JP7518034B2 - CO2 content measurement method - Google Patents

CO2 content measurement method Download PDF

Info

Publication number
JP7518034B2
JP7518034B2 JP2021074064A JP2021074064A JP7518034B2 JP 7518034 B2 JP7518034 B2 JP 7518034B2 JP 2021074064 A JP2021074064 A JP 2021074064A JP 2021074064 A JP2021074064 A JP 2021074064A JP 7518034 B2 JP7518034 B2 JP 7518034B2
Authority
JP
Japan
Prior art keywords
content
measuring
cement
measurement
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021074064A
Other languages
Japanese (ja)
Other versions
JP2022168531A (en
Inventor
僚介 安田
泰一郎 森
章 七澤
稔 下沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2021074064A priority Critical patent/JP7518034B2/en
Publication of JP2022168531A publication Critical patent/JP2022168531A/en
Application granted granted Critical
Publication of JP7518034B2 publication Critical patent/JP7518034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、CO含有率測定方法に関する。 The present invention relates to a method for measuring CO2 content.

温室効果ガス削減に向けた取り組みとして、製造時にCOを強制的に吸収させたコンクリート製品(以下、CO吸収コン)が一部実用化されている。CCUS技術(Carbon dioxide Capture and Storageの略で、二酸化炭素回収・貯留技術)の一種であるCO吸収コンは、2019年に経済産業省が発表した「カーボンリサイクル技術ロードマップ」でも言及され、普及拡大に向けた技術開発が行われている。普及拡大に当っては性能指標となる炭酸化前後での材料中CO含有量を精度良く定量できる評価手法を確立し、標準化することも重要である。 As an effort to reduce greenhouse gas emissions, some concrete products that forcibly absorb CO2 during manufacturing (hereinafter referred to as CO2 absorption concrete) have been put into practical use. CO2 absorption concrete, a type of CCUS technology (short for Carbon Dioxide Capture and Storage), was also mentioned in the "Carbon Recycling Technology Roadmap" announced by the Ministry of Economy, Trade and Industry in 2019, and technological development is being carried out to promote its widespread use. In order to promote its widespread use, it is also important to establish and standardize an evaluation method that can accurately quantify the CO2 content in the material before and after carbonation, which is a performance indicator.

セメント系材料中のCO吸収量は、一般に示差熱-熱重量同時分析(TG-DTA法)で所定温度範囲での質量減少量から定量されることが多い(例えば、特許文献1の実施例参照)。 The amount of CO2 absorbed in a cement-based material is generally quantified from the amount of mass loss in a given temperature range using simultaneous differential thermal analysis (TG-DTA method) (see, for example, the examples in Patent Document 1).

特許第6305874号公報Patent No. 6305874

しかし、セメント系材料中の水酸化カルシウム含有率が所定値以上となると、水酸化カルシウムの脱水反応による影響が出てしまい、TG-DTA法だと測定精度が低くなることがある。 However, when the calcium hydroxide content in a cement-based material exceeds a certain value, the dehydration reaction of calcium hydroxide can have an effect, and the measurement accuracy of the TG-DTA method can be reduced.

以上から、本発明は、水酸化カルシウムの脱水反応による影響が出ないように、セメント系材料中のCO含有率を精度よく測定できるCO含有率の測定方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a method for measuring the CO 2 content in a cement-based material with high accuracy without being affected by the dehydration reaction of calcium hydroxide.

測定に対する作業性を考慮すれば、TG-DTAを用いる方が良いが、既述のとおりセメント系材料中の水酸化カルシウム含有率が所定値以上となると、水酸化カルシウムの脱水反応による影響が出てしまい、測定精度が低くなることがある。そこで、本発明者らは、水酸化カルシウム含有率が所定値以上となった場合は、電量滴定法で測定することで、水酸化カルシウムの脱水反応による影響が出ないように、セメント系材料中のCO含有率を精度よく測定できることを見出した。すなわち本発明は下記のとおりである。 Considering the workability of the measurement, it is better to use TG-DTA, but as mentioned above, when the calcium hydroxide content in the cement-based material exceeds a predetermined value, the dehydration reaction of calcium hydroxide may affect the measurement accuracy, which may result in a decrease in the measurement accuracy. Therefore, the present inventors have found that when the calcium hydroxide content exceeds a predetermined value, the CO2 content in the cement-based material can be accurately measured without being affected by the dehydration reaction of calcium hydroxide by measuring with coulometric titration. That is, the present invention is as follows.

[1] セメント系材料中のCO含有率の測定方法であって、前記セメント系材料中の水酸化カルシウム含有率が10質量%未満の場合、示差熱-熱重量同時分析法により前記CO含有率を測定し、前記セメント系材料中の水酸化カルシウム含有率が10質量%以上の場合、電量滴定法により前記CO含有率を測定するCO含有率測定方法。
[2] 前記示差熱-熱重量同時分析法で測定を行う際の測定温度範囲が500℃~1000℃である[1]に記載のCO含有率測定方法。
[3] 前記示差熱-熱重量同時分析法で測定を行う際の測定温度範囲が500℃~850℃である[2]に記載のCO含有率測定方法。
[4] 前記示差熱-熱重量同時分析法で測定を行う際の昇温速度が5℃/分~30℃/分であることを特徴とする[1]~[3]のいずれかに記載のCO含有率測定方法。
[5] 前記示差熱-熱重量同時分析法で測定を行う際の測定雰囲気は窒素雰囲気である[1]~[4]のいずれかに記載のCO含有率測定方法。
[6] 前記電量滴定法が、前記セメント系材料を含む測定試料を酸性とし、発生するCOガスを吸収液に導入し、該吸収液の透過率を一定に保持するために必要な電気量からカーボン量を測定し、この測定値をCO量に換算してCO含有率を求める方法である[1]~[5]のいずれかに記載のCO含有率測定方法。
[7] 前記セメント系材料を含む測定試料の粒度が600μm以下である[6]に記載のCO含有率測定方法。
[8] 前記セメント系材料を含む測定試料を酸性とするために、前記測定試料に塩酸濃度が0.1mol/L~12mol/Lである塩酸を添加する、[6]又は[7]に記載のCO含有率測定方法。
[1] A method for measuring a CO2 content in a cement-based material, the method comprising: measuring the CO2 content by simultaneous differential thermal analysis and thermogravimetry when the calcium hydroxide content in the cement-based material is less than 10% by mass; and measuring the CO2 content by coulometric titration when the calcium hydroxide content in the cement-based material is 10% by mass or more.
[2] The method for measuring CO 2 content according to [1], wherein the measurement temperature range when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 500 ° C to 1000 ° C.
[3] The method for measuring CO 2 content according to [2], wherein the measurement temperature range when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 500 ° C to 850 ° C.
[4] The method for measuring CO 2 content according to any one of [1] to [3], characterized in that the heating rate when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 5 ° C./min to 30 ° C./min.
[5] The method for measuring CO2 content according to any one of [1] to [4], wherein the measurement atmosphere when measuring by the differential thermal-thermogravimetric simultaneous analysis method is a nitrogen atmosphere.
[6] The method for measuring CO2 content according to any one of [1] to [5], wherein the coulometric titration method comprises acidifying a measurement sample containing the cement-based material, introducing the generated CO2 gas into an absorbing solution, measuring the amount of carbon from the amount of electricity required to maintain the transmittance of the absorbing solution constant, and converting this measurement value into the amount of CO2 to obtain the CO2 content.
[7] The CO 2 content measurement method according to [6], wherein the particle size of the measurement sample containing the cement-based material is 600 μm or less.
[8] In order to acidify the measurement sample containing the cement-based material, hydrochloric acid having a hydrochloric acid concentration of 0.1 mol / L to 12 mol / L is added to the measurement sample. The CO 2 content measurement method according to [6] or [7].

本発明によれば、水酸化カルシウムの脱水反応による影響が出ないように、セメント系材料中のCO含有率を精度よく測定できるCO含有率測定方法を提供することができる。 According to the present invention, it is possible to provide a CO 2 content measurement method capable of accurately measuring the CO 2 content in a cement-based material without being affected by the dehydration reaction of calcium hydroxide.

水酸化カルシウムの含有率が10質量%未満となるセメント系材料(7サンプル)のTG-DTA法及び電量滴定法の測定結果を示す図である。FIG. 1 is a diagram showing the measurement results of the TG-DTA method and the coulometric titration method for cement-based materials (seven samples) having a calcium hydroxide content of less than 10 mass%. 水酸化カルシウムの含有率が10質量%以上となるセメント系材料(18サンプル)のTG-DTA法及び電量滴定法の測定結果を示す図である。FIG. 1 shows the results of measurements of TG-DTA and coulometric titration for cement-based materials (18 samples) with a calcium hydroxide content of 10 mass % or more.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明でいうセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
The present invention will be described in detail below.
In the present invention, parts and percentages are based on mass unless otherwise specified.
In addition, the cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.

本発明に係るセメント系材料中のCO含有率の測定方法は、セメント系材料中の水酸化カルシウム含有率に応じて適切な測定方法を適用するものである。すなわち、セメント系材料中の水酸化カルシウム含有率が10%未満の場合、示差熱-熱重量同時分析法によりCO含有率を測定する。また、セメント系材料中の水酸化カルシウム含有率が10%以上の場合、電量滴定法によりCO含有率を測定する。なお、水酸化カルシウム含有率が10%である場合は、水酸化カルシウムの脱水の影響を受けない安全側の評価方法であることを考慮して電量滴定法で測定を行うことが好ましい。 The method for measuring the CO2 content in a cement-based material according to the present invention applies an appropriate measurement method depending on the calcium hydroxide content in the cement-based material. That is, when the calcium hydroxide content in the cement-based material is less than 10%, the CO2 content is measured by simultaneous differential thermal-thermogravimetric analysis. When the calcium hydroxide content in the cement-based material is 10% or more, the CO2 content is measured by coulometric titration. When the calcium hydroxide content is 10%, it is preferable to measure by coulometric titration, considering that it is a safe evaluation method that is not affected by dehydration of calcium hydroxide.

既述のとおり、作業性を考慮すると、示差熱-熱重量同時分析法が好ましいが、セメント系材料中の水酸化カルシウム含有率が所定値以上となると、水酸化カルシウムの脱水反応による影響が出てしまい、測定精度が低くなることがある。一方で、電量滴定法によれば、水酸化カルシウム含有率によらずCO含有率を精度よく測定することができる。しかし、汎用性や作業性は示差熱-熱重量同時分析法に劣ってしまう。そこで、本発明では水酸化カルシウムの脱水反応による影響が出てしまう水酸化カルシウム含有率を特定し、その含有率により2つの測定方法を適切に選択することで、作業性が考慮されながらCO含有率が精度よく測定される。 As mentioned above, in consideration of workability, the differential thermal-thermogravimetric simultaneous analysis method is preferable, but when the calcium hydroxide content in the cement-based material is equal to or greater than a certain value, the dehydration reaction of calcium hydroxide may affect the measurement accuracy, which may result in a decrease in measurement accuracy. On the other hand, the coulometric titration method allows the CO 2 content to be measured accurately regardless of the calcium hydroxide content. However, the versatility and workability are inferior to the differential thermal-thermogravimetric simultaneous analysis method. Therefore, in the present invention, the calcium hydroxide content that is affected by the dehydration reaction of calcium hydroxide is specified, and the two measurement methods are appropriately selected according to the content, thereby allowing the CO 2 content to be measured accurately while taking workability into consideration.

ここで、セメント系材料中の水酸化カルシウム含有率は、示差熱-熱重量同時分析法における400℃~500℃の質量減少を水酸化カルシウムの脱水量とみなして、式1から定量することが好ましい。 Here, the calcium hydroxide content in the cement-based material is preferably quantified using Equation 1, with the mass loss at 400°C to 500°C in simultaneous differential thermal and thermogravimetric analysis regarded as the amount of dehydration of calcium hydroxide.

(式1)
水酸化カルシウム含有率(%)=[ΔmCa(OH)/(m0-m1,000)]×74.10/18.02×100
ここに、ΔmCa(OH):水酸化カルシウムの脱水量(mg)、m0:測定に用いた試料量(mg)、m1,000:1,000℃までの質量減少量(mg)
(Equation 1)
Calcium hydroxide content (%) = [ΔmCa(OH) 2 / (m0 - m1,000)] × 74.10 / 18.02 × 100
Here, ΔmCa(OH) 2 : amount of dehydration of calcium hydroxide (mg), m0: amount of sample used in measurement (mg), m1,000: amount of mass reduction up to 1,000° C. (mg)

また、測定対象となるセメント系材料としては、セメント、混和材、セメント組成物、セメントコンクリートが挙げられる。 Cementitious materials that can be measured include cement, admixtures, cement compositions, and cement concrete.

(セメント)
本発明でいうセメントとは、特に制限されないが、ポルトランドセメントを含有するものが好ましく、たとえば普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントが挙げられる。また、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰などを原料として製造された廃棄物利用セメント、いわゆるエコセメント(R)、及び石灰石粉末等を混合したフィラーセメント等が挙げられる。また、従来セメントに比べてCO排出量が少ないジオポリマーセメント、サルフォアルミネートセメント、石灰石焼成粘土セメント(LC3)も挙げられる。
(cement)
The cement in the present invention is not particularly limited, but preferably contains Portland cement, and examples thereof include various Portland cements such as normal, early strength, super early strength, low heat, and moderate heat. In addition, examples thereof include various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these Portland cements, waste cements produced using municipal waste incineration ash and sewage sludge incineration ash as raw materials, so-called Ecocement (R), and filler cements in which limestone powder and the like are mixed. In addition, examples thereof include geopolymer cements, sulfoaluminate cements, and limestone calcined clay cements (LC3), which emit less CO2 than conventional cements.

(混和材)
次に本発明でいう混和材とは、砂や砂利などの骨材、高炉水砕スラグ微粉末、高炉徐冷スラグ粉末、石灰石微粉末、フライアッシュ、及びシリカフューム、火山灰など天然ポゾラン等の混和材料、膨張材、急硬材、ベントナイト等の粘土鉱物、並びに、ハイドロタルサイト等、通常のセメント系材料に用いられる公知公用の混和材が挙げられる。特に、γ-2CaO・SiO、3CaO・2SiO、α-CaO・SiO、及びカルシウムマグネシウムシリケートからなる群から選ばれる1種又は2種以上の非水硬性化合物を含むセメント混和材を混和させたセメント系材料、ならびに廃コンクリート、焼却灰など炭酸塩原料にCOを固定化させた炭酸塩のCO含有率測定で有効である。
(admixture)
Next, the admixture in the present invention includes aggregates such as sand and gravel, finely divided powder of granulated blast furnace slag, powder of slowly cooled blast furnace slag, finely divided powder of limestone, fly ash, and natural pozzolans such as silica fume and volcanic ash, expansive materials, quick hardening materials, clay minerals such as bentonite, and well-known admixtures used in ordinary cement-based materials such as hydrotalcite. In particular, it is effective for measuring the CO2 content of cement-based materials mixed with cement admixtures containing one or more non-hydraulic compounds selected from the group consisting of γ-2CaO.SiO2, 3CaO.2SiO2 , α- CaO.SiO2 , and calcium magnesium silicate, as well as carbonates obtained by fixing CO2 in carbonate raw materials such as waste concrete and incineration ash.

(1)示差熱-熱重量同時分析法
示差熱-熱重量同時分析法は、試料及び基準物質の温度をプログラムに従って変化させながら、試料の重量変化測定及び試料と基準物質の温度差を測定する示差熱測定を同時に行う手法で、TG-DTA(法)とも表記される。
(1) Simultaneous Differential Thermal Analysis - Thermogravimetry Differential thermal analysis - thermogravimetry is a method in which the temperature of a sample and a reference substance are changed according to a program while simultaneously measuring the change in weight of the sample and differential thermal analysis, which measures the temperature difference between the sample and the reference substance. It is also referred to as TG-DTA (method).

示差熱-熱重量同時分析法でCOの含有率の測定を行う際の測定温度範囲は、炭酸カルシウムの脱炭酸温度と測定に要する時間の観点から、500℃~1000℃であることが好ましく、500℃~850℃であることがより好ましい。COの含有率は式2から求まる。 The measurement temperature range when measuring the CO2 content by simultaneous differential thermal analysis and thermogravimetry is preferably 500°C to 1000°C, more preferably 500°C to 850°C, from the viewpoint of the decarbonation temperature of calcium carbonate and the time required for measurement. The CO2 content is calculated from Equation 2.

(式2)
CO含有率(%)=[ΔmCaCO/(m0-m1,000)]×100
ここに、ΔmCaCO:炭酸カルシウムの脱炭酸量(mg)、m0:測定に用いた試料量(mg)、m1,000:1,000℃までの質量減少量(mg)
(Equation 2)
CO 2 content (%) = [ΔmCaCO 3 /(m0-m1,000)]×100
Here, ΔmCaCO 3 : amount of decarbonated calcium carbonate (mg), m0: amount of sample used in measurement (mg), m1,000: amount of mass reduction up to 1,000° C. (mg)

昇温速度は、熱変化の温度、吸熱または発熱ピークの大きさ、ピークのシャープさ、測定に要する時間の観点から、5℃/分~30℃/分であることが好ましく、5℃/分~10℃/分であることが好ましい。 The heating rate is preferably 5°C/min to 30°C/min, more preferably 5°C/min to 10°C/min, from the viewpoints of the temperature of the thermal change, the magnitude of the endothermic or exothermic peak, the sharpness of the peak, and the time required for measurement.

測定雰囲気はO、COなどを含まない不活性ガスである必要があり、示差熱-熱重量同時分析法において一般的に用いられる窒素雰囲気であることが好ましい。 The measurement atmosphere must be an inert gas that does not contain O 2 , CO 2 or the like, and is preferably a nitrogen atmosphere that is generally used in simultaneous differential thermal analysis and thermogravimetry.

(2)電量滴定法
電量滴定法は、セメント系材料を含む測定試料を酸性とし、発生するCOガスを吸収液に導入し、該吸収液の透過率を一定に保持するために必要な電気量からカーボン量を測定し、この測定値をCO量に換算してCO含有率を求める方法である。
(2) Coulometric titration In the coulometric titration, a measurement sample containing a cementitious material is acidified, the generated CO2 gas is introduced into an absorbing solution, and the amount of carbon is measured from the amount of electricity required to maintain the transmittance of the absorbing solution constant. This measurement value is converted into the amount of CO2 to determine the CO2 content.

セメント系材料を含む測定試料を酸性とするために、測定試料に塩酸濃度が0.1mol/L~12mol/Lである塩酸を添加することが好ましく、2mol/L~12mol/Lであることがより好ましい。当該塩酸濃度の塩酸によれば、セメント系材料中の炭酸塩を十分に溶解し、COガスを発生させることができる。 In order to acidify a measurement sample containing a cement-based material, it is preferable to add hydrochloric acid having a hydrochloric acid concentration of 0.1 mol/L to 12 mol/L, and more preferably 2 mol/L to 12 mol/L, to the measurement sample. Hydrochloric acid with this concentration can sufficiently dissolve carbonates in the cement-based material and generate CO2 gas.

電量滴定法は、例えば、クーロメーターにて行うことが好ましい。クーロメーターは、抽出装置で測定試料から二酸化炭素を取り出し、電量滴定によってCO量を測定する装置である。 The coulometric titration is preferably carried out, for example, with a coulometer, which is a device that extracts carbon dioxide from a measurement sample with an extraction device and measures the amount of CO2 by coulometric titration.

示差熱-熱重量同時分析法及び電量滴定法のいずれにおいても、セメント系材料を含む測定試料の粒度は、塩酸による溶解時間や十分に溶解することが可能な粒子径の観点から、600μm以下であることが好ましく、1μm~200μmであることがより好ましい。粒度は、ふるいにより測定することができる。 In both simultaneous differential thermal analysis and coulometric titration, the particle size of the measurement sample containing the cement-based material is preferably 600 μm or less, and more preferably 1 μm to 200 μm, from the viewpoint of the dissolution time in hydrochloric acid and the particle size that can be sufficiently dissolved. The particle size can be measured using a sieve.

(使用材料)
セメント:普通ポルトランドセメント、市販品
混和材A:CaO/SiOのモル比2.0の配合で製造したダイカルシウムシリケート
混和材B:JIS R 9001に規定された消石灰特号に相当する消石灰、市販品
水:水道水
(Materials used)
Cement: Ordinary Portland cement, Commercial admixture A: Dicalcium silicate admixture manufactured with a molar ratio of CaO/ SiO2 of 2.0 B: Slaked lime corresponding to the special slaked lime specified in JIS R 9001, Commercial water: Tap water

(セメント系材料の作製)
表1に示す配合でJIS R5201「セメントの物理試験方法」に準じてセメントペーストを作製した。水セメント比(W/C)を48%とし、混和材A及び混和材Bをセメント100部に対し0、20、50部添加した。
(Preparation of cement-based materials)
Cement pastes were prepared according to JIS R5201 "Physical Testing Methods for Cement" with the composition shown in Table 1. The water-cement ratio (W/C) was 48%, and 0, 20, and 50 parts of admixture A and admixture B were added to 100 parts of cement.

作製した各セメントペーストからなる5×5×5cmの角柱供試体をそれぞれ作製した。打設後、材齢1日で脱型した供試体の打設面の裏面を残し、他の5面をアルミテープでシールした供試体を用意した。脱型直後の供試体中心部から採取した試料に加え、アルミテープでシールした供試体に炭酸化養生(環境温度:20℃、相対湿度:60%、5%CO)を7日(炭酸化期間7日)、28日(炭酸化期間28日)施した。
炭酸化養生しない供試体(炭酸化期間0日)及び上記炭酸化養生した供試体について、暴露面から10mm厚(試料採取場所:暴露面)と、その反対側の面(試料採取場所:裏面)から10mm厚、暴露面から10mm厚及びその反対面から10mm厚を除いた部分(試料採取場所:中心部)をタガネと金槌を用いて採取することで、水酸化カルシウムの含有率が10%未満となるセメント系材料を7サンプル(水酸化カルシウムの含有率4.2%~9.6%、平均含有率6.76%)、及び、水酸化カルシウムの含有率が10%以上となるセメント系材料を18サンプル(水酸化カルシウムの含有率11.2%~34.4%、平均含有率20.82%)用意した。採取した試料を粉砕して粒度が150μm以下のセメント系材料とし、これに対してアセトンによる水和停止と40℃乾燥を行い、TG-DTA法及び電量滴定法によりCO含有率を下記のようにして測定した。
Each cement paste was used to prepare a 5 x 5 x 5 cm rectangular column specimen. After casting, the specimen was demolded after 1 day of age, and the back side of the poured surface was left, while the other five surfaces were sealed with aluminum tape to prepare a specimen. In addition to the sample taken from the center of the specimen immediately after demolding, the specimen sealed with aluminum tape was subjected to carbonation curing (ambient temperature: 20°C, relative humidity: 60%, 5% CO2 ) for 7 days (carbonation period 7 days) and 28 days (carbonation period 28 days).
For the test specimens not subjected to carbonation curing (carbonation period 0 days) and the test specimens subjected to the carbonation curing, samples were taken using a chisel and a hammer from a 10 mm thickness from the exposed surface (sample collection location: exposed surface), a 10 mm thickness from the opposite surface (sample collection location: back surface), and a portion excluding a 10 mm thickness from the exposed surface and a 10 mm thickness from the opposite surface (sample collection location: center portion). In this way, 7 samples of cement-based materials with a calcium hydroxide content of less than 10% (calcium hydroxide content 4.2% to 9.6%, average content 6.76%) and 18 samples of cement-based materials with a calcium hydroxide content of 10% or more (calcium hydroxide content 11.2% to 34.4%, average content 20.82%) were prepared. The collected samples were pulverized to obtain cement-based materials with particle sizes of 150 μm or less, and the hydration of the materials was stopped with acetone and dried at 40°C. The CO2 content was measured by the TG-DTA method and the coulometric titration method as described below.

(1)TG-DTA法によるCO含有率測定
TG-DTA(NETZSCH JAPAN株式会社製、TG-DTA2000SA型)を使用し、測定は窒素雰囲気下において昇温速度10℃/分で1000℃まで昇温を行った。得られたTG-DTA曲線を基に、500℃~850℃の範囲におけるCaCO由来のCO量に相当する質量減少量を求め、その差分から各セメント系材料のCO含有率を求めた。表1に結果を示す。
(1) Measurement of CO2 content by TG-DTA method TG-DTA (TG-DTA2000SA type, manufactured by NETZSCH JAPAN Co., Ltd.) was used, and the temperature was raised to 1000 ° C. at a heating rate of 10 ° C. / min in a nitrogen atmosphere. Based on the obtained TG-DTA curve, the mass loss equivalent to the amount of CO2 derived from CaCO3 in the range of 500 ° C. to 850 ° C. was calculated, and the CO2 content of each cement-based material was calculated from the difference. The results are shown in Table 1.

(2)電量滴定法によるCO含有率測定
クーロメーター(日本アンス株式会社製、2000S-CAT型)を使用し、三角フラスコに入れた各セメント系材料に塩酸(塩酸濃度:3mol/L)を加えて、スターラーで攪拌、発生するCOガスを窒素で吸収液へ導入させ、吸収液の透過率を一定保持に要する電気量からカーボン量を測定し、CO含有率に換算した。表1に結果を示す。
(2) Measurement of CO2 content by coulometric titration Using a coulometer (2000S-CAT model, manufactured by Nippon Ans Co., Ltd.), hydrochloric acid (hydrochloric acid concentration: 3 mol/L) was added to each cement-based material placed in an Erlenmeyer flask, stirred with a stirrer, and the generated CO2 gas was introduced into the absorbing solution with nitrogen. The amount of carbon was measured from the amount of electricity required to maintain the transmittance of the absorbing solution at a constant level, and converted into the CO2 content. The results are shown in Table 1.

図1に水酸化カルシウムの含有率が10%未満となるセメント系材料(7サンプル)のTG-DTA法及び電量滴定法の測定結果を示す。水酸化カルシウムの含有率が10%未満の場合は、TG-DTA法及び電量滴定法の測定結果は一致しており、いずれも精度よくCO含有率を測定できた。 Figure 1 shows the results of measurements of TG-DTA and coulometric titration for cement-based materials (7 samples) with a calcium hydroxide content of less than 10%. When the calcium hydroxide content was less than 10%, the results of the TG-DTA and coulometric titration methods were consistent, and both methods were able to measure the CO2 content with high accuracy.

図2に水酸化カルシウムの含有率が10%以上となるセメント系材料(18サンプル)のTG-DTA法及び電量滴定法の測定結果を示す。水酸化カルシウムの含有率が10%以上の場合は、TG-DTA法及び電量滴定法の測定結果は一致しない場合が多く存在した。TG-DTA法ではその原理上、水酸化カルシウムの脱水反応による影響が出てしまい、測定精度が低くなる。一方で、電量滴定法は水酸化カルシウムの脱水反応による影響はない。つまり、測定結果の不一致は、TG-DTA法の測定精度によるものといえる。したがって、水酸化カルシウムの含有率が10%以上の場合は、電量滴定法を採用する方が精度よくCO含有率を測定できるといえる。 Figure 2 shows the measurement results of the TG-DTA method and the coulometric titration method for cement-based materials (18 samples) with a calcium hydroxide content of 10% or more. When the calcium hydroxide content is 10% or more, the measurement results of the TG-DTA method and the coulometric titration method often do not match. In principle, the TG-DTA method is affected by the dehydration reaction of calcium hydroxide, which reduces the measurement accuracy. On the other hand, the coulometric titration method is not affected by the dehydration reaction of calcium hydroxide. In other words, the inconsistency in the measurement results can be said to be due to the measurement accuracy of the TG-DTA method. Therefore, when the calcium hydroxide content is 10% or more, it can be said that the CO2 content can be measured more accurately by adopting the coulometric titration method.

以上から、水酸化カルシウムの脱水反応による影響が出ないように、セメント系材料中のCO含有率を精度よく測定できるCO含有率を測定するには、セメント系材料中の水酸化カルシウム含有率が10%未満の場合、作業性の点から示差熱-熱重量同時分析法によりCO含有率を測定し、セメント系材料中の水酸化カルシウム含有率が10%以上の場合は良好な精度の点から電量滴定法によりCO含有率を測定することが適切といえる。 From the above, in order to measure the CO2 content in a cement-based material with high accuracy without being affected by the dehydration reaction of calcium hydroxide, when the calcium hydroxide content in the cement-based material is less than 10%, it is appropriate to measure the CO2 content by differential thermal-thermogravimetric simultaneous analysis from the viewpoint of workability, and when the calcium hydroxide content in the cement-based material is 10% or more, it is appropriate to measure the CO2 content by coulometric titration from the viewpoint of good accuracy.

本発明は、土木・建築分野等で、種々のセメント系材料のCO含有率を測定する際に幅広く使用することができる。



INDUSTRIAL APPLICABILITY The present invention can be widely used in the fields of civil engineering and construction, etc., when measuring the CO2 content of various cement-based materials.



Claims (8)

セメント系材料中のCO含有率の測定方法であって、
前記セメント系材料中の水酸化カルシウム含有率が10質量%未満の場合、示差熱-熱重量同時分析法により前記CO含有率を測定し、
前記セメント系材料中の水酸化カルシウム含有率が10質量%以上の場合、電量滴定法により前記CO含有率を測定するCO含有率測定方法。
A method for measuring the CO2 content in a cement-based material, comprising:
When the calcium hydroxide content in the cement-based material is less than 10% by mass, the CO2 content is measured by simultaneous differential thermal analysis and thermogravimetry;
A CO2 content measurement method, in which, when the calcium hydroxide content in the cement-based material is 10 mass% or more, the CO2 content is measured by coulometric titration.
前記示差熱-熱重量同時分析法で測定を行う際の測定温度範囲が500℃~1000℃である請求項1に記載のCO含有率測定方法。 The method for measuring CO2 content according to claim 1, wherein the measurement temperature range when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 500 ° C to 1000 ° C. 前記示差熱-熱重量同時分析法で測定を行う際の測定温度範囲が500℃~850℃である請求項2に記載のCO含有率測定方法。 The method for measuring CO2 content according to claim 2, wherein the measurement temperature range when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 500 ° C to 850 ° C. 前記示差熱-熱重量同時分析法で測定を行う際の昇温速度が5℃/分~30℃/分であることを特徴とする請求項1~3のいずれか1項に記載のCO含有率測定方法。 The method for measuring CO 2 content according to any one of claims 1 to 3, characterized in that the heating rate when measuring by the differential thermal-thermogravimetric simultaneous analysis method is 5 ° C. / min to 30 ° C. / min. 前記示差熱-熱重量同時分析法で測定を行う際の測定雰囲気は窒素雰囲気である請求項1~4のいずれか1項に記載のCO含有率測定方法。 The method for measuring CO2 content according to any one of claims 1 to 4, wherein the measurement atmosphere when measuring by the differential thermal-thermogravimetric simultaneous analysis method is a nitrogen atmosphere. 前記電量滴定法が、前記セメント系材料を含む測定試料を酸性とし、発生するCOガスを吸収液に導入し、該吸収液の透過率を一定に保持するために必要な電気量からカーボン量を測定し、この測定値をCO量に換算してCO含有率を求める方法である請求項1~5のいずれか1項に記載のCO含有率測定方法。 The method for measuring CO2 content according to any one of claims 1 to 5, wherein the coulometric titration method comprises: acidifying a measurement sample containing the cement-based material; introducing the generated CO2 gas into an absorbing solution; measuring the amount of carbon from the amount of electricity required to maintain the transmittance of the absorbing solution constant; and converting the measured value into the amount of CO2 to obtain the CO2 content. 前記セメント系材料を含む測定試料の粒度が600μm以下である請求項6に記載のCO含有率測定方法。 The method for measuring CO2 content according to claim 6, wherein the particle size of the measurement sample containing the cement-based material is 600 μm or less. 前記セメント系材料を含む測定試料を酸性とするために、前記測定試料に塩酸濃度が0.1mol/L~12mol/Lである塩酸を添加する、請求項6又は7に記載のCO含有率測定方法。



The CO 2 content measurement method according to claim 6 or 7, wherein hydrochloric acid having a hydrochloric acid concentration of 0.1 mol / L to 12 mol / L is added to the measurement sample containing the cement-based material to make the measurement sample acidic.



JP2021074064A 2021-04-26 2021-04-26 CO2 content measurement method Active JP7518034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021074064A JP7518034B2 (en) 2021-04-26 2021-04-26 CO2 content measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021074064A JP7518034B2 (en) 2021-04-26 2021-04-26 CO2 content measurement method

Publications (2)

Publication Number Publication Date
JP2022168531A JP2022168531A (en) 2022-11-08
JP7518034B2 true JP7518034B2 (en) 2024-07-17

Family

ID=83933732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021074064A Active JP7518034B2 (en) 2021-04-26 2021-04-26 CO2 content measurement method

Country Status (1)

Country Link
JP (1) JP7518034B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193658A (en) 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete
JP2001316113A (en) 2000-05-01 2001-11-13 Denki Kagaku Kogyo Kk Alkali metal aluminate and its manufacturing method
US20150168369A1 (en) 2013-03-05 2015-06-18 Korea Institute Of Construction Technology Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
JP2016017025A (en) 2014-07-11 2016-02-01 デンカ株式会社 Cement composition and method for producing the same
JP2020152631A (en) 2019-03-13 2020-09-24 太平洋セメント株式会社 Method for producing cement powder composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193658A (en) 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete
JP2001316113A (en) 2000-05-01 2001-11-13 Denki Kagaku Kogyo Kk Alkali metal aluminate and its manufacturing method
US20150168369A1 (en) 2013-03-05 2015-06-18 Korea Institute Of Construction Technology Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
JP2016017025A (en) 2014-07-11 2016-02-01 デンカ株式会社 Cement composition and method for producing the same
JP2020152631A (en) 2019-03-13 2020-09-24 太平洋セメント株式会社 Method for producing cement powder composition

Also Published As

Publication number Publication date
JP2022168531A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
El-Hassan et al. Early carbonation curing of concrete masonry units with Portland limestone cement
Wu et al. Research status of super sulfate cement
Deboucha et al. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration
Cassagnabère et al. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete
Quillin Performance of belite–sulfoaluminate cements
US11858865B2 (en) Formulations and processing of cementitious components to meet target strength and CO2 uptake criteria
Mikhailenko et al. Influence of physico-chemical characteristics on the carbonation of cement paste at high replacement rates of metakaolin
Gualtieri et al. Quantitative phase analysis of hydraulic limes using the Rietveld method
Tran Development of magnesium silicate hydrate binder systems.
Muthu et al. Degradation of carbonated reactive MgO-based concrete exposed to nitric acid
Zhang et al. CO2 utilization and sequestration in ready-mix concrete—A review
Shah et al. Prediction of carbonation using reactivity test methods for pozzolanic materials
Dixit et al. The role of age on carbon sequestration and strength development in blended cement mixes
JP7518034B2 (en) CO2 content measurement method
WO2023136208A1 (en) Liquid accelerator and shotcrete
He et al. Methods for the assessment of carbon dioxide absorbed by cementitious materials
Sedaghat Cement heat of hydration and thermal control
Boualleg The Study of Slag Cement's Microstructural Properties.
KR102254680B1 (en) Alkali-activated binder with including CFBC ash
Fincan Sulfate Optimization in the Cement-Slag Blended System Based on Calorimetry and Strength Studies
Cordoba et al. Durability performance of blended cement with calcined Illitic shale
Rubinaite et al. Investigation on the hydration and strength properties of belite cement mortar containing industrial waste
Ayad Optimizing the Use of Supplementary Cementitious Materials by Incorporating Small Dosages of Colloidal Nano-Silica
US20160214899A1 (en) A binder based on activated ground granulated blast furnace slag useful for forming a concrete type material
Hime Chemical methods of analysis of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240704

R150 Certificate of patent or registration of utility model

Ref document number: 7518034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150