JP7519833B2 - Gas sensor, gas sensor sensitive member, and gas sensing method - Google Patents

Gas sensor, gas sensor sensitive member, and gas sensing method Download PDF

Info

Publication number
JP7519833B2
JP7519833B2 JP2020125536A JP2020125536A JP7519833B2 JP 7519833 B2 JP7519833 B2 JP 7519833B2 JP 2020125536 A JP2020125536 A JP 2020125536A JP 2020125536 A JP2020125536 A JP 2020125536A JP 7519833 B2 JP7519833 B2 JP 7519833B2
Authority
JP
Japan
Prior art keywords
resin
gas
sensitive member
gas sensor
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125536A
Other languages
Japanese (ja)
Other versions
JP2022021753A (en
Inventor
舞 栗原
スニル クリストフ ムルティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2020125536A priority Critical patent/JP7519833B2/en
Publication of JP2022021753A publication Critical patent/JP2022021753A/en
Application granted granted Critical
Publication of JP7519833B2 publication Critical patent/JP7519833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本開示は、ガスセンサ、ガスセンサ用感応部材及びガスセンシング方法に関する。 This disclosure relates to a gas sensor, a sensing member for a gas sensor, and a gas sensing method.

気体に含まれる微量成分を検知する手段として、半導体式、接触燃焼式、赤外分光式、ナノメカニカル式などの様々な方式のガスセンサが知られており、これらの中でも接触燃焼式及び半導体式のガスセンサが広く普及している。
接触燃焼式のガスセンサは、燃焼可能なガスの検知に利用される(例えば、特許文献1参照)。半導体式のガスセンサは、加熱された金属酸化物半導体を感応材料とし、感応材料の抵抗変化からガス濃度を計測するガスセンサである(例えば、特許文献2及び特許文献3参照)。
Various types of gas sensors, such as semiconductor, catalytic combustion, infrared spectroscopy, and nanomechanical types, are known as means for detecting trace components contained in gas. Of these, catalytic combustion and semiconductor gas sensors are widely used.
Catalytic combustion gas sensors are used to detect combustible gases (see, for example, Patent Document 1). Semiconductor gas sensors use a heated metal oxide semiconductor as a sensitive material and measure gas concentration based on the change in resistance of the sensitive material (see, for example, Patent Documents 2 and 3).

特開2009-075137号公報JP 2009-075137 A 特開2000-275201号公報JP 2000-275201 A 特開2015-175835号公報JP 2015-175835 A

ガスセンサは、気体が水蒸気を多く含んでいると性能が充分に発揮できない場合がある。例えば、接触燃焼式のガスセンサは、検知素子に加湿水、反応生成水等が付着した状態で通電すると、感応膜表面に局所的な温度分布の不均一が発生し、素子破壊や感度低下を招くおそれがある。そこで、特許文献1に記載のガスセンサは、結露の発生を防止するためのヒータを内蔵している。半導体式のガスセンサは感度が非常に高く、被検ガスと感応材料の組み合わせによってはppbオーダーの濃度のガス検知が可能であるが、その出力は絶対湿度に依存することが知られている。そこで、特許文献2に記載のガスセンサは、金属酸化物半導体の表面をシリコーン処理するなどして、対象ガスの選択性を向上させている。特許文献3には、MEMS(Micro Electro Mechanical Systems)タイプの金属酸化物半導体ガスセンサへの湿度の影響を補正する方法が提案されている。 Gas sensors may not be able to perform adequately if the gas contains a large amount of water vapor. For example, if a catalytic combustion type gas sensor is energized with humidified water, reaction product water, etc. attached to the detection element, localized temperature distribution may become uneven on the surface of the sensitive film, which may lead to element destruction or reduced sensitivity. Therefore, the gas sensor described in Patent Document 1 has a built-in heater to prevent condensation. Semiconductor type gas sensors have very high sensitivity and can detect gases at concentrations on the order of ppb depending on the combination of the gas to be detected and the sensitive material, but it is known that the output depends on the absolute humidity. Therefore, the gas sensor described in Patent Document 2 improves the selectivity of the target gas by, for example, silicone-treating the surface of the metal oxide semiconductor. Patent Document 3 proposes a method for compensating for the effect of humidity on a MEMS (Micro Electro Mechanical Systems) type metal oxide semiconductor gas sensor.

上述したように、ガスセンサは高湿環境への適合性の点でいまだ改善の余地がある。特に、ナノメカニカルセンサ、MEMSセンサ等の微細加工技術を用いて微量物質を検知するセンサは、ガスの検知原理も、質量変化、電気抵抗変化、電導度変化、静電容量変化、応力変化等様々である。また、一つのセンサに複数種の感応材料を用いることができるため、複数種の成分が含まれる混合ガス分析であっても、ターゲットのガス選択性を上げることができる。しかしながら、このようなセンサを高湿度の環境で使用すると、水分子の非特異吸着を避けることは難しいのが現状である。
上記課題に鑑み、本開示の一実施形態は、高湿度下でも優れた感度を示すガスセンサ、ガスセンサ用感応部材及びガスセンシング方法を提供することを目的とする。
As mentioned above, gas sensors still have room for improvement in terms of suitability for high-humidity environments. In particular, sensors that detect trace substances using microfabrication techniques, such as nanomechanical sensors and MEMS sensors, have various gas detection principles, such as mass change, electrical resistance change, conductivity change, capacitance change, and stress change. In addition, since multiple types of sensitive materials can be used in one sensor, the target gas selectivity can be increased even in mixed gas analysis containing multiple components. However, when such sensors are used in high-humidity environments, it is currently difficult to avoid non-specific adsorption of water molecules.
In view of the above problems, an object of one embodiment of the present disclosure is to provide a gas sensor that exhibits excellent sensitivity even under high humidity conditions, a sensitive member for a gas sensor, and a gas sensing method.

上記課題を解決するための手段には、下記の実施態様が含まれる。
<1>感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上である、ガスセンサ。
<2>前記センシング部は、前記感応部材の体積、質量、応力、電気抵抗及び電気伝導度からなる群より選択される少なくとも1種の変化を検知する、<1>に記載のガスセンサ。
<3>前記感応部材は樹脂を含む、<1>又は<2>に記載のガスセンサ。<4>前記感応部材は、厚みが2nm~100000nmである、<1>~<3>のいずれか1項に記載のガスセンサ。
<5>前記感応部材は、算術平均粗さRaが1nm~500nmである、<1>~<4>のいずれか1項に記載のガスセンサ。
<6>前記感応部材は、弾性率が1×10Pa~1×1010Paである、<1>~<5>のいずれか1項に記載のガスセンサ。
<7>パージ機構をさらに備える、<1>~<6>のいずれか1項に記載のガスセンサ。
<8>前記センシング部以外の部分の周囲に配置される保護部材をさらに備える、<1>~<7>のいずれか1項に記載のガスセンサ。
<9>気体と接触する面における水の接触角が75°以上である、ガスセンサ用感応部材。
<10>気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含む、ガスセンシング方法。
Means for solving the above problems include the following embodiments.
<1> A gas sensor comprising a sensing part including a sensitive member, the contact angle of water on a surface of the sensitive member that comes into contact with gas being 75° or more.
<2> The gas sensor according to <1>, wherein the sensing portion detects at least one change selected from the group consisting of a volume, a mass, a stress, an electrical resistance, and an electrical conductivity of the sensitive member.
<3> The gas sensor according to <1> or <2>, wherein the sensor member includes a resin. <4> The gas sensor according to any one of <1> to <3>, wherein the sensor member has a thickness of 2 nm to 100,000 nm.
<5> The gas sensor according to any one of <1> to <4>, wherein the sensitive member has an arithmetic mean roughness Ra of 1 nm to 500 nm.
<6> The gas sensor according to any one of <1> to <5>, wherein the sensitive member has an elastic modulus of 1×10 8 Pa to 1×10 10 Pa.
<7> The gas sensor according to any one of <1> to <6>, further comprising a purge mechanism.
<8> The gas sensor according to any one of <1> to <7>, further comprising a protective member arranged around a portion other than the sensing portion.
<9> A sensitive member for a gas sensor, the contact angle of water on the surface in contact with gas being 75° or more.
<10> A gas sensing method comprising the step of bringing a gas into contact with a sensitive member having a surface in contact with the gas with a water contact angle of 75° or more.

本開示によれば、高湿度下でも優れた感度を示すガスセンサ、ガスセンサ用感応膜及びガスセンシング方法が提供される。 The present disclosure provides a gas sensor, a sensitive film for a gas sensor, and a gas sensing method that exhibit excellent sensitivity even under high humidity conditions.

ガスセンサのセンシング部の構成の例を概略的に示す断面図である。1 is a cross-sectional view illustrating an example of the configuration of a sensing portion of a gas sensor. 実施例で使用したカンチレバー型センサの形状を示す図である。FIG. 2 is a diagram showing the shape of a cantilever-type sensor used in the examples. 実施例における飽和水蒸気雰囲気でのガス吸着量を示すグラフである。1 is a graph showing the amount of gas adsorption in a saturated water vapor atmosphere in an example. 実施例におけるアセトン雰囲気でのガス吸着量を示すグラフである。1 is a graph showing the amount of gas adsorption in an acetone atmosphere in an example.

以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 The following describes in detail the form for implementing the present disclosure. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps, etc.) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and do not limit the present disclosure.

本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
In the present disclosure, a numerical range indicated using "to" indicates a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in stages in this disclosure, the upper or lower limit value described in a certain numerical range may be replaced by the upper or lower limit value of another numerical range described in stages, or may be replaced by a value shown in the examples.
In this disclosure, when a material contains multiple substances corresponding to each component, the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.

<ガスセンサ>
本開示の一実施形態は、感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上である、ガスセンサである。
<Gas sensor>
One embodiment of the present disclosure is a gas sensor including a sensing unit including a sensitive member, the sensor having a surface of the sensitive member that comes into contact with gas with a water contact angle of 75° or more.

上記ガスセンサは、センシング部が気体と接触する面における水の接触角が75°以上である感応部材を含む。
感応部材の期待と接触する面における水の接触角が75°以上であることにより、高湿度下でも優れた感度を示す理由は、以下のように推測される。
水の接触角が75°以上であると、感応部材の気体中の水分子に対する応答性が充分に低くなる一方で、水以外の分子の溶解、拡散、脱離等の速度が水より大きくなり、水分子に対する応答性と水以外の分子に対する応答性の差がより明確になる。その結果、高湿下でガスセンシングを実施しても良好な感度が得られる。
The gas sensor includes a sensing member having a surface where the sensing portion comes into contact with gas, the surface having a water contact angle of 75° or more.
The reason why the contact angle of water on the surface of the sensitive member that comes into contact with the glass is 75° or more and therefore the sensitive member exhibits excellent sensitivity even under high humidity conditions is presumed to be as follows.
When the contact angle of water is 75° or more, the responsiveness of the sensing member to water molecules in the gas is sufficiently low, while the speed of dissolution, diffusion, desorption, etc. of molecules other than water is faster than that of water, and the difference between the responsiveness to water molecules and the responsiveness to molecules other than water becomes clearer. As a result, good sensitivity can be obtained even when gas sensing is performed under high humidity conditions.

本開示においてガスセンサとは、気体中の成分の情報を得ることを目的とする装置を意味し、情報の具体的な内容は特に制限されない。例えば、気体中の成分の検知、濃度測定、複数種の成分の割合の特定などであってよい。 In this disclosure, a gas sensor refers to a device that is intended to obtain information about components in a gas, and the specific content of the information is not particularly limited. For example, it may be detection of components in a gas, measurement of concentration, or determination of the ratio of multiple components.

ガスセンサのセンシング部は、例えば、感応部材の体積、質量、応力、電気抵抗及び電気伝導度からなる群より選択される少なくとも1種の変化を検知する。感応部材の変化は、例えば、感応部材の表面への気体中の分子の吸着(adsorption)、感応部材の内部への分子の吸収(absorption)、吸着と吸収の組み合わせである収着(sorption)、感応部材の内部における分子の拡散(dispersion)、感応部材からの分子の脱離(desorption)等によって生じる。本開示では、これらの現象を「吸着等」と総称する場合がある。
感応部材の変化は、増大又は減少のいずれであってもよい。
The sensing unit of the gas sensor detects at least one change selected from the group consisting of the volume, mass, stress, electrical resistance, and electrical conductivity of the sensitive member. The change in the sensitive member occurs due to, for example, adsorption of molecules in the gas onto the surface of the sensitive member, absorption of molecules into the sensitive member, sorption which is a combination of adsorption and absorption, diffusion of molecules inside the sensitive member, desorption of molecules from the sensitive member, etc. In the present disclosure, these phenomena may be collectively referred to as "adsorption, etc."
The change in the sensitive member may be either an increase or a decrease.

センシング部に含まれる感応部材は、気体中の分子の吸着等により、体積、質量、応力、電気抵抗及び電気伝導度からなる群より選択される少なくとも1種が変化する性質を有することが好ましい。 It is preferable that the sensitive material included in the sensing unit has a property in which at least one selected from the group consisting of volume, mass, stress, electrical resistance, and electrical conductivity changes due to the adsorption of molecules in the gas, etc.

ガスセンサの感度の観点からは、感応部材の変化の度合いは大きいほど好ましい。したがって、感応部材の変化を引き起こす原因となる気体中の分子の吸着等の量は多いほど好ましい。例えば、気体中の分子を表面にのみ吸着する感応部材よりも気体中の分子を吸収又は収着する感応部材が好ましく、気体中の分子を収着する感応部材がより好ましい。 From the viewpoint of the sensitivity of the gas sensor, the greater the degree of change in the sensitive member, the better. Therefore, the greater the amount of adsorption of molecules in the gas that causes a change in the sensitive member, the better. For example, a sensitive member that absorbs or sorbs molecules in the gas is more preferable than a sensitive member that adsorbs molecules in the gas only on its surface, and a sensitive member that sorbs molecules in the gas is even more preferable.

センシング部が感応部材の変化を検知する具体的な方式は特に制限されない。例えば、水晶振動子方式、PZT(チタン酸ジルコン酸鉛)等の圧電方式、インピーダンス方式、イオン電導方式、静電容量方式、ピエゾ抵抗方式、抗原抗体反応方式等が挙げられる。 There are no particular limitations on the specific method by which the sensing unit detects changes in the sensitive member. Examples include a quartz crystal oscillator method, a piezoelectric method such as PZT (lead zirconate titanate), an impedance method, an ion conduction method, a capacitance method, a piezoresistance method, and an antigen-antibody reaction method.

センシング部は、複数種の感応部材を含んでもよい。例えば、検知対象への応答性が異なる複数種の感応部材を含んでもよい。検知対象への応答性が異なる複数種の感応部材を含むことで、検知対象に対する選択性を高めることができ、感度をより向上させることができる。
センシング部が複数種の感応部材を含む場合、その全てが気体と接触する面における水の接触角が75°以上であっても、一部が気体と接触する面における水の接触角が75°以上であってもよい。
センシング部に複数種の感応部材を配置可能なガスセンサとしては、MEMSセンサ及びナノメカニカルセンサが挙げられる。
The sensing unit may include multiple types of sensitive members. For example, the sensing unit may include multiple types of sensitive members having different responsiveness to the detection target. By including multiple types of sensitive members having different responsiveness to the detection target, the selectivity to the detection target can be increased, and the sensitivity can be further improved.
When the sensing unit includes multiple types of sensitive members, the water contact angle on the surface of all of the sensitive members that come into contact with gas may be 75° or more, or the water contact angle on the surface of only a portion of the sensitive members that come into contact with gas may be 75° or more.
Examples of gas sensors that can have a plurality of types of sensitive members arranged in the sensing portion include MEMS sensors and nanomechanical sensors.

水蒸気の影響を低減して高湿下での感度を向上させる観点からは、感応部材の気体と接触する面における水の接触角は80°以上であることが好ましく、85°以上であることがより好ましく、90°以上であることがさらに好ましい。
感応部材の気体と接触する面における水の接触角の上限は特に制限されず、例えば、150°以下であってもよい。水の接触角が高すぎることで、水の応答性がなくなり、水をリファレンスとして他の分子の応答性を正確に検知できなくなることを抑制できる観点からは、120°以下が好ましく、100°以下がより好ましい。
本開示において感応部材の水の接触角は、実施例に記載した方法(液滴法)で測定される。
From the viewpoint of reducing the influence of water vapor and improving sensitivity under high humidity conditions, the contact angle of water on the surface of the sensor that comes into contact with gas is preferably 80° or more, more preferably 85° or more, and even more preferably 90° or more.
The upper limit of the contact angle of water on the surface of the sensing member that comes into contact with the gas is not particularly limited, and may be, for example, 150° or less. From the viewpoint of suppressing a situation in which the contact angle of water is too high, the responsiveness of water is lost and the responsiveness of other molecules cannot be accurately detected using water as a reference, the contact angle of water is preferably 120° or less, and more preferably 100° or less.
In the present disclosure, the water contact angle of the sensitive member is measured by the method (sessile drop method) described in the Examples.

水蒸気の影響を低減して高湿下での感度を向上させる観点からは、感応部材の気体と接触する面における臨界表面張力は40dynes/cm以下であることが好ましく、38dynes/cm以下であることがより好ましく、37dynes/cm以下であることがさらに好ましく、35dynes/cm以下であることが特に好ましい。感応部材の気体と接触する面における臨界表面張力の下限値は特に制限されず、例えば、15dynes/cm以上であってもよい。
本開示において感応部材の臨界表面張力は、Zismannプロット方法で測定される。
From the viewpoint of reducing the influence of water vapor and improving the sensitivity under high humidity, the critical surface tension of the surface of the sensor member in contact with the gas is preferably 40 dynes/cm or less, more preferably 38 dynes/cm or less, even more preferably 37 dynes/cm or less, and particularly preferably 35 dynes/cm or less. The lower limit of the critical surface tension of the surface of the sensor member in contact with the gas is not particularly limited, and may be, for example, 15 dynes/cm or more.
In this disclosure, the critical surface tension of the sensitive member is measured by the Zismann plot method.

ガスセンサの感度の観点からは、感応部材の厚みは2nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることがさらに好ましく、15nm以上であることがさらに好ましく、20nm以上であることがさらに好ましい。
気体中の分子の吸着等に要する時間を許容しうる範囲とする観点からは、感応部材の厚みは100000nm以下であることが好ましく、70000nm以下であることがより好ましく、50000nm以下であることがさらに好ましく、30000nm以下であることが特に好ましい。
From the viewpoint of the sensitivity of the gas sensor, the thickness of the sensitive member is preferably 2 nm or more, more preferably 5 nm or more, even more preferably 10 nm or more, even more preferably 15 nm or more, and even more preferably 20 nm or more.
From the viewpoint of keeping the time required for adsorption of molecules in the gas within an acceptable range, the thickness of the sensitive member is preferably 100,000 nm or less, more preferably 70,000 nm or less, even more preferably 50,000 nm or less, and particularly preferably 30,000 nm or less.

本開示において感応部材の厚みは、感応部材が気体と接触する面に対して垂直な方向の寸法を意味する。感応部材の厚みが一定でない場合は、その最大値を感応部材の厚みとする。 In this disclosure, the thickness of the sensitive member refers to the dimension perpendicular to the surface of the sensitive member that comes into contact with the gas. If the thickness of the sensitive member is not constant, the maximum value is taken as the thickness of the sensitive member.

安定した水接触角を得る観点からは、感応部材の気体と接触する面の算術平均粗さRaは1nm~500nmであることが好ましい。
本開示において感応部材の気体と接触する面の算術平均粗さRaは、実施例に記載した方法で測定される。
From the viewpoint of obtaining a stable water contact angle, it is preferable that the arithmetic mean roughness Ra of the surface of the sensor member that comes into contact with the gas is 1 nm to 500 nm.
In the present disclosure, the arithmetic mean roughness Ra of the surface of the sensitive member that comes into contact with the gas is measured by the method described in the examples.

感応部材の変化に対するセンシング部の応答強度の観点からは、感応部材の弾性率は1×10Pa以上であることが好ましく、ガスセンサの基板への負荷の観点からは、感応部材の弾性率は1×1010Pa以下であることが好ましい。 From the viewpoint of the response strength of the sensing part to changes in the sensitive member, the elastic modulus of the sensitive member is preferably 1×10 8 Pa or more, and from the viewpoint of the load on the substrate of the gas sensor, the elastic modulus of the sensitive member is preferably 1×10 10 Pa or less.

本開示において感応部材の弾性率は、実施例に記載した方法で測定される。 In this disclosure, the elastic modulus of the sensitive member is measured by the method described in the Examples.

感応部材の材質は特に制限されず、種々の材料から選択できる。感応部材の材質は1種のみでも2種以上の組み合わせであってもよい。 The material of the sensory member is not particularly limited and can be selected from a variety of materials. The sensory member may be made of one material or a combination of two or more materials.

ガスセンサの感度、成膜性等の観点からは、感応部材は樹脂を含むことが好ましい。
樹脂の種類としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等の合成樹脂、及び生体高分子等の天然由来樹脂が挙げられる。
From the viewpoint of the sensitivity, film-forming properties, etc. of the gas sensor, it is preferable that the sensitive member contains a resin.
The types of resin include synthetic resins such as thermoplastic resins, thermosetting resins, and photocurable resins, and naturally occurring resins such as biopolymers.

熱可塑性樹脂としては、ポリオレフィン樹脂(例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリスチレン、ポリ塩化ビニル等)、ポリオレフィン系ワックス(例えば、ポリエチレンオリゴマー、ポリプロピレンオリゴマー等)、ポリサルファイド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、エラストマー(例えば、ポリオレフィン系エラストマー、水添スチレン系ブロック共重合体、水添スチレン系ランダム共重合体等)、スーパーエンジニアリングプラスチック(例えば、ポリフェニレンスルフィド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン等)、シンジオタクティックポリスチレン等が挙げられる。熱可塑性樹脂は2種類以上のコモノマーからなる共重合化合物、グラフト重合化合物、又はリビングラジカル重合法等から合成されるブロック重合化合物であってもよい。 Examples of thermoplastic resins include polyolefin resins (e.g., polyethylene, polypropylene, polyisobutylene, polystyrene, polyvinyl chloride, etc.), polyolefin waxes (e.g., polyethylene oligomers, polypropylene oligomers, etc.), polysulfide resins, polyvinylidene fluoride resins, polyvinyl fluoride resins, polytetrafluoroethylene resins, polycarbonate resins, thermoplastic polyester resins, polyamide resins, polyimide resins, ABS (Acrylonitrile Butadiene Styrene) resins, elastomers (e.g., polyolefin elastomers, hydrogenated styrene block copolymers, hydrogenated styrene random copolymers, etc.), super engineering plastics (e.g., polyphenylene sulfide, polyamide imide, polyether sulfone, polyether ether ketone, etc.), syndiotactic polystyrene, etc. The thermoplastic resin may be a copolymer compound consisting of two or more types of comonomers, a graft polymerization compound, or a block polymerization compound synthesized by a living radical polymerization method, etc.

熱硬化性樹脂又は光硬化性樹脂としては、不飽和ポリエステル樹脂、フェノール樹脂、ウレア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコーン樹脂、アルキド樹脂、熱硬化性ポリイミド等が挙げられる。感応部材が熱硬化性樹脂又は光硬化性樹脂を含む場合、硬化前のモノマー及び開始剤等を混合し、その直後に混合物を収容空間に充填し、熱又は光によって混合物を硬化させることにより感応部材を形成してもよい。 Examples of thermosetting or photocurable resins include unsaturated polyester resins, phenolic resins, urea resins, polyurethane resins, melamine resins, silicone resins, alkyd resins, and thermosetting polyimides. When the sensitive member contains a thermosetting or photocurable resin, the sensitive member may be formed by mixing a monomer and an initiator before curing, filling the mixture into the storage space immediately thereafter, and curing the mixture by heat or light.

感応部材は、金属、セラミックス等の無機材料、カーボン材料、低分子化合物(パラフィン等)の添加剤を含んでもよい。 The sensor may contain additives such as inorganic materials, such as metals and ceramics, carbon materials, and low molecular weight compounds (such as paraffin).

無機材料としては、ガラス繊維、単結晶シリコン、窒化ケイ素、炭化ケイ素、及び無機フィラーが挙げられる。無機フィラーとしては、無定形フィラー(例えば、炭酸カルシウム、シリカ、カオリン、クレー、酸化チタン、硫酸バリウム、酸化亜鉛、酸化マグネシウム、酸化ランタン、酸化セリウム、酸化ジルコニウム、ハイドロタルサイト、水酸化アルミニウム、アルミナ、水酸化マグネシウム等)、板状フィラー(例えば、タルク、マイカ、モンモリロナイト、ガラスフレーク等)、針状フィラー(例えば、ワラストナイト、チタン酸カリウム、塩基性硫酸マグネシウム、セピオライト、ゾノトライト、ホウ酸アルミニウム等)、導電性フィラー(例えば、金属粉、金属フレーク、カーボンブラック、カーボンナノチューブ等)、ペロブスカイト化合物(チタン酸ストロンチウム等)、ガラスビーズ、ガラス粉、アパタイト、ハイドロキシアパタイト及びゼオライトが挙げられる。無機フィラーは、表面が炭素等で被覆されていてもよく、シランカップリング処理等が施されていてもよい。 Inorganic materials include glass fiber, single crystal silicon, silicon nitride, silicon carbide, and inorganic fillers. Inorganic fillers include amorphous fillers (e.g., calcium carbonate, silica, kaolin, clay, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, lanthanum oxide, cerium oxide, zirconium oxide, hydrotalcite, aluminum hydroxide, alumina, magnesium hydroxide, etc.), plate-like fillers (e.g., talc, mica, montmorillonite, glass flakes, etc.), needle-like fillers (e.g., wollastonite, potassium titanate, basic magnesium sulfate, sepiolite, xonotlite, aluminum borate, etc.), conductive fillers (e.g., metal powder, metal flakes, carbon black, carbon nanotubes, etc.), perovskite compounds (strontium titanate, etc.), glass beads, glass powder, apatite, hydroxyapatite, and zeolite. The surface of the inorganic filler may be coated with carbon or the like, or may be subjected to a silane coupling treatment or the like.

カーボン材料としては、カーボン繊維、活性炭、カーボンナノチューブ、カーボンナノホーン、グラフェン、グラファイト等が挙げられる。 Carbon materials include carbon fiber, activated carbon, carbon nanotubes, carbon nanohorns, graphene, graphite, etc.

感応部材は、金属有機構造体(MOF;Metal Organic Frameworks)等の合成された多孔質体を含んでもよい。金属有機構造体は、多孔性配位高分子と呼ばれてもよい。例えば、金属有機構造体は、Basolite(登録商標)C300(BASF社製)等であってよい。 The sensor may include a synthetic porous material such as a metal organic framework (MOF). The metal organic framework may be called a porous coordination polymer. For example, the metal organic framework may be Basolite (registered trademark) C300 (manufactured by BASF).

感応部材が樹脂を含む場合、樹脂の割合が感応部材の50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。 When the sensory member contains a resin, the proportion of the resin is preferably 50% to 100% by mass of the sensory member, more preferably 70% to 100% by mass, and even more preferably 80% to 100% by mass.

感応部材が樹脂を含む場合、感応部材が気体と接触する面の水の接触角は、樹脂の種類、密度、ガラス転移温度(Tg)等の物性、副次成分の種類等の影響を受けるため、所望の接触角が得られるようにこれらを選択することが好ましい。 When the sensitive member contains a resin, the contact angle of water on the surface of the sensitive member that comes into contact with the gas is affected by the type of resin, its physical properties such as density and glass transition temperature (Tg), and the type of secondary components, etc., so it is preferable to select these so as to obtain the desired contact angle.

感応部材の水の接触角を大きくする具体的な方法としては、例えば、疎水性基(例えば、アルキル基、アリール基等の炭化水素基)を樹脂の分子構造中に多く導入するように設計・合成する方法、カーボン材料や疎水性の高い無機材料(例えば、単結晶シリコン、窒化ケイ素等)を添加する方法等が挙げられる。また、感応部材の水の接触角を小さくする具体的な方法としては、例えば、親水性基(ヒドロキシ基、カルボキシ基等)を樹脂の分子構造中に多く導入するように設計・合成する方法、ガラス繊維のような親水性の高い添加剤を加える方法等が挙げられる。 Specific methods for increasing the water contact angle of a sensitive material include, for example, a method of designing and synthesizing a resin so that many hydrophobic groups (e.g., hydrocarbon groups such as alkyl groups and aryl groups) are introduced into the molecular structure of the resin, and a method of adding a carbon material or a highly hydrophobic inorganic material (e.g., single crystal silicon, silicon nitride, etc.). Specific methods for decreasing the water contact angle of a sensitive material include, for example, a method of designing and synthesizing a resin so that many hydrophilic groups (hydroxyl groups, carboxyl groups, etc.) are introduced into the molecular structure of the resin, and a method of adding a highly hydrophilic additive such as glass fiber.

感応部材は、同じ材質からなっていても、複数の異なる材質からなっていてもよい。複数の異なる材質からなる場合としては、感応部材が気体と接触する面とそれ以外の部位とが異なる材質からなる場合が挙げられる。 The sensitive member may be made of the same material or multiple different materials. When made of multiple different materials, the surface of the sensitive member that comes into contact with the gas may be made of different materials from the other parts.

センシング部が複数種の感応部材を含む場合、それぞれの感応部材の材料は、所望の特性に応じて上述した材料から選択してもよい。 When the sensing unit includes multiple types of sensitive members, the material of each sensitive member may be selected from the materials described above depending on the desired characteristics.

センシング部における感応部材の形状は、気体と接触する面を少なくとも一部に有する状態であれば特に制限されない。
図1は、センシング部における感応部材の形状の例を概略的に示す断面図である。図1の(a)に示すセンシング部10では、感応部材1は、支持体2の表面に配置される膜の状態である。図1の(b)に示すセンシング部10では、感応部材1は、支持体2に形成された溝部に収容された状態である。
The shape of the sensitive member in the sensing portion is not particularly limited as long as it has at least a portion of a surface that comes into contact with the gas.
Fig. 1 is a cross-sectional view showing an example of the shape of a sensory member in a sensing unit. In a sensing unit 10 shown in Fig. 1(a), a sensory member 1 is in the form of a film disposed on a surface of a support 2. In a sensing unit 10 shown in Fig. 1(b), a sensory member 1 is accommodated in a groove formed in the support 2.

センシング部が感応部材と支持体とを有する場合、支持体の材質は特に制限されない。例えば、金属、半導体、ガラス等の無機材料であっても、樹脂等の有機材料であってもよい。 When the sensing unit has a sensitive member and a support, the material of the support is not particularly limited. For example, it may be an inorganic material such as a metal, semiconductor, or glass, or an organic material such as a resin.

感応部材を支持体の表面に形成する方法は特に制限されず、通常の成膜方法を用いることができる。例えば、上述した感応部材の材料を、必要に応じて有機溶媒中に含ませた状態で、浸漬法、CVD(Chemical Vapor Deposition)法、スピンコート法、インクジェット法、ディスペンサ法、スプレーコート法、グラビア印刷法等により成膜することで形成することができる。 There are no particular limitations on the method for forming the sensory member on the surface of the support, and any ordinary film-forming method can be used. For example, the sensory member material described above can be soaked in an organic solvent as necessary and then formed into a film by immersion, CVD (Chemical Vapor Deposition), spin coating, inkjet, dispenser, spray coating, gravure printing, or the like.

必要に応じ、ガスセンサはセンシング部以外の機構を備えてもよい。
例えば、測定環境をリフレッシュするためのパージ機構を備えてもよい。パージ機構としては、送風機構、加熱機構、換気のためのポンプ機構等が挙げられる。
If necessary, the gas sensor may include a mechanism other than the sensing portion.
For example, a purge mechanism for refreshing the measurement environment may be provided, such as a blower mechanism, a heating mechanism, or a pump mechanism for ventilation.

必要に応じ、ガスセンサは、センシング部以外の部分の周囲に配置される保護部材を備えてもよい。保護部材を設けることで、センシング部以外の部分を水分、光、埃等から保護することができる。
保護部材は、例えば、センシング部以外の電子部品(例えば、後述する制御機構、解析機構、監視機構等が備える電子部品)が外部の水分等に曝されないために封止するように設けてもよい。
保護部材としては、例えば、公知の封止材(エポキシ系封止材等)を用いることができる。
If necessary, the gas sensor may include a protective member disposed around the portion other than the sensing portion, which can protect the portion other than the sensing portion from moisture, light, dust, and the like.
The protective member may be provided, for example, to seal electronic components other than the sensing unit (for example, electronic components provided in the control mechanism, analysis mechanism, monitoring mechanism, etc. described below) to prevent them from being exposed to external moisture, etc.
As the protective member, for example, a known sealing material (such as an epoxy-based sealing material) can be used.

必要に応じ、ガスセンサは、ガスセンサの動作を制御する制御機構、センシング部で得られた情報を解析する解析機構、測定環境の状態を監視する監視機構等を備えてもよい。 If necessary, the gas sensor may be equipped with a control mechanism for controlling the operation of the gas sensor, an analysis mechanism for analyzing the information obtained by the sensing unit, a monitoring mechanism for monitoring the state of the measurement environment, etc.

ガスセンサの用途は特に制限されないが、高湿下でも優れた感度を示す特徴を活かし、湿度の高い環境下でのガスセンシング用途により好適に使用される。例えば、ガスセンサを相対湿度が60%以上の環境で使用してもよく、相対湿度が70%以上の環境で使用してもよく、相対湿度が75%以上の環境で使用してもよい。 The gas sensor is not particularly limited in its applications, but taking advantage of its excellent sensitivity even under high humidity conditions, it is more suitable for use in gas sensing applications in high humidity environments. For example, the gas sensor may be used in an environment with a relative humidity of 60% or more, a relative humidity of 70% or more, or a relative humidity of 75% or more.

ガスセンサの用途として具体的には、上下水処理の際の生成ガス(臭気成分、有害物質等)の検知、産業排水や下水道設備における管渠、浄化槽、沈殿槽、曝気槽、活性汚泥槽等における生成ガスの検知、燃料電池における燃料(水素)の酸素極側への漏洩の検知、内燃機関の排ガス中の有害成分、生成ガス等の検知、生ごみ処理機の排ガス中の臭気又は有害成分の検知、火力発電、バイオマス発電等の発電施設で発生する排ガスの検知、化学品・成形加工品製造工程における発生ガスの検知、生鮮品、青果物、加工品、飲料等の食品から発生する、鮮度や品質の変化により生成するガスの検知、生体(ヒト、家畜、動物等)の呼気ガス、皮膚ガス等の生体ガスの検知、植物や土壌から排出されるガスの検知、自動車、工場、ごみ処理場、ごみ廃棄場、埋め立て地、室内等の環境ガス分析等への利用が挙げられる。
さらには、屋内の一酸化炭素・都市ガス・プロパンガス等の検知、石油・天然ガス採掘時の有害成分の検知、燻蒸ガス中の有害成分の検知、飲食品製造及び保管時の臭気成分検知、金属部品の浸炭・浸炭窒化処理における雰囲気ガス成分の検知等への利用が挙げられる。
Specific applications of gas sensors include detection of generated gases (odor components, harmful substances, etc.) during water and sewage treatment, detection of generated gases in pipes, septic tanks, settling tanks, aeration tanks, activated sludge tanks, etc. in industrial wastewater and sewage facilities, detection of fuel (hydrogen) leakage to the oxygen electrode side of fuel cells, detection of harmful components and generated gases in exhaust gases from internal combustion engines, detection of odors or harmful components in exhaust gases from food waste processors, detection of exhaust gases generated at power generation facilities such as thermal power plants and biomass power plants, detection of generated gases in the manufacturing process of chemical products and processed products, detection of gases generated due to changes in freshness and quality from foods such as fresh produce, fruits and vegetables, processed products, and beverages, detection of biological gases such as exhaled gases and skin gases from living organisms (humans, livestock, animals, etc.), detection of gases emitted from plants and soil, and environmental gas analysis in automobiles, factories, garbage disposal sites, garbage dumps, landfills, indoors, etc.
Further examples of applications include the detection of carbon monoxide, city gas, propane gas, etc. indoors, the detection of harmful components during oil and natural gas mining, the detection of harmful components in fumigation gases, the detection of odor components during the production and storage of food and beverages, and the detection of atmospheric gas components during the carburizing and carbonitriding treatment of metal parts.

<感応部材>
本開示の一実施形態は、気体と接触する面における水の接触角が75°以上である、ガスセンサ用感応部材である。
<Sensing material>
One embodiment of the present disclosure is a sensitive member for a gas sensor, the sensitive member having a surface in contact with gas that has a contact angle of water of 75° or more.

ガスセンサ用感応部材は、気体と接触する面における水の接触角が75°以上である。このため、高湿度下でも高い感度でガスセンシングを実施することができる。 The gas sensor sensitive material has a water contact angle of 75° or more on the surface that comes into contact with gas. This allows gas sensing to be performed with high sensitivity even under high humidity conditions.

ガスセンサ用感応部材の詳細及び好ましい態様は、上述したガスセンサのセンシング部に含まれる感応部材の詳細及び好ましい態様と同様である。 The details and preferred aspects of the sensing member for the gas sensor are the same as those of the sensing member included in the sensing portion of the gas sensor described above.

<ガスセンシング方法>
本開示の一実施形態は、気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含む、ガスセンシング方法である。
<Gas sensing method>
One embodiment of the present disclosure is a gas sensing method including a step of contacting a gas with a sensitive member having a surface in contact with the gas that has a contact angle of water of 75° or more.

上記方法で使用する感応部材は、気体と接触する面における水の接触角が75°以上である。このため、感応部材に接触する気体が水蒸気を多く含む状態であっても、高い感度でガスセンシングを実施することができる。 The sensing member used in the above method has a water contact angle of 75° or more on the surface that comes into contact with the gas. Therefore, gas sensing can be performed with high sensitivity even if the gas in contact with the sensing member contains a large amount of water vapor.

上記方法で使用する感応部材の詳細及び好ましい態様は、上述したガスセンサのセンシング部に含まれる感応部材の詳細及び好ましい態様と同様である。
上記方法で使用する感応部材は、上述したガスセンサのセンシング部に含まれる状態であってもよい。
The details and preferred aspects of the sensitive member used in the above method are the same as those of the sensitive member included in the sensing portion of the above gas sensor.
The sensitive member used in the above method may be included in the sensing portion of the gas sensor described above.

以下、本開示を実施例により説明するが、本開示は、これらの実施例により何ら限定されるものではない。 The present disclosure will be explained below using examples, but the present disclosure is not limited in any way to these examples.

<感応部材の作製と物性の測定>
下記の感応部材用樹脂溶液をカバーガラスの上に滴下し、スピンコート装置を用いて実施例1、2及び比較例1、2の感応部材を作製し、物性を測定した。結果を表1に示す。
<Preparation of Sensitive Materials and Measurement of Their Physical Properties>
The following resin solution for the sensitive member was dropped onto a cover glass, and a spin coater was used to prepare sensitive members of Examples 1 and 2 and Comparative Examples 1 and 2, and the physical properties were measured. The results are shown in Table 1.

実施例1:ポリエチレン(PE、シグマ-アルドリッチ社、重量平均分子量35,000)の4vol%キシレン溶液
実施例2:ポリフッ化ビニリデン(PVDF、シグマ-アルドリッチ社、重量平均分子量180,000)の15vol%NMP(N-メチル-2-ピロリドン)溶液
比較例1:ポリメチルメタクリレート(PMMA、富士フイルム和光純薬工業株式会社、重量平均分子量15,000)の20vol%NMP溶液
比較例2:ポリエチレンイミン(PEI、富士フイルム和光純薬工業株式会社、重量平均分子量70,000)の20vol%水溶液
Example 1: 4 vol% xylene solution of polyethylene (PE, Sigma-Aldrich, weight average molecular weight 35,000) Example 2: 15 vol% NMP (N-methyl-2-pyrrolidone) solution of polyvinylidene fluoride (PVDF, Sigma-Aldrich, weight average molecular weight 180,000) Comparative Example 1: 20 vol% NMP solution of polymethyl methacrylate (PMMA, Fujifilm Wako Pure Chemical Industries, Ltd., weight average molecular weight 15,000) Comparative Example 2: 20 vol% aqueous solution of polyethyleneimine (PEI, Fujifilm Wako Pure Chemical Industries, Ltd., weight average molecular weight 70,000)

感応部材の各物性の測定条件等は、以下のとおりである。 The measurement conditions for each physical property of the sensory material are as follows:

水の接触角は、マイクロシリンジを用いて1マイクロリットルの蒸留水を感応部材の表面に滴下し、25℃、50%RH(相対湿度)の恒温恒湿中で、接触角計(協和界面科学株式会社、DM-SA)を用いて、液滴法により測定した。 The water contact angle was measured by the drop method using a contact angle meter (Kyowa Interface Science Co., Ltd., DM-SA) at constant temperature and humidity of 25°C and 50% RH (relative humidity) by using a microsyringe to drop 1 microliter of distilled water onto the surface of the sensitive member.

感応部材の厚みは、白色干渉式非接触型膜厚測定装置(FILMETRICS(R))を用いて測定した。 The thickness of the sensitive material was measured using a white light interferometric non-contact film thickness measuring device (FILMETRICS(R)).

感応部材の算術表面粗さRaは、JIS B 0601:2013に準拠する方法で測定した。具体的には、株式会社東京精密、高倍率表面粗さ形状測定機サーフコム920Aにより測定した。 The arithmetic surface roughness Ra of the sensitive member was measured in accordance with JIS B 0601:2013. Specifically, it was measured using a high-magnification surface roughness profile measuring instrument, Surfcom 920A, manufactured by Tokyo Seimitsu Co., Ltd.

感応部材の弾性率は、硬度計(株式会社島津製作所、ダイナミック超微小硬度計「DUH-W201S」)を用い、23℃、50%RHの条件で、ダイヤモンド三角錐圧子を用いて測定した。 The elastic modulus of the sensitive component was measured using a hardness tester (Shimadzu Corporation, Dynamic Ultra-Micro Hardness Tester "DUH-W201S") at 23°C and 50% RH using a diamond pyramid indenter.

<ガス検知性能の評価>
実施例1、2及び比較例1、2で感応部材の作製に用いた樹脂溶液を用いて、ガス検知性能の評価のためのカンチレバーを次のように作製した。
支持体としてSOI(Silicon On Insulator)基板(デバイス層5μm/BOX層1μm/ハンドル層275μm、配向<100>、キャリア密度が約1016/cmのp型SOI)を用い、2回のフォトリソグラフィプロセスでカンチレバーを作製した。具体的には、第1回目のDeep RIE(Reactive Ion Etching)プロセスにてデバイス層をエッチングし、第2回目のDeep RIEプロセスにて275μmのハンドル層をエッチングした。
次いで、BHF etchingプロセスでBOX層のSiOをエッチングし、表面層から幅10μm、長さ300μmの片持ち梁部分11と、梁先の直径が250μmであるステージ部12とからなるカンチレバー100を作製した(図2参照)。図示はしないが、ステージ部12は、デバイス層と同一平面上にある。
カンチレバー100のステージ部12に、実施例及び比較例で用いた樹脂溶液を塗布して膜状の感応部材を形成した。塗布装置として、NTN株式会社製の卓上型微細塗布装置NRS-3018(Fine Pasting System)及び高繰返塗布針HR-100(塗布針直径100μm)を使用した。
<Evaluation of gas detection performance>
Using the resin solutions used for producing the sensitive members in Examples 1 and 2 and Comparative Examples 1 and 2, cantilevers for evaluating gas detection performance were produced as follows.
A silicon on insulator (SOI) substrate (device layer 5 μm/BOX layer 1 μm/handle layer 275 μm, orientation <100>, p-type SOI with carrier density of about 1016/ cm3 ) was used as a support, and a cantilever was fabricated by two photolithography processes. Specifically, the device layer was etched by a first Deep RIE (Reactive Ion Etching) process, and the handle layer of 275 μm was etched by a second Deep RIE process.
Next, the SiO2 of the BOX layer was etched by a BHF etching process to produce a cantilever 100 consisting of a cantilever portion 11 with a width of 10 μm and a length of 300 μm from the surface layer and a stage portion 12 with a diameter of 250 μm at the tip (see FIG. 2). Although not shown, the stage portion 12 is on the same plane as the device layer.
A film-like sensitive member was formed by applying the resin solution used in the examples and comparative examples to the stage 12 of the cantilever 100. As the application device, a tabletop fine application device NRS-3018 (Fine Pasting System) manufactured by NTN Corporation and a high repeat application needle HR-100 (application needle diameter 100 μm) were used.

Polytec MSA-500 Micro System Analyzerを用いて、樹脂溶液塗布前後のカンチレバーの共振周波数を測定し、その変化から感応部材の質量を測定した。リファレンスとして、N雰囲気中及び飽和水蒸気雰囲気中での共振周波数を測定した。カンチレバーは、10Hz未満に相当する水の吸着があることが分かった。なお、共振周波数から質量mを求める式は、一般的に下記の(式1)及び式2で示される。式中のm*は有効質量を、kはばね定数を、fは共振周波数を表す。ばね定数は0.45N/mであった。 Using a Polytec MSA-500 Micro System Analyzer, the resonance frequency of the cantilever was measured before and after application of the resin solution, and the mass of the sensitive member was measured from the change. As a reference, the resonance frequency was measured in an N2 atmosphere and in a saturated water vapor atmosphere. It was found that the cantilever had water adsorption equivalent to less than 10 Hz. The formula for calculating the mass m from the resonance frequency is generally shown in the following (Formula 1) and Formula 2. In the formula, m* represents the effective mass, k represents the spring constant, and f represents the resonance frequency. The spring constant was 0.45 N/m.

(飽和水蒸気雰囲気でのガス吸着量)
上記と同様に、N雰囲気から飽和水蒸気雰囲気に切り替えたときの、経時共振周波数を測定し、各感応部材の吸着したガスの質量を求めた。ステージ部上の感応部材の量はサンプルによってずれがあるため、感応部材1ナノグラム当たりのガス吸着量を求めた(Shift ng/ng)。結果を図3に示す。
(Gas adsorption amount in saturated water vapor atmosphere)
As described above, the time-dependent resonance frequency was measured when the N2 atmosphere was switched to a saturated water vapor atmosphere, and the mass of gas adsorbed by each sensor was calculated. Since the amount of sensor on the stage varies depending on the sample, the amount of gas adsorbed per nanogram of sensor was calculated (Shift ng/ng). The results are shown in Figure 3.

(アセトン雰囲気でのガス吸着量)
上記と同様に、N雰囲気から5vol%アセトン雰囲気に切り替えたときの、経時共振周波数を測定し、各感応部材の吸着したガスの質量を求めた。ステージ部上の感応部材の量はサンプルによってずれがあるため、感応部材1ナノグラム当たりのガス吸着量を求めた(Shift ng/ng)。結果を図4に示す。
(Gas adsorption amount in acetone atmosphere)
As described above, the resonance frequency over time was measured when the N2 atmosphere was switched to a 5 vol% acetone atmosphere, and the mass of gas adsorbed by each sensor was calculated. Since the amount of sensor on the stage varies depending on the sample, the amount of gas adsorbed per nanogram of sensor was calculated (Shift ng/ng). The results are shown in Figure 4.

図3及び図4の結果に示すように、水の接触角が75°以上である実施例1及び実施例2の感応部材は飽和水蒸気に対する応答性は極めて低いが、アセトンに対する応答性が見られた。また、実施例1と実施例2とは、それぞれ異なるアセトンへの応答プロファイルを示した。
水の接触角が75°より小さい比較例1及び比較例2の感応部材は、飽和水蒸気及びアセトンに対する応答性がみられた。また、比較例1と比較例2とは、それぞれ異なる飽和水蒸気及びアセトンへの応答プロファイルを示した。
これらのことから、感応部材の水の接触角が75°より大きいことにより、水蒸気とアセトンとを区別して検知できること、すなわち、高湿度下においてアセトンを区別して検知できることがわかった。
As shown in the results of Figures 3 and 4, the sensitive members of Examples 1 and 2, which have a water contact angle of 75° or more, have extremely low responsiveness to saturated water vapor, but show responsiveness to acetone. Moreover, Examples 1 and 2 each showed a different response profile to acetone.
The sensitive members of Comparative Example 1 and Comparative Example 2, which have a contact angle of water smaller than 75°, were responsive to saturated water vapor and acetone. Comparative Example 1 and Comparative Example 2 also showed different response profiles to saturated water vapor and acetone, respectively.
From these findings, it was found that when the contact angle of water on the sensitive member is greater than 75°, water vapor and acetone can be distinguished and detected, that is, acetone can be distinguished and detected under high humidity conditions.

1…感応部材、2…支持体、10…センシング部、11…梁部分、12…ステージ部、100…カンチレバー 1...sensing member, 2...support, 10...sensing part, 11...beam part, 12...stage part, 100...cantilever

Claims (17)

感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上であり、前記感応部材は樹脂を含み、前記樹脂の割合が感応部材の50質量%~100質量%である、ガスセンサ。 A gas sensor comprising a sensing unit including a sensitive member, the contact angle of water on the surface of the sensitive member that comes into contact with the gas being 75° or more, the sensitive member including a resin, and the proportion of the resin in the sensitive member being 50% by mass to 100% by mass. 感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上であり、前記感応部材は樹脂(ただし、シランの重合体を除く)を含む、ガスセンサ。 A gas sensor comprising a sensing unit including a sensitive member, the contact angle of water on the surface of the sensitive member that comes into contact with the gas being 75° or more, and the sensitive member including a resin (excluding silane polymers). 感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上であり、前記感応部材は樹脂を含み、前記樹脂はポリオレフィン樹脂、ポリサルファイド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ABS樹脂、ポリフェニレンスルフィド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、フェノール樹脂、ウレア樹脂、ポリウレタン樹脂、メラミン樹脂又はアルキド樹脂を含む、ガスセンサ。 A gas sensor comprising: a sensing unit including a sensitive member, the contact angle of water on a surface of the sensitive member that comes into contact with a gas being 75° or more, the sensitive member including a resin, the resin including polyolefin resin, polysulfide resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, polytetrafluoroethylene resin, polycarbonate resin, thermoplastic polyester resin, polyamide resin, polyimide resin, ABS resin , polyphenylene sulfide, polyethersulfone, polyetheretherketone, phenol resin, urea resin, polyurethane resin, melamine resin or alkyd resin. 感応部材を含むセンシング部を備え、前記感応部材の気体と接触する面における水の接触角が75°以上であり、前記感応部材の弾性率が1×10Pa~1×1010Paである、ガスセンサ。 A gas sensor comprising a sensing unit including a sensitive member, the sensitive member having a surface that comes into contact with gas with a contact angle of water of 75° or more, and a modulus of elasticity of the sensitive member being 1×10 8 Pa to 1×10 10 Pa. 前記センシング部は、前記感応部材の体積、質量、応力、電気抵抗及び電気伝導度からなる群より選択される少なくとも1種の変化を検知する、請求項1~請求項4のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 4, wherein the sensing unit detects at least one change selected from the group consisting of the volume, mass, stress, electrical resistance, and electrical conductivity of the sensitive member. 前記感応部材は、厚みが2nm~100000nmである、請求項1~請求項5のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 5, wherein the sensing member has a thickness of 2 nm to 100,000 nm. 前記感応部材は、算術平均粗さRaが1nm~500nmである、請求項1~請求項6のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 6, wherein the sensing member has an arithmetic mean roughness Ra of 1 nm to 500 nm. パージ機構をさらに備える、請求項1~請求項7のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 7, further comprising a purge mechanism. 前記センシング部以外の部分の周囲に配置される保護部材をさらに備える、請求項1~請求項8のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 8, further comprising a protective member arranged around the area other than the sensing portion. 気体と接触する面における水の接触角が75°以上であり、樹脂を含み、前記樹脂の割合が感応部材の50質量%~100質量%である、ガスセンサ用感応部材。 A sensing element for a gas sensor, the surface of which in contact with gas has a water contact angle of 75° or more, contains a resin, and the proportion of said resin in the sensing element is 50% to 100% by mass. 気体と接触する面における水の接触角が75°以上であり、樹脂(ただし、シランの重合体を除く)を含む、ガスセンサ用感応部材。 A sensing component for a gas sensor, the surface of which has a water contact angle of 75° or more and contains a resin (excluding silane polymers). 気体と接触する面における水の接触角が75°以上であり、樹脂を含み、前記樹脂はポリオレフィン樹脂、ポリサルファイド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ABS樹脂、ポリフェニレンスルフィド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、フェノール樹脂、ウレア樹脂、ポリウレタン樹脂、メラミン樹脂又はアルキド樹脂を含む、ガスセンサ用感応部材。 A sensitive component for a gas sensor, the surface of which that comes into contact with gas has a water contact angle of 75° or more, and the sensitive component contains a resin, the resin being selected from the group consisting of polyolefin resin, polysulfide resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, polytetrafluoroethylene resin, polycarbonate resin, thermoplastic polyester resin, polyamide resin, polyimide resin, ABS resin , polyphenylene sulfide, polyethersulfone, polyetheretherketone, phenol resin, urea resin, polyurethane resin, melamine resin and alkyd resin. 気体と接触する面における水の接触角が75°以上であり、弾性率が1×10Pa~1×1010Paである、ガスセンサ用感応部材。 A sensitive member for a gas sensor, the sensitive member having a surface in contact with gas that has a water contact angle of 75° or more and an elastic modulus of 1×10 8 Pa to 1×10 10 Pa. 気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含み、前記感応部材は樹脂を含み、前記樹脂の割合が感応部材の50質量%~100質量%である、ガスセンシング方法。 A gas sensing method comprising a step of contacting a gas with a sensitive member having a water contact angle of 75° or more on a surface in contact with the gas, the sensitive member containing a resin, and the proportion of the resin in the sensitive member is 50% by mass to 100% by mass. 気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含み、前記感応部材は樹脂(ただし、シランの重合体を除く)を含む、ガスセンシング方法。 A gas sensing method comprising a step of contacting a gas with a sensitive member having a water contact angle of 75° or more on a surface in contact with the gas, the sensitive member including a resin (excluding silane polymers). 気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含み、前記感応部材は樹脂を含み、前記樹脂はポリオレフィン樹脂、ポリサルファイド樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ABS樹脂、ポリフェニレンスルフィド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、フェノール樹脂、ウレア樹脂、ポリウレタン樹脂、メラミン樹脂又はアルキド樹脂を含む、ガスセンシング方法。 A gas sensing method comprising a step of bringing a gas into contact with a sensitive member having a water contact angle of 75° or more on a surface in contact with the gas, the sensitive member comprising a resin, the resin comprising polyolefin resin, polysulfide resin, polyvinylidene fluoride resin, polyvinyl fluoride resin, polytetrafluoroethylene resin, polycarbonate resin, thermoplastic polyester resin, polyamide resin, polyimide resin, ABS resin , polyphenylene sulfide, polyethersulfone, polyetheretherketone, phenol resin, urea resin, polyurethane resin, melamine resin or alkyd resin. 気体と接触する面における水の接触角が75°以上である感応部材に気体を接触させる工程を含み、前記感応部材の弾性率が1×10Pa~1×1010Paである、ガスセンシング方法。 A gas sensing method comprising the step of bringing a gas into contact with a sensitive member having a surface in contact with the gas that has a water contact angle of 75° or more, the sensitive member having an elastic modulus of 1×10 8 Pa to 1×10 10 Pa.
JP2020125536A 2020-07-22 2020-07-22 Gas sensor, gas sensor sensitive member, and gas sensing method Active JP7519833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125536A JP7519833B2 (en) 2020-07-22 2020-07-22 Gas sensor, gas sensor sensitive member, and gas sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125536A JP7519833B2 (en) 2020-07-22 2020-07-22 Gas sensor, gas sensor sensitive member, and gas sensing method

Publications (2)

Publication Number Publication Date
JP2022021753A JP2022021753A (en) 2022-02-03
JP7519833B2 true JP7519833B2 (en) 2024-07-22

Family

ID=80220628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125536A Active JP7519833B2 (en) 2020-07-22 2020-07-22 Gas sensor, gas sensor sensitive member, and gas sensing method

Country Status (1)

Country Link
JP (1) JP7519833B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024180918A1 (en) * 2023-02-28 2024-09-06 三洋化成工業株式会社 Odor substance receiving layer, sensor element using same, odor sensor, and odor measurement device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227809A (en) 2002-02-05 2003-08-15 Japan Electronic Materials Corp Ozone sensor, manufacturing method thereof, and ozone- measuring method
JP2005214626A (en) 2002-01-16 2005-08-11 Matsushita Electric Ind Co Ltd Gas sensor, gas sensor unit, and freshness holding device using it
JP2010223816A (en) 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
WO2018091293A1 (en) 2016-11-21 2018-05-24 Unilever N.V. A gas sensor for detecting a gas component
US20190194019A1 (en) 2017-12-22 2019-06-27 Palo Alto Research Center Incorporated Annealed metal nano-particle decorated nanotubes
CN110208323A (en) 2019-05-30 2019-09-06 济南大学 For detecting the organic/inorganic composite material and gas sensor of nitrogen dioxide
CN110274936A (en) 2019-07-09 2019-09-24 济南大学 For detecting the organo-mineral complexing film and gas sensor of triethylamine
WO2020003464A1 (en) 2018-06-28 2020-01-02 富士通株式会社 Photocatalyst, gas sensor device, gas sensor, and measuring method
CN110872096A (en) 2018-08-29 2020-03-10 天津大学 Humidity interference resistant functional silicon nanowire gas sensor and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214626A (en) 2002-01-16 2005-08-11 Matsushita Electric Ind Co Ltd Gas sensor, gas sensor unit, and freshness holding device using it
JP2003227809A (en) 2002-02-05 2003-08-15 Japan Electronic Materials Corp Ozone sensor, manufacturing method thereof, and ozone- measuring method
JP2010223816A (en) 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
WO2018091293A1 (en) 2016-11-21 2018-05-24 Unilever N.V. A gas sensor for detecting a gas component
US20190194019A1 (en) 2017-12-22 2019-06-27 Palo Alto Research Center Incorporated Annealed metal nano-particle decorated nanotubes
WO2020003464A1 (en) 2018-06-28 2020-01-02 富士通株式会社 Photocatalyst, gas sensor device, gas sensor, and measuring method
CN110872096A (en) 2018-08-29 2020-03-10 天津大学 Humidity interference resistant functional silicon nanowire gas sensor and preparation method thereof
CN110208323A (en) 2019-05-30 2019-09-06 济南大学 For detecting the organic/inorganic composite material and gas sensor of nitrogen dioxide
CN110274936A (en) 2019-07-09 2019-09-24 济南大学 For detecting the organo-mineral complexing film and gas sensor of triethylamine

Also Published As

Publication number Publication date
JP2022021753A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
Vashist et al. Recent advances in quartz crystal microbalance‐based sensors
Patel et al. Chemicapacitive microsensors for volatile organic compound detection
Snow et al. Chemical vapor detection using single-walled carbon nanotubes
Alizadeh et al. A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapor
EP3161469B1 (en) Gas sensor array and method
Jung et al. Humidity‐tolerant single‐stranded DNA‐functionalized graphene probe for medical applications of exhaled breath analysis
JP4054384B2 (en) Compositionally different polymer-based sensor elements and methods of making them
Hoyt et al. SAW sensors for the room-temperature measurement of CO2 and relative humidity
Wang et al. Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance
US10268114B2 (en) High performance quartz crystal microbalance enhanced by microstructures for biological applications
Thomas et al. Chemically sensitive surface acoustic wave devices employing a self-assembled composite monolayer film: molecular specificity and effects due to self-assembled monolayer adsorption time and gold surface morphology
JP7519833B2 (en) Gas sensor, gas sensor sensitive member, and gas sensing method
Das et al. Polymerized linseed oil coated quartz crystal microbalance for the detection of volatile organic vapours
Wang et al. Superhydrophobic polymerized n-octadecylsilane surface for BTEX sensing and stable toluene/water selective detection based on QCM sensor
Zheng et al. Advances in the chemical sensors for the detection of DMMP—A simulant for nerve agent sarin
Xu et al. Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors
Minami et al. Discrimination of structurally similar odorous molecules with various concentrations by using a nanomechanical sensor
Wang et al. Functionalized multi‐wall carbon nanotubes/silicone rubber composite as capacitive humidity sensor
Ozmen et al. Preparation of Langmuir–Blodgett thin films of calix [6] arenes and p-tert butyl group effect on their gas sensing properties
Zhou et al. Mass sensitive detection of carbon dioxide by amino group-functionalized polymers
Esmeryan et al. Humidity tolerant organic vapor detection using a superhydrophobic quartz crystal microbalance
Muckley et al. Light-activated hybrid nanocomposite film for water and oxygen sensing
Cao et al. Hydrophobic MOF/PDMS-Based QCM Sensors for VOCs Identification and Quantitative Detection in High-Humidity Environments
Long et al. Recent advances in gas phase microcantilever-based sensing
Shinar et al. Graphite microparticles as coatings for quartz crystal microbalance-based gas sensors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240709

R150 Certificate of patent or registration of utility model

Ref document number: 7519833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150