JP7512036B2 - Polishing composition - Google Patents

Polishing composition

Info

Publication number
JP7512036B2
JP7512036B2 JP2019238063A JP2019238063A JP7512036B2 JP 7512036 B2 JP7512036 B2 JP 7512036B2 JP 2019238063 A JP2019238063 A JP 2019238063A JP 2019238063 A JP2019238063 A JP 2019238063A JP 7512036 B2 JP7512036 B2 JP 7512036B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
polishing composition
silica abrasive
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019238063A
Other languages
Japanese (ja)
Other versions
JP2021106246A (en
Inventor
理紗子 八木
隆幸 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Nitta DuPont Inc
Filing date
Publication date
Application filed by Nitta DuPont Inc filed Critical Nitta DuPont Inc
Priority to JP2019238063A priority Critical patent/JP7512036B2/en
Publication of JP2021106246A publication Critical patent/JP2021106246A/en
Application granted granted Critical
Publication of JP7512036B2 publication Critical patent/JP7512036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、研磨用組成物に関する。 The present invention relates to a polishing composition.

半導体製品の製造において、超精密加工は極めて重要な技術である。近年LSIデバイスの微細化が進み、それに伴って精密研磨後の半導体ウェーハの表面粗度や平坦性への要求が厳しくなる傾向にある。これまで一次研磨では、主として研削加工量(研磨速度)に重点が置かれてきた。一方で、一次研磨後の半導体ウェーハの表面品質が、二次研磨や最終研磨後の表面品質に影響を及ぼすことが明らかとなってきた。そのため、現在では一次研磨においても、現状の研磨速度を維持しつつ、より高いレベルの表面品質の実現が求められている。 Ultra-precision processing is an extremely important technology in the manufacture of semiconductor products. In recent years, LSI devices have become increasingly miniaturized, which has led to increasingly stringent requirements for the surface roughness and flatness of semiconductor wafers after precision polishing. Until now, the primary polishing process has focused primarily on the amount of grinding (polishing speed). However, it has become clear that the surface quality of semiconductor wafers after primary polishing affects the surface quality after secondary polishing and final polishing. Therefore, there is now a demand for a higher level of surface quality in primary polishing while maintaining the current polishing speed.

研磨後の半導体ウェーハの表面品質を向上させる手段として、研磨傷や異物残りの原因となり得る砥粒の濃度を低くすることが有効である。しかし、砥粒の濃度を低くすると、研磨速度が小さくなるという問題がある。 Reducing the concentration of abrasive grains, which can cause polishing scratches and residual foreign matter, is an effective way to improve the surface quality of polished semiconductor wafers. However, lowering the concentration of abrasive grains causes the problem of a slower polishing rate.

特開平9-306880号公報には、水溶性ケイ酸成分、コロイダルシリカ及びアルカリ成分を含有し、pHが8.5~13であるシリコン用研磨液組成物が開示されている。同公報には、アルカリ性コロイダルシリカ懸濁液にケイ酸カリウムやケイ酸ナトリウム等の水溶液ケイ酸成分を添加することで、コロイダルシリカの濃度を大幅に低減しても、シリコンウェーハ表面を効果的に研磨できると記載されている。 JP 09-306880 A discloses a silicon polishing liquid composition that contains a water-soluble silicic acid component, colloidal silica, and an alkaline component, and has a pH of 8.5 to 13. The publication states that by adding an aqueous silicic acid component such as potassium silicate or sodium silicate to an alkaline colloidal silica suspension, the surface of a silicon wafer can be effectively polished even if the concentration of colloidal silica is significantly reduced.

特開2003-100670号公報には、研磨用粒子と、可溶性金属ケイ酸塩とを含み、研磨用粒子の固形分の重量(W1)に対する、可溶性金属ケイ酸塩中のシリカの重量(W2)の比(W2/W1)が0.001~0.08の範囲にある研磨材が開示されている。同公報には、研磨材に可溶性金属ケイ酸塩を配合することで、特に酸化膜基板の研磨速度を大きくできることが記載されている。 JP 2003-100670 A discloses an abrasive that contains abrasive particles and a soluble metal silicate, and in which the ratio (W2/W1) of the weight of silica in the soluble metal silicate (W2) to the weight of the solid content of the abrasive particles (W1) is in the range of 0.001 to 0.08. The publication states that by blending a soluble metal silicate with the abrasive, the polishing speed can be increased, particularly for oxide film substrates.

特開平9-306880号公報Japanese Patent Application Laid-Open No. 9-306880 特開2003-100670号公報JP 2003-100670 A

砥粒の濃度によらず研磨速度を大きくする手段として、研磨用組成物中の塩基性化合物の濃度を高くして、エッチングによる加工量を大きくすることが考えられる。しかし、塩基性化合物の濃度を高くすると、砥粒が溶解して粒子径が変化する場合がある。砥粒の粒子径は、研磨速度、研磨後の半導体ウェーハの表面品質や平坦度に影響する。そのため、砥粒の粒子径を安定に保つ必要がある。 One way to increase the polishing rate regardless of the abrasive concentration is to increase the concentration of the basic compound in the polishing composition to increase the amount of processing by etching. However, increasing the concentration of the basic compound may cause the abrasive to dissolve and change the particle size. The particle size of the abrasive affects the polishing rate and the surface quality and flatness of the polished semiconductor wafer. For this reason, it is necessary to keep the particle size of the abrasive stable.

本発明の課題は、砥粒の粒子径を安定に保つことができる研磨用組成物を提供することである。 The objective of the present invention is to provide a polishing composition that can maintain a stable particle size of the abrasive grains.

本発明の一実施形態による研磨用組成物は、半導体研磨用の研磨用組成物であって、シリカ砥粒と、ケイ酸と、塩基性化合物と、水とを含み、前記シリカ砥粒の固形分の重量W1に対する前記研磨用組成物中のケイ酸イオンのSiO換算の重量W2の比W2/W1が0.5~2.0である。 A polishing composition according to one embodiment of the present invention is a polishing composition for polishing semiconductors, comprising silica abrasive grains, silicic acid, a basic compound, and water, in which the ratio W2/ W1 of the weight W2 of the silicate ions in the polishing composition in terms of SiO2 to the weight W1 of the solid content of the silica abrasive grains is 0.5 to 2.0.

本発明によれば、砥粒の粒子径を安定に保つことができる研磨用組成物が得られる。 According to the present invention, a polishing composition that can stably maintain the particle size of the abrasive grains can be obtained.

本発明者は、上記の課題を解決するために鋭意検討を行った。その結果、シリカ砥粒と、ケイ酸と、塩基性化合物と、水とを含む研磨用組成物において、シリカ砥粒の固形分の重量W1に対する研磨用組成物中のケイ酸イオンのSiO換算の重量W2の比W2/W1を所定の範囲に調整することで、シリカ砥粒の溶解を抑制し、シリカ砥粒の粒子径を安定に保つことができることを見出した。 The present inventor has conducted extensive research to solve the above problems. As a result, it has been found that, in a polishing composition containing silica abrasive grains, silicic acid, a basic compound, and water, the dissolution of silica abrasive grains can be suppressed and the particle size of silica abrasive grains can be kept stable by adjusting the ratio W2/W1 of the weight W2 of the silicic acid ion in the polishing composition in terms of SiO2 to the weight W1 of the solid content of silica abrasive grains in the polishing composition within a predetermined range.

本発明は、上記の知見に基づいて完成された。以下、本発明の一実施形態による研磨用組成物を詳述する。 The present invention was completed based on the above findings. The polishing composition according to one embodiment of the present invention is described in detail below.

本発明の一実施形態による研磨用組成物は、シリカ砥粒と、ケイ酸と、塩基性化合物と、水とを含む。 The polishing composition according to one embodiment of the present invention contains silica abrasive grains, silicic acid, a basic compound, and water.

[シリカ砥粒]
シリカ砥粒は例えば、コロイダルシリカ、ヒュームドシリカであり、なかでもコロイダルシリカが好適に用いられる。シリカ砥粒の粒子径や形状(会合度)は特に限定されない。シリカ砥粒は例えば、二次平均粒子径が20~150nmのものを用いることができる。
[Silica abrasive grains]
The silica abrasive grains are, for example, colloidal silica and fumed silica, and among them, colloidal silica is preferably used. The particle size and shape (degree of association) of the silica abrasive grains are not particularly limited. For example, silica abrasive grains having a secondary average particle size of 20 to 150 nm can be used.

シリカ砥粒の含有量は、特に限定されないが、例えば研磨用組成物(原液)全体の0.15~20質量%である。研磨用組成物は、研磨時に10~100倍に希釈されて使用される。本実施形態による研磨用組成物は、シリカ砥粒の含有量が100~5000質量ppmになるように希釈して用いることが好ましい。 The content of silica abrasive grains is not particularly limited, but is, for example, 0.15 to 20 mass% of the total polishing composition (undiluted). The polishing composition is diluted 10 to 100 times before use. The polishing composition according to this embodiment is preferably diluted so that the content of silica abrasive grains is 100 to 5000 mass ppm.

[ケイ酸]
ケイ酸は、研磨用組成物中のケイ酸イオン濃度を調整する。ケイ酸は例えば、オルトケイ酸(HSiO)や、メタケイ酸(HSiO)、メタ二ケイ酸(HSiO)、メタ三ケイ酸(HSi)、メタ四ケイ酸(HSi11)である。ケイ酸はまた、ケイ酸塩やケイ酸水和物を溶解させることによって形成することもできる。
[Silicate]
The silicic acid adjusts the concentration of silicate ions in the polishing composition. Examples of the silicic acid include orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), metadisilicic acid (H 2 SiO 5 ), metatrisilicic acid (H 4 Si 3 O 8 ), and metatetrasilicic acid (H 6 Si 4 O 11 ). The silicic acid can also be formed by dissolving silicate or hydrated silicate.

ケイ酸は例えば、ゾル-ゲル法によって作製された高純度のコロイダルシリカを、アミン化合物の水溶液に溶解させることによって形成することもできる。 Silicate can also be formed, for example, by dissolving high-purity colloidal silica produced by the sol-gel method in an aqueous solution of an amine compound.

ケイ酸の濃度は、シリカ砥粒の固形分の重量W1に対する研磨用組成物中のケイ酸イオンのSiO換算の重量W2の比W2/W1が所定の範囲となるように調整することが好ましい。W2/W1については後述する。 The concentration of silicic acid is preferably adjusted so that the ratio W2/W1 of the weight W2 of the silicic acid ions in the polishing composition in terms of SiO2 to the weight W1 of the solid content of the silica abrasive grains is within a predetermined range. W2/W1 will be described later.

[塩基性化合物]
塩基性化合物は、半導体ウェーハの表面と効率よく反応し、化学機械研磨(CMP)の研磨性能に貢献する。塩基性化合物は、例えば、アミン化合物、無機アルカリ化合物等である。
[Basic Compounds]
The basic compound reacts efficiently with the surface of the semiconductor wafer and contributes to the polishing performance of the chemical mechanical polishing (CMP). Examples of the basic compound include amine compounds and inorganic alkali compounds.

アミン化合物は、例えば、第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム及びその水酸化物、複素環式アミン等である。具体的には、アンモニア、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラブチルアンモニウム(TBAH)、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン(DETA)、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-(β-アミノエチル)エタノールアミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ピペラジン塩酸塩、炭酸グアニジン等が挙げられる。なかでもTMAHが好適に用いられる。 Examples of amine compounds include primary amines, secondary amines, tertiary amines, quaternary ammonium and their hydroxides, heterocyclic amines, etc. Specific examples include ammonia, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrabutylammonium hydroxide (TBAH), methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, hexylamine, cyclohexylamine, ethylenediamine, hexamethylenediamine, diethylenetriamine (DETA), triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, monoethanolamine, diethanolamine, triethanolamine, N-(β-aminoethyl)ethanolamine, anhydrous piperazine, piperazine hexahydrate, 1-(2-aminoethyl)piperazine, N-methylpiperazine, piperazine hydrochloride, and guanidine carbonate. Among these, TMAH is preferably used.

無機アルカリ化合物は、例えば、アルカリ金属の水酸化物、アルカリ金属の塩、アルカリ土類金属の水酸化物、アルカリ土類金属の塩等が挙げられる。無機アルカリ化合物は、具体的には、水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等である。 Examples of inorganic alkali compounds include hydroxides of alkali metals, salts of alkali metals, hydroxides of alkaline earth metals, salts of alkaline earth metals, etc. Specific examples of inorganic alkali compounds include potassium hydroxide, sodium hydroxide, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate, etc.

上述した塩基性化合物は、一種を単独で使用してもよいし、二種以上を混合して使用してもよい。上述した塩基性化合物の中でも、アルカリ金属の水酸化物、アルカリ金属の塩、アンモニア、アミン、アンモニウム塩、及び第四級アンモニウム水酸化物類が好ましく、第四級アンモニウム水酸化物類が特に好ましい。 The above-mentioned basic compounds may be used alone or in combination of two or more. Among the above-mentioned basic compounds, alkali metal hydroxides, alkali metal salts, ammonia, amines, ammonium salts, and quaternary ammonium hydroxides are preferred, and quaternary ammonium hydroxides are particularly preferred.

塩基性化合物の含有量(二種以上含有する場合は、その総量)は、特に限定されないが、例えば研磨用組成物(原液)全体の0.1~7.0質量%である。塩基性化合物の含有量の下限は、好ましくは1.5質量%である。塩基性化合物の含有量の上限は、好ましくは6質量%である。 The content of the basic compound (the total amount when two or more types are contained) is not particularly limited, but is, for example, 0.1 to 7.0 mass% of the entire polishing composition (undiluted solution). The lower limit of the content of the basic compound is preferably 1.5 mass%. The upper limit of the content of the basic compound is preferably 6 mass%.

[W2/W1]
本実施形態による研磨用組成物は、シリカ砥粒の固形分の重量W1に対する研磨用組成物中のケイ酸イオンのSiO換算の重量W2の比W2/W1が0.5~2.0である。
[W2/W1]
In the polishing composition according to this embodiment, the ratio W2/W1 of the weight W2 of the silicate ions in the polishing composition calculated as SiO 2 to the weight W1 of the solid content of the silica abrasive grains is 0.5 to 2.0.

シリカ砥粒の固形分の重量W1に対して研磨用組成物中のケイ酸イオンのSiO換算の重量W2が小さすぎると、すなわちW2/W1が小さすぎると、シリカ砥粒の溶解を十分に抑制することができず、シリカ砥粒の粒子径を安定に保つことが困難になる。一方、シリカ砥粒の固形分の重量W1に対して研磨用組成物中のケイ酸イオンのSiO換算の重量W2が大きすぎると、すなわちW2/W1が大きすぎると、シリカ砥粒が凝集しやすくなる。W2/W1の下限は、より好ましくは0.52であり、さらに好ましくは0.55である。W2/W1の上限は、より好ましくは1.5であり、さらに好ましくは1.0である。 If the weight W2 of the silicate ion in the polishing composition in terms of SiO2 is too small relative to the weight W1 of the solid content of the silica abrasive grains, that is, if W2/W1 is too small, the dissolution of the silica abrasive grains cannot be sufficiently suppressed, and it becomes difficult to keep the particle size of the silica abrasive grains stable. On the other hand, if the weight W2 of the silicate ion in the polishing composition in terms of SiO2 is too large relative to the weight W1 of the solid content of the silica abrasive grains, that is, if W2/W1 is too large, the silica abrasive grains tend to aggregate. The lower limit of W2/W1 is more preferably 0.52, and even more preferably 0.55. The upper limit of W2/W1 is more preferably 1.5, and even more preferably 1.0.

シリカ砥粒の固形分の重量W1は、遠心分離機によって研磨用組成物中の固形分を抽出し、さらに乾燥機で水分を除くことで測定することができる。研磨用組成物中のケイ酸イオンの重量は、遠心分離した上澄み液を適当な濃度に希釈した後、イオンクロマトグラフィーを用いて測定することができる。SiO換算の重量W2は、測定された重量に、SiOとSiO との分子量の比1.266を除すことで求める。 The weight W1 of the solid content of the silica abrasive grains can be measured by extracting the solid content in the polishing composition using a centrifuge and then removing the moisture with a dryer. The weight of the silicate ions in the polishing composition can be measured using ion chromatography after diluting the supernatant obtained by centrifugation to an appropriate concentration. The weight W2 in terms of SiO2 is calculated by dividing the measured weight by 1.266, which is the ratio of the molecular weights of SiO2 and SiO3- .

本実施形態による研磨用組成物は、pH調整剤をさらに含んでいてもよい。本実施形態による研磨用組成物のpHは、好ましくは8.0~13.0である。 The polishing composition according to this embodiment may further contain a pH adjuster. The pH of the polishing composition according to this embodiment is preferably 8.0 to 13.0.

本実施形態による研磨用組成物は、上記の他、キレート剤、水溶性高分子、界面活性剤等、研磨用組成物の分野で一般に知られた配合剤を任意に配合することができる。 The polishing composition according to this embodiment can contain any of the above-mentioned additives, such as chelating agents, water-soluble polymers, and surfactants, that are generally known in the field of polishing compositions.

本実施形態による研磨用組成物は、シリカ砥粒、ケイ酸、塩基性化合物その他の配合材料を適宜混合して水を加えることによって作製される。本実施形態による研磨用組成物は、あるいは、シリカ砥粒、ケイ酸、塩基性化合物その他の配合材料を、順次、水に混合することによって作製される。これらの成分を混合する手段としては、ホモジナイザー、超音波等、研磨用組成物の技術分野において常用される手段が用いられる。 The polishing composition according to this embodiment is prepared by appropriately mixing silica abrasive grains, silicic acid, a basic compound, and other compounding materials, and adding water. Alternatively, the polishing composition according to this embodiment is prepared by sequentially mixing silica abrasive grains, silicic acid, a basic compound, and other compounding materials with water. The means for mixing these components are those commonly used in the technical field of polishing compositions, such as a homogenizer or ultrasonic waves.

本実施形態による研磨用組成物はまた、予めゾル-ゲル法等によって作製された高純度のコロイダルシリカをアミン化合物の水溶液に溶解させてケイ酸の水溶液を調整し、この水溶液とシリカ砥粒とを混合することによって製造することもできる。この方法によれば、純度のケイ酸が得られるため、例えば金属イオン等による半導体ウェーハの汚染を抑制することができる。 The polishing composition according to this embodiment can also be produced by dissolving high-purity colloidal silica, which has been prepared in advance by a sol-gel method or the like, in an aqueous solution of an amine compound to prepare an aqueous solution of silicic acid, and then mixing this aqueous solution with silica abrasive grains. This method produces silicic acid of high purity, which can suppress contamination of semiconductor wafers by, for example, metal ions.

以上で説明した研磨用組成物は、適当な濃度となるように水で希釈した後、半導体の研磨に用いられる。本実施形態による研磨用組成物は、シリコンウェーハ(ベアウェーハ)の研磨、特に一次研磨に好適に用いることができる。 The polishing composition described above is diluted with water to an appropriate concentration and then used to polish semiconductors. The polishing composition according to this embodiment can be suitably used for polishing silicon wafers (bare wafers), particularly for primary polishing.

以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。 The present invention will be described in more detail below with reference to examples. The present invention is not limited to these examples.

以下の8種類の研磨用組成物を作製した。 The following eight types of polishing compositions were prepared:

[組成物1-1]
純水(DIW、以下同じ)にTMAH3.75重量部を溶解させた水溶液に、ゾル-ゲル法によって作製された高純度コロイダルシリカ5.0重量部を投入し、このコロイダルシリカを完全に溶解させてケイ酸の水溶液を調整した。このケイ酸の水溶液に、さらにシリカ砥粒(二次平均粒子径:80.7nm、NMR比表面積:20.2m/g)10.5重量部、及びTMAH0.25重量部を加え、全体で100重量部となるように純水を加えて研磨用組成物とした。
[Composition 1-1]
5.0 parts by weight of high purity colloidal silica prepared by the sol-gel method was added to an aqueous solution of 3.75 parts by weight of TMAH dissolved in pure water (DIW, the same applies below), and the colloidal silica was completely dissolved to prepare an aqueous solution of silicic acid. 10.5 parts by weight of silica abrasive grains (secondary average particle size: 80.7 nm, NMR specific surface area: 20.2 m2 /g) and 0.25 parts by weight of TMAH were further added to the aqueous solution of silicic acid, and pure water was added to make a total of 100 parts by weight to prepare a polishing composition.

[組成物1-2]
組成物1-1のシリカ砥粒と同じシリカ砥粒(二次平均粒子径:80.7nm、NMR比表面積:20.2m/g)15.5重量部、TMAH4.0重量部、純水80.5重量部を混合して研磨用組成物とした。
[Composition 1-2]
A polishing composition was prepared by mixing 15.5 parts by weight of the same silica abrasive grains (secondary average particle size: 80.7 nm, NMR specific surface area: 20.2 m 2 /g) as the silica abrasive grains in Composition 1-1, 4.0 parts by weight of TMAH, and 80.5 parts by weight of pure water.

[組成物2-1]
組成物1-1のシリカ砥粒とは異なるシリカ砥粒(二次平均粒子径:123.0nm、NMR比表面積:29.0m/g)を用いた以外は、組成物1-1と同様にして研磨用組成物を作製した。
[Composition 2-1]
A polishing composition was prepared in the same manner as in Composition 1-1, except that silica abrasive grains (secondary average particle size: 123.0 nm, NMR specific surface area: 29.0 m 2 /g) different from the silica abrasive grains in Composition 1-1 were used.

[組成物2-2]
組成物2-1のシリカ砥粒と同じシリカ砥粒(二次平均粒子径:123.0nm、NMR比表面積:29.0m/g)15.5重量部、TMAH4.0重量部、純水80.5重量部を混合して研磨用組成物とした。
[Composition 2-2]
A polishing composition was prepared by mixing 15.5 parts by weight of the same silica abrasive grains (secondary average particle size: 123.0 nm, NMR specific surface area: 29.0 m 2 /g) as the silica abrasive grains in composition 2-1, 4.0 parts by weight of TMAH, and 80.5 parts by weight of pure water.

[組成物3-1]
組成物1-1のシリカ砥粒とは異なるシリカ砥粒(二次平均粒子径:106.7nm、NMR比表面積:16.6m/g)を用いた以外は、組成物1-1と同様にして研磨用組成物を作製した。
[Composition 3-1]
A polishing composition was prepared in the same manner as in Composition 1-1, except that silica abrasive grains (secondary average particle size: 106.7 nm, NMR specific surface area: 16.6 m 2 /g) different from the silica abrasive grains in Composition 1-1 were used.

[組成物3-2]
組成物3-1のシリカ砥粒と同じシリカ砥粒(二次平均粒子径:106.7nm、NMR比表面積:16.6m/g)10.5重量部、TMAH4.0重量部、純水85.5重量部を混合して研磨用組成物とした。
[Composition 3-2]
A polishing composition was prepared by mixing 10.5 parts by weight of the same silica abrasive grains (secondary average particle size: 106.7 nm, NMR specific surface area: 16.6 m 2 /g) as the silica abrasive grains in composition 3-1, 4.0 parts by weight of TMAH, and 85.5 parts by weight of pure water.

[組成物4-1]
組成物1-1のシリカ砥粒とは異なるシリカ砥粒(二次平均粒子径:122.8nm、NMR比表面積:38.4m/g)を用いた以外は、組成物1-1と同様にして研磨用組成物を作製した。
[Composition 4-1]
A polishing composition was prepared in the same manner as in Composition 1-1, except that silica abrasive grains (secondary average particle size: 122.8 nm, NMR specific surface area: 38.4 m 2 /g) different from the silica abrasive grains in Composition 1-1 were used.

[組成物4-2]
組成物4-1のシリカ砥粒と同じシリカ砥粒(二次平均粒子径:122.8nm、NMR比表面積:38.4m/g)10.5重量部、TMAH4.0重量部、純水85.5重量部を混合して研磨用組成物とした。
[Composition 4-2]
A polishing composition was prepared by mixing 10.5 parts by weight of the same silica abrasive grains (secondary average particle size: 122.8 nm, NMR specific surface area: 38.4 m 2 /g) as the silica abrasive grains in composition 4-1, 4.0 parts by weight of TMAH, and 85.5 parts by weight of pure water.

[研磨用組成物中のシリカ砥粒の二次平均粒子径]
研磨用組成物を作製した後、組成物1-1、1-2、2-1、及び2-2は常温で2ヵ月保持後、組成物3-1及び3-3は50℃で5日保持(常温で2ヵ月保持に相当)後、動的光散乱法によって研磨用組成物中のシリカ砥粒の二次平均粒子径を測定した。二次平均粒子径の測定は、大塚電子株式会社製ELS-Zを使用して行った。
[Secondary average particle size of silica abrasive grains in polishing composition]
After preparing the polishing compositions, compositions 1-1, 1-2, 2-1, and 2-2 were kept at room temperature for 2 months, and compositions 3-1 and 3-3 were kept at 50° C. for 5 days (corresponding to keeping at room temperature for 2 months), and then the secondary average particle diameter of the silica abrasive grains in the polishing compositions was measured by dynamic light scattering. The secondary average particle diameter was measured using ELS-Z manufactured by Otsuka Electronics Co., Ltd.

W2/W1の値を、下記の式から近似的に算出した。
W1=シリカ砥粒の配合量×(研磨用組成物中のシリカ砥粒の二次平均粒子径/配合したシリカ砥粒の二次平均粒子径)
W2=シリカ砥粒の配合量+ケイ酸イオンの配合量(SiO換算)-W1
The value of W2/W1 was approximately calculated from the following formula.
W1 = amount of silica abrasive grains blended x (secondary average particle diameter of silica abrasive grains in polishing composition / secondary average particle diameter of blended silica abrasive grains) 3
W2 = amount of silica abrasive grains + amount of silicate ions ( SiO2 equivalent) - W1

[研磨速度]
これらの研磨用組成物を使用して、直径200mmのシリコンウェーハ(P型、(100)面)の研磨を行った。研磨装置は、ニッタ・ハース株式会社製の片面研磨装置を使用した。研磨パッドは、スウェードの研磨パッド(SUBA800)を使用した。研磨用組成物を31倍に希釈し、300mL/分の供給速度で供給した。定盤回転速度:115rpm、キャリア回転速度:100rpm、研磨荷重:300g/cmの条件で5分間の研磨を行って、加工量から平均研磨速度を算出した。
[Polishing speed]
These polishing compositions were used to polish silicon wafers (P type, (100) surface) with a diameter of 200 mm. A single-sided polishing machine manufactured by Nitta Haas Corporation was used as the polishing apparatus. A suede polishing pad (SUBA800) was used as the polishing pad. The polishing composition was diluted 31 times and supplied at a supply rate of 300 mL/min. Polishing was performed for 5 minutes under the conditions of a platen rotation speed of 115 rpm, a carrier rotation speed of 100 rpm, and a polishing load of 300 g/ cm2 , and the average polishing rate was calculated from the processing amount.

結果を表1に示す。なお、表1のpHは、二次平均粒子径測定時に測定した値である。 The results are shown in Table 1. Note that the pH in Table 1 is the value measured when the secondary average particle size was measured.

組成物1-1と組成物1-2との比較、及び組成物2-1と組成物2-2との比較から、W2/W1を0.5以上にすることで、シリカ砥粒の粒子径の減少量を低減することができる。また、配合したシリカ砥粒+ケイ酸(SiO換算)の量が同じであっても、W2/W1を0.5以上にすることで、研磨速度を大きくできることが分かる。 Comparisons between Composition 1-1 and Composition 1-2, and between Composition 2-1 and Composition 2-2 show that the reduction in the particle size of the silica abrasive grains can be reduced by setting W2/W1 to 0.5 or more. In addition, even if the amount of silica abrasive grains + silicic acid ( SiO2 equivalent) is the same, it is clear that the polishing rate can be increased by setting W2/W1 to 0.5 or more.

組成物3-1と組成物3-2との比較、及び組成物4-1と組成物4-2との比較から、W2/W1を0.5以上にすることで、シリカ砥粒の粒子径の減少量を低減することができる。また、配合したシリカ砥粒の量が同じであっても、W2/W1を0.5以上にすることで、研磨速度を大きくできることが分かる。 Comparing Composition 3-1 to Composition 3-2, and Composition 4-1 to Composition 4-2, it is clear that by making W2/W1 0.5 or more, the amount of reduction in the particle size of the silica abrasive grains can be reduced. It is also clear that even if the amount of silica abrasive grains used is the same, by making W2/W1 0.5 or more, the polishing speed can be increased.

以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 The above describes the embodiments of the present invention. The above-mentioned embodiments are merely examples for implementing the present invention. Therefore, the present invention is not limited to the above-mentioned embodiments, and it is possible to implement the above-mentioned embodiments by appropriately modifying them within the scope of the spirit of the present invention.

Claims (2)

半導体研磨用の研磨用組成物であって、
シリカ砥粒と、
ケイ酸と、
塩基性化合物と、
水とを含み、
前記シリカ砥粒の固形分の重量W1に対する前記研磨用組成物中のケイ酸イオンのSiO換算の重量W2の比W2/W1が0.5~2.0であり、
前記ケイ酸が、オルトケイ酸、メタケイ酸、メタ二ケイ酸、メタ三ケイ酸、メタ四ケイ酸又はケイ酸水和物である、研磨用組成物。
A polishing composition for semiconductor polishing, comprising:
Silica abrasive grains;
Silica,
A basic compound,
and water,
a ratio W2/W1 of a weight W2 of silicate ions in the polishing composition calculated as SiO2 to a weight W1 of the solid content of the silica abrasive grains is 0.5 to 2.0;
The polishing composition , wherein the silicic acid is orthosilicic acid, metasilicic acid, metadisilicic acid, metatrisilicic acid, metatetrasilicic acid or silicic acid hydrate .
請求項1に記載の研磨用組成物であって、
前記塩基性化合物が、水酸化テトラメチルアンモニウムである、研磨用組成物。
The polishing composition according to claim 1,
The polishing composition, wherein the basic compound is tetramethylammonium hydroxide.
JP2019238063A 2019-12-27 Polishing composition Active JP7512036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019238063A JP7512036B2 (en) 2019-12-27 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238063A JP7512036B2 (en) 2019-12-27 Polishing composition

Publications (2)

Publication Number Publication Date
JP2021106246A JP2021106246A (en) 2021-07-26
JP7512036B2 true JP7512036B2 (en) 2024-07-08

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041978A (en) 2012-08-23 2014-03-06 Fujimi Inc Polishing composition, manufacturing method of polishing composition, and manufacturing method of polishing composition undiluted solution
JP2017082067A (en) 2015-10-27 2017-05-18 ニッタ・ハース株式会社 Polishing composition
JP6882727B1 (en) 2019-10-03 2021-06-02 日産化学株式会社 Polishing composition for eliminating ridges around laser marks containing cations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041978A (en) 2012-08-23 2014-03-06 Fujimi Inc Polishing composition, manufacturing method of polishing composition, and manufacturing method of polishing composition undiluted solution
JP2017082067A (en) 2015-10-27 2017-05-18 ニッタ・ハース株式会社 Polishing composition
JP6882727B1 (en) 2019-10-03 2021-06-02 日産化学株式会社 Polishing composition for eliminating ridges around laser marks containing cations

Similar Documents

Publication Publication Date Title
TWI718998B (en) Polishing composition
JP2008532329A (en) Polishing slurry composition for improving surface quality of silicon wafer, and silicon wafer polishing method using the same
TWI798325B (en) abrasive composition
JP2008053414A (en) Polishing composition and polishing method
KR102617007B1 (en) Method of polishing a substrate and a set of polishing compositions
JP2007300070A (en) Etchant composition for polishing semiconductor wafer, manufacturing method of polishing composition using same, and polishing method
TW201942318A (en) Polishing composition and polishing method
JP6691774B2 (en) Polishing composition and method for producing the same
JPH09306880A (en) Silicon polishing liquid composition
JP2013021291A (en) Polishing composition
JP6350861B2 (en) Colloidal silica and semiconductor wafer polishing composition containing the same
JP7512036B2 (en) Polishing composition
JP4430331B2 (en) Semiconductor wafer polishing composition
WO2005029563A1 (en) Polishing composition for silicon wafer and polishing method
JP2000230169A (en) Slurry for polishing
JP2021106246A (en) Polishing composition
JP5373250B2 (en) Method for producing semiconductor wafer polishing composition
JP6873685B2 (en) Polishing composition
JP6694694B2 (en) Polishing composition
JP6857495B2 (en) Polishing composition
JP2009099874A (en) Polishing composition
JP6960341B2 (en) Polishing composition
JP2008072094A (en) Polishing composition for semiconductor wafer, production method thereof, and polishing method
US20240052202A1 (en) Polishing composition and method of polishing silicon wafer
KR100754807B1 (en) Composition of Slurry for polishing Silicon Wafer and Method of Polishing using thereby