JP7520561B2 - Energy storage element - Google Patents
Energy storage element Download PDFInfo
- Publication number
- JP7520561B2 JP7520561B2 JP2020071700A JP2020071700A JP7520561B2 JP 7520561 B2 JP7520561 B2 JP 7520561B2 JP 2020071700 A JP2020071700 A JP 2020071700A JP 2020071700 A JP2020071700 A JP 2020071700A JP 7520561 B2 JP7520561 B2 JP 7520561B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- terminal
- winding
- separator
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004146 energy storage Methods 0.000 title claims description 52
- 238000004804 winding Methods 0.000 claims description 100
- 239000011149 active material Substances 0.000 claims description 7
- 239000007773 negative electrode material Substances 0.000 description 20
- 239000007774 positive electrode material Substances 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000011888 foil Substances 0.000 description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、巻回電極体を備えた蓄電素子に関する。 The present invention relates to an energy storage element equipped with a wound electrode body.
従来、二次電池に用いられる電極体として、巻回電極体が知られている(例えば、特許文献1参照)。この電極体102では、図14に示すように、それぞれ長尺シート状の正極123と負極124とが、二枚の長尺シート状のセパレータ126、127を介して重ね合わせて巻回されている。電極体102は、この巻回軸方向から視たとき、長径と短径とを有する楕円状である。また、電極体102は、長径方向における両端に位置するR部を有する。 Conventionally, a wound electrode body is known as an electrode body used in a secondary battery (see, for example, Patent Document 1). In this electrode body 102, as shown in FIG. 14, a long sheet-shaped positive electrode 123 and a negative electrode 124 are stacked and wound with two long sheet-shaped separators 126 and 127 in between. When viewed from the direction of the winding axis, the electrode body 102 is elliptical with a major axis and a minor axis. The electrode body 102 also has R portions located at both ends in the major axis direction.
電極体102を巻回軸方向から視たとき、正極巻回端部1230及び負極巻回端部1240は、電極体102の長径方向における一方側の端部において、この一方側に位置するR部を挟んだ状態で配置されている。また、電極体102を巻回軸方向から視たとき、セパレータ巻回終端1260、1270は、電極体102の長径方向における他方側の端部に配置されている。 When the electrode body 102 is viewed from the direction of the winding axis, the positive electrode winding end 1230 and the negative electrode winding end 1240 are arranged at one end in the long diameter direction of the electrode body 102, with the R portion located on this side sandwiched between them. Also, when the electrode body 102 is viewed from the direction of the winding axis, the separator winding ends 1260, 1270 are arranged at the other end in the long diameter direction of the electrode body 102.
上記電極体では、正極巻回端部、負極巻回端部、又は、セパレータ巻回終端が配置される部分には、これら端部に起因する段差が形成され得る。これにより、上記電極体をケース内に収容して上記電極体のうちこの段差が形成された部分に対して外側から圧力が加えられると、この段差部分と段差部分の周囲の部分とで受ける圧力が異なり得る。上記電極体に加えられる圧力の偏りは、電池性能を低下させるおそれがあった。 In the above electrode body, a step may be formed at the portion where the positive electrode winding end, the negative electrode winding end, or the separator winding end is located due to these ends. As a result, when the electrode body is housed in a case and pressure is applied from the outside to the portion of the electrode body where the step is formed, the pressure received by the step portion and the portion surrounding the step portion may differ. The bias in the pressure applied to the electrode body may reduce the battery performance.
そこで、本実施形態は、巻回電極体を備え、電極体に加わる圧力の偏りを抑制した蓄電素子を提供することを目的とする。 Therefore, the present embodiment aims to provide an energy storage element that includes a wound electrode body and suppresses uneven pressure applied to the electrode body.
本実施形態の蓄電素子は、
互いに極性の異なる帯状の第一電極及び第二電極が、帯状のセパレータと重なった状態で巻回された電極体と、
前記電極体を収容するケースと、を備え、
前記セパレータの巻回方向における長さは、前記第二電極の巻回方向における長さよりも長く、
前記電極体は、該電極体を巻回軸方向から視たとき、長径と短径とを有する巻回体であり、
前記第一電極における巻回方向の最も巻き終わり側に位置する終端部は、前記第二電極の巻回方向における最も巻き終わり側に位置する終端部よりも、巻回方向における巻き始め側に位置し、
巻回方向において、前記第二電極の終端部の終端縁は、前記第一電極の終端部の終端縁と重なる位置と、前記第一電極の終端部の終端縁に対して前記電極体の短径方向において巻回軸を挟んだ反対側の位置との間に位置し、
前記電極体の短径方向から視たとき、前記セパレータの巻回方向における最も巻き終わり側に位置する終端部の終端縁は、前記第一電極の終端部の終端縁と、前記第二電極の終端部の終端縁との間に位置する。
The energy storage element of this embodiment is
an electrode assembly in which a strip-shaped first electrode and a second electrode having mutually different polarities are wound in a state where they overlap with a strip-shaped separator;
A case that houses the electrode body,
a length of the separator in the winding direction is longer than a length of the second electrode in the winding direction;
the electrode body is a wound body having a major axis and a minor axis when viewed from a direction of a winding axis of the electrode body,
a terminal end portion of the first electrode located at the end of the winding direction is located closer to the start of the winding direction than a terminal end portion of the second electrode located at the end of the winding direction,
In the winding direction, a terminal edge of the terminal portion of the second electrode is located between a position overlapping with a terminal edge of the terminal portion of the first electrode and a position on the opposite side of the terminal edge of the terminal portion of the first electrode in the minor diameter direction of the electrode body across the winding axis,
When viewed from the short diameter direction of the electrode body, the terminal edge of the terminal portion located at the end of the winding direction of the separator is located between the terminal edge of the terminal portion of the first electrode and the terminal edge of the terminal portion of the second electrode.
かかる構成によれば、セパレータの終端部が、各電極の終端部の位置の違いに起因する短径方向における電極体の厚みの差を抑えることにより、電極体の幅の均一性が向上するため、電極体に加わる圧力の偏りを抑制できる。 With this configuration, the separator's end portion reduces the difference in thickness of the electrode body in the short diameter direction caused by the difference in the position of the end portion of each electrode, improving the uniformity of the width of the electrode body, thereby suppressing uneven pressure applied to the electrode body.
前記蓄電素子では、
前記セパレータは、前記第一電極又は前記第二電極を間に挟み込むように設けられ、
前記電極体を巻回軸方向から視たとき、
巻回方向において、前記第一電極又は前記第二電極を間に挟み込む前記セパレータの双方の終端部の終端縁は、同じ位置に揃った状態で、前記第二電極よりも巻き終わり側に配置されるとともに、前記電極体の短径方向から視たとき、前記第一電極の終端部の終端縁と前記第二電極の終端部の終端縁との間に位置してもよい。
In the energy storage element,
the separator is provided so as to sandwich the first electrode or the second electrode therebetween,
When the electrode body is viewed from the winding axis direction,
In the winding direction, the terminal edges of both end portions of the separator sandwiching the first electrode or the second electrode are aligned in the same position and positioned toward the end of the winding than the second electrode, and when viewed from the short diameter direction of the electrode body, may be located between the terminal edge of the terminal portion of the first electrode and the terminal edge of the terminal portion of the second electrode.
かかる構成によれば、第一電極や第二電極を間に挟み込むセパレータの双方の終端部が、各電極の終端部の位置の違いに起因する短径方向における電極体の厚みの差を抑えることができる。 With this configuration, the end portions of both separators sandwiching the first and second electrodes can suppress the difference in thickness of the electrode body in the short diameter direction caused by the difference in the position of the end portions of each electrode.
また、前記蓄電素子では、
前記第一電極及び第二電極は、それぞれ、シート状の導電部と該導電部に重なる活物質層と、を有し、
前記電極体を巻回軸方向から視たとき、
前記第一電極の活物質層は、前記第一電極の終端部に配置され、
前記第二電極の活物質層は、前記第二電極の巻回方向における前記第一電極の終端部と重なる部分に配置されてもよい。
In addition, in the energy storage element,
the first electrode and the second electrode each have a sheet-like conductive portion and an active material layer overlapping the conductive portion;
When the electrode body is viewed from the winding axis direction,
the active material layer of the first electrode is disposed at an end portion of the first electrode;
The active material layer of the second electrode may be disposed in a portion of the second electrode overlapping with an end portion of the first electrode in the winding direction.
前記蓄電素子では、
前記第二電極は、前記第一電極よりも外側に配置されるとともに、前記第一電極よりも薄くてもよい。
In the energy storage element,
The second electrode may be disposed outwardly of the first electrode and may be thinner than the first electrode.
かかる構成によれば、各電極の終端部の位置の違いに起因する短径方向における電極体の厚みの差が大きくなりやすいので、セパレータの終端部がこの厚みの差を抑えるという効果がより顕著なものとなる。 With this configuration, the difference in thickness of the electrode body in the short diameter direction due to the difference in the position of the end of each electrode tends to become large, so the effect of the separator's end portion suppressing this difference in thickness becomes more pronounced.
前記蓄電素子では、
前記電極体を巻回軸方向から視たとき、
前記第二電極の終端部及び前記第一電極の終端部は、前記短径方向における一方側に配置され、
前記セパレータの終端部は、前記第二電極の終端部に対して前記短径方向における巻回軸を挟んだ反対側の位置に配置されてもよい。
In the energy storage element,
When the electrode body is viewed from the winding axis direction,
an end portion of the second electrode and an end portion of the first electrode are disposed on one side in the minor axis direction;
The end portion of the separator may be disposed on an opposite side of the end portion of the second electrode across the winding axis in the minor diameter direction.
かかる構成によれば、セパレータが、第二電極の終端部と重なる位置から短径方向における巻回軸を挟んだ反対側まで延びているため、第二電極の終端部による段差を埋めることができる。 With this configuration, the separator extends from the position where it overlaps with the end of the second electrode to the opposite side of the winding axis in the short diameter direction, so that the step caused by the end of the second electrode can be filled.
本実施形態の蓄電素子によれば、巻回電極体を備え、電極体に加わる圧力の偏りを抑制した蓄電素子を提供することができる。 The energy storage element of this embodiment has a wound electrode body, and can provide an energy storage element that suppresses uneven pressure applied to the electrode body.
以下、本発明の一実施形態について、図1~図7を参照しつつ説明する。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 One embodiment of the present invention will be described below with reference to Figures 1 to 7. In this embodiment, a chargeable and dischargeable secondary battery will be described as an example of an energy storage element. Note that the names of the components (elementary components) in this embodiment are those used in this embodiment and may differ from the names of the components (elementary components) in the background art.
本実施形態の蓄電素子は、非水電解質二次電池である。より詳しくは、蓄電素子は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子は、電気エネルギーを供給する。蓄電素子は、単一又は複数で使用される。具体的に、蓄電素子は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子が電気エネルギーを供給する。 The storage element of this embodiment is a non-aqueous electrolyte secondary battery. More specifically, the storage element is a lithium ion secondary battery that utilizes electron transfer that occurs with the transfer of lithium ions. This type of storage element supplies electrical energy. Storage elements are used singly or in multiples. Specifically, a storage element is used singly when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, the storage element is used in combination with other storage elements in a storage device. In the storage device, the storage element used in the storage device supplies electrical energy.
蓄電素子は、図1~図4に示すように、電極体2と、電極体2を収容するケース3と、を備える。本実施形態の蓄電素子1は、電極体2及びケース3の他に、ケース3の外側に配置される外部端子4であって電極体2と導通する外部端子4、及び、電極体2と外部端子4とを導通させる集電体5等を備える。 As shown in Figs. 1 to 4, the energy storage element includes an electrode body 2 and a case 3 that houses the electrode body 2. In addition to the electrode body 2 and the case 3, the energy storage element 1 of this embodiment includes an external terminal 4 that is disposed on the outside of the case 3 and is electrically connected to the electrode body 2, and a current collector 5 that electrically connects the electrode body 2 and the external terminal 4.
電極体2は、図5に示すように、互いに極性の異なる帯状の第一電極及び第二電極が、帯状のセパレータ25と重なった状態で巻回された構成を有する。本実施形態の電極体2は、第一電極としての正極23と第二電極としての負極24とが互いに絶縁された状態で積層された積層体22であって、巻回された積層体22と、を備える。この電極体2では、電極体2の外周部において、セパレータ25が一周巻き付けられている。電極体2においてリチウムイオンが正極23と負極24との間を移動することにより、蓄電素子1が充放電する。 As shown in FIG. 5, the electrode body 2 has a configuration in which a strip-shaped first electrode and a second electrode having different polarities are wound in a state of overlapping with a strip-shaped separator 25. The electrode body 2 of this embodiment includes a laminate 22 in which a positive electrode 23 as a first electrode and a negative electrode 24 as a second electrode are stacked in a state of being insulated from each other, and the laminate 22 is wound. In this electrode body 2, a separator 25 is wrapped around the outer periphery of the electrode body 2. The energy storage element 1 is charged and discharged by the movement of lithium ions between the positive electrode 23 and the negative electrode 24 in the electrode body 2.
また、電極体2は、該電極体を巻回軸方向から視たとき、長径と短径を有する巻回体である。本実施形態の電極体2は、扁平な筒形状である。電極体2は、長径方向の両端部に折返し部としてR部を有する。 When viewed from the direction of the winding axis, the electrode body 2 is a wound body having a long diameter and a short diameter. The electrode body 2 in this embodiment has a flat cylindrical shape. The electrode body 2 has R portions as folded portions at both ends in the long diameter direction.
積層体22は、正極23及び負極24が積層された(重ねられた)状態で巻回されることによって形成される。積層体22では、各電極は、それぞれ、シート状の導電部と該導電部に重なる活物質層と、を有する。 The laminate 22 is formed by winding a positive electrode 23 and a negative electrode 24 in a stacked (overlapping) state. In the laminate 22, each electrode has a sheet-shaped conductive portion and an active material layer that overlaps the conductive portion.
正極23は、図7に示すように、シート状の導電部である金属箔230と、金属箔に重なる正極活物質層231と、を有する。金属箔230は帯状である。本実施形態の金属箔230は、例えば、アルミニウム箔である。また、正極23は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層231の正極非被覆部(正極活物質層231が形成されていない部位)232を有する(図5参照)。正極23において正極活物質層231が形成される部位を正極被覆部233と称する。 As shown in FIG. 7, the positive electrode 23 has a metal foil 230, which is a sheet-shaped conductive part, and a positive electrode active material layer 231 overlapping the metal foil. The metal foil 230 is strip-shaped. In this embodiment, the metal foil 230 is, for example, aluminum foil. The positive electrode 23 also has a positive electrode non-covered part (a part where the positive electrode active material layer 231 is not formed) 232 of the positive electrode active material layer 231 at one edge in the width direction, which is the short side direction of the strip shape (see FIG. 5). The part of the positive electrode 23 where the positive electrode active material layer 231 is formed is referred to as the positive electrode covered part 233.
前記正極活物質層231は、正極活物質と、バインダーと、を有する。 The positive electrode active material layer 231 contains a positive electrode active material and a binder.
前記正極活物質は、例えば、リチウム金属酸化物である。具体的に、正極活物質は、例えば、LiaMebOc(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiaCoyO2、LiaNiwO2、LiaMnzO4、LiaNiwCoyMnzO2等)、LilMem(XOn)p(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiaFebPO4、LiaMnbPO4、LiaMnbSiO4、LiaCobPO4F等)である。本実施形態の正極活物質は、LiNi1/3Co1/3Mn1/3O2である。 The positive electrode active material is, for example, a lithium metal oxide. Specifically, the positive electrode active material is, for example, a composite oxide represented by LiaMebOc ( Me represents one or more transition metals) (LiaCoyO2, LiaNiwO2, LiaMnzO4, LiaNiwCoyMnzO2, etc.), or a polyanion compound represented by LilMem ( XOn ) p ( Me represents one or more transition metals , and X represents , for example , P, Si, B , or V ) ( LiaFebPO4 , LiaMnbPO4 , LiaMnbSiO4 , LiaCobPO4F , etc. ). The positive electrode active material in this embodiment is LiNi1 / 3Co1 / 3Mn1 / 3O2 .
前記正極活物質層231に用いられるバインダーは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダーは、ポリフッ化ビニリデンである。 The binder used in the positive electrode active material layer 231 is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethylmethacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, and styrene butadiene rubber (SBR). The binder in this embodiment is polyvinylidene fluoride.
前記正極活物質層231は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の正極活物質層231は、導電助剤としてアセチレンブラックを有する。 The positive electrode active material layer 231 may further contain a conductive additive such as Ketjen Black (registered trademark), acetylene black, graphite, etc. The positive electrode active material layer 231 of this embodiment contains acetylene black as a conductive additive.
負極24は、シート状の導電部である金属箔240と、金属箔240に重なる負極活物質層241と、を有する(図7参照)。負極24の厚みは、正極23の厚みと略同じである。金属箔240は帯状である。本実施形態の金属箔240は、例えば、銅箔である。負極24は、帯形状の短手方向である幅方向の正極非被覆部232と反対側)の端縁部に、負極活物質層の負極非被覆部(負極活物質層が形成されていない部位)242を有する(図5参照)。負極24の負極被覆部(負極活物質層が形成される部位)243の幅は、正極被覆部233の幅よりも大きい。 The negative electrode 24 has a metal foil 240, which is a sheet-like conductive part, and a negative electrode active material layer 241 overlapping the metal foil 240 (see FIG. 7). The thickness of the negative electrode 24 is approximately the same as the thickness of the positive electrode 23. The metal foil 240 is strip-shaped. The metal foil 240 in this embodiment is, for example, copper foil. The negative electrode 24 has a negative electrode non-covered part (a part where the negative electrode active material layer is not formed) 242 of the negative electrode active material layer at the edge part (opposite to the positive electrode non-covered part 232 in the width direction, which is the short direction of the strip shape) (see FIG. 5). The width of the negative electrode covered part (a part where the negative electrode active material layer is formed) 243 of the negative electrode 24 is larger than the width of the positive electrode covered part 233.
前記負極活物質層241は、負極活物質と、バインダーと、を有する。 The negative electrode active material layer 241 contains a negative electrode active material and a binder.
前記負極活物質は、例えば、グラファイト、難黒鉛化炭素、及び易黒鉛化炭素などの炭素材、チタン酸リチウム、又は、リチウムイオンと合金化反応を生じるケイ素(Si)及び錫(Sn)などの材料である。本実施形態の負極活物質は、難黒鉛化炭素である。 The negative electrode active material is, for example, a carbon material such as graphite, non-graphitizable carbon, or easily graphitizable carbon, lithium titanate, or a material such as silicon (Si) and tin (Sn) that undergoes an alloying reaction with lithium ions. The negative electrode active material in this embodiment is non-graphitizable carbon.
負極活物質層241に用いられるバインダーは、正極活物質層231に用いられたバインダーと同様のものである。本実施形態のバインダーは、ポリフッ化ビニリデンである。 The binder used in the negative electrode active material layer 241 is the same as the binder used in the positive electrode active material layer 231. In this embodiment, the binder is polyvinylidene fluoride.
前記負極活物質層241は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層241は、導電助剤を有していない。 The negative electrode active material layer 241 may further contain a conductive additive such as Ketjen Black (registered trademark), acetylene black, graphite, etc. The negative electrode active material layer 241 of this embodiment does not contain a conductive additive.
本実施形態の電極体2では、以上のように構成される正極23と負極24とがセパレータ25によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極23、負極24、及びセパレータ25の積層体22が巻回される。また、本実施形態の電極体2では、負極24は、正極23よりも外側に配置されている。具体的に、負極24は、積層方向において正極23よりも外側に配置されている。 In the electrode body 2 of this embodiment, the positive electrode 23 and the negative electrode 24 configured as described above are wound in a state insulated by the separator 25. That is, in the electrode body 2 of this embodiment, a laminate 22 of the positive electrode 23, the negative electrode 24, and the separator 25 is wound. In addition, in the electrode body 2 of this embodiment, the negative electrode 24 is disposed outside the positive electrode 23. Specifically, the negative electrode 24 is disposed outside the positive electrode 23 in the stacking direction.
セパレータ25は、絶縁性を有する部材である。また、セパレータ25は、正極23と負極24との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極23と負極24とが互いに絶縁される。さらに、セパレータ25は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ25を挟んで交互に積層される正極23と負極24との間を移動する。 The separator 25 is an insulating member. The separator 25 is disposed between the positive electrode 23 and the negative electrode 24. This insulates the positive electrode 23 and the negative electrode 24 from each other in the electrode body 2 (specifically, the laminate 22). Furthermore, the separator 25 holds the electrolyte in the case 3. This allows lithium ions to move between the positive electrodes 23 and the negative electrodes 24 that are alternately stacked with the separator 25 in between when the energy storage element 1 is charged or discharged.
セパレータ25の巻回方向における長さは、図6に示すように、負極24の巻回方向における長さよりも長い。本実施形態のセパレータ25は、正極23又は負極24を間に挟み込むように設けられている。より具体的に、セパレータ25は、正極23又は負極24を間に挟み込む第一セパレータ26及び第二セパレータ27を含む。第一セパレータ26及び第二セパレータ27は別体である。 As shown in FIG. 6, the length of the separator 25 in the winding direction is longer than the length of the negative electrode 24 in the winding direction. The separator 25 in this embodiment is arranged to sandwich the positive electrode 23 or the negative electrode 24 therebetween. More specifically, the separator 25 includes a first separator 26 and a second separator 27 that sandwich the positive electrode 23 or the negative electrode 24 therebetween. The first separator 26 and the second separator 27 are separate bodies.
また、本実施形態のセパレータ25は、例えば、ポリエチレンによって形成される。なお、セパレータ25の硬さは、正極23や負極24の硬さよりも柔らかい。 In addition, the separator 25 in this embodiment is formed, for example, from polyethylene. The hardness of the separator 25 is softer than the hardness of the positive electrode 23 and the negative electrode 24.
セパレータの幅(帯形状の短手方向の寸法)は、負極被覆部243の幅より僅かに大きい(図5参照)。セパレータ25は、被覆部233,243同士が重なるように幅方向に位置ずれした状態で重ね合わされた正極23と負極24との間に配置される。このとき、正極非被覆部232と負極非被覆部242とは重なっていない。即ち、正極非被覆部232が、正極23と負極24との重なる領域から幅方向に突出し、且つ、負極非被覆部242が、正極23と負極24との重なる領域から幅方向(正極非被覆部232の突出方向と反対の方向)に突出する。積層された状態の正極23、負極24、及びセパレータ25、即ち、積層体22が巻回されることによって、電極体2が形成される。 The width of the separator (the dimension in the short direction of the band shape) is slightly larger than the width of the negative electrode covering portion 243 (see FIG. 5). The separator 25 is placed between the positive electrode 23 and the negative electrode 24, which are stacked in a state where the covering portions 233, 243 are misaligned in the width direction so that they overlap each other. At this time, the positive electrode uncovered portion 232 and the negative electrode uncovered portion 242 do not overlap. That is, the positive electrode uncovered portion 232 protrudes in the width direction from the overlapping region of the positive electrode 23 and the negative electrode 24, and the negative electrode uncovered portion 242 protrudes in the width direction (the direction opposite to the protruding direction of the positive electrode uncovered portion 232) from the overlapping region of the positive electrode 23 and the negative electrode 24. The electrode body 2 is formed by winding the stacked positive electrode 23, negative electrode 24, and separator 25, i.e., the laminate 22.
また、本実施形態のセパレータ25は、基材層250と、該基材層250の一方の面に設けられ且つ該基材層250よりも硬い無機層251とを有する(図7参照)。さらに、負極24を間に挟み込む一対のセパレータ25の各基材層250は、負極24と対向する。負極24と対向した状態でこれを挟み込む基材層250が、負極24の形状に沿った形状となるため、正極23と負極24との絶縁性を向上できる。 The separator 25 of this embodiment has a base layer 250 and an inorganic layer 251 that is provided on one side of the base layer 250 and is harder than the base layer 250 (see FIG. 7). Furthermore, each base layer 250 of the pair of separators 25 that sandwich the negative electrode 24 faces the negative electrode 24. The base layer 250 that sandwiches the negative electrode 24 while facing it has a shape that matches the shape of the negative electrode 24, so that the insulation between the positive electrode 23 and the negative electrode 24 can be improved.
基材層250は、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリアミドなどの多孔質膜によって構成される。無機層251は、SiO2粒子、Al2O3粒子、ベーマイト(アルミナ水和物)等の無機粒子を含んだ無機層である。 The base layer 250 is formed of a porous film of, for example, polyethylene, polypropylene, cellulose, polyamide, etc. The inorganic layer 251 is an inorganic layer containing inorganic particles such as SiO2 particles, Al2O3 particles , and boehmite (alumina hydrate).
ケース3は、電極体2を収容する(図4参照)。本実施形態のケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。また、ケース3は、電極体2に加えて、電解液及び集電体5等を内部空間33に収容する。 The case 3 houses the electrode body 2 (see FIG. 4). In this embodiment, the case 3 has a case body 31 with an opening and a cover plate 32 that covers (closes) the opening of the case body 31. In addition to the electrode body 2, the case 3 houses an electrolyte, a current collector 5, etc. in the internal space 33.
また、ケース3は、電解液に耐性を有する金属によって形成される。本実施形態のケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。 The case 3 is also made of a metal that is resistant to the electrolyte. In this embodiment, the case 3 is made of, for example, aluminum or an aluminum-based metal material such as an aluminum alloy. The case 3 may also be made of a metal material such as stainless steel or nickel, or a composite material in which a resin such as nylon is bonded to aluminum.
前記電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO4、LiBF4、及びLiPF6等である。 The electrolyte is a non-aqueous electrolyte. The electrolyte is obtained by dissolving an electrolyte salt in an organic solvent. The organic solvent is, for example, a cyclic carbonate such as propylene carbonate or ethylene carbonate, or a chain carbonate such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate. The electrolyte salt is, for example, LiClO 4 , LiBF 4 , or LiPF 6 .
ケース本体31は、板状の閉塞部311であってケース3の内側を向く内面とケース3の外側を向く外面とを有する閉塞部311と、閉塞部311の周縁に接続される胴部312であって、閉塞部311の内面側に延び且つ該内面を包囲する筒状の胴部312とを備える。 The case body 31 includes a plate-shaped blocking portion 311 having an inner surface facing the inside of the case 3 and an outer surface facing the outside of the case 3, and a body portion 312 connected to the periphery of the blocking portion 311, the body portion 312 being cylindrical and extending toward the inner surface of the blocking portion 311 and surrounding the inner surface.
閉塞部311は、開口が上を向くようにケース本体31が配置されたときに、ケース本体31の下端に位置する(即ち、前記開口が上を向いたときのケース本体31の底壁となる)部位である。閉塞部311は、該閉塞部311の法線方向視において、矩形状である。閉塞部311の四隅は円弧状である。 The blocking portion 311 is a portion that is located at the lower end of the case body 31 when the case body 31 is placed so that the opening faces upward (i.e., it becomes the bottom wall of the case body 31 when the opening faces upward). The blocking portion 311 is rectangular when viewed in the normal direction of the blocking portion 311. The four corners of the blocking portion 311 are arc-shaped.
以下では、図1に示すように、閉塞部311の長辺方向をX軸方向とし、閉塞部311の短辺方向をY軸方向とし、閉塞部311の法線方向をZ軸方向とする。 In the following, as shown in FIG. 1, the long side direction of the blocking portion 311 is defined as the X-axis direction, the short side direction of the blocking portion 311 is defined as the Y-axis direction, and the normal direction of the blocking portion 311 is defined as the Z-axis direction.
本実施形態の胴部312は、角筒形状を有する。詳しくは、胴部312は、偏平な角筒形状を有する。胴部312は、閉塞部311の周縁における長辺から延びる一対の長壁部313と、閉塞部311の周縁における短辺から延びる一対の短壁部314とを有する。即ち、一対の長壁部313は、Y軸方向に間隔(詳しくは、閉塞部311の周縁における短辺に相当する間隔)を空けて対向し、一対の短壁部314は、X軸方向に間隔(詳しくは、閉塞部311の周縁における長辺に相当する間隔)を空けて対向する。短壁部314が一対の長壁部313の対応(詳しくは、Y軸方向に対向)する端部同士をそれぞれ接続することによって、角筒状の胴部312が形成される。 The body 312 of this embodiment has a square tube shape. More specifically, the body 312 has a flattened square tube shape. The body 312 has a pair of long wall portions 313 extending from the long sides at the periphery of the blocking portion 311, and a pair of short wall portions 314 extending from the short sides at the periphery of the blocking portion 311. That is, the pair of long wall portions 313 face each other at a distance in the Y axis direction (more specifically, a distance corresponding to the short sides at the periphery of the blocking portion 311), and the pair of short wall portions 314 face each other at a distance in the X axis direction (more specifically, a distance corresponding to the long sides at the periphery of the blocking portion 311). The short wall portions 314 connect the corresponding ends of the pair of long wall portions 313 (more specifically, facing each other in the Y axis direction), thereby forming the square tube-shaped body 312.
以上のように、ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。 As described above, the case body 31 has a rectangular cylindrical shape (i.e., a bottomed rectangular cylindrical shape) with one end in the opening direction (Z-axis direction) closed.
蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。具体的に、蓋板32は、ケース本体31の開口を塞ぐようにケース本体31に当接する。また、蓋板32は、Z軸方向視において、X軸方向に長い矩形状の板材である。さらに、蓋板32の四隅は、円弧状である。 The cover plate 32 is a plate-shaped member that closes the opening of the case body 31. Specifically, the cover plate 32 abuts against the case body 31 so as to close the opening of the case body 31. When viewed in the Z-axis direction, the cover plate 32 is a rectangular plate that is long in the X-axis direction. Furthermore, the four corners of the cover plate 32 are arc-shaped.
蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。本実施形態のガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。 The cover plate 32 has a gas exhaust valve 321 that can exhaust gas inside the case 3 to the outside. The gas exhaust valve 321 exhausts gas from inside the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure. In this embodiment, the gas exhaust valve 321 is provided in the center of the cover plate 32 in the X-axis direction.
外部端子4は、外部機器又は他の蓄電素子の外部端子等と電気的に接続される部位である。外部端子4は、導電性を有する部材によって形成される。例えば、外部端子4は、アルミニウム、銅、鉄、ステンレス、クロムモリブデン鋼等の鋼、その他の強度の高い導電性金属によって形成される。 The external terminal 4 is a portion that is electrically connected to an external device or an external terminal of another storage element. The external terminal 4 is formed of a conductive material. For example, the external terminal 4 is formed of aluminum, copper, iron, stainless steel, steel such as chromium molybdenum steel, or other high-strength conductive metal.
集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される(図4参照)。 The current collector 5 is disposed within the case 3 and is directly or indirectly connected to the electrode body 2 so that it can be electrically connected thereto (see FIG. 4).
以上の構成の蓄電素子1では、正極23における巻回方向の最も巻き終わり側に位置する終端部234は、負極24の巻回方向における最も巻き終わり側に位置する終端部244よりも、巻回方向における巻き始め側に位置する(図6参照)。また、巻回方向において、負極24の終端部244の終端縁245は、正極23の終端部234の終端縁235と重なる位置と、正極23の終端部234の終端縁235に対して電極体2の短径方向(Y軸方向)において巻回軸を挟んだ反対側の位置P(電極体の巻回軸から電極体の長径方向(Z軸方向)の両端部に位置する湾曲した折り返し部(R部)の頂点を結ぶとともに巻回軸方向(X軸方向)に延びる仮想面を想定した場合に、この仮想面に対して正極23の終端部234の終端縁235と面対称となる位置P)との間に位置する。なお、正極23の終端部234の終端縁235と重なる位置とは、短手方向から視たときに、正極23の終端縁235と重なる位置である。本実施形態の蓄電素子1では、負極24の終端縁245は、正極23の終端部234の終端縁235と重なる位置と、電極の折り返し部(R部)との間に位置する。 In the storage element 1 having the above configuration, the terminal portion 234 located at the end of the winding direction of the positive electrode 23 is located closer to the beginning of the winding direction than the terminal portion 244 located at the end of the winding direction of the negative electrode 24 (see FIG. 6). In addition, in the winding direction, the terminal edge 245 of the terminal portion 244 of the negative electrode 24 is located between a position where it overlaps with the terminal edge 235 of the terminal portion 234 of the positive electrode 23 and a position P on the opposite side of the winding axis in the short diameter direction (Y axis direction) of the electrode body 2 with respect to the terminal edge 235 of the terminal portion 234 of the positive electrode 23 (if a virtual plane is assumed that connects the vertices of the curved folded portions (R portions) located at both ends of the electrode body in the long diameter direction (Z axis direction) from the winding axis and extends in the winding axis direction (X axis direction), the position P is symmetrical to the terminal edge 235 of the terminal portion 234 of the positive electrode 23 with respect to this virtual plane). The position where the terminal edge 235 of the terminal portion 234 of the positive electrode 23 overlaps with the terminal edge 235 of the positive electrode 23 when viewed from the short side direction. In the energy storage element 1 of this embodiment, the terminal edge 245 of the negative electrode 24 is located between the position where the terminal edge 235 of the terminal portion 234 of the positive electrode 23 overlaps with the folded portion (R portion) of the electrode.
また、負極24と対向した状態でこれを挟み込む負極24を挟み込む基材層250は、例えば、巻回軸方向から視たとき、負極24の終端部244による電極の段差に沿った形状(段差を有する形状)となっている。なお、この挟み込む基材層250は、電極体2の短径方向(Y軸方向)から視たとき、負極非被覆部242と負極被覆部243との段差に沿った形状(段差を有する形状)となっている。 The base material layer 250 sandwiching the negative electrode 24 in a state facing the negative electrode 24 has a shape (a shape having a step) that conforms to the step of the electrode caused by the terminal end 244 of the negative electrode 24 when viewed from the winding axis direction, for example. Note that this sandwiching base material layer 250 has a shape (a shape having a step) that conforms to the step between the negative electrode non-covered portion 242 and the negative electrode covered portion 243 when viewed from the short diameter direction (Y-axis direction) of the electrode body 2.
さらに、電極体2の短径方向(Y軸方向)から視たとき、セパレータ25の巻回方向における最も巻き終わり側に位置する終端部254の終端縁255は、正極23の終端部234の終端縁235と、負極24の終端部244の終端縁245との間に位置する。本実施形態の蓄電素子1では、電極体2を巻回軸方向から視たとき、巻回方向において、負極24を間に挟み込むセパレータ25の双方の終端部254の終端縁255(具体的には、第一セパレータ26の終端部264の終端縁265及び第二セパレータ27の終端部274の終端縁275)は、同じ位置に揃った状態で、負極24よりも巻き終わり側に配置されるとともに、電極体2の短径方向(Y軸方向)から視たとき、正極23の終端縁235と負極24の終端縁245との間に位置する。 Furthermore, when viewed from the short diameter direction (Y-axis direction) of the electrode body 2, the end edge 255 of the end portion 254 located at the end of the winding direction of the separator 25 is located between the end edge 235 of the end portion 234 of the positive electrode 23 and the end edge 245 of the end portion 244 of the negative electrode 24. In the energy storage element 1 of this embodiment, when the electrode body 2 is viewed from the winding axis direction, the end edges 255 of both end portions 254 of the separators 25 sandwiching the negative electrode 24 in the winding direction (specifically, the end edge 265 of the end portion 264 of the first separator 26 and the end edge 275 of the end portion 274 of the second separator 27) are aligned in the same position and are positioned closer to the end of the winding than the negative electrode 24, and are located between the end edge 235 of the positive electrode 23 and the end edge 245 of the negative electrode 24 when viewed from the short diameter direction (Y-axis direction) of the electrode body 2.
本実施形態の電極体2では、電極体2を巻回軸方向から視たとき、正極活物質層231は、正極23の終端部234に配置されている(図7参照)。また、この巻回軸方向から視たとき、負極活物質層241は、負極24の巻回方向における正極23の終端部234と重なる部分に配置される。 In the electrode body 2 of this embodiment, when the electrode body 2 is viewed from the winding axis direction, the positive electrode active material layer 231 is disposed at the terminal end 234 of the positive electrode 23 (see FIG. 7). When viewed from the winding axis direction, the negative electrode active material layer 241 is disposed at a portion that overlaps with the terminal end 234 of the positive electrode 23 in the winding direction of the negative electrode 24.
さらに、電極体2を巻回軸方向から視たとき、負極24の終端部244及び正極23の終端部234は、短径方向における一方側に配置される(図6参照)。さらに、電極体2を巻回軸方向から視たとき、セパレータ25の終端部254は、負極24の終端部244に対して短径方向における巻回軸を挟んだ反対側に配置されている。 Furthermore, when the electrode body 2 is viewed from the direction of the winding axis, the terminal end 244 of the negative electrode 24 and the terminal end 234 of the positive electrode 23 are disposed on one side in the minor axis direction (see FIG. 6). Furthermore, when the electrode body 2 is viewed from the direction of the winding axis, the terminal end 254 of the separator 25 is disposed on the opposite side of the winding axis in the minor axis direction from the terminal end 244 of the negative electrode 24.
本実施形態の蓄電素子1では、電極体2を巻回軸方向から視たとき、セパレータ25の巻回方向における最も巻き始め側に位置する始端部256の始端縁257(具体的には、第一セパレータ26の始端部266の始端縁267及び第二セパレータ27の始端部276の始端縁277)は、正極23の巻回方向における最も巻き始め側に位置する始端部236の始端縁237、及び、負極24の巻回方向における最も巻き始め側に位置する始端部246の始端縁247と、巻回方向において異なる位置に配置されている。巻回方向における負極24の長さは、巻回方向における正極23の長さよりも長く、巻回方向におけるセパレータ25の長さよりも短い。そのため、セパレータ25が、正極23と負極24との間を確実に絶縁することができる。 In the energy storage element 1 of this embodiment, when the electrode body 2 is viewed from the winding axis direction, the start edge 257 of the start end 256 located at the most start side in the winding direction of the separator 25 (specifically, the start edge 267 of the start end 266 of the first separator 26 and the start edge 277 of the start end 276 of the second separator 27) are located at different positions in the winding direction from the start edge 237 of the start end 236 located at the most start side in the winding direction of the positive electrode 23 and the start edge 247 of the start end 246 located at the most start side in the winding direction of the negative electrode 24. The length of the negative electrode 24 in the winding direction is longer than the length of the positive electrode 23 in the winding direction and shorter than the length of the separator 25 in the winding direction. Therefore, the separator 25 can reliably insulate the positive electrode 23 and the negative electrode 24.
なお、本実施形態の蓄電素子1では、正極活物質層231は、正極23の巻回方向における全域に配置されている。即ち、正極活物質層231は、正極23の始端部236から終端部234までの全域に配置されている。また、負極活物質層241は、負極24の巻回方向における全域に配置されている。即ち、負極活物質層241は、負極24の始端部246から終端部244までの全域に配置されている。 In the energy storage element 1 of this embodiment, the positive electrode active material layer 231 is disposed over the entire area in the winding direction of the positive electrode 23. That is, the positive electrode active material layer 231 is disposed over the entire area from the starting end 236 to the terminal end 234 of the positive electrode 23. In addition, the negative electrode active material layer 241 is disposed over the entire area in the winding direction of the negative electrode 24. That is, the negative electrode active material layer 241 is disposed over the entire area from the starting end 246 to the terminal end 244 of the negative electrode 24.
本実施形態の蓄電素子1では、負極24の膨張時の厚みの変化量をΔT1とし、正極23の終端部234の位置において終端部234よりも電極体2の短径方向(Y軸方向)の外側に配置されているセパレータの枚数をNとし、セパレータ25の圧縮時の厚みの変化量をΔT2としたとき、ΔT1<N×ΔT2である。そのため、セパレータ25が、電極体2の最も外側に位置する負極24の膨張時の厚みの変化量を吸収でき、その結果、電極体2の電流分布が均一に近づくことで出力特性が改善される。 In the energy storage element 1 of this embodiment, when the amount of change in thickness when the negative electrode 24 expands is ΔT1, the number of separators arranged at the position of the terminal end 234 of the positive electrode 23 outside the terminal end 234 in the short diameter direction (Y-axis direction) of the electrode body 2 is N, and the amount of change in thickness when the separator 25 is compressed is ΔT2, then ΔT1 < N × ΔT2. Therefore, the separator 25 can absorb the amount of change in thickness when the negative electrode 24 located at the outermost position of the electrode body 2 expands, and as a result, the current distribution of the electrode body 2 becomes more uniform, improving the output characteristics.
なお、セパレータ25の圧縮時の厚みの変化量ΔT2は、製品セルを解体して取り出したセパレータ25を洗浄及び乾燥したのち、クリープ試験を実施して圧縮率を測定し、圧縮率を用いて算出される。負極24の膨張時の厚みの変化量ΔT1は、蓄電素子1(製品セル)の放電状態(SOC=0%)における負極24の厚みと、製品セルの充電状態(SOC=100%)における負極24の厚みとの差に相当する。 The change in thickness ΔT2 of the separator 25 when compressed is calculated by measuring the compression ratio by performing a creep test on the separator 25 taken out of the product cell after disassembling it and washing and drying it, and then using the compression ratio. The change in thickness ΔT1 of the negative electrode 24 when it expands corresponds to the difference between the thickness of the negative electrode 24 in the discharged state (SOC = 0%) of the energy storage element 1 (product cell) and the thickness of the negative electrode 24 in the charged state (SOC = 100%) of the product cell.
負極24の膨張時の厚みの変化量ΔT1は、例えば、負極24が正極23よりも外側に位置する構成では、以下のように測定される。製品セルを放電状態(SOC=0%)まで放電した後、この製品セルを解体して正極23と負極24とを取り出し、各電極を洗浄及び乾燥する。その後、負極24の厚みを測定する。次に、取り出した電極を用いて小型の試験用セルを作製し、この試験用セルを充電状態(SOC=100%)まで充電する。さらに、試験用セルを解体して、各電極を洗浄及び乾燥した後、負極24の電極の厚みを測定し、負極24の厚みの差を負極24の膨張時の厚みの変化量ΔT1とする。なお、試験用セルの充放電は、製品セルの公称電圧(使用推奨電圧範囲)の上限をSOC=100%、下限をSOC=0%として行われる。 For example, in a configuration in which the negative electrode 24 is located outside the positive electrode 23, the thickness change amount ΔT1 of the negative electrode 24 when it expands is measured as follows. After discharging the product cell to a discharged state (SOC = 0%), the product cell is disassembled to remove the positive electrode 23 and the negative electrode 24, and each electrode is washed and dried. The thickness of the negative electrode 24 is then measured. Next, a small test cell is made using the removed electrodes, and the test cell is charged to a charged state (SOC = 100%). Furthermore, the test cell is disassembled, each electrode is washed and dried, and the thickness of the negative electrode 24 is measured, and the difference in thickness of the negative electrode 24 is taken as the thickness change amount ΔT1 of the negative electrode 24 when it expands. Note that the charge and discharge of the test cell is performed with the upper limit of the nominal voltage (recommended voltage range) of the product cell being SOC = 100% and the lower limit being SOC = 0%.
従来の電極体2では、図8~図10に示すように、電極体2を短径方向(Y軸方向)から視たとき、セパレータ25の終端縁255は、正極23の終端縁235と負極24の終端縁245との間を除く箇所に位置していなかった。そのため、従来の蓄電素子では、正極23の終端部234や負極24の終端部244の位置の違いに起因する短径方向における電極体2の厚みの差により、電極体2の幅のばらつきが大きくなり、電極体2に加わる圧力が偏っていた。 As shown in Figures 8 to 10, in a conventional electrode body 2, when the electrode body 2 is viewed from the short diameter direction (Y-axis direction), the terminal edge 255 of the separator 25 is not located anywhere except between the terminal edge 235 of the positive electrode 23 and the terminal edge 245 of the negative electrode 24. Therefore, in a conventional energy storage element, the difference in thickness of the electrode body 2 in the short diameter direction caused by the difference in the position of the terminal end 234 of the positive electrode 23 and the terminal end 244 of the negative electrode 24 results in large variation in the width of the electrode body 2, and the pressure applied to the electrode body 2 is uneven.
これに対して、蓄電素子1によれば、セパレータ25の終端縁255は、正極23の終端縁235と負極24の終端縁245との間に位置する(図6参照)。これにより、セパレータ25の終端部254が、正極23の終端部234や負極24の終端部244の位置の違いに起因する短径方向における電極体2の厚みの差を抑えることにより、電極体2の幅の均一性が向上するため、電極体2に加わる圧力の偏りを抑制できる。 In contrast, in the energy storage element 1, the terminal edge 255 of the separator 25 is located between the terminal edge 235 of the positive electrode 23 and the terminal edge 245 of the negative electrode 24 (see FIG. 6). As a result, the terminal portion 254 of the separator 25 reduces the difference in thickness of the electrode body 2 in the short diameter direction caused by the difference in the position of the terminal portion 234 of the positive electrode 23 and the terminal portion 244 of the negative electrode 24, improving the uniformity of the width of the electrode body 2 and suppressing bias in the pressure applied to the electrode body 2.
具体的には、電極体2の正極23の終端部234よりも巻回方向における巻き終わり側に位置する部位の短径方向における厚み(例えば、図6においてβで示す部位の厚み)は、電極体2の通常の部位の短径方向における厚み(例えば、図6においてαで示す部位の厚み)よりも、正極23の厚み分だけ薄くなっている。この蓄電素子1では、セパレータ25の終端部254がこの厚みの差を埋めることにより、正極23の終端部234や負極24の終端部244の位置の違いに起因する短径方向における電極体2の厚みの差を抑えている。 Specifically, the thickness in the short diameter direction of the portion of the electrode body 2 located closer to the end of the winding in the winding direction than the terminal end 234 of the positive electrode 23 (for example, the thickness of the portion indicated by β in FIG. 6) is thinner than the thickness in the short diameter direction of the normal portion of the electrode body 2 (for example, the thickness of the portion indicated by α in FIG. 6) by the thickness of the positive electrode 23. In this energy storage element 1, the terminal end 254 of the separator 25 fills in this thickness difference, thereby suppressing the difference in thickness of the electrode body 2 in the short diameter direction caused by the difference in the position of the terminal end 234 of the positive electrode 23 and the terminal end 244 of the negative electrode 24.
本実施形態の蓄電素子1によれば、正極23や負極24を間に挟み込むセパレータ25の双方の終端縁235は、同じ位置に揃った状態で、負極24よりも外側に配置されるとともに、電極体2の短径方向から視たとき、正極23の終端縁235と負極24の終端縁245との間に位置するため、正極23や負極24を間に挟み込むセパレータ25の双方の終端部254が、正極23の終端部234や負極24の終端部244の位置の違いに起因する短径方向における電極体2の厚みの差を抑えることができる。 According to the energy storage element 1 of this embodiment, the terminal edges 235 of both separators 25 sandwiching the positive electrode 23 and the negative electrode 24 are aligned in the same position and positioned outside the negative electrode 24, and when viewed from the short diameter direction of the electrode body 2, are located between the terminal edge 235 of the positive electrode 23 and the terminal edge 245 of the negative electrode 24. Therefore, the terminal parts 254 of both separators 25 sandwiching the positive electrode 23 and the negative electrode 24 can suppress the difference in thickness of the electrode body 2 in the short diameter direction caused by the difference in the position of the terminal part 234 of the positive electrode 23 and the terminal part 244 of the negative electrode 24.
また、本実施形態の蓄電素子1では、巻回軸方向から視たとき、負極24の終端部244及び正極23の終端部234は、短径方向における一方側に配置され、セパレータ25の終端部254は、負極24の終端部244に対して径方向における巻回軸を挟んだ反対側の位置に配置されている、即ち、セパレータ25が、負極24の終端部244と重なる位置から短径方向における巻回軸を挟んだ反対側まで延びているため、負極24の終端部244による段差を埋めることができる。 In addition, in the energy storage element 1 of this embodiment, when viewed from the winding axis direction, the terminal end 244 of the negative electrode 24 and the terminal end 234 of the positive electrode 23 are arranged on one side in the short diameter direction, and the terminal end 254 of the separator 25 is arranged on the opposite side of the winding axis in the radial direction from the terminal end 244 of the negative electrode 24. In other words, the separator 25 extends from the position where it overlaps with the terminal end 244 of the negative electrode 24 to the opposite side of the winding axis in the short diameter direction, so that the step caused by the terminal end 244 of the negative electrode 24 can be filled.
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The energy storage element of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Furthermore, part of the configuration of one embodiment can be deleted.
例えば、電極体2を巻回軸方向から視たとき、第一セパレータ26の始端部266の始端縁267及び第二セパレータ27の始端部276の始端縁277は、同じ位置に揃った状態で、正極23の始端縁237や負極24の始端縁247よりも巻き始め側に配置されてもよい。また、この電極体2では、電極体2を巻回軸方向から視たとき、正極23の始端縁237及び負極24の始端縁247は、異なった位置に配置されている。具体的に、負極24の始端縁247は、電極体2を巻回軸方向から視たとき、正極23の始端縁237よりも巻き始め側に配置されている。 For example, when the electrode body 2 is viewed from the winding axis direction, the starting edge 267 of the starting end 266 of the first separator 26 and the starting edge 277 of the starting end 276 of the second separator 27 may be aligned in the same position and positioned closer to the winding start side than the starting edge 237 of the positive electrode 23 and the starting edge 247 of the negative electrode 24. Also, in this electrode body 2, when the electrode body 2 is viewed from the winding axis direction, the starting edge 237 of the positive electrode 23 and the starting edge 247 of the negative electrode 24 are positioned at different positions. Specifically, the starting edge 247 of the negative electrode 24 is positioned closer to the winding start side than the starting edge 237 of the positive electrode 23 when the electrode body 2 is viewed from the winding axis direction.
なお、正極活物質層231の始端部236及び負極活物質層241の始端部246と、セパレータ25の始端部256とでは、電極体2の短径方向(Y軸方向)から視たときに各始端部の位置が揃っている。さらに、電極体2の短径方向(Y軸方向)から視たとき、正極活物質層231の始端部と、負極活物質層241の始端部との位置が揃っている。 The starting end 236 of the positive electrode active material layer 231 and the starting end 246 of the negative electrode active material layer 241 are aligned with the starting end 256 of the separator 25 when viewed from the short diameter direction (Y-axis direction) of the electrode body 2. Furthermore, when viewed from the short diameter direction (Y-axis direction) of the electrode body 2, the starting end of the positive electrode active material layer 231 and the starting end of the negative electrode active material layer 241 are aligned.
この蓄電素子1では、正極23の終端部234、負極24の終端部244、及び、セパレータ25の終端部254は、いずれも、電極体2のR部の曲率中心よりも巻回軸側に位置している。また、正極23の始端部236、負極24の始端部246、及び、セパレータ25の始端部256は、いずれも、電極体2のR部の曲率中心よりも巻回軸側に位置している。 In this energy storage element 1, the end portion 234 of the positive electrode 23, the end portion 244 of the negative electrode 24, and the end portion 254 of the separator 25 are all located closer to the winding axis than the center of curvature of the R portion of the electrode body 2. In addition, the start portion 236 of the positive electrode 23, the start portion 246 of the negative electrode 24, and the start portion 256 of the separator 25 are all located closer to the winding axis than the center of curvature of the R portion of the electrode body 2.
上記実施形態では、電極体2の外周部において、セパレータ25が一周巻き付けられていたが、セパレータが複数周巻き付けられていてもよい。例えば、図11に示すように、電極体2の外周部において、セパレータ25が二周巻き付けられることが考えられる。 In the above embodiment, the separator 25 is wound around the outer periphery of the electrode body 2 once, but the separator may be wound around multiple times. For example, as shown in FIG. 11, the separator 25 may be wound around the outer periphery of the electrode body 2 two times.
また、上記実施形態では、正極23の厚みと負極24の厚みとは、略同じであったが異なっていてもよい。例えば、負極24の厚みが、正極23の厚みよりも薄いことが考えられる。この場合、正極23の終端部234と負極24の終端部244の位置の違いに起因する短径方向における電極体2の厚みの差が大きくなりやすいので、セパレータ25の終端部254がこの厚みの差を抑えるという効果がより顕著なものとなる。 In the above embodiment, the thickness of the positive electrode 23 and the thickness of the negative electrode 24 are approximately the same, but they may be different. For example, it is possible that the thickness of the negative electrode 24 is thinner than the thickness of the positive electrode 23. In this case, the difference in thickness of the electrode body 2 in the short diameter direction due to the difference in position between the terminal end 234 of the positive electrode 23 and the terminal end 244 of the negative electrode 24 tends to become large, so the effect of the terminal end 254 of the separator 25 suppressing this thickness difference becomes more pronounced.
上記実施形態では、第一セパレータ26の終端縁265と第二セパレータ27の終端縁275とは、巻回方向において同じ位置に揃っていたが、同じ位置に揃っていなくてもよい。この場合、第一セパレータ26の終端縁265、或いは、第二セパレータ27の終端縁275が、正極23の終端縁235と負極24の終端縁245との間に位置していればよい。 In the above embodiment, the terminal edge 265 of the first separator 26 and the terminal edge 275 of the second separator 27 are aligned at the same position in the winding direction, but they do not have to be aligned at the same position. In this case, it is sufficient that the terminal edge 265 of the first separator 26 or the terminal edge 275 of the second separator 27 is located between the terminal edge 235 of the positive electrode 23 and the terminal edge 245 of the negative electrode 24.
上記実施形態では、負極活物質層241が、負極24の巻回方向における全域に配置されていたが、負極24の巻回方向における一部に配置されていてもよい。例えば、負極活物質層241が、負極24の終端部244に配置されないことが考えられる。即ち、電極体の短径方向から視たとき、負極活物質層241の巻回方向における端部が、正極活物質層231の巻回方向における端部と重なっていてもよい。この場合、負極24の終端部244の厚みが薄いことから、正極23の終端部234と負極24の終端部244の厚みの差が大きくなりやすいが、セパレータ25によりこの差を抑えることができる。 In the above embodiment, the negative electrode active material layer 241 is disposed over the entire area of the negative electrode 24 in the winding direction, but may be disposed over a portion of the negative electrode 24 in the winding direction. For example, it is conceivable that the negative electrode active material layer 241 is not disposed at the terminal portion 244 of the negative electrode 24. That is, when viewed from the short diameter direction of the electrode body, the end portion of the negative electrode active material layer 241 in the winding direction may overlap the end portion of the positive electrode active material layer 231 in the winding direction. In this case, since the thickness of the terminal portion 244 of the negative electrode 24 is thin, the difference in thickness between the terminal portion 234 of the positive electrode 23 and the terminal portion 244 of the negative electrode 24 is likely to be large, but this difference can be suppressed by the separator 25.
上記実施形態では、負極24の終端縁245は、正極23の終端部234の終端縁235と重なる位置(短径方向から視たときに重なる位置)と、R部(電極の折り返し位置)との間に位置していたが、図12に示すようにR部と、正極23の終端縁235に対して電極体2の短径方向(Y軸方向)において巻回軸を挟んだ反対側の位置との間に位置してもよい。即ち、負極24の終端縁245及びセパレータ25の終端縁255が、いずれも、正極23の終端縁235に対して電極体2のY軸方向において巻回軸を挟んだ反対側に位置してもよい。 In the above embodiment, the terminal edge 245 of the negative electrode 24 is located between the position where it overlaps with the terminal edge 235 of the terminal portion 234 of the positive electrode 23 (the position where it overlaps when viewed from the short diameter direction) and the R portion (the folded position of the electrode), but as shown in FIG. 12, it may be located between the R portion and a position on the opposite side of the winding axis from the terminal edge 235 of the positive electrode 23 in the short diameter direction (Y axis direction) of the electrode body 2. That is, the terminal edge 245 of the negative electrode 24 and the terminal edge 255 of the separator 25 may both be located on the opposite side of the winding axis from the terminal edge 235 of the positive electrode 23 in the Y axis direction of the electrode body 2.
上記実施形態では、第一セパレータ26の終端縁265及び第二セパレータ27の終端縁275は、巻回方向において、同じ位置に揃っていたが、異なる位置に配置されていてもよい。この場合、第一セパレータ26の終端縁265及び第二セパレータ27の終端縁275のうち一方のみが、電極体2の短径方向から視たとき、正極23の終端縁235と、負極24の終端縁245との間に位置してもよい。なお、第一セパレータ26の始端縁267及び第二セパレータ27の始端縁277は、巻回方向において、同じ位置に揃っていたが、異なる位置に配置されていてもよい。 In the above embodiment, the terminal edge 265 of the first separator 26 and the terminal edge 275 of the second separator 27 are aligned at the same position in the winding direction, but they may be located at different positions. In this case, only one of the terminal edge 265 of the first separator 26 and the terminal edge 275 of the second separator 27 may be located between the terminal edge 235 of the positive electrode 23 and the terminal edge 245 of the negative electrode 24 when viewed from the short diameter direction of the electrode body 2. Note that the starting edge 267 of the first separator 26 and the starting edge 277 of the second separator 27 are aligned at the same position in the winding direction, but they may be located at different positions.
上記実施形態では、正極23又は負極24を間に挟み込む第一セパレータ26及び第二セパレータ27が別体であったが、一体(連続した一枚のセパレータ)であってもよい。 In the above embodiment, the first separator 26 and the second separator 27 that sandwich the positive electrode 23 or the negative electrode 24 between them are separate bodies, but they may be integrated (a single continuous separator).
上記実施形態では、セパレータ25において、基材層250の片面に無機層251が設けられていたが、基材層250の両面に無機層251が設けられていてもよい。なお、セパレータ25は、無機層251を有さなくてもよく、例えば、基材層250のみで構成されていてもよい。 In the above embodiment, the inorganic layer 251 is provided on one side of the base layer 250 in the separator 25, but the inorganic layer 251 may be provided on both sides of the base layer 250. Note that the separator 25 does not need to have the inorganic layer 251, and may be composed of, for example, only the base layer 250.
正極23の始端縁237及び負極24の始端縁247は、電極体2の短径方向において、異なる位置に配置されていてもよい。 The starting edge 237 of the positive electrode 23 and the starting edge 247 of the negative electrode 24 may be located at different positions in the short diameter direction of the electrode body 2.
さらに、上記実施形態においては、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類や大きさ(容量)は任意である。また、上記実施形態において、蓄電素子の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 In addition, in the above embodiment, the storage element is described as being used as a chargeable and dischargeable non-aqueous electrolyte secondary battery (e.g., a lithium ion secondary battery), but the type and size (capacity) of the storage element are arbitrary. Also, in the above embodiment, a lithium ion secondary battery is described as an example of a storage element, but this is not limiting. For example, the present invention can be applied to storage elements of various secondary batteries, as well as other primary batteries and capacitors such as electric double layer capacitors.
蓄電素子(例えば電池)は、図13に示すような蓄電装置(蓄電素子が電池の場合は電池モジュール)11に用いられてもよい。蓄電装置11は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材12と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子1に適用されていればよい。 The energy storage element (e.g., a battery) may be used in an energy storage device 11 (a battery module when the energy storage element is a battery) as shown in FIG. 13. The energy storage device 11 has at least two energy storage elements 1 and a bus bar member 12 that electrically connects the two (different) energy storage elements 1 to each other. In this case, the technology of the present invention may be applied to at least one energy storage element 1.
1…蓄電素子、2…電極体、3…ケース、4…外部端子、5…集電体、11…蓄電装置、12…バスバ部材、22…積層体、23…正極、24…負極、25…セパレータ、26…第一セパレータ、27…第二セパレータ、31…ケース本体、32…蓋板、33…内部空間、102…電極体、123…正極、124…負極、126…セパレータ、127…セパレータ、230…金属箔、231…正極活物質層、232…正極非被覆部、233…正極被覆部、234…終端部、235…終端縁、236…始端部、237…始端縁、240…金属箔、241…負極活物質層、242…負極非被覆部、243…負極被覆部、244…終端部、245…終端縁、246…始端部、247…始端縁、250…基材層、251…無機層、254…終端部、255…終端縁、256…始端部、257…始端縁、264…終端部、265…終端縁、266…始端部、267…始端縁、274…終端部、275…終端縁、276…始端部、277…始端縁、311…閉塞部、312…胴部、313…長壁部、314…短壁部、321…ガス排出弁、1230…正極巻回端部、1240…負極巻回端部、1260、1270…セパレータ巻回終端 1...energy storage element, 2...electrode body, 3...case, 4...external terminal, 5...current collector, 11...energy storage device, 12...busbar member, 22...laminated body, 23...positive electrode, 24...negative electrode, 25...separator, 26...first separator, 27...second separator, 31...case body, 32...cover plate, 33...internal space, 102...electrode body, 123...positive electrode, 124...negative electrode, 126...separator, 127...separator, 230...metal foil, 231...positive electrode active material layer, 232...positive electrode uncoated portion, 233...positive electrode coated portion, 234...terminal portion, 235...terminal edge, 236...starting end, 237...starting edge, 240...metal foil, 241...negative electrode active material 242: negative electrode non-coated portion; 243: negative electrode coated portion; 244: end portion; 245: end edge; 246: beginning edge; 247: beginning edge; 250: substrate layer; 251: inorganic layer; 254: end portion; 255: end edge; 256: beginning edge; 257: beginning edge; 264: end portion; 265: end edge; 266: beginning edge; 267: beginning edge; 274: end portion; 275: end edge; 276: beginning edge; 277: beginning edge; 311: blocking portion; 312: body portion; 313: long wall portion; 314: short wall portion; 321: gas exhaust valve; 1230: positive electrode winding end; 1240: negative electrode winding end; 1260, 1270: separator winding end
Claims (5)
前記電極体を収容するケースと、を備え、
前記セパレータの巻回方向における長さは、前記第二電極の巻回方向における長さよりも長く、
前記電極体は、該電極体を巻回軸方向から視たとき、長径と短径とを有する巻回体であり、
前記第一電極における巻回方向の最も巻き終わり側に位置する終端部は、前記第二電極の巻回方向における最も巻き終わり側に位置する終端部よりも、巻回方向における巻き始め側に位置し、
巻回方向において、前記第二電極の終端部の終端縁は、前記第一電極の終端部の終端縁と重なる位置と、前記第一電極の終端部の終端縁に対して前記電極体の短径方向において巻回軸を挟んだ反対側の位置との間に位置し、
前記電極体の短径方向から視たとき、前記セパレータの巻回方向における最も巻き終わり側に位置する終端部の終端縁は、前記第一電極の終端部の終端縁と、前記第二電極の終端部の終端縁との間に位置し、
前記電極体の短径方向から視たときに、前記第一電極の始端部の始端縁と前記第二電極の始端部の始端縁とのそれぞれが、前記第一電極の終端部の終端縁と前記第二電極の終端部の終端縁との間以外の位置に位置し、
前記電極体の最内周が前記第二電極によって構成され、該電極体における前記第一電極及び前記第二電極の始端部側において、前記第二電極が前記第一電極より巻回方向において一周分長い、
ことを特徴とする蓄電素子。 an electrode assembly in which a strip-shaped first electrode and a second electrode having mutually different polarities are wound in a state where they overlap with a strip-shaped separator;
A case that houses the electrode body,
a length of the separator in the winding direction is longer than a length of the second electrode in the winding direction;
The electrode body is a wound body having a major axis and a minor axis when viewed from a direction of a winding axis of the electrode body,
a terminal end portion of the first electrode located at the end of the winding direction is located closer to the start of the winding direction than a terminal end portion of the second electrode located at the end of the winding direction,
In the winding direction, a terminal edge of the terminal portion of the second electrode is located between a position overlapping with a terminal edge of the terminal portion of the first electrode and a position on the opposite side of the terminal edge of the terminal portion of the first electrode in the minor diameter direction of the electrode body across the winding axis,
When viewed from the short diameter direction of the electrode body, a terminal edge of a terminal portion located at the end of the winding direction of the separator is located between a terminal edge of the terminal portion of the first electrode and a terminal edge of the terminal portion of the second electrode,
When viewed from the short diameter direction of the electrode body, a starting edge of a starting end of the first electrode and a starting edge of a starting end of the second electrode are located at a position other than between a terminal edge of a terminal end of the first electrode and a terminal edge of a terminal end of the second electrode,
The innermost periphery of the electrode body is constituted by the second electrode, and the second electrode is one turn longer than the first electrode in the winding direction at a starting end side of the first electrode and the second electrode in the electrode body .
A storage element characterized by:
前記電極体を巻回軸方向から視たとき、
巻回方向において、前記第一電極又は前記第二電極を間に挟み込む前記セパレータの双方の終端部の終端縁は、同じ位置に揃った状態で、前記第二電極よりも巻き終わり側に配置されるとともに、前記電極体の短径方向から視たとき、前記第一電極の終端部の終端縁と前記第二電極の終端部の終端縁との間に位置する、請求項1に記載の蓄電素子。 the separator is provided so as to sandwich the first electrode or the second electrode therebetween,
When the electrode body is viewed from the winding axis direction,
2. The energy storage element of claim 1, wherein, in the winding direction, the terminal edges of both terminal portions of the separator sandwiching the first electrode or the second electrode are aligned in the same position and positioned toward the end of the winding than the second electrode, and when viewed from the short diameter direction of the electrode body, are located between the terminal edge of the terminal portion of the first electrode and the terminal edge of the terminal portion of the second electrode.
前記電極体を巻回軸方向から視たとき、
前記第一電極の活物質層は、前記第一電極の終端部に配置され、
前記第二電極の活物質層は、前記第二電極の巻回方向における前記第一電極の終端部と重なる部分に配置される、請求項1又は請求項2記載の蓄電素子。 the first electrode and the second electrode each have a sheet-like conductive portion and an active material layer overlapping the conductive portion;
When the electrode body is viewed from the winding axis direction,
the active material layer of the first electrode is disposed at an end portion of the first electrode;
3 . The energy storage element according to claim 1 , wherein the active material layer of the second electrode is disposed in a portion of the second electrode that overlaps with an end portion of the first electrode in a winding direction of the second electrode.
前記第二電極の終端部及び前記第一電極の終端部は、前記短径方向における一方側に配置され、
前記セパレータの終端部は、前記第二電極の終端部に対して前記短径方向における巻回軸を挟んだ反対側の位置に配置されている、請求項1~請求項4のいずれか1項に記載
の蓄電素子。 When the electrode body is viewed from the winding axis direction,
an end portion of the second electrode and an end portion of the first electrode are disposed on one side in the minor axis direction;
The energy storage element according to any one of claims 1 to 4, wherein the end portion of the separator is disposed on the opposite side of the winding axis in the minor axis direction from the end portion of the second electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071700A JP7520561B2 (en) | 2020-04-13 | 2020-04-13 | Energy storage element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071700A JP7520561B2 (en) | 2020-04-13 | 2020-04-13 | Energy storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021168284A JP2021168284A (en) | 2021-10-21 |
JP7520561B2 true JP7520561B2 (en) | 2024-07-23 |
Family
ID=78079811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020071700A Active JP7520561B2 (en) | 2020-04-13 | 2020-04-13 | Energy storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7520561B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251256A (en) | 2007-03-29 | 2008-10-16 | Toshiba Corp | Nonaqueous electrolyte battery, battery pack, and automobile |
JP2010015751A (en) | 2008-07-02 | 2010-01-21 | Toyota Motor Corp | Battery |
JP2015210980A (en) | 2014-04-28 | 2015-11-24 | 日立オートモティブシステムズ株式会社 | Secondary battery |
JP2017112055A (en) | 2015-12-18 | 2017-06-22 | 日立マクセル株式会社 | Sealed battery |
CN110301062A (en) | 2017-03-16 | 2019-10-01 | 三洋电机株式会社 | Non-aqueous electrolyte secondary battery |
-
2020
- 2020-04-13 JP JP2020071700A patent/JP7520561B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251256A (en) | 2007-03-29 | 2008-10-16 | Toshiba Corp | Nonaqueous electrolyte battery, battery pack, and automobile |
JP2010015751A (en) | 2008-07-02 | 2010-01-21 | Toyota Motor Corp | Battery |
JP2015210980A (en) | 2014-04-28 | 2015-11-24 | 日立オートモティブシステムズ株式会社 | Secondary battery |
JP2017112055A (en) | 2015-12-18 | 2017-06-22 | 日立マクセル株式会社 | Sealed battery |
CN110301062A (en) | 2017-03-16 | 2019-10-01 | 三洋电机株式会社 | Non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2021168284A (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7585589B2 (en) | Pouch-type lithium secondary battery | |
JP4630855B2 (en) | Battery pack and manufacturing method thereof | |
US8758917B2 (en) | Secondary battery | |
US20060068275A1 (en) | Pouch-type lithium secondary battery and fabrication method thereof | |
US20210265708A1 (en) | Electrode assembly and secondary battery comprising the same | |
US20060051668A1 (en) | Pouch-type lithium secondary battery and fabrication method thereof | |
JP6583711B2 (en) | Electricity storage element | |
US11189886B2 (en) | Stack-type nonaqueous electrolyte secondary battery | |
US20220311057A1 (en) | Electrode assembly and secondary battery comprising same | |
EP4270565A1 (en) | Electrode assembly and secondary battery comprising same | |
US20120064380A1 (en) | Rechargeable battery | |
EP3817123A1 (en) | Electrode assembly and rechargeable battery comprising same | |
US6258487B1 (en) | Lithium secondary battery including a divided electrode base layer | |
EP2424007B1 (en) | Rechargeable battery | |
JP3543572B2 (en) | Rechargeable battery | |
US8999556B2 (en) | Rechargeable battery | |
JP7520561B2 (en) | Energy storage element | |
WO2021192666A1 (en) | Non-aqueous electrolyte secondary battery | |
US11387495B2 (en) | Non-aqueous electrolyte secondary battery | |
KR100648702B1 (en) | Secondary battery and electrodes assembly using the same | |
JP2023079669A (en) | Nonaqueous electrolyte secondary battery | |
JP2019053818A (en) | Power storage element, and power storage device including the same | |
JP6738565B2 (en) | Electric storage element and method for manufacturing electric storage element | |
JP7125656B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7352857B2 (en) | Energy storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240209 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240710 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7520561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |