according to claim 6, characterized in that the small diameter section has a second straight section located on the straight section side of the large diameter section and parallel to the straight section, and has two convex sections that protrude radially inwardly from both ends of the second straight section and are spaced apart in the circumferential direction, and the central section of the second straight section and the convex sections are provided as the restraint section. 請求項2~7のいずれかに記載の複合管の前記大径部の前記直線部を建物構造体の面に沿わせ、取付部材の円弧形状の頂部を前記大径部の前記湾曲凸部に被せた状態で、前記取付部材の一対の固定部を前記建物構造体の面に固定することにより、前記複合管を前記建物構造体の面に設置することを特徴とする複合管の設置方法。 A method for installing a composite pipe, comprising: aligning the straight portion of the large diameter portion of the composite pipe according to any one of claims 2 to 7 along the surface of the building structure; placing the arc-shaped apex of the mounting member over the curved convex portion of the large diameter portion; and fixing a pair of fixing portions of the mounting member to the surface of the building structure, thereby installing the composite pipe on the surface of the building structure. 樹脂製可撓管と、環状の大径部と小径部が管軸方向に交互に形成され前記樹脂製可撓管を被覆する可撓性の波形管と、を備えた複合管を製造する方法であって、
前記樹脂製可撓管を押出ノズルの通過口から波形管成形部へ送り出し、
前記波形管となる樹脂を所定の発泡倍率で発泡されるようにして前記押出ノズルに供給して、前記押出ノズルの前記通過口を囲む環状の押出口から前記樹脂を管状にして前記波形管成形部へ押し出し、
前記波形管成形部は、前記大径部と前記小径部を管軸方向に交互に成形するための成形面を有し、前記成形面を管軸方向に移動させながら管状の樹脂を管径方向に拡げることにより、前記波形管を成形し、
前記波形管の成形工程において、前記大径部の断面形状を、第1方向に互いに離間対向する湾曲凸部および直線部と、前記湾曲凸部の両端と前記直線部の両端との間に配置されるとともに前記第1方向と直交する第2方向に対向する一対の側部とを有する形状にし、
前記前記波形管の成形工程において、前記樹脂の発泡により前記小径部の内周面を管径方向内側に変位させ、これにより、前記樹脂製可撓管を管径方向に拘束する拘束部を形成することを特徴とする複合管の製造方法。
A method for manufacturing a composite pipe including a flexible resin pipe and a flexible corrugated pipe having annular large diameter portions and small diameter portions alternately formed in an axial direction thereof and covering the flexible resin pipe, comprising the steps of:
The flexible resin tube is fed from an opening of an extrusion nozzle to a corrugated tube forming section,
The resin that will become the corrugated pipe is foamed at a predetermined foaming ratio and supplied to the extrusion nozzle, and the resin is extruded into a tubular shape from an annular extrusion port surrounding the passage port of the extrusion nozzle to the corrugated pipe forming section;
the corrugated pipe forming section has a forming surface for forming the large diameter portion and the small diameter portion alternately in a pipe axial direction, and the corrugated pipe is formed by expanding the tubular resin in a pipe radial direction while moving the forming surface in the pipe axial direction;
In the forming process of the corrugated pipe, the cross-sectional shape of the large diameter portion is formed to have a curved convex portion and a straight portion which are spaced apart from each other and opposed to each other in a first direction, and a pair of side portions which are disposed between both ends of the curved convex portion and both ends of the straight portion and which face each other in a second direction perpendicular to the first direction,
A method for manufacturing a composite pipe, characterized in that, in the corrugated pipe molding process, the inner surface of the small diameter portion is displaced radially inward by foaming the resin, thereby forming a restraining portion that restrains the flexible resin pipe in the radial direction.
前記押出口が、前記第1方向に互いに離間対向する円弧形状の第1スリット部および直線状の第2スリット部と、前記第1スリット部の両端と前記第2スリット部の両端との間に配置されるとともに前記第2方向に対向する一対の第3スリット部とを有し、
前記波形管成形部は、前記小径部を、前記大径部の前記湾曲凸部側に位置する第2湾曲凸部と、前記大径部の前記直線部側に位置し前記直線部と平行な第2直線部と、前記大径部の前記一対の側部に沿う一対の第2側部と、を有する断面形状に成形し、
前記樹脂の発泡により、前記第2湾曲凸部の中央部と前記第2直線部の中央部が、前記樹脂製可撓管を拘束する前記拘束部として提供されることを特徴とする請求項9に記載の複合管の製造方法。
the extrusion port has an arc-shaped first slit portion and a linear second slit portion spaced apart from each other and facing each other in the first direction, and a pair of third slit portions disposed between both ends of the first slit portion and both ends of the second slit portion and facing each other in the second direction,
the corrugated pipe forming portion forms the small diameter portion into a cross-sectional shape having a second curved convex portion located on the curved convex portion side of the large diameter portion, a second straight portion located on the straight portion side of the large diameter portion and parallel to the straight portion, and a pair of second side portions along the pair of side portions of the large diameter portion,
The method for manufacturing a composite pipe according to claim 9, characterized in that, by foaming the resin, a central portion of the second curved convex portion and a central portion of the second straight portion are provided as the restraining portion that restrains the flexible resin pipe.
JP2021026249A 2021-02-22 2021-02-22 Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes Active JP7522681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021026249A JP7522681B2 (en) 2021-02-22 2021-02-22 Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021026249A JP7522681B2 (en) 2021-02-22 2021-02-22 Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes

Publications (2)

Publication Number Publication Date
JP2022127983A JP2022127983A (en) 2022-09-01
JP7522681B2 true JP7522681B2 (en) 2024-07-25

Family

ID=83061277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021026249A Active JP7522681B2 (en) 2021-02-22 2021-02-22 Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes

Country Status (1)

Country Link
JP (1) JP7522681B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106759A (en) 2000-09-28 2002-04-10 Piolax Inc Corrugated tube
JP2010210041A (en) 2009-03-11 2010-09-24 Furukawa Electric Co Ltd:The Protective tube for water/hot water supply pipe, and water and hot water supply pipe
US20110259040A1 (en) 2008-11-17 2011-10-27 Industrie Ilpea S.P.A. Refrigeration circuit
JP2017226144A (en) 2016-06-22 2017-12-28 株式会社ブリヂストン Manufacturing method of composite tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106759A (en) 2000-09-28 2002-04-10 Piolax Inc Corrugated tube
US20110259040A1 (en) 2008-11-17 2011-10-27 Industrie Ilpea S.P.A. Refrigeration circuit
JP2010210041A (en) 2009-03-11 2010-09-24 Furukawa Electric Co Ltd:The Protective tube for water/hot water supply pipe, and water and hot water supply pipe
JP2017226144A (en) 2016-06-22 2017-12-28 株式会社ブリヂストン Manufacturing method of composite tube

Also Published As

Publication number Publication date
JP2022127983A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US8820801B2 (en) Multi-wall corrugated pipe couplings and methods
JP3261969B2 (en) Hose and manufacturing method
JP6885767B2 (en) Pipe fitting
EP1156253A1 (en) Corrugated resin tube
JP7522681B2 (en) Corrugated pipes, composite pipes, and methods for installing and manufacturing composite pipes
JP6706158B2 (en) Manufacturing method of composite pipe
KR102709712B1 (en) Fluid duct
JP2006064173A (en) Corrugated composite tube
JP2005125757A (en) Method for producing tube resin joint and tube resin joint produced by the method
JP7397601B2 (en) Composite pipe manufacturing method and manufacturing device, and composite pipe
JP2010210041A (en) Protective tube for water/hot water supply pipe, and water and hot water supply pipe
JP2003161392A (en) Thermal expanding annular joint member with fire resistance for fire resisting double layer pipe joint
JP2024051563A (en) Heat insulation joint and pipe structure
JP2024109449A (en) Manufacturing method of composite pipe
JP2003214563A (en) Synthetic resin rigid pipe having flexible part
FI127375B (en) Tube and method of making the tube
JP2024027304A (en) Composite tube and manufacturing method thereof
JP2001050466A (en) Pipe joint built-in foam layer
JP7480006B2 (en) Socket member for multi-layer joint, multi-layer joint and piping system
JP2009270608A (en) Synthetic resin pipe and its connection structure
JP7479906B2 (en) Manufacturing method of lower connection part, manufacturing method of collective joint, collective joint
JP2021139500A (en) Wave shaped cover pipe and manufacturing method of the same
JP2019124244A (en) Pipe fixation structure and pipe fixation method
JP7358143B2 (en) Installation structure of pipe fittings and pipe fittings
JP7416590B2 (en) Double pipe joint and method for manufacturing double pipe joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240712

R150 Certificate of patent or registration of utility model

Ref document number: 7522681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150