JP7521943B2 - Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method - Google Patents
Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method Download PDFInfo
- Publication number
- JP7521943B2 JP7521943B2 JP2020101475A JP2020101475A JP7521943B2 JP 7521943 B2 JP7521943 B2 JP 7521943B2 JP 2020101475 A JP2020101475 A JP 2020101475A JP 2020101475 A JP2020101475 A JP 2020101475A JP 7521943 B2 JP7521943 B2 JP 7521943B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mass
- homogenization treatment
- heating
- heating temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 116
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 238000000265 homogenisation Methods 0.000 claims description 119
- 238000010438 heat treatment Methods 0.000 claims description 115
- 238000011282 treatment Methods 0.000 claims description 86
- 238000000034 method Methods 0.000 claims description 61
- 238000012360 testing method Methods 0.000 claims description 44
- 238000001192 hot extrusion Methods 0.000 claims description 30
- 229910052748 manganese Inorganic materials 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 10
- 238000001125 extrusion Methods 0.000 description 49
- 238000005219 brazing Methods 0.000 description 24
- 230000007423 decrease Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000005266 casting Methods 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 239000000956 alloy Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C29/00—Cooling or heating work or parts of the extrusion press; Gas treatment of work
- B21C29/003—Cooling or heating of work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/151—Making tubes with multiple passages
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Extrusion Of Metal (AREA)
Description
本発明は、熱交換器用アルミニウム合金押出多穴チューブ及びその製造方法に関する。 The present invention relates to an aluminum alloy extruded multi-hole tube for heat exchangers and a method for manufacturing the same.
エバポレータ、コンデンサなどの自動車用アルミニウム合金製熱交換器において、流体の通路材として複数の仕切りによって区画された複数の中空部を有するアルミニウム合金押出多穴チューブが使用されている。近年、自動車の軽量化のために、自動車に搭載される熱交換器の軽量化が進行しており、熱交換器用アルミニウム合金材をさらに薄肉化することが要請されている。 In aluminum alloy heat exchangers for automobiles, such as evaporators and condensers, aluminum alloy extruded multi-hole tubes with multiple hollow sections partitioned by multiple partitions are used as fluid passage materials. In recent years, in order to reduce the weight of automobiles, the weight of heat exchangers installed in automobiles has been reduced, and there is a demand for further thinning of aluminum alloy materials for heat exchangers.
薄肉化のためには素材の強度を向上させる必要がある。さらに自動車用熱交換器では各部材の接合のためにろう付を行っていることから、素材の強度だけでなくろう付後にも高い強度を有している必要がある。 To make the material thinner, it is necessary to improve its strength. Furthermore, because automotive heat exchangers use brazing to join the various components, it is necessary for the material to have high strength not only in itself but also after brazing.
一方で、アルミニウム合金製押出多穴チューブでは、押出比(押出コンテナの断面積/押出材の断面積) が数百~数千に達するため、単純にアルミニウム合金製押出多穴チューブの強度を向上させたのみでは、押出時の圧力が過度に上昇して材料製造の難易度が増し、生産性が大きく低下してしまう。このため、ろう付後の強度のみではなく同時に押出性も向上させた材料が求められている。 On the other hand, with extruded multi-hole aluminum alloy tubes, the extrusion ratio (cross-sectional area of extruded container/cross-sectional area of extruded material) can reach hundreds to thousands, so simply improving the strength of extruded multi-hole aluminum alloy tubes would result in an excessive increase in pressure during extrusion, making material manufacturing more difficult and significantly reducing productivity. For this reason, there is a demand for materials that not only have improved strength after brazing, but also have improved extrudability.
高強度アルミニウム合金材を得るためには、一般にSi、Fe、Cu、Mn、Mgなどの合金元素の添加が有効である。ただし、Mgについては、現在アルミニウム合金製熱交換器の組立てにおいて、ろう付法の主流となっているフッ化物系フラックスを用いる不活性ガス雰囲気ろう付を行う際、フッ化物系フラックスが材料中のMgと反応してフラックスの活性度が低くなってろう付性が低下してしまうため、積極的に添加することは好ましくない。さらに、Mgは押出時の圧力を高めてしまうため、製造性が著しく低下する側面も有する。Cuについては、熱交換器の作動環境によっては、材料中にCuが含有されていると粒界腐食感受性が大きくなる懸念がある。 In order to obtain high-strength aluminum alloy materials, it is generally effective to add alloying elements such as Si, Fe, Cu, Mn, and Mg. However, it is not advisable to actively add Mg when assembling aluminum alloy heat exchangers. When brazing in an inert gas atmosphere using fluoride-based flux, which is currently the mainstream brazing method, the fluoride-based flux reacts with the Mg in the material, reducing the activity of the flux and reducing brazing properties. Furthermore, Mg increases the pressure during extrusion, which significantly reduces manufacturability. As for Cu, there is a concern that the presence of Cu in the material may increase susceptibility to intergranular corrosion, depending on the operating environment of the heat exchanger.
上記理由から、押出多穴チューブにおいてはSi、Fe、Mn添加により強度を高めることが試みられている。例えば、特許文献1には、Mn、Siを同時添加することにより押出チューブとしての強度を向上させる手法が開示されている。しかしながら、開示されている方法は成分の調整のみであり、具体的な製造方法については記載が不十分である。また、特許文献2には、均質化処理により添加されたMnの固溶・析出状態を制御する手法が開示されている。一方、該押出チューブの製造時に懸念される生産性の課題については記載がない。 For the above reasons, attempts have been made to increase the strength of extruded multi-hole tubes by adding Si, Fe, and Mn. For example, Patent Document 1 discloses a method for improving the strength of an extruded tube by simultaneously adding Mn and Si. However, the disclosed method only involves adjusting the components, and the specific manufacturing method is not described sufficiently. Patent Document 2 discloses a method for controlling the solid solution and precipitation state of the added Mn by homogenization treatment. However, there is no mention of the productivity issues that may be of concern when manufacturing such extruded tubes.
上記添加元素のうち、Mn、Siは、高強度化を容易に達成しうる元素ではあるが、これらの元素一般的な手法で高濃度に添加した場合、アルミニウムの母相中に固溶したMn、Siが熱間における変形抵抗を増加させ、押出性が極端に劣る。 Of the above added elements, Mn and Si are elements that can easily achieve high strength, but when these elements are added in high concentrations using common methods, the Mn and Si that are dissolved in the aluminum matrix increase the deformation resistance during hot working, resulting in extremely poor extrudability.
これに対し、高温の均質化処理と低温の均質化処理を行うことにより母相中の溶質元素の固溶量を減少させ変形抵抗を低下させようとする試みが見られるが、押出性については十分確保されているとは言い難い。 In response to this, there have been attempts to reduce the amount of solute elements dissolved in the parent phase and to lower the deformation resistance by performing high-temperature and low-temperature homogenization treatments, but it is difficult to say that extrudability is sufficiently ensured.
また、Feは強度向上に一定の効果は有するものの、鋳造時に粗大なAlFeMn系化合物を形成しやすく、これが押出工具の摩耗を早める原因となりうるため積極的な添加は好ましくない。 Although Fe has a certain effect in improving strength, it is prone to forming coarse AlFeMn compounds during casting, which can accelerate wear on the extrusion tool, so its active addition is not recommended.
このように、高強度の押出多穴チューブを製造するためには、Mn、Siの添加により強度を向上させつつ、押出性をさらに向上させる必要があった。 Thus, in order to manufacture high-strength extruded multi-hole tubes, it was necessary to improve extrusion properties while also increasing strength through the addition of Mn and Si.
従って、本発明の目的は、押出性に優れ且つろう付後に高い強度を有する熱交換器用アルミニウム合金押出多穴チューブ及びその製造方法を提供することにある。 The object of the present invention is therefore to provide an aluminum alloy extruded multi-hole tube for heat exchangers that has excellent extrudability and high strength after brazing, and a method for manufacturing the same.
本発明者らは、Mn、Siを添加した押出多穴チューブ用合金において、押出性をさらに改良することを目的に検討を重ねた結果、Mn、Siの含有範囲及び両元素の含有比を規定し、更に、適切な均質化処理によって微細なAlMnSi化合物を析出させることにより、押出前の固溶量を低減して押出性を向上させ、更に、その後ろう付加熱時に前記AlMnSi化合物を再度固溶させることでろう付後の強度を向上させることができることを見出し、本発明を完成させるに至った。 The inventors conducted extensive research aimed at further improving the extrudability of alloys for extruded multi-hole tubes to which Mn and Si have been added. As a result, they discovered that by specifying the range of Mn and Si content and the content ratio of the two elements, and by precipitating fine AlMnSi compounds by an appropriate homogenization treatment, the amount of solid solution before extrusion can be reduced and extrudability can be improved, and further, by re-solubilizing the AlMnSi compounds during the subsequent brazing heating, the strength after brazing can be improved, thereby completing the present invention.
すなわち、本発明(1)は、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAl及び不可避的不純物からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上であるアルミニウム合金からなり、
600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が、-5MPa以上であること、
を特徴とする熱交換器用アルミニウム合金押出多穴チューブを提供するものである。
That is, the present invention (1) is an aluminum alloy containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the balance being Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15.0 or more;
The change in strength in a heating test at 600°C±10°C for 3 minutes (tensile strength of the aluminum alloy after the heating test (A) - tensile strength of the aluminum alloy before the heating test (B)) is -5 MPa or more.
The present invention provides an aluminum alloy extruded multi-hole tube for heat exchangers, characterized in that
また、本発明(2)は、更に、0.10質量%以下(0.00質量%を含む。)のTi及び0.05質量以下(0.00質量%を含む。)のCuのうちの1種又は2種を含有することを特徴とする(1)の熱交換器用アルミニウム合金押出多穴チューブを提供するものである。 The present invention (2) also provides an aluminum alloy extruded multi-hole tube for heat exchangers according to (1), further comprising one or both of 0.10 mass % or less (including 0.00 mass %) of Ti and 0.05 mass % or less (including 0.00 mass %) of Cu.
また、本発明(3)は、前記加熱試験における強度変化が、-5~+10MPaであることを特徴とする(1)又は(2)の熱交換器用アルミニウム合金押出多穴チューブを提供するものである。 The present invention (3) also provides an aluminum alloy extruded multi-hole tube for heat exchangers according to (1) or (2), characterized in that the change in strength during the heating test is -5 to +10 MPa.
また、本発明(4)は、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上である鋳塊に、550~650℃の加熱温度で2時間以上加熱する第一均質化処理を行い、その後450~540℃の加熱温度で3時間以上加熱する第二均質化処理を行うことにより、2段階均質化処理前後の鋳塊の導電率変化(第二均質化処理後の鋳塊の導電率(C)-第一均質化処理前の鋳塊の導電率(D))を20%IACS以上とする2段階均質化処理と、
熱間押出時の加熱温度と該第二均質化処理の加熱温度との差(熱間押出時の加熱温度-第二均質化処理の加熱温度)の絶対値が50℃以下となる加熱温度で、該2段階均質化処理の処理物を熱間押出加工する熱間押出工程と、
を有し、600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が-5MPa以上である熱交換器用アルミニウム合金押出多穴チューブを得ることを特徴とする熱交換器用アルミニウム合金押出多穴チューブの製造方法を提供するものである。
In addition, the present invention (4) is a two-stage homogenization treatment in which an ingot containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, and the balance being made of Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15.0 or more is heated at a heating temperature of 550 to 650 ° C. for 2 hours or more, and then heated at a heating temperature of 450 to 540 ° C. for 3 hours or more, thereby making the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment (electrical conductivity of the ingot after the second homogenization treatment (C) - electric conductivity of the ingot before the first homogenization treatment (D)) 20% IACS or more;
A hot extrusion process in which the product of the two-stage homogenization process is hot extruded at a heating temperature such that the absolute value of the difference between the heating temperature during hot extrusion and the heating temperature during the second homogenization process (heating temperature during hot extrusion - heating temperature during the second homogenization process) is 50 ° C. or less;
and a method for producing an extruded multi-hole aluminum alloy tube for heat exchangers, which is characterized by obtaining an extruded multi-hole aluminum alloy tube for heat exchangers having a strength change (tensile strength of the aluminum alloy after the heating test (A) - tensile strength of the aluminum alloy before the heating test (B)) of -5 MPa or more in a heating test at 600°C ± 10° C for 3 minutes.
また、本発明(5)は、更に、前記鋳塊のアルミニウム合金が、0.10質量%以下(0.00質量%を含む。)のTi及び0.05質量以下(0.00質量%を含む。)のCuのうちの1種又は2種を含有することを特徴とする(4)の熱交換器用アルミニウム合金押出多穴チューブの製造方法を提供するものである。 The present invention (5) also provides a method for producing an aluminum alloy extruded multi-hole tube for a heat exchanger according to (4), characterized in that the aluminum alloy of the ingot contains one or both of 0.10 mass % or less (including 0.00 mass %) of Ti and 0.05 mass % or less (including 0.00 mass %) of Cu.
また、本発明(6)は、前記2段階均質化処理において、前記第一均質化処理の後、連続して平均降温速度20~60℃/hで前記第二均質処理の加熱温度まで降温し、連続して前記第二均質化処理を実施することを特徴とする(4)又は(5)の熱交換器用アルミニウム合金押出多穴チューブの製造方法を提供するものである。 The present invention (6) also provides a method for producing an aluminum alloy extruded multi-hole tube for a heat exchanger according to (4) or (5), characterized in that, in the two-stage homogenization treatment, after the first homogenization treatment, the temperature is continuously lowered to the heating temperature of the second homogenization treatment at an average temperature drop rate of 20 to 60°C/h, and the second homogenization treatment is continuously performed.
また、本発明(7)は、前記2段階均質化処理において、前記第一均質化処理の後、一度常温まで冷却し、その後平均昇温速度20~60℃/hで前記第二均質化処理の加熱温度まで昇温し、連続して前記第二均質化処理を実施することを特徴とする(4)又は(5)の熱交換器用アルミニウム合金押出多穴チューブの製造方法を提供するものである。 The present invention (7) also provides a method for producing an aluminum alloy extruded multi-hole tube for a heat exchanger according to (4) or (5), characterized in that in the two-stage homogenization treatment, after the first homogenization treatment, the tube is cooled to room temperature once, and then heated to the heating temperature of the second homogenization treatment at an average heating rate of 20 to 60°C/h, and the second homogenization treatment is continuously performed.
本発明によれば、押出性に優れ且つろう付後に高い強度を有する熱交換器用アルミニウム合金押出多穴チューブ及びその製造方法を提供することができる。 The present invention provides an aluminum alloy extruded multi-hole tube for heat exchangers that has excellent extrudability and high strength after brazing, and a method for manufacturing the same.
本発明の熱交換器用アルミニウム合金押出多穴チューブは、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAl及び不可避的不純物からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上であるアルミニウム合金からなり、
600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が、-5MPa以上であること、
を特徴とする熱交換器用アルミニウム合金押出多穴チューブである。
The aluminum alloy extruded multi-hole tube for heat exchangers of the present invention is made of an aluminum alloy containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the balance being Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15.0 or more;
The change in strength in a heating test at 600°C ± 10°C for 3 minutes (tensile strength of the aluminum alloy after the heating test (A) - tensile strength of the aluminum alloy before the heating test (B)) is -5 MPa or more.
The present invention relates to an aluminum alloy extruded multi-hole tube for heat exchangers.
本発明の熱交換器用アルミニウム合金押出多穴チューブは、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAl及び不可避的不純物からなり、Si含有量に対するMn含有量の比(Mn/Si)が15以上であるアルミニウム合金からなる。言い換えると、本発明の熱交換器用アルミニウム合金押出多穴チューブは、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAl及び不可避的不純物からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上であるアルミニウム合金の押出成形体である。 The aluminum alloy extruded multi-hole tube for heat exchangers of the present invention is made of an aluminum alloy containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the remainder consisting of Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15 or more. In other words, the aluminum alloy extruded multi-hole tube for heat exchangers of the present invention is an extruded aluminum alloy body containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the remainder consisting of Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15.0 or more.
本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金は、Mnを含有する。Mnは、ろう付加熱において母相中に固溶し、強度を高める。アルミニウム合金中のMn含有量は、0.60~1.80質量%、好ましくは1.00~1.80質量%である。アルミニウム合金中のMn含有量が、上記範囲にあることにより、押出成形性に優れ且つろう付加熱後の強度が高くなる。一方、アルミニウム合金中のMn含有量が、上記範囲未満だと、熱交換器用チューブとして必要な強度を達成できず、また、上記範囲を超えると、強度向上効果よりも押出性の低下が顕著に現れる。 The aluminum alloy of the present invention, which is an aluminum alloy extrusion multi-hole tube for heat exchangers, contains Mn. Mn dissolves in the parent phase during brazing heating, increasing strength. The Mn content in the aluminum alloy is 0.60-1.80 mass%, preferably 1.00-1.80 mass%. By having the Mn content in the aluminum alloy within the above range, the aluminum alloy has excellent extrusion formability and high strength after brazing heating. On the other hand, if the Mn content in the aluminum alloy is less than the above range, the strength required for a heat exchanger tube cannot be achieved, and if it exceeds the above range, the decrease in extrudability becomes more noticeable than the effect of improving strength.
本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金は、Siを含有する。Siは、ろう付加熱において母相中に固溶し、強度を高める。アルミニウム合金中のSi含有量は、0.00質量%を超え0.20質量%未満、好ましくは0.05~0.15質量%である。アルミニウム合金中のSi含有量が、上記範囲にあることにより、押出成形性に優れ且つろう付加熱後の強度が高くなる。一方、アルミニウム合金中のSi含有量が、上記範囲未満だと、熱交換器用チューブとして必要な強度を達成できず、また、上記範囲を超えると、強度向上効果よりも押出性の低下が顕著に現れる。 The aluminum alloy of the present invention, which is an aluminum alloy extrusion multi-hole tube for heat exchangers, contains Si. Si dissolves in the parent phase during brazing heating, increasing strength. The Si content in the aluminum alloy is more than 0.00% by mass and less than 0.20% by mass, preferably 0.05 to 0.15% by mass. By having the Si content in the aluminum alloy within the above range, the aluminum alloy has excellent extrusion formability and high strength after brazing heating. On the other hand, if the Si content in the aluminum alloy is less than the above range, the strength required for a heat exchanger tube cannot be achieved, and if it exceeds the above range, the decrease in extrudability is more noticeable than the effect of improving strength.
本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金中、アルミニウム合金中のSi含有量に対するMn含有量の比(Mn/Si)は、15.0以上、好ましくは16.0~40.0である。アルミニウム合金中のMn及びSiの含有量を上記範囲に規定することに加えて、Si含有量に対するMn含有量の比(Mn/Si)を上記範囲とし、更に、後述する2段階均質化処理を施すことにより、優れた押出性のアルミニウム合金となる。一方、アルミニウム合金中のMn/Si比が、上記範囲未満だと、熱交換器として所望の強度が得られない場合がある。 In the aluminum alloy of the present invention, the ratio of the Mn content to the Si content in the aluminum alloy in the extruded multi-hole aluminum alloy tube for heat exchangers is 15.0 or more, preferably 16.0 to 40.0. In addition to specifying the Mn and Si contents in the aluminum alloy within the above ranges, by setting the ratio of the Mn content to the Si content (Mn/Si) within the above range and further performing the two-stage homogenization treatment described below, an aluminum alloy with excellent extrudability is obtained. On the other hand, if the Mn/Si ratio in the aluminum alloy is less than the above range, the desired strength as a heat exchanger may not be obtained.
本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金は、Tiを含有することができる。Tiは、耐食性をさらに向上させるため、また鋳造時の組織を適切に制御するために、アルミニウム合金に添加される。アルミニウム合金中のTi含有量は、0.10質量%以下、好ましくは0%を超え0.06質量%以下である。Tiは、アルミニウム合金中において、高濃度の領域と低濃度の領域を形成し、これらの領域が材料の肉厚方向に交互に層状に分布し、Tiが低濃度の領域は高濃度の領域に比べて優先的に腐食するため、腐食形態が層状となり、このため、肉厚方向への腐食の進行が妨げられ、 耐孔食性性及び耐粒界腐食性が向上する。アルミニウム合金のTi含有量が上記範囲を超えると、鋳造時に粗大な化合物が生成して押出性を損なう懸念がある。 The aluminum alloy of the present invention for the aluminum alloy extruded multi-hole tube for heat exchangers may contain Ti. Ti is added to the aluminum alloy to further improve corrosion resistance and to appropriately control the structure during casting. The Ti content in the aluminum alloy is 0.10 mass% or less, preferably more than 0% and 0.06 mass% or less. Ti forms high-concentration and low-concentration regions in the aluminum alloy, and these regions are distributed in layers alternately in the thickness direction of the material. The low-concentration regions corrode preferentially compared to the high-concentration regions, resulting in a layered corrosion form. This prevents the progression of corrosion in the thickness direction, and improves pitting corrosion resistance and intergranular corrosion resistance. If the Ti content of the aluminum alloy exceeds the above range, there is a concern that coarse compounds will be generated during casting, impairing extrusion properties.
本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金は、Cuを含有することができる。Cuは、ろう付時の入熱により固溶して強度を向上させる効果を有する。アルミニウム合金中のCu含有量は、0.05質量%以下である。アルミニウム合金のCu含有量が上記範囲を超えると、自動車用熱交換器として想定される腐食環境下で使用した場合に、粒界腐食が生じ易くなり、耐食性が低くなる。 The aluminum alloy of the present invention for the aluminum alloy extruded multi-hole tube for heat exchangers can contain Cu. Cu has the effect of improving strength by forming a solid solution due to the heat input during brazing. The Cu content in the aluminum alloy is 0.05 mass% or less. If the Cu content of the aluminum alloy exceeds the above range, intergranular corrosion is likely to occur and the corrosion resistance is reduced when the aluminum alloy is used in a corrosive environment expected for an automobile heat exchanger.
なお、本発明の熱交換器用アルミニウム合金押出多穴チューブに係るアルミニウム合金は、本発明の効果を損なわない範囲で、0.10質量%以下のBを含有していてもよく、また、Cr、Zn、Zrなどの不純物の含有は、総量で0.25質量%以下の範囲であれば許容される。 The aluminum alloy for the aluminum alloy extruded multi-hole tube for heat exchangers of the present invention may contain up to 0.10 mass% B as long as it does not impair the effects of the present invention, and impurities such as Cr, Zn, and Zr are permitted to be present in a total amount of up to 0.25 mass%.
本発明のアルミニウム合金押出多穴チューブは、600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が、-5MPa以上、好ましくは-5~+10MPa、特に好ましくは-5~+5MPaである。アルミニウム合金押出多穴チューブの上記加熱試験における強度変化が、上記範囲にあることにより、ろう付加熱後のチューブの強度が高くなる、あるいは、ろう付加熱によりチューブの強度が低下し過ぎない。上記加熱試験における強度変化は、先ず、加熱試験前のチューブの引張強度(A)を測定し、次いで、600℃±10℃で、3分間チューブを加熱した後、加熱試験後のチューブの引張強度(B)を測定し、得られる試験結果から、「加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B)」の式により、加熱試験における強度変化を算出して求められる。なお、加熱試験における強度変化が-5MPa以上であるとは、「加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B)」の値>-5MPaのことであり、(i)引張強度(A)と引張強度(B)が同じであること、(ii)引張強度(A)が引張強度(B)に比べ大きいこと、及び(iii)引張強度(A)が引張強度(B)に比べ小さいが、その差の絶対値が5MPa以内であること、すなわち、(i)(A)-(B)=0MPa、(ii)(A)-(B)>0MPa、及び(iii)-5MPa<(A)-(B)<0MPaのうちのいずれかであることを指す。 The aluminum alloy extrusion multi-hole tube of the present invention has a strength change (tensile strength of aluminum alloy after heating test (A) - tensile strength of aluminum alloy before heating test (B)) in a heating test at 600°C ± 10°C for 3 minutes of -5 MPa or more, preferably -5 to +10 MPa, and particularly preferably -5 to +5 MPa. When the strength change of the aluminum alloy extrusion multi-hole tube in the above heating test is within the above range, the strength of the tube after brazing heating is high, or the strength of the tube does not decrease too much due to brazing heating. The strength change in the above heating test is determined by first measuring the tensile strength (A) of the tube before the heating test, then heating the tube at 600°C ± 10°C for 3 minutes, and then measuring the tensile strength (B) of the tube after the heating test, and calculating the strength change in the heating test from the obtained test results using the formula "tensile strength of aluminum alloy after heating test (A) - tensile strength of aluminum alloy before heating test (B)". In addition, a change in strength in the heating test of -5 MPa or more means that the value of "tensile strength (A) of the aluminum alloy after the heating test - tensile strength (B) of the aluminum alloy before the heating test" is > -5 MPa, and refers to any of the following: (i) tensile strength (A) and tensile strength (B) are the same, (ii) tensile strength (A) is greater than tensile strength (B), and (iii) tensile strength (A) is smaller than tensile strength (B), but the absolute value of the difference is within 5 MPa; that is, (i) (A) - (B) = 0 MPa, (ii) (A) - (B) > 0 MPa, and (iii) -5 MPa < (A) - (B) < 0 MPa.
本発明のアルミニウム合金押出多穴チューブは、Mnの含有量、Siの含有量及びそれらの含有量比(Mn/Si)が本発明の規定の範囲にあり、且つ、600℃±10℃、3分間の加熱試験における強度変化が、本発明の規定の範囲になるようなMnとSiの固溶状態及びAlMnSi析出物の析出状態であるので、熱間押出時の加工性が高く且つろう付加熱で強度が低下しないか、あるいは、強度低下が小さい。 The aluminum alloy extruded multi-hole tube of the present invention has a Mn content, a Si content, and a content ratio thereof (Mn/Si) within the ranges specified by the present invention, and the Mn and Si are in a solid solution state and the AlMnSi precipitates are in a state such that the change in strength in a heating test at 600°C ± 10°C for 3 minutes falls within the ranges specified by the present invention, so that the workability during hot extrusion is high and the strength does not decrease or decreases only slightly during brazing heating.
本発明のアルミニウム合金押出多穴チューブは、以下に述べる、本発明のアルミニウム合金押出多穴チューブの製造方法により、好適に製造される。 The aluminum alloy extrusion multi-hole tube of the present invention is preferably manufactured by the manufacturing method of the aluminum alloy extrusion multi-hole tube of the present invention described below.
本発明のアルミニウム合金押出多穴チューブの製造方法は、0.60~1.80質量%のMnと、0.00質量%を超え0.20質量%未満のSiと、を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上である鋳塊に、550~650℃の加熱温度で2時間以上加熱する第一均質化処理を行い、その後450~540℃の加熱温度で3時間以上加熱する第二均質化処理を行うことにより、2段階均質化処理前後の鋳塊の導電率変化(第二均質化処理後の鋳塊の導電率(C)-第一均質化処理前の鋳塊の導電率(D))を20%IACS以上とする2段階均質化処理と、
熱間押出時の加熱温度と該第二均質化処理の加熱温度との差(熱間押出時の加熱温度-第二均質化処理の加熱温度)の絶対値が50℃以下となる加熱温度で、該2段階均質化処理の処理物を熱間押出加工する熱間押出工程と、
を有することを特徴とする熱交換器用アルミニウム合金押出多穴チューブの製造方法である。
The method for producing an aluminum alloy extruded multi-hole tube of the present invention comprises carrying out a first homogenization treatment on an ingot containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the remainder being Al and unavoidable impurities, the ratio of the Mn content to the Si content (Mn/Si) being 15.0 or more at a heating temperature of 550 to 650°C for 2 hours or more, and then carrying out a second homogenization treatment on the ingot at a heating temperature of 450 to 540°C for 3 hours or more, thereby making the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment (electrical conductivity of the ingot after the second homogenization treatment (C) - electric conductivity of the ingot before the first homogenization treatment (D)) 20% IACS or more;
A hot extrusion process in which the product of the two-stage homogenization process is hot extruded at a heating temperature such that the absolute value of the difference between the heating temperature during hot extrusion and the heating temperature during the second homogenization process (heating temperature during hot extrusion - heating temperature during the second homogenization process) is 50 ° C. or less;
The present invention relates to a method for producing an extruded aluminum alloy multi-hole tube for a heat exchanger, the method comprising the steps of:
本発明のアルミニウム合金押出多穴チューブの製造方法は、少なくとも、鋳造工程と、均質化処理と、熱間圧延工程と、を有する。 The manufacturing method for the aluminum alloy extruded multi-hole tube of the present invention includes at least a casting process, a homogenization process, and a hot rolling process.
本発明のアルミニウム合金押出多穴チューブの製造方法に係る鋳造工程は、前記組成のアルミニウム合金を溶解、半連続鋳造などの一般的な手法で鋳造して、押出用のビレットを得る工程である。 The casting process in the manufacturing method of the aluminum alloy extrusion multi-hole tube of the present invention is a process in which an aluminum alloy of the above composition is melted and cast by a general method such as semi-continuous casting to obtain a billet for extrusion.
鋳塊は、Mnを0.60~1.80質量%、好ましくは1.00~1.80質量%、Siを0.00質量%を超え0.20質量%未満、好ましくは0.05~0.15質量%含有し、Ti含有量が0.10質量%以下、好ましくは0%を超え0.06質量%以下であり、Cu含有量が0.05質量%以下であり、残部がAlおよび不可避的不純物からなるアルミニウム合金からなり、Si含有量に対するMn含有量の比(Mn/Si)が15.0以上、好ましくは16.0~40.0である。 The ingot is made of an aluminum alloy containing 0.60 to 1.80 mass%, preferably 1.00 to 1.80 mass%, Mn, more than 0.00 mass% and less than 0.20 mass%, preferably 0.05 to 0.15 mass%, Si, Ti content is 0.10 mass% or less, preferably more than 0% and less than 0.06 mass%, Cu content is 0.05 mass% or less, the balance being Al and unavoidable impurities, and the ratio of Mn content to Si content (Mn/Si) is 15.0 or more, preferably 16.0 to 40.0.
本発明のアルミニウム合金押出多穴チューブの製造方法に係る2段階均質化処理は、鋳造工程を行い得られた鋳塊(押出用ビレット)に、先ず、第一均質化処理を行い、その後に第二均質化処理を行う、2段階の均質化処理である。 The two-stage homogenization process in the manufacturing method of the aluminum alloy extrusion multi-hole tube of the present invention is a two-stage homogenization process in which the ingot (extrusion billet) obtained by the casting process is first subjected to a first homogenization process, and then a second homogenization process is performed.
第一均質化処理では、鋳造工程を行い得られた鋳塊を、加熱温度550~650℃で2時間以上加熱する。また、第二均質化処理では、第一均質化処理を行った処理物を、加熱温度450~540℃で3時間以上加熱する。そして、2段階均質化処理では、第一均質化処理及び第二均質化処理を行うことにより、2段階均質化処理前後の鋳塊の導電率変化(第二均質化処理後の鋳塊の導電率(C)-第一均質化処理前の鋳塊の導電率(D))を20%IACS以上にする。 In the first homogenization treatment, the ingot obtained from the casting process is heated at a heating temperature of 550 to 650°C for at least 2 hours. In the second homogenization treatment, the product that has been subjected to the first homogenization treatment is heated at a heating temperature of 450 to 540°C for at least 3 hours. In the two-stage homogenization treatment, the first homogenization treatment and the second homogenization treatment are performed, so that the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment (electrical conductivity of the ingot after the second homogenization treatment (C) - electrical conductivity of the ingot before the first homogenization treatment (D)) is made 20% IACS or more.
第一均質化処理では、鋳造凝固時に形成される粗大な晶出物を分解、粒状化 あるいは再固溶させる。第一均質化処での加熱温度は、550~650℃、好ましくは580~620℃である。第一均質化処での加熱温度が上記範囲にあることにより、鋳造凝固時に形成される粗大な晶出物を分解、粒状化 あるいは再固溶させることができる。一方、第一均質化処理の加熱温度が、上記未満では、その効果が十分でなく、また、加熱温度が高いほどその効果は大きくなるものの、上記範囲を超えると、固相線温度を超え、ビレットが部分的に溶融するおそれがある。第一均質化処理での加熱時間は、2時間以上であり、加熱時間が長い方が反応が進むため、処理時間は好ましくは10時間以上である。ただ、第一均質化処理の加熱時間が24時間を超えると効果が飽和し、24時間を超えて処理してもそれ以上の効果が期待できず経済性の点で好ましくない。第一均質化処理での加熱時間は、より好ましくは10~24時間である。 In the first homogenization treatment, the coarse crystals formed during casting solidification are decomposed, granulated, or redissolved. The heating temperature in the first homogenization treatment is 550 to 650°C, preferably 580 to 620°C. By setting the heating temperature in the first homogenization treatment within the above range, the coarse crystals formed during casting solidification can be decomposed, granulated, or redissolved. On the other hand, if the heating temperature in the first homogenization treatment is less than the above, the effect is insufficient, and the higher the heating temperature, the greater the effect. However, if the heating temperature exceeds the above range, the solidus temperature is exceeded, and the billet may partially melt. The heating time in the first homogenization treatment is 2 hours or more, and since the reaction progresses more with a longer heating time, the treatment time is preferably 10 hours or more. However, if the heating time in the first homogenization treatment exceeds 24 hours, the effect is saturated, and even if the heating time exceeds 24 hours, no further effect can be expected, which is not preferable from the viewpoint of economy. The heating time in the first homogenization treatment is more preferably 10 to 24 hours.
第一均質化処理では、鋳造凝固時に形成される粗大な晶出物を分解、粒状化あるいは再固溶させる。また、第一均質化処理では、同時に溶質元素であるMn、Siの母相への固溶も促進するが、溶質元素の母相への固溶度が高いと、母相中の転位の運動速度が低下して変形抵抗が大きくなる。このため、均質化処理として、第一均質化処理のみを行い、得られる処理物を熱間押出加工すると、押出性が低くなる。 In the first homogenization treatment, coarse crystals formed during casting solidification are decomposed, granulated, or redissolved. The first homogenization treatment also promotes the dissolution of solute elements Mn and Si into the matrix, but if the solute elements have a high degree of solubility in the matrix, the speed of dislocation movement in the matrix decreases, increasing deformation resistance. For this reason, if only the first homogenization treatment is performed as the homogenization treatment and the resulting treated product is hot extruded, the extrudability will be poor.
そこで、第一均質化処理を行った後に、第二均質化処理を行うことにより、母相中に固溶しているMn、Siが析出して、Mn、Siの固溶度を低下させることができるので、その後の熱間押出加工における変形抵抗を低下させ押出性を向上させることが可能となる。第二均質化処理での加熱温度は、450~540℃、好ましくは480~520℃である。第二均質化処理での加熱温度が上記範囲にあることにより、母相中に固溶しているMn、Siが析出して、Mn、Siの固溶度を低下させることができるので、その後の熱間押出加工における変形抵抗を低下させ押出性を向上させることができる。一方、第二均質化処理の加熱温度が、上記未満では、その効果が十分でなく、また、上記範囲を超えると、析出が生じ難く、効果が不十分となる。第二均質化処理での加熱時間は、3時間以上であり、加熱時間が長い方が反応が進むため、処理時間は好ましくは5時間以上である。ただ、第二均質化処理の加熱時間が24時間を超えると効果が飽和し、24時間を超えて処理してもそれ以上の効果が期待できず経済性の点で好ましくない。第二均質化処理での加熱時間は、より好ましくは5~15時間である。 Therefore, by performing the second homogenization treatment after the first homogenization treatment, Mn and Si dissolved in the parent phase are precipitated, and the solid solubility of Mn and Si can be reduced, so that it is possible to reduce the deformation resistance in the subsequent hot extrusion processing and improve the extrudability. The heating temperature in the second homogenization treatment is 450 to 540°C, preferably 480 to 520°C. By setting the heating temperature in the second homogenization treatment within the above range, Mn and Si dissolved in the parent phase are precipitated, and the solid solubility of Mn and Si can be reduced, so that it is possible to reduce the deformation resistance in the subsequent hot extrusion processing and improve the extrudability. On the other hand, if the heating temperature of the second homogenization treatment is less than the above, the effect is insufficient, and if it exceeds the above range, precipitation is difficult to occur and the effect is insufficient. The heating time in the second homogenization treatment is 3 hours or more, and since the reaction proceeds more with a longer heating time, the treatment time is preferably 5 hours or more. However, if the heating time for the second homogenization treatment exceeds 24 hours, the effect becomes saturated, and no further effect can be expected even if the treatment is continued for more than 24 hours, which is not preferable from an economic standpoint. The heating time for the second homogenization treatment is more preferably 5 to 15 hours.
本発明のアルミニウム合金押出多穴チューブの製造方法では、鋳塊(ビレット)に、第一均質化処理及びその後の第二均質化処理を行い、溶質元素の母相中への固溶度を低下させることにより、押出性を向上させる。このとき、鋳塊の導電率は溶質元素の固溶度の指標となり、固溶度が高くなると導電率は低くなり、析出が進んで固溶度が低くなると導電率は高くなる。そして、良好な押出性を得るためには、押出前に固溶度を低くしておく、すなわち、2段階均質化処理前後の導電率変化を20%IACS以上、好ましくは25%IACS以上とする。このことにより、確実に押出性を向上させることができる。さらに、押出前に鋳塊の導電率を低くしておくことは、後述する通り、ろう付後の強度低下の抑制にも寄与する。2段階均質化処理前後の鋳塊の導電率変化が、上記範囲未満だと、押出前の固溶度が高いために熱間の変形抵抗が高くなり、押出性が損なわれることになり、また、ろう付中に添加元素の析出が進行するため、ろう付後の強度が低下してしまう。2段階均質化処理前後の鋳塊の導電率の差は、大きいほど好ましいが、上限としては、例えば、35%IACSである。なお、本発明において、2段階均質化処理前後の鋳塊の導電率変化とは、「第二均質化処理を行った後の鋳塊の導電率(C)-第一均質化処理を行う前の鋳塊の導電率(D)」により求められる値である。 In the manufacturing method of the aluminum alloy extrusion multi-hole tube of the present invention, the ingot (billet) is subjected to a first homogenization treatment and a subsequent second homogenization treatment to reduce the solid solubility of the solute element in the parent phase, thereby improving extrudability. At this time, the electrical conductivity of the ingot is an index of the solid solubility of the solute element, and the electrical conductivity decreases as the solid solubility increases, and the electrical conductivity increases as the precipitation progresses and the solid solubility decreases. In order to obtain good extrudability, the solid solubility is reduced before extrusion, that is, the change in electrical conductivity before and after the two-stage homogenization treatment is set to 20% IACS or more, preferably 25% IACS or more. This can reliably improve the extrudability. Furthermore, reducing the electrical conductivity of the ingot before extrusion also contributes to suppressing the decrease in strength after brazing, as described later. If the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment is less than the above range, the high solid solubility before extrusion will increase the hot deformation resistance, impairing extrudability, and the precipitation of the additive elements will progress during brazing, reducing the strength after brazing. The greater the difference in electrical conductivity of the ingot before and after the two-stage homogenization treatment, the better, but the upper limit is, for example, 35% IACS. In the present invention, the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment is the value calculated by "electrical conductivity of the ingot after the second homogenization treatment (C) - electrical conductivity of the ingot before the first homogenization treatment (D)".
2段階均質化処理においては、第一均質化処理の加熱温度で第一均質化処理を行った後、連続して平均降温速度20~60℃/hで第二均質処理の加熱温度まで降温し、連続して第二均質化処理の加熱温度で第二均質化処理を実施することができる。 In the two-stage homogenization process, the first homogenization process is performed at the heating temperature of the first homogenization process, and then the temperature is continuously decreased to the heating temperature of the second homogenization process at an average temperature decrease rate of 20 to 60°C/h, and the second homogenization process is continuously performed at the heating temperature of the second homogenization process.
また、2段階均質化処理においては、第一均質化処理の加熱温度で第一均質化処理を行った後、一度常温、例えば、200℃以下まで冷却し、その後平均昇温速度20~60℃/hで第二均質化処理の加熱温度まで昇温し、連続して第二均質化処理の加熱温度で第二均質化処理を実施することができる。 In the two-stage homogenization process, the first homogenization process is performed at the heating temperature of the first homogenization process, then the mixture is cooled once to room temperature, for example, below 200°C, and then heated to the heating temperature of the second homogenization process at an average heating rate of 20 to 60°C/h, and the second homogenization process is continuously performed at the heating temperature of the second homogenization process.
2段階均質化処理では、上記の第一均質化処理及び第二均質化処理を行うことにより、2段階均質化処理前後の鋳塊の導電率変化を、20%IACS以上、好ましくは25%IACS以上とすることができる。 In the two-stage homogenization process, by performing the above-mentioned first and second homogenization processes, the change in electrical conductivity of the ingot before and after the two-stage homogenization process can be made 20% IACS or more, preferably 25% IACS or more.
本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法に係る熱間押出工程は、2段階均質化処理の処理物を熱間押出加工し、押出多穴チューブを得る工程である。熱間押出工程において、熱間押出時の加熱温度は、熱間押出時の加熱温度と第二均質化処理の加熱温度との差(熱間押出時の加熱温度-第二均質化処理の加熱温度)の絶対値が50℃以下、好ましくは30℃以下となる温度である。つまり、熱間押出工程における熱間押出時の加熱温度は、第二均質化処理の加熱温度との温度差が、±50℃以内、好ましくは±30℃以内である。熱間押出において、押出前のビレット加熱温度を、第二均質化処理温度との差(熱間押出時の加熱温度-第二均質化処理の加熱温度)の絶対値が50℃以下、好ましくは30℃以下になる温度にすることで、熱間押出加工中の溶質元素の再固溶を抑制できる。すなわち、本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法に係る熱間押出工程では、添加したMn、Siを第二均質化処理で析出した微細なAlMnSi析出物の形でとどめておくことができる。そして、熱間押出加工で得られたアルミニウム合金押出多穴チューブは、ろう付により熱交換器に組付けられ、ろう付接合されるが、その際、前記の微細なAlMnSi析出物は母相中に再固溶するため、ろう付後にも高い強度を維持することができる。一方、熱間押出において、熱間押出時の加熱温度と第二均質化処理の加熱温度との差の絶対値が上記範囲を超える加熱温度で、熱間押出した場合で、押出温度の方が高い場合には押出前あるいは押出中にAlMnSi析出物が再固溶してしまうため、押出性が低くなり、また、押出温度の方が低い場合には熱間変形抵抗が大きくなるため、押出性が低くなる。 The hot extrusion process in the manufacturing method of the aluminum alloy extruded multi-hole tube for heat exchangers of the present invention is a process in which the product of the two-stage homogenization process is hot extruded to obtain an extruded multi-hole tube. In the hot extrusion process, the heating temperature during hot extrusion is a temperature at which the absolute value of the difference between the heating temperature during hot extrusion and the heating temperature during the second homogenization process (heating temperature during hot extrusion - heating temperature during the second homogenization process) is 50 ° C or less, preferably 30 ° C or less. In other words, the heating temperature during hot extrusion in the hot extrusion process is within ± 50 ° C, preferably within ± 30 ° C, in difference from the heating temperature during the second homogenization process. In hot extrusion, by setting the billet heating temperature before extrusion to a temperature at which the absolute value of the difference from the second homogenization process temperature (heating temperature during hot extrusion - heating temperature during the second homogenization process) is 50 ° C or less, preferably 30 ° C or less, the re-dissolution of solute elements during hot extrusion can be suppressed. That is, in the hot extrusion process according to the manufacturing method of the aluminum alloy extrusion multi-hole tube for heat exchanger of the present invention, the added Mn and Si can be kept in the form of fine AlMnSi precipitates precipitated in the second homogenization treatment. The aluminum alloy extrusion multi-hole tube obtained by hot extrusion is assembled to a heat exchanger by brazing and brazed and joined, and at that time, the fine AlMnSi precipitates are re-dissolved in the parent phase, so that high strength can be maintained even after brazing. On the other hand, in the case of hot extrusion, when the heating temperature is higher than the heating temperature of the second homogenization treatment, the AlMnSi precipitates are re-dissolved before or during extrusion, so that extrudability is reduced, and when the extrusion temperature is lower, the hot deformation resistance is increased, so that extrudability is reduced.
本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法では、熱間押出工程を行った後、必要に応じて、塗装や耐食性を向上させるための亜鉛溶射等を行ってもよい。 In the manufacturing method of the present invention for an aluminum alloy extruded multi-hole tube for heat exchangers, after the hot extrusion process, painting or zinc spraying to improve corrosion resistance may be performed as necessary.
このようにして、本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法では、鋳塊中のMnの含有量、Siの含有量及びそれらの含有量比(Mn/Si)を本発明の規定の範囲にし、且つ、熱交換器用アルミニウム合金押出多穴チューブの製造方法に係る2段階均質化処理を行うことにより、熱間押出加工での押出性を高くし、更に、鋳塊中のMnの含有量、Siの含有量及びそれらの含有量比(Mn/Si)を本発明の規定の範囲にし、且つ、熱交換器用アルミニウム合金押出多穴チューブの製造方法に係る熱間押出加工を行うことにより、ろう付加熱で強度が低下しないか、あるいは、強度が低下したとしても、強度の低下が小さい熱交換器用アルミニウム合金押出多穴チューブを得ることができる。 In this way, in the manufacturing method of the multi-hole aluminum alloy extrusion tube for heat exchangers of the present invention, the Mn content, Si content, and their content ratio (Mn/Si) in the ingot are set within the ranges specified in the present invention, and the two-stage homogenization process related to the manufacturing method of the multi-hole aluminum alloy extrusion tube for heat exchangers is performed, thereby improving the extrudability in hot extrusion processing. Furthermore, by setting the Mn content, Si content, and their content ratio (Mn/Si) in the ingot within the ranges specified in the present invention and performing the hot extrusion processing related to the manufacturing method of the multi-hole aluminum alloy extrusion tube for heat exchangers, it is possible to obtain an extrusion tube for heat exchangers whose strength does not decrease during brazing heating, or, if it does decrease, the decrease in strength is small.
本発明の熱交換器用アルミニウム合金押出多穴チューブは、上記本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法を行い得られる熱交換器用アルミニウム合金押出多穴チューブである。すなわち、本発明の熱交換器用アルミニウム合金押出多穴チューブは、上記本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法に係る2段階均質化処理及び熱間押出工程を行い得られる熱交換器用アルミニウム合金押出多穴チューブである。 The aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention is an aluminum alloy extrusion multi-hole tube for heat exchangers obtained by carrying out the manufacturing method of the aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention described above. That is, the aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention is an aluminum alloy extrusion multi-hole tube for heat exchangers obtained by carrying out the two-stage homogenization treatment and hot extrusion process according to the manufacturing method of the aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention described above.
本発明の熱交換器用アルミニウム合金押出多穴チューブ、及び上記本発明の熱交換器用アルミニウム合金押出多穴チューブの製造方法を行い得られる熱交換器用アルミニウム合金押出多穴チューブは、ヘッダーやフィン等の部材と共に組み付けられ、例えば、590~610℃、好ましくは595~605℃で、例えば、1~5分間、好ましくは2~4分間、例えば、窒素ガス等の不活性ガス雰囲気で、ろう付加熱されて、熱交換器の製造に供される。 The aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention and the aluminum alloy extrusion multi-hole tube for heat exchangers obtained by carrying out the manufacturing method of the aluminum alloy extrusion multi-hole tube for heat exchangers of the present invention are assembled with components such as headers and fins, and brazed and heated, for example, at 590 to 610°C, preferably 595 to 605°C, for example, for 1 to 5 minutes, preferably 2 to 4 minutes, in an inert gas atmosphere such as nitrogen gas, for example, to be used in the manufacture of a heat exchanger.
以下に、実施例を示して、本発明を具体的に説明するが、本発明は、以下に示す実施例に限定されるものではない。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the examples shown below.
表1の組成を有するアルミニウム合金を、押出用ビレットに造塊し、得られたビレットについて、600℃で10時間保持する第一均質化処理と、引き続いて500℃で10時間保持する第二均質化処理と、を行い、次いで、500℃で、図1に示すような断面形状に熱間押出加工し、押出偏平多穴チューブを得た。なお、図1は模式図であり、具体的な寸法は、押出扁平多穴チューブの幅が14.0mm、高さが2.5mm、外周肉厚が0.4mm、内柱肉厚が0.4mm、穴数が19穴とした。
第一均質化処理前及び第二均質化処理後のビレットの導電率、該ビレットをチューブに熱間押出加工する際の限界押出速度、押出扁平多穴チューブの加熱試験前後の強度変化を以下の方法で評価した。
An aluminum alloy having the composition shown in Table 1 was cast into an extrusion billet, and the resulting billet was subjected to a first homogenization treatment at 600°C for 10 hours, followed by a second homogenization treatment at 500°C for 10 hours, and then hot extrusion at 500°C into a cross-sectional shape as shown in Fig. 1 to obtain an extruded flat multi-hole tube. Note that Fig. 1 is a schematic diagram, and the specific dimensions of the extruded flat multi-hole tube were 14.0 mm in width, 2.5 mm in height, 0.4 mm in outer peripheral thickness, 0.4 mm in inner pillar thickness, and 19 holes.
The electrical conductivity of the billet before the first homogenization treatment and after the second homogenization treatment, the limiting extrusion speed when the billet was hot extruded into a tube, and the change in strength of the extruded flat multi-hole tube before and after a heating test were evaluated by the following methods.
<導電率>
シグマテスターにより、第一均質化処理前及び第二均質化処理後のビレットの導電率を測定した。第一均質化処理前と第二均質化処理後の導電率を比較し、両者の差が25%以上のものを◎、20%以上25%未満のものを○、20%未満のものを×と評価した。
<Conductivity>
The electrical conductivity of the billet before the first homogenization treatment and after the second homogenization treatment was measured using a Sigma tester. The electrical conductivity before the first homogenization treatment and after the second homogenization treatment were compared, and a difference between the two was evaluated as ⊚ when it was 25% or more, ◯ when it was 20% or more but less than 25%, and x when it was less than 20%.
<限界押出速度>
純アルミニウムにMnのみを添加した従来合金の限界押出速度(m/分)を基準とし、これに対する比として評価し(従来合金の限界押出速度を1.0とする)、限界押出速度が0.9~1.0のものを ◎、0.8以上0.9未満のものを○、0.7以上0.8未満のものを△、0.7未満のものを×とした。
<Limiting extrusion speed>
The critical extrusion speed (m/min) of a conventional alloy in which only Mn was added to pure aluminum was used as the standard, and the alloys were evaluated as a ratio to this (the critical extrusion speed of the conventional alloy was set to 1.0). Critical extrusion speeds of 0.9 to 1.0 were rated as ◎, those between 0.8 and less than 0.9 were rated as ○, those between 0.7 and less than 0.8 were rated as △, and those less than 0.7 were rated as ×.
<加熱試験>
試験材を、600±10℃で3分間の加熱試験を行い、引張試験片を採取して引張試験を行った。 加熱試験前も同様に引張試験を実施し、加熱試験前後での引張強さの変化を評価した。加熱試験前後で引張強さの変化が、0MPa以上で強度低下しないもの及び強度低下しても強度変化が-5MPa以上0MPa未満のものを○、加熱試験により強度が低下し、強度変化が-5MPa未満(強度変化の絶対値が5MPaを超える)であるものを×とした。
<Heating test>
The test material was subjected to a heating test at 600±10°C for 3 minutes, and a tensile test piece was taken and subjected to a tensile test. A tensile test was also performed before the heating test, and the change in tensile strength before and after the heating test was evaluated. The test material was rated as ◯ when the change in tensile strength before and after the heating test was 0 MPa or more and did not decrease in strength, and when the change in strength was -5 MPa or more and less than 0 MPa, the test material was rated as × when the strength was decreased by the heating test and the change in strength was less than -5 MPa (the absolute value of the change in strength exceeded 5 MPa).
(評価結果)
表2に結果を示す。表中に示す実施例1~4は、いずれも2段階均質化処理前後の導電率変化が20%以上であり、押出限界速度が従来合金と同等もしくは生産性を損なわない程度の値であり、且つ、加熱試験の強度変化が-5MPa以上であり、全ての項目において合格となった。
(Evaluation results)
The results are shown in Table 2. In all of Examples 1 to 4 shown in the table, the change in electrical conductivity before and after the two-stage homogenization treatment was 20% or more, the limit extrusion speed was equivalent to that of the conventional alloy or was a value that did not impair productivity, and the change in strength in the heating test was -5 MPa or more, and all items passed.
一方で比較例1は、2段階均質化処理前後の導電率変化は20%以上であり、加熱試験の強度変化が-5MPa以上であるが、Mn/Si比が4.0よりも大きいために押出限界速度が従来合金よりも低く、不合格となった。 On the other hand, in Comparative Example 1, the change in electrical conductivity before and after the two-stage homogenization treatment was 20% or more, and the change in strength in the heating test was -5 MPa or more, but because the Mn/Si ratio was greater than 4.0, the limit extrusion speed was lower than that of the conventional alloy, and it was rejected.
Claims (7)
600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が、-5MPa以上であること、
を特徴とする熱交換器用アルミニウム合金押出多穴チューブ。 an aluminum alloy containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the balance being Al and unavoidable impurities, and having a ratio of the Mn content to the Si content (Mn/Si) of 15.0 or more;
The change in strength in a heating test at 600°C±10°C for 3 minutes (tensile strength of the aluminum alloy after the heating test (A) - tensile strength of the aluminum alloy before the heating test (B)) is -5 MPa or more.
An aluminum alloy extruded multi-hole tube for heat exchangers, characterized by:
熱間押出時の加熱温度と該第二均質化処理の加熱温度との差(熱間押出時の加熱温度-第二均質化処理の加熱温度)の絶対値が50℃以下となる加熱温度で、該2段階均質化処理の処理物を熱間押出加工する熱間押出工程と、
を有し、600℃±10℃、3分間の加熱試験における強度変化(加熱試験後のアルミニウム合金の引張強度(A)-加熱試験前のアルミニウム合金の引張強度(B))が-5MPa以上である熱交換器用アルミニウム合金押出多穴チューブを得ることを特徴とする熱交換器用アルミニウム合金押出多穴チューブの製造方法。 a first homogenization treatment is performed on an ingot containing 0.60 to 1.80 mass% Mn, more than 0.00 mass% and less than 0.20 mass% Si, with the remainder being made of Al and unavoidable impurities, the ratio of the Mn content to the Si content (Mn/Si) being 15.0 or more, at a heating temperature of 550 to 650°C for 2 hours or more, and then a second homogenization treatment is performed on the ingot at a heating temperature of 450 to 540°C for 3 hours or more, thereby making the change in electrical conductivity of the ingot before and after the two-stage homogenization treatment (electrical conductivity of the ingot after the second homogenization treatment (C) - electric conductivity of the ingot before the first homogenization treatment (D)) 20% IACS or more;
A hot extrusion process in which the product of the two-stage homogenization process is hot extruded at a heating temperature such that the absolute value of the difference between the heating temperature during hot extrusion and the heating temperature during the second homogenization process (heating temperature during hot extrusion - heating temperature during the second homogenization process) is 50 ° C. or less;
and a method for producing an extruded multi-hole aluminum alloy tube for heat exchangers, the method comprising the steps of: obtaining an extruded multi-hole aluminum alloy tube for heat exchangers having a strength change (tensile strength of the aluminum alloy after the heating test (A) - tensile strength of the aluminum alloy before the heating test (B)) of -5 MPa or more in a heating test at 600°C±10°C for 3 minutes.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020101475A JP7521943B2 (en) | 2020-06-11 | 2020-06-11 | Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method |
EP21821464.1A EP4137596A4 (en) | 2020-06-11 | 2021-06-02 | Extruded perforated aluminum alloy tube for heat exchangers, and method for producing same |
CN202180041415.1A CN115698354A (en) | 2020-06-11 | 2021-06-02 | Aluminum alloy extruded porous tube for heat exchanger and manufacturing method thereof |
PCT/JP2021/020947 WO2021251228A1 (en) | 2020-06-11 | 2021-06-02 | Extruded perforated aluminum alloy tube for heat exchangers, and method for producing same |
US18/008,745 US20230250523A1 (en) | 2020-06-11 | 2021-06-02 | Aluminum alloy extruded multi-hole tube for heat exchanger and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020101475A JP7521943B2 (en) | 2020-06-11 | 2020-06-11 | Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021195583A JP2021195583A (en) | 2021-12-27 |
JP7521943B2 true JP7521943B2 (en) | 2024-07-24 |
Family
ID=78846056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020101475A Active JP7521943B2 (en) | 2020-06-11 | 2020-06-11 | Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230250523A1 (en) |
EP (1) | EP4137596A4 (en) |
JP (1) | JP7521943B2 (en) |
CN (1) | CN115698354A (en) |
WO (1) | WO2021251228A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121108A (en) | 2006-10-16 | 2008-05-29 | Showa Denko Kk | Tubes for heat exchanger, and manufacturing method of the same |
JP2009249727A (en) | 2008-04-10 | 2009-10-29 | Mitsubishi Alum Co Ltd | Extruded flat perforated pipe superior in corrosion resistance used for heat exchanger, and heat exchanger |
WO2009149542A1 (en) | 2008-06-10 | 2009-12-17 | Alcan International Limited | Al-mn based aluminium alloy composition combined with a homogenization treatment |
WO2011148781A1 (en) | 2010-05-25 | 2011-12-01 | 住友軽金属工業株式会社 | Method for producing aluminum alloy heat exchanger |
JP2019167581A (en) | 2018-03-23 | 2019-10-03 | 株式会社Uacj | Method for producing aluminum alloy extruded tube |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4563204B2 (en) * | 2004-02-13 | 2010-10-13 | 株式会社デンソー | Aluminum alloy extruded material for heat exchanger and method for producing the same |
JP2006045667A (en) * | 2004-06-28 | 2006-02-16 | Showa Denko Kk | Heat exchanger tube made of aluminum and its production method |
JP4634854B2 (en) | 2005-05-10 | 2011-02-16 | 古河スカイ株式会社 | Aluminum alloy extruded tube material for natural refrigerant heat exchangers |
JP5610714B2 (en) * | 2009-06-24 | 2014-10-22 | 株式会社Uacj | Aluminum alloy heat exchanger |
EP3150327B1 (en) * | 2014-05-26 | 2018-07-25 | UACJ Corporation | Coated heat-exchanger tube, method for manufacturing a heat-exchanger, and solder paste used for coating on the heat-exchanger tube |
CN108884523B (en) * | 2016-03-29 | 2020-05-15 | 株式会社Uacj | Brazing sheet made of aluminum alloy for heat exchanger and method for manufacturing same |
-
2020
- 2020-06-11 JP JP2020101475A patent/JP7521943B2/en active Active
-
2021
- 2021-06-02 EP EP21821464.1A patent/EP4137596A4/en active Pending
- 2021-06-02 WO PCT/JP2021/020947 patent/WO2021251228A1/en unknown
- 2021-06-02 CN CN202180041415.1A patent/CN115698354A/en active Pending
- 2021-06-02 US US18/008,745 patent/US20230250523A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121108A (en) | 2006-10-16 | 2008-05-29 | Showa Denko Kk | Tubes for heat exchanger, and manufacturing method of the same |
JP2009249727A (en) | 2008-04-10 | 2009-10-29 | Mitsubishi Alum Co Ltd | Extruded flat perforated pipe superior in corrosion resistance used for heat exchanger, and heat exchanger |
WO2009149542A1 (en) | 2008-06-10 | 2009-12-17 | Alcan International Limited | Al-mn based aluminium alloy composition combined with a homogenization treatment |
WO2011148781A1 (en) | 2010-05-25 | 2011-12-01 | 住友軽金属工業株式会社 | Method for producing aluminum alloy heat exchanger |
JP2019167581A (en) | 2018-03-23 | 2019-10-03 | 株式会社Uacj | Method for producing aluminum alloy extruded tube |
Also Published As
Publication number | Publication date |
---|---|
CN115698354A (en) | 2023-02-03 |
WO2021251228A1 (en) | 2021-12-16 |
EP4137596A1 (en) | 2023-02-22 |
JP2021195583A (en) | 2021-12-27 |
EP4137596A4 (en) | 2024-04-17 |
US20230250523A1 (en) | 2023-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1564307B1 (en) | Aluminium alloy extruded product for heat exchangers and method of manufacturing the same | |
JP4824358B2 (en) | Aluminum alloy extruded material with excellent surface properties and method for producing the same, porous tube for heat exchanger, and method for producing heat exchanger incorporating the porous tube | |
JP4398428B2 (en) | High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same | |
WO2011122263A1 (en) | Aluminium alloy forging and method of manufacture for same | |
JP6491452B2 (en) | Aluminum alloy continuous cast material and method for producing the same | |
JP5828657B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP7521943B2 (en) | Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method | |
JP4228166B2 (en) | Seamless copper alloy tube with excellent fatigue strength | |
JP7521942B2 (en) | Aluminum alloy extruded multi-hole tube for heat exchanger and its manufacturing method | |
JP3333600B2 (en) | High strength Al alloy fin material and method of manufacturing the same | |
JP6085211B2 (en) | Titanium alloy material excellent in scale adhesion control and formability, its manufacturing method, and heat exchanger or seawater evaporator | |
JP4286431B2 (en) | Manufacturing method of aluminum alloy piping material | |
JP2000212668A (en) | Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance | |
JP5789355B2 (en) | Aluminum alloy for heat exchanger | |
JP2002256364A (en) | Aluminum alloy for fin material of fin for heat exchanger and its production method | |
JPH03281761A (en) | Manufacture of aluminum alloy brazing sheet excellent in brazability and corrosion resistance | |
JP5792696B2 (en) | High strength copper alloy tube | |
JP2000212667A (en) | Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance | |
WO2023068167A1 (en) | Extruded multi-hole tube and production method for same | |
JP2009221531A (en) | Al-Mg BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR COLD WORKING, AND METHOD FOR PRODUCING THE SAME | |
JPH0339765B2 (en) | ||
JP2004232003A (en) | Aluminum alloy brazing sheet with excellent corrosion resistance | |
JP5807079B2 (en) | Aluminum alloy fin material for heat exchanger | |
JPH0313549A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
CN114173984A (en) | Aluminum alloy brazing sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7521943 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |