JP7509524B2 - Substituted ε-iron oxide magnetic particles, method for producing substituted ε-iron oxide magnetic particles, compact, method for producing compact, and radio wave absorber - Google Patents

Substituted ε-iron oxide magnetic particles, method for producing substituted ε-iron oxide magnetic particles, compact, method for producing compact, and radio wave absorber Download PDF

Info

Publication number
JP7509524B2
JP7509524B2 JP2019180329A JP2019180329A JP7509524B2 JP 7509524 B2 JP7509524 B2 JP 7509524B2 JP 2019180329 A JP2019180329 A JP 2019180329A JP 2019180329 A JP2019180329 A JP 2019180329A JP 7509524 B2 JP7509524 B2 JP 7509524B2
Authority
JP
Japan
Prior art keywords
substituted
iron oxide
addition
silicon compound
oxide magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180329A
Other languages
Japanese (ja)
Other versions
JP2020150249A (en
Inventor
達朗 堀
大輔 兒玉
詩穂 小畑
昌大 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to CN202080018538.9A priority Critical patent/CN113508442A/en
Priority to EP20766384.0A priority patent/EP3937194A4/en
Priority to US17/433,672 priority patent/US20220089456A1/en
Priority to PCT/JP2020/008278 priority patent/WO2020179659A1/en
Priority to TW109107283A priority patent/TWI768299B/en
Publication of JP2020150249A publication Critical patent/JP2020150249A/en
Application granted granted Critical
Publication of JP7509524B2 publication Critical patent/JP7509524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、高密度磁気記録媒体、電波吸収体等に好適な置換型ε酸化鉄磁性粒子粉、特に、置換型ε酸化鉄にとっては異相である非磁性のαタイプの鉄系酸化物の含有量が低減された置換型ε酸化鉄磁性粒子粉およびその製造方法に関する。なお、本明細書では、ε-Fe23のFeサイトの一部を他の金属元素で置換した酸化物をεタイプの鉄系酸化物、結晶系がα-Fe23のそれと同一の置換型α酸化鉄粒子をαタイプの鉄系酸化物とそれぞれ呼ぶことがある。 The present invention relates to substituted ε iron oxide magnetic particles suitable for high density magnetic recording media, radio wave absorbers, etc., in particular to substituted ε iron oxide magnetic particles having a reduced content of non-magnetic α-type iron oxide which is a heterophase to the substituted ε iron oxide , and a method for producing the same. Note that in this specification, an oxide in which part of the Fe site of ε- Fe2O3 is substituted with another metal element may be referred to as an ε-type iron oxide, and substituted α-iron oxide particles having the same crystal system as that of α - Fe2O3 may be referred to as an α-type iron oxide.

ε-Fe23は酸化鉄の中でも極めて稀な相であるが、室温において、ナノメートルオーダーのサイズの粒子が20kOe(1.59×106A/m)程度の巨大な保磁力(Hc)を示すため、ε-Fe23を単相で合成する製造方法の検討が従来よりなされてきている(特許文献1)。しかし、ε-Fe23を磁気記録媒体に用いた場合、現時点ではそれに対応する、高レベルの飽和磁束密度を有する磁気ヘッド用の材料が存在しないため、実用的にはε-Fe23のFeサイトの一部をAl、Ga、In等の3価の金属で置換し、保磁力を調整する必要があり、電波吸収材料として使用する場合にも、要求される吸収波長に応じてFeサイトの置換量を変化させる必要がある(特許文献2)。
一方、εタイプの鉄系酸化物の磁性粒子は極めて微細であるため、耐環境安定性、熱安定性の向上のために、ε-Fe23のFeサイトの一部を、耐熱性に優れた他の金属で置換することも検討されており、一般式ε-AxyFe2-x-y3またはε-AxyzFe2-x-y-z3(ここでAはCo、Ni、Mn、Zn等の2価の金属元素、BはTi等の4価の金属元素、CはIn、Ga、Al等の3価の金属元素)で表される、耐環境安定性、熱安定性にも優れた各種のε-Fe23の一部置換体が提案されている(特許文献3)。
ε-Fe23およびεタイプの鉄系酸化物は熱力学的な安定相ではないため、その製造には特殊な方法を必要とする。上述の特許文献1~3には、液相法で生成したオキシ水酸化鉄もしくは置換元素を含むオキシ水酸化鉄の微細結晶を前駆体として用い、その前駆体にゾル-ゲル法によりシリコン酸化物を被覆した後に熱処理するε-Fe23またはεタイプの鉄系酸化物の製造方法が開示されており、液相法としては反応媒体として有機溶媒を用いる逆ミセル法と、反応媒体として水溶液のみを用いる方法がそれぞれ開示されている。
また、前記のε-Fe23およびεタイプの鉄系酸化物は、例えば特許文献4~5において、100GHzを超える高周波域で電波吸収のピークを有することが示されており、電波吸収体としての用途も期待されている。
しかし、特許文献1~3に開示された製造方法により得られる磁性粒子粉は、ε-Fe23およびεタイプの鉄系酸化物以外に、不純物として非磁性のαタイプの鉄系酸化物を相当量含むものである。
特許文献6には、置換型ε酸化鉄磁性粒子粉に含まれる、不純物としてのαタイプの鉄系酸化物の量を低減させる技術が開示されている。
特許文献7には、広い範囲のpH領域でゾル-ゲル法によりシリコン酸化物を被覆する、εタイプの鉄系酸化物の製造方法が開示されている。
Although ε-Fe 2 O 3 is an extremely rare phase among iron oxides, nanometer-sized particles at room temperature exhibit a huge coercive force (Hc) of about 20 kOe (1.59×10 6 A/m), and therefore a manufacturing method for synthesizing ε-Fe 2 O 3 in a single phase has been studied (Patent Document 1). However, when ε-Fe 2 O 3 is used in a magnetic recording medium, there is currently no corresponding material for a magnetic head with a high level of saturation magnetic flux density, so in practice it is necessary to replace a part of the Fe site of ε-Fe 2 O 3 with a trivalent metal such as Al, Ga, or In to adjust the coercive force, and when used as a radio wave absorbing material, it is necessary to change the amount of substitution of the Fe site according to the required absorption wavelength (Patent Document 2).
On the other hand, since the magnetic particles of ε-type iron-based oxides are extremely fine, in order to improve the environmental resistance and thermal stability, it has been considered to replace part of the Fe sites of ε- Fe2O3 with other metals having excellent heat resistance, and various partially substituted ε- Fe2O3 products having excellent environmental resistance and thermal stability, represented by the general formula ε- AxByFe2 - xyO3 or ε - AxByCzFe2 - xyzO3 (where A is a divalent metal element such as Co, Ni, Mn, Zn, etc., B is a tetravalent metal element such as Ti, etc., and C is a trivalent metal element such as In, Ga , Al, etc.), have been proposed (Patent Document 3 ).
Since ε-Fe 2 O 3 and ε-type iron oxides are not thermodynamically stable phases, a special method is required for their production. The above-mentioned Patent Documents 1 to 3 disclose a method for producing ε-Fe 2 O 3 or ε-type iron oxides by using fine crystals of iron oxyhydroxide or iron oxyhydroxide containing a substitution element produced by a liquid phase method as a precursor, covering the precursor with silicon oxide by a sol-gel method, and then heat treating the precursor. As the liquid phase method, the reverse micelle method using an organic solvent as a reaction medium and a method using only an aqueous solution as a reaction medium are disclosed.
Furthermore, it has been shown, for example in Patent Documents 4 and 5, that the above-mentioned ε-Fe 2 O 3 and ε-type iron oxides have a radio wave absorption peak in the high frequency range exceeding 100 GHz, and they are also expected to be used as radio wave absorbers.
However, the magnetic particles obtained by the manufacturing methods disclosed in Patent Documents 1 to 3 contain, in addition to ε-Fe 2 O 3 and ε-type iron oxides, a considerable amount of non-magnetic α-type iron oxides as impurities.
Patent Document 6 discloses a technique for reducing the amount of α-type iron oxides contained as impurities in substituted ε iron oxide magnetic particles.
Patent Document 7 discloses a method for producing an ε-type iron-based oxide by coating a silicon oxide with a sol-gel method in a wide pH range.

特開2008-174405号公報JP 2008-174405 A 国際公開第2008/029861号International Publication No. 2008/029861 国際公開第2008/149785号WO 2008/149785 特開2008-277726号公報JP 2008-277726 A 特開2009-224414号公報JP 2009-224414 A 特開2016-130208号公報JP 2016-130208 A 特開2018-092691号公報JP 2018-092691 A

上述の特許文献4に開示された製造方法により製造されたFeサイトの一部を置換したεタイプの鉄系酸化物は、従来法により製造されたεタイプの鉄系酸化物と比較して不純物であるαタイプの鉄系酸化物の含有量が低減されたものである。しかし、εタイプの鉄系酸化物は準安定相であり、他の金属元素によるFeの置換量が少ない場合には、特許文献4に開示された製造方法を用いても、ε-Fe23と同じ空間群を取ることが困難になり、αタイプの鉄系酸化物の含有量の低減が不十分になることがあった。
αタイプの鉄系酸化物は非磁性であるため、置換型ε酸化鉄磁性粒子粉を電波吸収材料として使用した場合、電波吸収特性に寄与せず、磁気記録媒体に使用した場合にも、記録密度を高めることに寄与しないので、その含有量を低減する必要がある。
すなわち、本発明において解決すべき技術課題とは、非磁性のαタイプの鉄系酸化物の含有量を低減した置換型ε酸化鉄磁性粒子粉および置換型ε酸化鉄磁性粒子粉の製造方法を提供することである。
The ε-type iron-based oxide in which a portion of the Fe sites is substituted, produced by the production method disclosed in the above-mentioned Patent Document 4, has a reduced content of α-type iron-based oxide, which is an impurity, compared to ε-type iron-based oxide produced by a conventional method. However, since ε-type iron-based oxide is a metastable phase, when the amount of Fe substituted by other metal elements is small, it is difficult to obtain the same space group as ε- Fe2O3 even when the production method disclosed in Patent Document 4 is used, and the reduction in the content of α-type iron-based oxide may be insufficient.
Since α-type iron oxides are non-magnetic, when the substituted ε-iron oxide magnetic particles are used as an electromagnetic wave absorbing material, they do not contribute to the electromagnetic wave absorbing characteristics, and when they are used in a magnetic recording medium, they do not contribute to increasing the recording density, so it is necessary to reduce the content of the α-type iron oxides.
That is, the technical problem to be solved by the present invention is to provide substituted ε-iron oxide magnetic particles having a reduced content of non-magnetic α-type iron oxides and a method for producing the substituted ε-iron oxide magnetic particles.

本発明者等は、置換型ε酸化鉄磁性粒子粉を得るためには、シリコン酸化物を被覆した状態で当該磁性粒子粉の前駆体を加熱する必要があることに着目して鋭意研究を行ったところ、被覆に用いる加水分解基を持つシリコン化合物を、pH2.0以上7.0以下の時点で当該前駆体を含む水溶液に添加することにより、αタイプの鉄系酸化物の含有量を低減できることが判明した。
以上の知見を基に、本発明者等は、以下に述べる本発明を完成させた。
The present inventors have conducted intensive research focusing on the fact that in order to obtain substituted ε iron oxide magnetic particles, it is necessary to heat the precursor of the magnetic particles in a state in which it is coated with silicon oxide. As a result, it has been found that the content of α-type iron oxide can be reduced by adding a silicon compound having a hydrolyzable group used for coating to an aqueous solution containing the precursor when the pH is between 2.0 and 7.0.
Based on the above findings, the present inventors have completed the present invention described below.

上記の課題を解決するために、本発明においては、
ε-Fe23のFeサイトの一部を他の金属元素で置換したεタイプの鉄系酸化物を主として含む置換型ε酸化鉄磁性粒子粉であって、前記置換型ε酸化鉄磁性粒子粉に含まれるFeのモル数をFe、Feサイトを置換した全金属元素のモル数をMeとしたとき、Me/(Fe+Me)で定義される他の金属元素によるFeの置換量が0.08以上0.17以下であり、かつ、X線回折法により測定されるαタイプの鉄系酸化物の含有率が3%以下である、置換型ε酸化鉄磁性粒子粉が提供される。
前記のFeサイトを一部置換する他の金属元素は、Co、Tiならびに、GaおよびAlから選ばれる1種以上であることが好ましい。例えば、Feサイトを一部置換する他の金属元素として、CoおよびTiを含み、かつGaおよびAlから選ばれる1種以上を含むεタイプの鉄系酸化物が好適な対象となる。
本発明においてはまた、前記の置換型ε酸化鉄磁性粒子粉からなる圧粉体が提供される。
本発明においてはまた、前記の置換型ε酸化鉄磁性粒子粉が樹脂またはゴムに分散されてなる電波吸収体が提供される。
本発明においてはまた、原料溶液として3価の鉄イオンと前記Feサイトを一部置換する金属のイオンを含む酸性の水溶液を用い、前記の原料溶液にアルカリを添加してpH8.0以上10.0以下の範囲まで中和し、置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物を含む分散液を得る中和工程と、前記の置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物を含む前記の分散液に、加水分解基を持つシリコン化合物を添加するシリコン化合物添加工程と、前記の置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物と前記のシリコン化合物を含む分散液を、pH8.0以上10.0以下で保持し、置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物に前記シリコン化合物の化学反応生成物を被覆する熟成工程と、を含む、ε-Fe23のFeサイトの一部を他の金属元素で置換したεタイプの鉄系酸化物を主として含む置換型ε酸化鉄磁性粒子粉の製造方法であって、前記の加水分解基を持つシリコン化合物の添加を、前記の中和工程において分散液のpHが2.0以上7.0以下の範囲内にある時点で開始し、pH2.0以上7.0以下の分散液に添加する前記のシリコン化合物のモル数をS1、原料溶液中に含まれるFeイオンのモル数をF、置換金属元素イオンの全モル数をMとしたとき、S1/(F+M)が0.01以上10.0以下であり、かつ、前記のシリコン化合物の全添加モル数をS2としたとき、S2/(F+M)が0.50以上10.0以下である、置換型ε酸化鉄磁性粒子粉の製造方法が提供される。
前記の製造方法において、前記の中和工程におけるアルカリ添加と、前記のシリコン化合物添加工程におけるシリコン化合物の添加を、いずれも連続的に行っても良く、アルカリ添加を連続的に、シリコン化合物の添加を間歇的に行っても良く、アルカリ添加とシリコン化合物の添加をいずれも間歇的に行っても良く、アルカリ添加を間歇的に、シリコン化合物の添加を連続的に行っても構わない。
また、前記の製造方法においては、前記のFeサイトを一部置換する他の金属元素がCo、Tiならびに、GaおよびAlから選ばれる1種以上であることが好ましい。例えば、Feサイトを一部置換する他の金属元素として、CoおよびTiを含み、かつGaおよびAlから選ばれる1種以上を含むことが好ましい。
本発明においてはまた、前記の置換型ε酸化鉄磁性粒子粉を圧縮成形して圧粉体を得る、圧粉体の製造方法が提供される。
In order to solve the above problems, the present invention provides
Provided is a substituted epsilon iron oxide magnetic particle mainly containing an epsilon type iron oxide in which part of the Fe sites of epsilon - Fe2O3 is substituted with another metal element, in which, when the number of moles of Fe contained in the substituted epsilon iron oxide magnetic particle is Fe and the number of moles of all metal elements substituting the Fe sites is Me, the amount of Fe substituted with the other metal element defined as Me/(Fe+Me) is 0.08 or more and 0.17 or less, and the content of α-type iron oxide measured by X-ray diffraction is 3% or less.
The other metal element partially substituting the Fe site is preferably one or more selected from Co, Ti, Ga, and Al. For example, an ε-type iron-based oxide containing Co and Ti as the other metal element partially substituting the Fe site and containing one or more selected from Ga and Al is a suitable target.
The present invention also provides a green compact made of the above-mentioned substituted ε-iron oxide magnetic particle powder.
The present invention also provides a radio wave absorber comprising the above-mentioned substituted ε iron oxide magnetic particles dispersed in a resin or rubber.
The present invention also provides a method for producing an ε-Fe 2 O dispersion comprising the steps of: using an acidic aqueous solution containing trivalent iron ions and ions of a metal which partially substitutes for the Fe sites as a raw material solution; adding an alkali to the raw material solution to neutralize the solution to a pH range of 8.0 to 10.0 to obtain a dispersion containing iron oxyhydroxide containing a substituting metal element or a mixture of iron oxyhydroxide and a hydroxide of the substituting metal element; adding a silicon compound having a hydrolyzable group to the dispersion containing the iron oxyhydroxide containing the substituting metal element or a mixture of iron oxyhydroxide and a hydroxide of the substituting metal element; and maintaining the dispersion containing the iron oxyhydroxide containing the substituting metal element or the mixture of iron oxyhydroxide and a hydroxide of the substituting metal element and the silicon compound at a pH of 8.0 to 10.0 to cover the iron oxyhydroxide containing the substituting metal element or the mixture of iron oxyhydroxide and a hydroxide of the substituting metal element with a chemical reaction product of the silicon compound. a method for producing a substituted epsilon iron oxide magnetic particle powder mainly containing an epsilon type iron oxide in which a part of the Fe site of formula 3 is substituted with another metal element, the method comprising: starting the addition of the silicon compound having a hydrolyzable group at a time when the pH of the dispersion is in the range of 2.0 to 7.0 in the neutralization step; and, when the number of moles of the silicon compound added to the dispersion having a pH of 2.0 to 7.0 is S1, the number of moles of Fe ions contained in the raw material solution is F, and the total number of moles of the substituting metal element ions is M, S1/(F+M) is 0.01 to 10.0, and when the total number of moles of the silicon compound added is S2, S2/(F+M) is 0.50 to 10.0.
In the above-mentioned manufacturing method, the addition of the alkali in the neutralization step and the addition of the silicon compound in the silicon compound addition step may both be carried out continuously, or the addition of the alkali may be carried out continuously and the addition of the silicon compound intermittently, or both the addition of the alkali and the silicon compound may be carried out intermittently, or the addition of the alkali may be carried out intermittently and the addition of the silicon compound may be carried out continuously.
In the above-mentioned manufacturing method, the other metal element partially substituting the Fe site is preferably one or more selected from Co, Ti, Ga, and Al. For example, the other metal element partially substituting the Fe site preferably includes Co and Ti, and one or more selected from Ga and Al.
The present invention also provides a method for producing a green compact, which comprises compression molding the substituted ε-iron oxide magnetic particles to obtain a green compact.

以上、本発明の製造方法を用いることにより、αタイプの鉄系酸化物の含有量を低減した置換型ε酸化鉄磁性粒子粉、およびそれを用いた圧粉体、電波吸収体を得ることができる。 As described above, by using the manufacturing method of the present invention, it is possible to obtain substituted ε iron oxide magnetic particles with a reduced content of α-type iron oxide, as well as a compact and a radio wave absorber using the same.

本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 本発明の実施の態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.

[酸化鉄磁性粒子粉]
本発明の製造方法は、ε-Fe23のFeサイトの一部を他の金属元素で置換したεタイプの鉄系酸化物を主として含む置換型ε酸化鉄磁性粒子粉を製造するためのものであり、当該磁性粒子粉には、その製造上不可避的な不純物である異相が混在する。異相は主としてαタイプの鉄系酸化物であり、本発明により得られる酸化鉄磁性粒子粉は実質的にεタイプの鉄系酸化物磁性粒子とαタイプの鉄系酸化物からなる。本発明の目的は、異相であるαタイプの鉄系酸化物の含有量の低減である。
ε-Fe23のFeサイトの一部を他の金属元素で置換した一部置換体がε構造を有するかどうかについては、X線回折法(XRD)、高速電子回折法(HEED)等を用いて確認することが可能である。本発明においては、εタイプおよびαタイプの鉄系酸化物の同定は、XRDによって行っている。
本発明の製造方法により製造が可能な一部置換体については、以下が挙げられる。
一般式ε-CzFe2-z3(ここでCはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
一般式ε-AxyFe2-x-y3(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素)で表されるもの。
一般式ε-AxzFe2-x-z3(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
一般式ε-ByzFe2-y-z3(ここでBはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
一般式ε-AxyzFe2-x-y-z3(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
[Iron oxide magnetic particles]
The manufacturing method of the present invention is for producing substituted ε-iron oxide magnetic particles mainly containing ε-type iron oxides in which part of the Fe sites of ε - Fe2O3 are substituted with other metal elements, and the magnetic particles contain a heterogeneous phase which is an unavoidable impurity in the manufacturing process. The heterogeneous phase is mainly α-type iron oxide, and the iron oxide magnetic particles obtained by the present invention are substantially composed of ε-type iron oxide magnetic particles and α-type iron oxide. An object of the present invention is to reduce the content of the heterogeneous phase, α-type iron oxide.
Whether or not a partial substitution product in which part of the Fe sites of ε- Fe2O3 is substituted with other metal elements has an ε structure can be confirmed by X-ray diffraction (XRD), high energy electron diffraction (HEED), etc. In the present invention, the identification of ε-type and α-type iron-based oxides is performed by XRD.
Examples of partially substituted compounds that can be produced by the production method of the present invention include the following.
Those represented by the general formula ε-C z Fe 2-z O 3 (wherein C is one or more trivalent metallic elements selected from In, Ga and Al).
Those represented by the general formula ε-A x B y Fe 2-xy O 3 (wherein A is one or more divalent metal elements selected from Co, Ni, Mn, and Zn, and B is one or more tetravalent metal elements selected from Ti and Sn).
Those represented by the general formula ε-A x C z Fe 2-xz O 3 (wherein A is one or more divalent metal elements selected from Co, Ni, Mn, and Zn, and C is one or more trivalent metal elements selected from In, Ga, and Al).
Those represented by the general formula ε-B y C z Fe 2-yz O 3 (wherein B is one or more tetravalent metal elements selected from Ti and Sn, and C is one or more trivalent metal elements selected from In, Ga and Al).
Represented by the general formula ε-A x B y C z Fe 2-xyz O 3 (wherein A is one or more divalent metal elements selected from Co, Ni, Mn, and Zn, B is one or more tetravalent metal elements selected from Ti and Sn, and C is one or more trivalent metal elements selected from In, Ga, and Al).

ここでC元素のみで置換したタイプは、磁性粒子の保磁力を任意に制御できることに加え、ε-Fe23と同じ空間群を得易いという利点を有するが、熱的安定性に劣る場合がある。特にCとしてGaおよびAlを用いた場合には、得られた置換型ε酸化鉄磁性粒子粉の熱的安定性がやや劣るので、さらにAおよび/またはB元素で同時に置換することが好ましい。A、BおよびCの三元素置換タイプは、上述の特性のバランスが最も良く取れたもので、耐熱性、単一相の得易さ、保磁力の制御性に優れるものであり、CとしてGaおよびAlを用いる場合には、CoおよびTiも同時に置換することが好ましい。
なお、本発明の製造方法は、上述したいずれの置換タイプの酸化鉄磁性粒子についても適用可能である。
後述する本発明の製造方法は、前記のFeサイトを置換する金属元素の置換量がいかなる値であっても適用可能であるが、αタイプの鉄系酸化物が生成し易い置換量で適用するのが効果的である。具体的には、前記置換型ε酸化鉄磁性粒子粉に含まれるFeのモル数をFe、Feサイトを置換した全金属元素のモル数をMeとしたとき、Me/(Fe+Me)で定義される他の金属元素によるFeの置換量が0.08以上0.17以下で適用した場合、従来法では得られなかった、XRDにより測定されるαタイプの鉄系酸化物の含有率が3%以下の置換型ε酸化鉄磁性粒子粉を得ることができる。
Here, the type substituted with only C element has the advantage that the coercive force of the magnetic particles can be controlled as desired and that the same space group as ε - Fe2O3 can be easily obtained, but it may have poor thermal stability. In particular, when Ga and Al are used as C, the thermal stability of the obtained substituted ε iron oxide magnetic particles is somewhat poor, so it is preferable to further substitute with A and/or B elements at the same time. The three-element substitution type of A, B and C has the best balance of the above-mentioned properties and is excellent in heat resistance, ease of obtaining a single phase, and controllability of coercive force, and when Ga and Al are used as C, it is preferable to also substitute with Co and Ti at the same time.
The manufacturing method of the present invention is applicable to any of the substituted iron oxide magnetic particles described above.
The manufacturing method of the present invention described later can be applied regardless of the amount of the metal element substituting the Fe site, but it is effective to apply a substitution amount that easily produces α-type iron oxide. Specifically, when the molar number of Fe contained in the substituted ε iron oxide magnetic particles is Fe and the molar number of all metal elements substituting the Fe site is Me, if the amount of Fe substituted by other metal elements defined as Me/(Fe+Me) is 0.08 to 0.17, it is possible to obtain substituted ε iron oxide magnetic particles having an α-type iron oxide content of 3% or less as measured by XRD, which was not obtained by the conventional method.

[圧粉体および電波吸収体]
本発明により得られる置換型ε酸化鉄磁性粒子粉は、その粉体粒子の充填構造を形成させることによって、優れた電波吸収能を有する電波吸収体として機能する。ここでいう充填構造は、粒子同士が接しているかまたは近接している状態で各粒子が立体構造を構成しているものを意味する。電波吸収体の実用に供するためには充填構造を維持させる必要がある。その手法として、例えば置換型ε酸化鉄磁性粒子粉を圧縮成形して圧粉体にする方法や、非磁性高分子化合物をバインダーとして、置換型ε酸化鉄磁性粒子粉を固着させることによって充填構造を形成させる方法が挙げられる。
バインダーを用いる方法の場合、置換型ε酸化鉄磁性粒子粉を非磁性の高分子基材と混合して混練物を得る。混練物中における電波吸収材料粉体の配合量は60質量%以上とすることが好ましい。電波吸収材料粉体の配合量が多いほど電波吸収特性を向上させる上で有利となるが、あまり多いと高分子基材との混練が難しくなるので注意を要する。例えば電波吸収材料粉体の配合量は80~95質量%あるいは85~95質量%とすることができる。
高分子基材としては、使用環境に応じて、耐熱性、難燃性、耐久性、機械的強度、電気的特性を満足する各種のものが使用できる。例えば、樹脂(ナイロン等)、ゲル(シリコーンゲル等)、熱可塑性エラストマー、ゴムなどから適切なものを選択すれば良い。また2種以上の高分子化合物をブレンドして基材としてもよい。
[Powder compact and radio wave absorber]
The substituted ε-iron oxide magnetic particles obtained by the present invention function as a radio wave absorber having excellent radio wave absorbing ability by forming a packed structure of the powder particles. The packed structure here means that the particles are in contact with each other or in close proximity to each other to form a three-dimensional structure. In order to use the particles as a radio wave absorber, it is necessary to maintain the packed structure. Examples of the method include a method of compressing the substituted ε-iron oxide magnetic particles to form a green compact, and a method of forming a packed structure by fixing the substituted ε-iron oxide magnetic particles using a nonmagnetic polymeric compound as a binder.
In the method using a binder, the substituted ε-iron oxide magnetic particles are mixed with a non-magnetic polymer base material to obtain a kneaded product. The amount of the radio wave absorbing material powder in the kneaded product is preferably 60% by mass or more. The greater the amount of the radio wave absorbing material powder, the more advantageous it is for improving the radio wave absorbing characteristics, but care must be taken because if the amount is too large, it becomes difficult to knead it with the polymer base material. For example, the amount of the radio wave absorbing material powder can be 80 to 95% by mass or 85 to 95% by mass.
As the polymer substrate, various materials that satisfy the heat resistance, flame retardancy, durability, mechanical strength, and electrical properties depending on the usage environment can be used. For example, an appropriate material may be selected from resins (such as nylon), gels (such as silicone gel), thermoplastic elastomers, rubbers, etc. Two or more polymer compounds may be blended to form the substrate.

[平均粒子径]
本発明においては、本発明の製造法により得られる酸化鉄磁性粒子粉の平均粒子径は特に規定するものではないが、各粒子が単磁区構造となる程度に微細であることが好ましい。通常は、透過電子顕微鏡で測定した平均粒子径が10nm以上40nm以下のものが得られる。
[Average particle size]
In the present invention, the average particle size of the magnetic iron oxide particles obtained by the production method of the present invention is not particularly limited, but it is preferable that each particle is fine enough to have a single magnetic domain structure. Usually, the average particle size measured by a transmission electron microscope is 10 nm to 40 nm.

[出発物質および前駆体]
本発明の製造方法においては、鉄系酸化物磁性粒子粉の出発物質として3価の鉄イオンと最終的にFeサイトを置換する金属元素の金属イオンを含む酸性の水溶液(以下、原料溶液と言う。)を用いる。もし、出発物質として3価のFeイオンに替えて2価のFeイオンを用いた場合には、沈殿物として3価の鉄の水和酸化物のほかに2価の鉄の水和酸化物やマグネタイト等をも含む混合物が生成し、最終的に得られる鉄系酸化物粒子の形状にバラつきが生じてしまうため、本発明のようなαタイプの鉄系酸化物の含有量が低減された、置換型ε酸化鉄磁性粒子粉を得ることができない。ここで、酸性とは液のpHが7.0未満であることを指す。これらの鉄イオンもしくは置換元素の金属イオンの供給源としては、入手の容易さおよび価格の面から、硝酸塩、硫酸塩、塩化物のような水溶性の無機酸塩を用いることが好ましい。これらの金属塩を水に溶解すると、金属イオンが解離し、水溶液は酸性を呈する。この金属イオンを含む酸性水溶液にアルカリを添加して中和すると、オキシ水酸化鉄と置換元素の水酸化物の混合物、もしくは、Feサイトの一部を他の金属元素で置換されたオキシ水酸化鉄(本明細書では、以下これらを、置換元素を含むオキシ水酸化鉄と総称する。)の沈殿が得られる。本発明の製造方法においては、これらの置換元素を含むオキシ水酸化鉄を置換型ε酸化鉄磁性粒子粉の前駆体として用いる。
原料溶液中の全金属イオン濃度は、本発明では特に規定するものではないが、0.01mol/L以上0.5mol/L以下が好ましい。0.01mol/L未満では1回の反応で得られる置換型ε酸化鉄磁性粒子粉の量が少なく、経済的に好ましくない。全金属イオン濃度が0.5mol/Lを超えると、急速な水酸化物の沈澱発生により、反応溶液がゲル化しやすくなるので好ましくない。
Starting Materials and Precursors
In the manufacturing method of the present invention, an acidic aqueous solution (hereinafter referred to as raw solution) containing trivalent iron ions and metal ions of the metal element that will eventually replace the Fe site is used as the starting material for the iron-based oxide magnetic particles. If divalent Fe ions are used instead of trivalent Fe ions as the starting material, a mixture containing divalent iron hydrate oxides and magnetite as well as trivalent iron hydrate oxides is generated as a precipitate, and the shape of the iron-based oxide particles finally obtained varies, making it impossible to obtain a substituted ε iron oxide magnetic particle powder with a reduced content of α-type iron oxide as in the present invention. Here, acidic refers to a solution pH of less than 7.0. As a supply source for these iron ions or metal ions of the replacing elements, it is preferable to use water-soluble inorganic acid salts such as nitrates, sulfates, and chlorides in terms of ease of availability and cost. When these metal salts are dissolved in water, the metal ions dissociate and the aqueous solution becomes acidic. When an alkali is added to this acidic aqueous solution containing metal ions to neutralize it, a mixture of iron oxyhydroxide and the hydroxide of the substituting element, or a precipitate of iron oxyhydroxide in which some of the Fe sites have been substituted with other metal elements (hereinafter these are collectively referred to as iron oxyhydroxide containing a substituting element). In the production method of the present invention, these iron oxyhydroxides containing a substituting element are used as precursors of the substituted ε iron oxide magnetic particles.
The total metal ion concentration in the raw material solution is not particularly specified in the present invention, but is preferably 0.01 mol/L or more and 0.5 mol/L or less. If it is less than 0.01 mol/L, the amount of substituted ε iron oxide magnetic particle powder obtained in one reaction is small, which is not economically preferable. If the total metal ion concentration exceeds 0.5 mol/L, the reaction solution is likely to gel due to rapid precipitation of hydroxides, which is not preferable.

[中和工程]
本発明の製造方法においては、原料溶液にアルカリを添加し、そのpHが8.0以上10.0以下になるまで中和し、置換元素を含むオキシ水酸化鉄の沈殿物を含む分散液を得る。なお、3価の鉄イオンの水酸化物は主としてオキシ水酸化物からなる。ここで分散液のpHを8.0以上にするのは、置換金属元素、例えばCo、の水酸化物の沈殿生成を完了させるためと、加水分解生成物であるシラノール誘導体の縮合反応を促進させるためである。本発明の製造方法において、中和工程の到達pHの上限は特に規定するものではないが、中和の効果が飽和し、後記するシラノール誘導体の縮合反応の促進の効果が低下するので、10.0とすることが好ましい。
中和に用いるアルカリとしては、アルカリ金属またはアルカリ土類の水酸化物、アンモニア水、炭酸水素アンモニウムなどのアンモニウム塩のいずれであっても良いが、最終的に熱処理してεタイプの鉄系酸化物としたときに不純物が残りにくいアンモニア水や炭酸水素アンモニウムを用いることが好ましい。これらのアルカリは、出発物質の水溶液に固体で添加しても構わないが、反応の均一性を確保する観点からは、水溶液の状態で添加することが好ましい。
前記のように、原料溶液にアルカリを添加して中和処理を行うと、置換元素を含むオキシ水酸化鉄の沈澱物が析出するので、中和処理中は前記の沈殿物を含む分散液を公知の機械的手段により撹拌する。
原料溶液へのアルカリの添加は、添加を開始してから終了するまで、連続的に行っても良い。また、分散液のpHが8.0に到達する以前に、アルカリの添加を中断し、所定のpH保持時間を設けても良い。その場合、pH保持時間を複数回設け、アルカリの添加を間歇的に行うことができる。なお、pH保持時間を設ける回数、すなわち、アルカリの添加を中断する回数は、製造工程の煩雑化を避けるために3回以下とすることが好ましい。
本発明の製造方法においては、中和処理時の反応温度は5℃以上60℃以下とする。反応温度が5℃未満では冷却によるコストが増大するため好ましくない。60℃を超えると最終的に異相であるαタイプの酸化物が生成し易くなるので好ましくない。より好ましくは10℃以上40℃以下である。上述した特許文献4に記載された製造方法の場合、中和処理は5℃以上25℃以下で行う必要があり、反応時に冷凍機を用いる必要があったが、本発明の製造方法においては、常温以上の反応温度で中和処理を行うことも可能である。
なお、本明細書に記載のpHの値は、JIS Z8802に基づき、ガラス電極を用いて測定した。pH標準液として、測定するpH領域に応じた適切な緩衝液を用いて校正したpH計により測定した値をいう。また、本明細書に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。
[Neutralization process]
In the production method of the present invention, an alkali is added to the raw material solution, and the solution is neutralized until the pH reaches 8.0 to 10.0, to obtain a dispersion containing a precipitate of iron oxyhydroxide containing a substitution element. The hydroxide of the trivalent iron ion is mainly composed of oxyhydroxide. The pH of the dispersion is set to 8.0 or higher in order to complete the precipitation of the hydroxide of the substitution metal element, e.g. Co, and to promote the condensation reaction of the silanol derivative, which is the hydrolysis product. In the production method of the present invention, the upper limit of the pH reached in the neutralization step is not particularly specified, but it is preferably set to 10.0, since the neutralization effect is saturated and the effect of promoting the condensation reaction of the silanol derivative, which will be described later, decreases.
The alkali used for neutralization may be any of hydroxides of alkali metals or alkaline earth metals, aqueous ammonia, and ammonium salts such as ammonium hydrogen carbonate, but it is preferable to use aqueous ammonia or ammonium hydrogen carbonate, which are less likely to leave impurities when finally heat-treated to form an ε-type iron-based oxide. These alkalis may be added in the form of a solid to the aqueous solution of the starting material, but from the viewpoint of ensuring the uniformity of the reaction, it is preferable to add them in the form of an aqueous solution.
As described above, when an alkali is added to the raw material solution to carry out the neutralization treatment, a precipitate of iron oxyhydroxide containing a substitution element is formed, and therefore, during the neutralization treatment, the dispersion containing the precipitate is stirred by a known mechanical means.
The addition of the alkali to the raw material solution may be carried out continuously from the start to the end of the addition. Alternatively, the addition of the alkali may be interrupted before the pH of the dispersion reaches 8.0, and a predetermined pH holding time may be set. In this case, the pH holding time may be set multiple times, and the addition of the alkali may be carried out intermittently. Note that the number of times the pH holding time is set, i.e., the number of times the addition of the alkali is interrupted, is preferably set to 3 times or less in order to avoid complicating the production process.
In the production method of the present invention, the reaction temperature during the neutralization treatment is 5° C. or higher and 60° C. or lower. A reaction temperature lower than 5° C. is undesirable because the cost of cooling increases. A reaction temperature higher than 60° C. is undesirable because it ultimately tends to produce a heterogeneous phase, α-type oxide. A more preferable temperature is 10° C. or higher and 40° C. or lower. In the production method described in the above-mentioned Patent Document 4, the neutralization treatment needs to be carried out at a temperature of 5° C. or higher and 25° C. or lower, and a refrigerator needs to be used during the reaction, but in the production method of the present invention, it is also possible to carry out the neutralization treatment at a reaction temperature higher than room temperature.
The pH values described in this specification were measured using a glass electrode in accordance with JIS Z8802. The pH values are measured using a pH meter calibrated using an appropriate buffer solution according to the pH range to be measured as the pH standard solution. The pH values described in this specification are values obtained by directly reading the measured value indicated by a pH meter compensated by a temperature compensation electrode under reaction temperature conditions.

[シリコン化合物の添加工程]
本発明の製造方法においては、前記の工程で生成した置換型ε酸化鉄磁性粒子粉の前駆体である置換元素を含むオキシ水酸化鉄は、そのままの状態で熱処理を施してもεタイプの鉄系酸化物に相変化しにくいので、熱処理に先立って置換元素を含むオキシ水酸化鉄にシリコン化合物の加水分解反応および縮合反応により得られた化学反応生成物による被覆を施す必要がある。なおここでシリコン化合物の化学反応生成物とは、化学量論組成のシリコン酸化物だけではなく、後述するシラノール誘導体やポリシロキサン構造等の非量論組成のもの、また加熱処理を施してシリコン酸化物に変化したもの等の総称として使用する。
特許文献1~4に記載の製造方法においては、シリコン化合物の化学反応生成物の被覆法としてゾル-ゲル法を用いており、原料溶液の中和処理が完了し、反応溶液のpHがアルカリ側になった後に加水分解基を持つシリコン化合物を反応溶液に添加している。一方、本発明の製造方法においては、シリコン酸化物の被覆法として同じくゾル-ゲル法を用いるが、原料溶液の中和が完了する以前の、反応溶液のpHが酸性側のpH2.0以上7.0以下の範囲にある時点において加水分解基を持つシリコン化合物の添加を開始することを特徴とする。なお、シリコン化合物添加の終了時期については後述する。
ゾル-ゲル法の場合、置換元素を含むオキシ水酸化鉄含む分散液に、加水分解基を持つシリコン化合物、例えばテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)等のアルコシキシラン類や、各種のシランカップリング剤等のシラン化合物を添加して撹拌下で加水分解反応を生起させ、生成したシラノール誘導体を縮合してポリシロキサン結合を形成させることにより、置換元素を含むオキシ水酸化鉄の表面を被覆する。
[Silicon compound addition process]
In the manufacturing method of the present invention, the iron oxyhydroxide containing a substitution element, which is a precursor of the substituted ε iron oxide magnetic particles produced in the above-mentioned step, is unlikely to undergo a phase change to an ε-type iron oxide even if it is subjected to heat treatment in its original state, so it is necessary to coat the iron oxyhydroxide containing a substitution element with a chemical reaction product obtained by hydrolysis and condensation reactions of a silicon compound prior to the heat treatment. Note that the chemical reaction product of a silicon compound is used here as a general term not only for silicon oxides of stoichiometric composition, but also for those of non-stoichiometric composition such as silanol derivatives and polysiloxane structures described below, and those that are converted to silicon oxides by heat treatment.
In the manufacturing methods described in Patent Documents 1 to 4, a sol-gel method is used as a coating method for the chemical reaction product of the silicon compound, and a silicon compound having a hydrolyzable group is added to the reaction solution after the neutralization process of the raw material solution is completed and the pH of the reaction solution becomes alkaline. On the other hand, the manufacturing method of the present invention also uses the sol-gel method as a coating method for silicon oxide, but is characterized in that the addition of the silicon compound having a hydrolyzable group is started at a point in time when the pH of the reaction solution is on the acidic side, in the range of pH 2.0 to 7.0, before the neutralization of the raw material solution is completed. The timing of the end of the addition of the silicon compound will be described later.
In the sol-gel method, a silicon compound having a hydrolyzable group, for example, alkoxysilanes such as tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) or a silane compound such as a variety of silane coupling agents, is added to a dispersion containing iron oxyhydroxide containing a substitution element, and a hydrolysis reaction is caused to occur under stirring. The resulting silanol derivative is condensed to form a polysiloxane bond, thereby coating the surface of the iron oxyhydroxide containing a substitution element.

本発明者等は、前記の加水分解基を持つシリコン化合物の添加をpH2.0以上7.0以下で開始すると、最終的に得られる置換型ε酸化鉄磁性粒子粉に含まれるαタイプの鉄系酸化物の含有率を低減することが可能であることを見出したが、その理由は以下のように考えられる。
前記の加水分解基を持つシリコン化合物の加水分解反応と、加水分解生成物であるシラノール誘導体の縮合反応の速度は、反応系のpHに依存して変化する。加水分解反応速度は一般に、酸性側の低pH領域で大きく、pHの上昇とともに低下し、アルカリ性側の高pH域で再び増大する。これに対して縮合反応の速度は、酸性側の低pH領域で小さく、pHの上昇とともに増加し、中性からアルカリ性側のpH域で大きくなる。
置換元素を含むオキシ水酸化鉄の沈殿を含む分散液に、酸性側の低pH領域で加水分解基を持つシリコン化合物を添加すると、前記のシリコン化合物の加水分解が急速に進行し、有機成分の少ないシラノール誘導体が生成する一方、生成したシラノール誘導体の縮合反応は進行しない。ここで、シラノール誘導体は親水基であるOH基を有し、水溶液中で均一に分布するため、置換元素を含むオキシ水酸化鉄の沈殿とシラノール誘導体が分散液中で均一に分散して共存する状態になると考えられる。
その後、分散液のpHを更に上昇させると、シラノール誘導体の縮合反応が優勢になるため、置換元素を含むオキシ水酸化鉄の沈殿がシラノール誘導体またはその縮合反応生成物により均一に被覆されることになる。そのため、最終的に熱処理を施して得られる置換型ε酸化鉄磁性粒子粉に含まれるαタイプの鉄系酸化物の含有率が低減されるものと考えられる。
なお、前記の特許文献5には、広い範囲のpH領域でゾル-ゲル法によりシリコン酸化物を被覆することが開示されているが、その場合、シリコン化合物の添加は中和処理の終了後に一定のpHで行われており、本発明のように、シリコン化合物の加水分解反応速度と縮合反応速度の両方を考慮するとの技術思想は開示されていない。
The present inventors have found that when the addition of the silicon compound having a hydrolyzable group is started at a pH of 2.0 or more and 7.0 or less, it is possible to reduce the content of α-type iron oxides contained in the finally obtained substituted ε-iron oxide magnetic particles, and the reason for this is believed to be as follows.
The rates of the hydrolysis reaction of the silicon compound having the hydrolyzable group and the condensation reaction of the hydrolysis product, the silanol derivative, vary depending on the pH of the reaction system. The hydrolysis reaction rate is generally high in the low pH region on the acidic side, decreases with increasing pH, and increases again in the high pH region on the alkaline side. In contrast, the condensation reaction rate is low in the low pH region on the acidic side, increases with increasing pH, and increases in the neutral to alkaline pH region.
When a silicon compound having a hydrolyzable group is added to a dispersion containing a precipitate of iron oxyhydroxide containing a substitution element in a low pH region on the acidic side, hydrolysis of the silicon compound proceeds rapidly, and a silanol derivative containing a small amount of organic components is produced, but the condensation reaction of the produced silanol derivative does not proceed. Here, since the silanol derivative has an OH group, which is a hydrophilic group, and is uniformly distributed in an aqueous solution, it is considered that the precipitate of iron oxyhydroxide containing a substitution element and the silanol derivative coexist in a uniformly dispersed state in the dispersion.
Then, when the pH of the dispersion is further increased, the condensation reaction of the silanol derivative becomes dominant, so that the precipitate of the iron oxyhydroxide containing the substitution element is uniformly covered with the silanol derivative or its condensation reaction product, which is thought to result in a reduction in the content of α-type iron oxide contained in the substituted ε iron oxide magnetic particles finally obtained by heat treatment.
Incidentally, the above-mentioned Patent Document 5 discloses coating of silicon oxide by a sol-gel method over a wide range of pH regions. However, in this case, the silicon compound is added at a constant pH after the neutralization treatment is completed, and the technical idea of taking into consideration both the hydrolysis reaction rate and the condensation reaction rate of the silicon compound, as in the present invention, is not disclosed.

加水分解基を持つシリコン化合物の添加を開始する時点のpHは、2.0以上であることが好ましい。pHが2.0未満では、置換型ε酸化鉄磁性粒子粉の主成分である、原料溶液中に含まれる3価の鉄イオンの水酸化物の沈殿形成が不十分になる可能性がある。添加を開始する時点のpHは、3.0以上であることがより好ましい。また、加水分解基を持つシリコン化合物の添加を開始する時点のpHは、7.0以下であることが好ましい。pHが7.0を超すと加水分解反応が遅くなり、シラノール誘導体の生成が不十分になるため、置換元素を含むオキシ水酸化鉄の沈殿とシラノール誘導体が分散液中で均一に分散して共存する状態が得られなくなり、置換元素を含むオキシ水酸化鉄の沈殿がシラノール誘導体またはその縮合反応生成物により均一に被覆され難くなる。添加を開始する時点のpHは6.0以下が好ましく、4.0以下がさらに好ましい。
加水分解基を持つシリコン化合物の添加は、中和工程において原料溶液のpHが所望の値になった時点で開始する。シリコン化合物の添加は、添加を開始してから終了するまで連続的に行っても良い。ここで連続的とは、分散液に添加するシリコン化合物の全量を、分散液に一度に添加することを含む。また、シリコン化合物の添加を複数回に分け、間歇的に行っても構わない。
The pH at the time of starting the addition of the silicon compound having a hydrolyzable group is preferably 2.0 or more. If the pH is less than 2.0, the formation of precipitates of hydroxides of trivalent iron ions contained in the raw material solution, which is the main component of the substituted ε-iron oxide magnetic particles, may be insufficient. The pH at the time of starting the addition is more preferably 3.0 or more. The pH at the time of starting the addition of the silicon compound having a hydrolyzable group is preferably 7.0 or less. If the pH exceeds 7.0, the hydrolysis reaction slows down and the generation of silanol derivatives becomes insufficient, so that the precipitates of iron oxyhydroxide containing a substitution element and the silanol derivatives cannot be uniformly dispersed and coexist in the dispersion, and it becomes difficult for the precipitates of iron oxyhydroxide containing a substitution element to be uniformly covered by the silanol derivatives or their condensation reaction products. The pH at the time of starting the addition is preferably 6.0 or less, more preferably 4.0 or less.
The addition of the silicon compound having a hydrolyzable group is started when the pH of the raw material solution reaches a desired value in the neutralization step. The addition of the silicon compound may be carried out continuously from the start of the addition to the end of the addition. Here, the term "continuously" includes adding the entire amount of the silicon compound to be added to the dispersion liquid at one time. The addition of the silicon compound may also be carried out intermittently in multiple portions.

本発明の製造方法においては、分散液に添加するシリコン化合物の量は、以下の二つの条件を同時に満足する必要がある。
第一の条件は、pH2.0以上7.0以下の分散液に添加するシリコン化合物の量である。pH2.0以上7.0以下の分散液に添加する前記のシリコン化合物のモル数をS1、原料溶液中に含まれるFeイオンのモル数をF、置換金属元素イオンの全モル数をMとしたとき、S1/(F+M)を0.01以上10.0以下とする。S1/(F+M)が0.01未満であると置換元素を含むオキシ水酸化鉄の沈殿と共存するシラノール誘導体の量が少なく、置換元素を含むオキシ水酸化鉄の沈殿をシラノール誘導体またはその縮合反応生成物により均一に被覆する効果が低下するので、好ましくない。シリコン化合物の添加量を多くすると、後述の加熱工程とシリコン酸化物の除去工程の処理量が増大し、製造コストが増大するので、S1/(F+M)は10.0以下であることが好ましい。
第二の条件は、製造工程全体で添加するシリコン化合物の量である。添加するシリコン化合物の全モル数をS2、原料溶液中に含まれるFeイオンのモル数をF、置換金属元素イオンの全モル数をMとしたとき、S2/(F+M)を0.50以上10.0以下とする。S2が0.50未満であると、置換元素を含むオキシ水酸化鉄の沈殿の表面に被覆されるシリコン化合物の化学反応生成物の被覆量が少なくなり、その結果αタイプの鉄系酸化物が生成しやすくなるデメリットがあり、好ましくない。またS2/(F+M)が10.0を超えると後述の加熱工程とシリコン酸化物の除去工程の処理量が増大し、製造コストが増大するので、好ましくない。
なお、シリコン化合物の全量をpH2.0以上7.0以下の範囲で添加すると、S1=S2となる。
In the production method of the present invention, the amount of silicon compound added to the dispersion must simultaneously satisfy the following two conditions.
The first condition is the amount of silicon compound added to the dispersion having a pH of 2.0 to 7.0. When the number of moles of the silicon compound added to the dispersion having a pH of 2.0 to 7.0 is S1, the number of moles of Fe ions contained in the raw solution is F, and the total number of moles of the substituted metal element ions is M, S1/(F+M) is 0.01 to 10.0. If S1/(F+M) is less than 0.01, the amount of silanol derivative coexisting with the precipitate of iron oxyhydroxide containing a substitution element is small, and the effect of uniformly covering the precipitate of iron oxyhydroxide containing a substitution element with the silanol derivative or its condensation reaction product is reduced, which is not preferable. If the amount of silicon compound added is increased, the amount of processing in the heating step and the silicon oxide removal step described below increases, and the production cost increases, so S1/(F+M) is preferably 10.0 or less.
The second condition is the amount of silicon compounds added throughout the entire manufacturing process. When the total number of moles of silicon compounds added is S2, the number of moles of Fe ions contained in the raw material solution is F, and the total number of moles of substitution metal element ions is M, S2/(F+M) is set to 0.50 or more and 10.0 or less. If S2 is less than 0.50, the amount of the chemical reaction product of the silicon compounds coated on the surface of the precipitate of iron oxyhydroxide containing a substitution element is reduced, which is undesirable because it makes it easier for α-type iron oxides to be generated. Also, if S2/(F+M) exceeds 10.0, the amount of processing in the heating step and silicon oxide removal step described below increases, which increases the manufacturing cost, which is undesirable.
When the total amount of silicon compound is added within the pH range of 2.0 to 7.0, S1=S2.

[本発明の実施態様]
上述のように、本発明の製造方法においては、中和工程におけるアルカリの添加と、シリコン化合物添加工程におけるシリコン化合物の添加を、それぞれ連続的または間歇的に行うことができる、したがって、本発明の製造方法においては、アルカリの添加とシリコン化合物の添加方法の組み合わせにより、様々な実施態様を取ることが可能である。以下に本発明の実施態様の幾つかを例示するが、本発明の製造方法は、以下に記述する実施態様に限定されるものではない。
図1に、アルカリの添加とシリコン化合物の添加の両方を連続的に行う実施態様の時間経過を模式的に例示する。この場合、アルカリの添加を開始した後、原料溶液のpHが2.0以上7.0以下の範囲にある所定のpHに到達した時点でシリコン化合物の添加を開始する。本実施態様の場合、中和工程とシリコン化合物添加工程は、時間的に連続する工程ではなく、並行する工程である。本図に示すように、シリコン化合物の添加は、アルカリの添加が終了した後に継続しても良く、アルカリの添加が終了した時点で終了しても、pHが7.0以下の時点で終了しても構わない。アルカリ添加の終了後もシリコン化合物の添加を行う場合には、製造プロセス全体の時間を考慮し、アルカリ添加の終了後120min以内にシリコン化合物の添加を終了することが好ましい。シリコン化合物の添加が終了した後、後記の熟成工程を設ける。
なお、特に図示しないが、図1の実施態様において、シリコン化合物の添加を数回に分けて、間歇的に行っても構わない。
[Embodiments of the invention]
As described above, in the manufacturing method of the present invention, the addition of the alkali in the neutralization step and the addition of the silicon compound in the silicon compound addition step can be carried out continuously or intermittently, and therefore, in the manufacturing method of the present invention, various embodiments can be taken depending on the combination of the method of adding the alkali and the method of adding the silicon compound. Some embodiments of the present invention are exemplified below, but the manufacturing method of the present invention is not limited to the embodiments described below.
FIG. 1 shows a schematic diagram of the time course of an embodiment in which both the addition of alkali and the addition of silicon compound are performed continuously. In this case, after the addition of alkali is started, the addition of silicon compound is started when the pH of the raw material solution reaches a predetermined pH in the range of 2.0 to 7.0. In this embodiment, the neutralization step and the silicon compound addition step are not consecutive steps in time, but are parallel steps. As shown in this figure, the addition of silicon compound may be continued after the addition of alkali is completed, may be completed when the addition of alkali is completed, or may be completed when the pH is 7.0 or less. When the addition of silicon compound is continued after the addition of alkali is completed, it is preferable to complete the addition of silicon compound within 120 min after the completion of the addition of alkali, taking into account the time of the entire manufacturing process. After the addition of silicon compound is completed, the aging step described below is provided.
Although not shown, in the embodiment of FIG. 1, the silicon compound may be added intermittently in several portions.

図2に、中和工程の途中でアルカリの添加を中断する実施態様の一例の時間経過を模式的に例示する。この場合、アルカリ添加の中断は一度であり、アルカリ添加を中断したpH保持時間内にシリコン化合物の全量を連続的に添加しており、S1=S2となる。
図3に、アルカリ添加の中断を一度行う実施態様の他の一例の時間経過を模式的に例示する。この場合、シリコン化合物の添加は原料溶液のpHが2.0以上7.0以下の範囲にある所定のpHに到達した時点で開始するが、添加の終了時点は中和工程の終了後であり、シリコン化合物の添加の形態は連続的である。
図4および図5に、アルカリ添加の中断を一度行い、シリコン化合物の添加を間歇的に行う実施態様の例の時間経過を模式的に例示する。シリコン化合物の添加を、図4では二回に分けて、図5では三回に分けて行っている。
図6に、アルカリ添加の中断を二度行い、シリコン化合物の添加を間歇的に三度行う実施態様の例の時間経過を模式的に例示する。
なお、上述のように、本発明の製造方法は、図1~図6に例示した実施態様に限定されるものではなく、中和工程におけるアルカリの添加と、シリコン化合物添加工程におけるシリコン化合物の添加の形態を任意に組み合わせることが可能である。
2 is a schematic diagram illustrating the time course of an example of an embodiment in which the addition of alkali is interrupted during the neutralization step. In this case, the addition of alkali is interrupted once, and the entire amount of silicon compound is added continuously within the pH holding time during which the addition of alkali is interrupted, so that S1 = S2.
3 is a schematic diagram illustrating the time course of another example of an embodiment in which the addition of the alkali is interrupted once. In this case, the addition of the silicon compound is started when the pH of the raw material solution reaches a predetermined pH in the range of 2.0 to 7.0, but the addition is terminated after the neutralization step is completed, and the addition of the silicon compound is continuous.
4 and 5 are schematic illustrations of the time course of an embodiment in which the addition of the alkali is interrupted once and the silicon compound is added intermittently. The silicon compound is added in two separate portions in FIG. 4 and in three separate portions in FIG. 5.
FIG. 6 illustrates a schematic diagram of the time course of an example embodiment in which the addition of the alkali is interrupted twice and the addition of the silicon compound is intermittently performed three times.
As described above, the manufacturing method of the present invention is not limited to the embodiments illustrated in FIGS. 1 to 6, and the addition of the alkali in the neutralization step and the addition of the silicon compound in the silicon compound addition step can be combined in any manner.

[熟成工程]
pHを8.0以上にしても、シラノール誘導体の縮合反応は緩やかに進行するので、前記の中和工程およびシリコン化合物添加工程を経て得られた、置換元素を含むオキシ水酸化鉄とシリコン化合物の化学反応生成物を含む分散液をpH8.0以上で保持して熟成し、シラノール誘導体の縮合反応を進行させる。その結果として、置換元素を含むオキシ水酸化鉄の沈殿の表面に、シラノール誘導体の縮合反応生成物の均一な被覆層が形成される。この被覆層は、置換元素を含むオキシ水酸化鉄の沈殿物表面のほぼ全面を覆っていると考えられるが、本発明の効果を達成できる範囲において、置換元素を含むオキシ水酸化鉄の沈殿表面における未被覆の部分の存在は許容される。前記の熟成時間は1h以上24h以下であることが好ましい。保持時間が1h未満では、置換元素を含むオキシ水酸化鉄の沈殿のシラノール誘導体の縮合による被覆が完了しておらず、αタイプの鉄系酸化物が生成し易く、24hを超えると熟成の効果が飽和するので好ましくない。なお、前記の熟成時間は、シリコン化合物の添加が中和工程終了後も継続される場合はシリコン化合物添加の終了後、シリコン化合物の添加が中和工程終了前に完了する場合には、アルカリ添加の終了後の時間である。
[Aging process]
Even if the pH is 8.0 or more, the condensation reaction of the silanol derivative proceeds slowly, so the dispersion containing the chemical reaction product of the iron oxyhydroxide containing a substitution element and the silicon compound obtained through the neutralization step and the silicon compound addition step is kept at a pH of 8.0 or more and aged to allow the condensation reaction of the silanol derivative to proceed. As a result, a uniform coating layer of the condensation reaction product of the silanol derivative is formed on the surface of the precipitate of the iron oxyhydroxide containing a substitution element. It is considered that this coating layer covers almost the entire surface of the precipitate of the iron oxyhydroxide containing a substitution element, but the presence of uncoated parts on the surface of the precipitate of the iron oxyhydroxide containing a substitution element is acceptable within the range in which the effects of the present invention can be achieved. The aging time is preferably 1 hour or more and 24 hours or less. If the holding time is less than 1 hour, the coating of the precipitate of the iron oxyhydroxide containing a substitution element by condensation of the silanol derivative is not completed, and α-type iron-based oxide is easily generated, and if the holding time exceeds 24 hours, the effect of aging becomes saturated, which is not preferable. The maturation time is the time after the end of the addition of the silicon compound if the addition of the silicon compound is continued after the end of the neutralization step, or after the end of the addition of the alkali if the addition of the silicon compound is completed before the end of the neutralization step.

本発明の置換型ε酸化鉄磁性粒子粉の製造方法においては、前記の熟成工程以降の工程は、例えば特許文献1~4に記載されている、従来の製造方法と同じ工程を用いることができる。具体的には、以下のような工程が挙げられる。
[加熱工程]
本発明の製造方法においては、前記のシラノール誘導体の縮合反応生成物で被覆した置換元素を含むオキシ水酸化鉄を、公知の固液分離法を用いて回収した後、加熱処理を施してεタイプの鉄系酸化物を得る。加熱処理前に、洗浄、乾燥の工程を設けても良い。加熱処理は酸化雰囲気中で行われるが、酸化雰囲気としては大気雰囲気で構わない。加熱は概ね700℃以上1300℃以下の範囲で行うことができるが、加熱温度が高いと熱力学安定相であるα-Fe23(ε-Fe23に対して不純物である)が生成し易くなるので、好ましくは900℃以上1200℃以下、より好ましくは950℃以上1150℃以下で加熱処理を行う。
熱処理時間は0.5H以上10H以下程度の範囲で調整可能であるが、2H以上5H以下の範囲で良好な結果が得られやすい。なお、粒子を覆うシリコン含有物質の存在がαタイプの鉄系酸化物への相変化ではなくεタイプの鉄系酸化物への相変化を引き起こす上で有利に作用するものと考えられる。またシリコン酸化物被覆は、置換元素を含むオキシ水酸化鉄結晶同士の加熱処理時の焼結を防止する作用を有する。
εタイプの鉄系酸化物磁性粒子粉がシリコン酸化物による被覆を必要としない場合には、加熱処理後に前記のシリコン酸化物被覆を除去すれば良い。
In the method for producing the substituted ε iron oxide magnetic particles of the present invention, the steps after the aging step can be the same as those in the conventional production methods described in, for example, Patent Documents 1 to 4. Specifically, the following steps can be mentioned.
[Heating process]
In the manufacturing method of the present invention, the iron oxyhydroxide containing the substitution element coated with the condensation reaction product of the silanol derivative is recovered by a known solid-liquid separation method, and then heat-treated to obtain an ε-type iron-based oxide. Before the heat-treatment, a washing and drying step may be performed. The heat-treatment is performed in an oxidizing atmosphere, which may be an air atmosphere. The heating can be performed at a temperature in the range of about 700°C to 1300°C, but since a thermodynamically stable phase of α-Fe 2 O 3 (an impurity relative to ε-Fe 2 O 3 ) is easily generated at a high heating temperature, the heat-treatment is preferably performed at a temperature in the range of 900°C to 1200°C, more preferably 950°C to 1150°C.
The heat treatment time can be adjusted in the range of about 0.5H to 10H, but good results are likely to be obtained in the range of 2H to 5H. The presence of silicon-containing material covering the particles is considered to be advantageous in inducing a phase change to ε-type iron oxide rather than α-type iron oxide. The silicon oxide coating also has the effect of preventing sintering of iron oxyhydroxide crystals containing substitution elements during heat treatment.
When the ε-type iron-based oxide magnetic particles do not require a coating with silicon oxide, the silicon oxide coating may be removed after the heat treatment.

[高周波誘導結合プラズマ発光分光分析法(ICP)による組成分析]
溶解法により、得られた置換型ε酸化鉄磁性粒子粉の組成分析を行った。組成分析にあたっては、アジレントテクノロジー製ICP-720ESを使用し、測定波長(nm)についてはFe;259.940nm、Ga;294.363nm、Co;230.786nm、Ti;336.122nm、Si;288.158nm、にて行った。
[Composition analysis by inductively coupled plasma emission spectrometry (ICP)]
The composition of the obtained substituted ε iron oxide magnetic particles was analyzed by a dissolution method using an ICP-720ES manufactured by Agilent Technologies, with the measurement wavelengths (nm) being Fe: 259.940 nm, Ga: 294.363 nm, Co: 230.786 nm, Ti: 336.122 nm, and Si: 288.158 nm.

[磁気ヒステリシス曲線(バルクB-H曲線)の測定]
振動試料型磁力計VSM(東英工業社製VSM-P7)を用い、印加磁場1193kA/m(15kOe)、M測定レンジ0.005A・m2(5emu)、ステップビット140bit、時定数0.03sec、ウエイトタイム0.1secで磁気特性を測定した。B-H曲線により、保磁力Hc、飽和磁化σsについて評価を行った。
[Measurement of magnetic hysteresis curve (bulk BH curve)]
Using a vibrating sample magnetometer VSM (VSM-P7 manufactured by Toei Industry Co., Ltd.), the magnetic properties were measured with an applied magnetic field of 1193 kA/m (15 kOe), an M measurement range of 0.005 A·m2 ( 5 emu), a step bit of 140 bit, a time constant of 0.03 sec, and a wait time of 0.1 sec. The coercive force Hc and saturation magnetization σs were evaluated using the BH curve.

[X線回折法(XRD)による結晶性の評価]
得られた試料を粉末X線回折(XRD:リガク社製試料水平型多目的X線回折装置 Ultima IV、線源CuKα線、電圧40kV、電流40mA、2θ=10°以上70°以下)に供した。得られた回折パターンについて、統合粉末X線解析ソフトウェア(PDXL2:リガク社製)を用いICSD(無機結晶構造データベース)のNo.173025:Iron(III)Oxide-Epsilon、No.82134:Hematiteをもとにしてリートベルト解析による評価を行い、結晶構造確認とα相の含有率を確認した。
[Evaluation of crystallinity by X-ray diffraction (XRD)]
The obtained sample was subjected to powder X-ray diffraction (XRD: Rigaku Corporation horizontal sample type multipurpose X-ray diffractometer Ultima IV, radiation source CuKα radiation, voltage 40 kV, current 40 mA, 2θ = 10° to 70°). The obtained diffraction pattern was evaluated by Rietveld analysis using integrated powder X-ray analysis software (PDXL2: Rigaku Corporation) based on No. 173025: Iron (III) Oxide-Epsilon and No. 82134: Hematite of ICSD (Inorganic Crystal Structure Database), and the crystal structure and the content of α phase were confirmed.

[BET比表面積]
BET比表面積は、株式会社マウンテック製のMacsorb model-1210を用いて、BET一点法により求めた。
[BET specific surface area]
The BET specific surface area was determined by a single-point BET method using a Macsorb model-1210 manufactured by Mountec Corporation.

本発明の製造法により得られた置換型ε酸化鉄磁性粒子粉のTEM観察は、以下の条件で行った。TEM観察には日本電子株式会社製JEM-1011を使用した。粒子観察については、倍率10,000倍、倍率100,000倍で撮影したTEM写真を用いた。(シリコン酸化物被覆を除去後のものを使用)。
-平均粒子径、粒度分布評価(変動係数(%))の測定-
TEM平均粒子径、粒度分布評価(変動係数(%))にはデジタイズを使用した。画像処理ソフトとして、Mac-View Ver.4.0を使用した。この画像ソフトを使用した場合、ある粒子の粒子径は、その粒子に外接する長方形のうち、面積が最小となる長方形の長辺の長さとして算出される。個数については200個以上を測定した。
透過型電子顕微鏡写真上に映っている粒子のうち、測定する粒子の選定基準は次のとおりとした。
[1] 粒子の一部が写真の視野の外にはみだしている粒子は測定しない。
[2] 輪郭がはっきりしており、孤立して存在している粒子は測定する。
[3] 平均的な粒子形状から外れている場合でも、独立しており単独粒子として測定が可能な粒子は測定する。
[4] 粒子同士に重なりがあるが、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定する。
[5] 重なり合っている粒子で、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
以上の基準で選定された粒子の粒子径の個数平均値を算出し、置換型ε酸化鉄磁性粒子粉のTEM観察による平均粒子径とした。
TEM observation of the substituted ε-iron oxide magnetic particles obtained by the production method of the present invention was carried out under the following conditions. JEM-1011 manufactured by JEOL Ltd. was used for TEM observation. TEM photographs taken at magnifications of 10,000x and 100,000x were used for particle observation (the ones after removing the silicon oxide coating were used).
- Measurement of average particle size and particle size distribution evaluation (coefficient of variation (%)) -
Digitizing was used for TEM average particle size and particle size distribution evaluation (coefficient of variation (%)). Mac-View Ver. 4.0 was used as image processing software. When using this image software, the particle size of a particle is calculated as the length of the long side of the rectangle that circumscribes the particle and has the smallest area. More than 200 particles were measured.
The criteria for selecting particles to be measured from among those shown on the transmission electron microscope photograph were as follows:
[1] Particles with any part lying outside the field of view of the photograph will not be measured.
[2] Particles that are clearly defined and exist in isolation are measured.
[3] Even if a particle deviates from the average particle shape, it will be measured if it is independent and can be measured as a single particle.
[4] When particles overlap but the boundaries between them are clear and the overall shape of the particle can be determined, each particle is measured as a single particle.
[5] Particles that overlap each other, have unclear boundaries, and whose overall shape cannot be determined are not measured as their shape cannot be determined.
The number average value of the particle diameters of the particles selected based on the above criteria was calculated, and this was taken as the average particle diameter of the substituted ε iron oxide magnetic particles as determined by TEM observation.

[電波吸収特性測定]
置換型ε酸化鉄粉体1.2gを28MPa(20kN)で加圧成形して直径13mm、厚さ3mmの圧粉体を得た。得られた圧粉体に対して、テラヘルツ波時間領域分光法にて透過減衰量測定を行った。具体的には、アドバンテスト社製のテラヘルツ分光システムTAS7400SLを用い、圧粉体をサンプルホルダーに置いた場合とブランクの場合との測定をおこなった。測定条件は以下の通りとした。
・サンプルホルダー径:φ10mm
・Measurement Mode:Transmission
・Frequency Resolution:1.9GHz
・Vertical Axis:Absorbance
・Horizontal Axis:Frequency[THz]
・Cumulated Number(Sample):2048
・Cumulated Number(Background):2048
観測されたサンプルの信号波形およびブランクの参照波形を2112psまで拡張してフーリエ変換し、得られたフーリエスペクトル(各々、Sref、Ssigとする。)の比(Ssig/Sref)を求め、サンプルホルダーに置かれた圧粉体の透過減衰量を算定した。
[Measurement of radio wave absorption characteristics]
1.2 g of the substituted ε-iron oxide powder was pressed at 28 MPa (20 kN) to obtain a green compact having a diameter of 13 mm and a thickness of 3 mm. The obtained green compact was subjected to transmission attenuation measurement by terahertz wave time domain spectroscopy. Specifically, a terahertz spectroscopy system TAS7400SL manufactured by Advantest Corporation was used to perform measurements when the green compact was placed on a sample holder and when it was a blank. The measurement conditions were as follows:
Sample holder diameter: φ10mm
Measurement Mode: Transmission
Frequency Resolution: 1.9GHz
・Vertical Axis: Absorbance
・Horizontal Axis:Frequency [THz]
・ Accumulated Number (Sample): 2048
・ Accumulated Number (Background): 2048
The observed signal waveform of the sample and the blank reference waveform were expanded to 2112 ps and Fourier transformed. The ratio (Ssig/Sref) of the obtained Fourier spectra (referred to as Sref and Ssig, respectively) was obtained, and the transmission attenuation of the powder compact placed in the sample holder was calculated.

[実施例1]
5L反応槽にて、純水3813.21gに、純度99%硝酸第二鉄9水和物(III)283.26g、Ga濃度11.55mass%の硝酸Ga(III)溶液56.36g、純度97%硝酸コバルト(II)6水和物6.25g、Ti濃度15.1mass%の硫酸チタン(IV)6.61gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解し、原料溶液とした(手順1)。この原料溶液のpHは約1であった。この原料溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.677:0.223:0.050:0.050である。なお、試薬名の後の括弧内のローマ数字は、金属元素の価数を表している。
大気雰囲気中、この原料溶液を20℃の条件下で、撹拌羽根により機械的に撹拌しながら、22.30mass%のアンモニア水溶液294.85gを90minかけて添加した(手順2)。
60min後に、アンモニア水溶液を添加中の反応液のpHが4.0になった段階で、加水分解基をもつシリコン化合物として純度95.0mass%のテトラエトキシシラン(TEOS)519.22gを並行して添加開始し、30minかけて滴下した。アンモニア水溶液を全て添加した後、20hそのまま撹拌し続け、シリコン化合物の化学反応生成物で置換元素を含むオキシ水酸化鉄の沈殿物を被覆した(手順3)。アンモニア水溶液の添加終了時点の反応液のpH、および前記20hの撹拌をしている間を通じての反応液のpHはいずれも8.8であった。なお、この条件下では、pH2.0以上7.0以下の分散液に添加したテトラエトキシシランに含まれるSi元素の量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比、S1/(F+M)は0.34であり、分散液に滴下するテトラエトキシシランに含まれるSi元素の全量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比S2/(F+M)は2.84である。
手順3で得られたスラリーを濾過し、得られたシリコン化合物の化学反応生成物で被覆した置換元素を含むオキシ水酸化鉄の沈殿物の水分をできるだけ切ってから純水中に再度分散させ、リパルプ洗浄した。洗浄後のスラリーを再度濾過し、得られたケーキを大気中110℃で乾燥した(手順4)。
手順4で得られた乾燥品を、箱型焼成炉を用い、大気中1090℃で4h加熱処理し、シリコン酸化物で被覆された鉄系酸化物磁性粉を得た(手順5)。なお、前記のシリコン化合物の化学反応生成物は、大気雰囲気で熱処理した際に、脱水して酸化物に変化する。
本実施例の原料溶液の仕込み条件等の製造条件を、表1に示す。表1には他の実施例および比較例の製造条件も併せて示してある。
[Example 1]
In a 5L reaction tank, 283.26 g of 99% purity ferric nitrate nonahydrate (III), 56.36 g of Ga(III) nitrate solution with a Ga concentration of 11.55 mass%, 6.25 g of 97% purity cobalt(II) nitrate hexahydrate, and 6.61 g of titanium(IV) sulfate with a Ti concentration of 15.1 mass% were dissolved in 3813.21 g of pure water while mechanically stirring with a stirring blade in an air atmosphere to obtain a raw material solution (Procedure 1). The pH of this raw material solution was about 1. The molar ratio of metal ions in this raw material solution was Fe:Ga:Co:Ti=1.677:0.223:0.050:0.050. The Roman numerals in parentheses after the names of the reagents represent the valence of the metal elements.
This raw material solution was stirred mechanically with a stirring blade in an air atmosphere at 20° C., and 294.85 g of a 22.30 mass % aqueous ammonia solution was added thereto over a period of 90 minutes (Procedure 2).
After 60 minutes, when the pH of the reaction solution during the addition of the aqueous ammonia solution reached 4.0, 519.22 g of tetraethoxysilane (TEOS) with a purity of 95.0 mass% as a silicon compound having a hydrolyzable group was added in parallel and dropped over 30 minutes. After the aqueous ammonia solution was all added, stirring was continued for 20 hours, and the precipitate of iron oxyhydroxide containing a substitution element was covered with the chemical reaction product of the silicon compound (step 3). The pH of the reaction solution at the end of the addition of the aqueous ammonia solution and throughout the 20 hours of stirring were both 8.8. Under these conditions, the molar ratio S1/(F+M) of the amount of elemental Si contained in tetraethoxysilane added to the dispersion having a pH of 2.0 or more and 7.0 or less to the amounts of iron, gallium, cobalt, and titanium ions contained in the raw solution was 0.34, and the molar ratio S2/(F+M) of the total amount of elemental Si contained in tetraethoxysilane dropped into the dispersion to the amounts of iron, gallium, cobalt, and titanium ions contained in the raw solution was 2.84.
The slurry obtained in step 3 was filtered, and the water in the precipitate of iron oxyhydroxide containing a substitution element coated with the chemical reaction product of the silicon compound was removed as much as possible, and the precipitate was dispersed again in pure water and repulp washed. The washed slurry was filtered again, and the cake obtained was dried in air at 110°C (step 4).
The dried product obtained in step 4 was heated in air at 1090°C for 4 hours in a box-type sintering furnace to obtain iron-based oxide magnetic powder coated with silicon oxide (step 5). Note that the chemical reaction product of the silicon compound is dehydrated and converted to an oxide when heat-treated in air.
The production conditions of this example, such as the conditions for preparing the raw material solution, are shown in Table 1. Table 1 also shows the production conditions of other examples and comparative examples.

手順5で得られた、シリコン化合物の化学反応生成物で被覆した置換元素を含むオキシ水酸化鉄の沈殿物に熱処理を施した熱処理粉を、17.58mass%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物被覆の除去処理を行った(手順6)。次いで、遠心分離器を用いてスラリーの導電率が500mS/m以下になるまで洗浄し、メンブレンフィルターでろ過した後に乾燥し、得られた鉄系酸化物磁性粉の組成の化学分析、XRD測定および磁気特性の測定等に供した。それらの測定結果を表2に示す。表2には他の実施例および比較例で得られた置換型ε酸化鉄磁性粒子粉の物性値も併せて示してある。
当該実施例1に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ1.3%であった。この値は後述するアンモニア溶液添加後pH8.9になった後に中間の熟成工程を設け、その後pH8.9の状態でTEOSを添加した比較例1により得られた置換型ε酸化鉄粉体についてのそれよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
The heat-treated powder obtained by subjecting the precipitate of iron oxyhydroxide containing a substitution element coated with a chemical reaction product of a silicon compound obtained in step 5 to heat treatment was stirred in a 17.58 mass% NaOH aqueous solution at about 60°C for 24 hours to remove the silicon oxide coating from the particle surface (step 6). Next, the slurry was washed using a centrifuge until the electrical conductivity was 500 mS/m or less, filtered through a membrane filter, and then dried. The composition of the obtained iron oxide magnetic powder was subjected to chemical analysis, XRD measurement, and measurement of magnetic properties. The measurement results are shown in Table 2. Table 2 also shows the physical properties of the substituted ε iron oxide magnetic particles obtained in other examples and comparative examples.
The substituted ε iron oxide magnetic particles according to Example 1 were subjected to XRD measurement, and the content of the α phase was found to be 1.3%. This value is superior to that of the substituted ε iron oxide powder obtained in Comparative Example 1, which was subjected to an intermediate aging step after the pH reached 8.9 following the addition of an ammonia solution, and then TEOS was added at a pH of 8.9. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

[実施例2]
実施例2として、アンモニア水溶液の添加時の温度を30℃、アンモニア水溶液の添加時間を30min、TEOSの添加開始pHを6.0、TEOSの添加速度をアンモニア水溶液添加中は5.88g/min、 アンモニア水溶液添加終了後は22.47g/minとした以外は実施例1と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。なお、アンモニア水溶液の添加終了時点のpHは8.9であり、TEOSの添加終了時点の反応液pH、および前記20hの撹拌をしている間を通じての反応液のpHはいずれも8.8であった。当該実施例2に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ3.0%であった。この値は後述するアンモニア溶液添加後pH8.9になった後に熟成工程を30min間設け、その後pH8.9の状態でTEOSを添加した比較例3により得られた置換型ε酸化鉄磁性粒子粉についてのそれよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Example 2]
In Example 2, substituted ε iron oxide magnetic particles were obtained in the same manner as in Example 1, except that the temperature during the addition of the aqueous ammonia solution was 30° C., the duration of the addition of the aqueous ammonia solution was 30 min, the pH at the start of the addition of TEOS was 6.0, and the TEOS addition rate was 5.88 g/min during the addition of the aqueous ammonia solution and 22.47 g/min after the end of the addition of the aqueous ammonia solution. The pH at the end of the addition of the aqueous ammonia solution was 8.9, and the pH of the reaction solution at the end of the addition of TEOS and throughout the stirring for the 20 hours were all 8.8. The substituted ε iron oxide magnetic particles according to Example 2 were subjected to XRD measurement, and the content of the α phase was found to be 3.0%. This value is superior to that of the substituted ε iron oxide magnetic particles obtained in Comparative Example 3, which was described later, in which a maturing step was carried out for 30 min after the pH reached 8.9 after the addition of the aqueous ammonia solution, and then TEOS was added at a pH of 8.9. Chemical analysis of the composition and evaluation of the magnetic properties were also carried out. The measurement results are shown in Table 2.

[比較例1]
比較例1として、アンモニア水溶液を添加してpHが8.9になった時点でTEOSを添加し、その後に熟成工程を設けた以外は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。なお、アンモニア添加終了時点のpHは8.9であり、TEOS添加終了時点の反応液pH、および前記20hの撹拌をしている間を通じての反応液のpHはいずれも8.8であった。当該比較例1に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ3.6%と実施例1~6と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 1]
As Comparative Example 1, substituted ε iron oxide magnetic particles were obtained in the same manner as in Example 1, except that an aqueous ammonia solution was added and TEOS was added when the pH reached 8.9, followed by an aging step. The pH at the end of the ammonia addition was 8.9, and the pH of the reaction solution at the end of the TEOS addition and throughout the 20 hours of stirring were all 8.8. XRD measurement was performed on the substituted ε iron oxide magnetic particles according to Comparative Example 1, and the content of the α phase was found to be 3.6%, which was higher than those of Examples 1 to 6. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

[比較例2]
比較例2として、アンモニア水溶液の添加時の温度を25℃、アンモニア水溶液の添加時間を60min、アンモニア水溶液添加後、分散液のpHが8.9になった後に中間の熟成工程を30min間設け、その後pH8.9の状態でTEOSを添加した以外は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。なお、TEOS添加終了時点の反応液pH、および前記20hの撹拌をしている間の反応液のpHはいずれも8.8であった当該比較例2に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ7.4%と実施例1~6と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 2]
In Comparative Example 2, the temperature during the addition of the aqueous ammonia solution was 25° C., the time for adding the aqueous ammonia solution was 60 min, an intermediate aging step was performed for 30 min after the pH of the dispersion reached 8.9 after the addition of the aqueous ammonia solution, and then TEOS was added at a pH of 8.9. The pH of the reaction solution at the end of the addition of TEOS and during the stirring for 20 h were both 8.8. XRD measurement was performed on the substituted ε iron oxide magnetic particles according to Comparative Example 2, and the content of the α phase was found to be 7.4%, which was higher than those of Examples 1 to 6. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

[比較例3]
比較例3として、アンモニア水溶液を添加してpHが8.9になった後に熟成工程を設け、その後pH8.9の状態でTEOSを添加した以外は実施例2と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。なお、TEOS添加終了時点の反応液pH、および前記20hの撹拌をしている間の反応液のpHはいずれも8.8であった。当該比較例3に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ5.4%と実施例1~6と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
以上の結果から、中和処理を連続的に行った場合、TEOSの添加開始時期をpH2.0以上7.0以下とする効果は明らかである。また、実施例2の結果が示すように、本発明の製造方法の場合、中和処理を常温より高い30℃で行った場合でも、α相の含有率の低い置換型ε酸化鉄磁性粒子粉が得られる。
[Comparative Example 3]
As Comparative Example 3, a substituted ε iron oxide magnetic particle powder was obtained in the same manner as in Example 2, except that an aging step was performed after the pH reached 8.9 by adding an aqueous ammonia solution, and then TEOS was added at a pH of 8.9. The pH of the reaction solution at the end of the addition of TEOS and during the 20 hours of stirring were both 8.8. XRD measurement was performed on the substituted ε iron oxide magnetic particle powder according to Comparative Example 3, and the content of the α phase was found to be 5.4%, which was a higher value than those of Examples 1 to 6. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.
From the above results, when the neutralization treatment is carried out continuously, the effect of starting the addition of TEOS at a pH of 2.0 to 7.0 is clear. Furthermore, as shown by the results of Example 2, in the case of the production method of the present invention, even when the neutralization treatment is carried out at 30° C., which is higher than room temperature, a substituted ε iron oxide magnetic particle powder having a low content of α phase can be obtained.

[実施例3]
実施例3として、アンモニア水溶液をpH4.0になるまで添加(第一の中和工程)した後にアンモニア水溶液の添加を止め、中間の熟成工程を設けず、直ちにTEOSの添加を開始し、TEOS添加終了後に残りのアンモニア水溶液を添加(第二の中和工程)した以外は実施例1と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。なお、第二の中和工程終了時点の反応液pH、および前記20hの撹拌をしている間の反応液のpHはいずれも8.8であった。当該実施例3に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。この値は後述する、アンモニア水溶液をpH4.0または6.0になるまで添加(第一の中和工程)した後にアンモニア溶液の添加を止め、中間の熟成工程30minを設け、その後TEOS添加開始するが、TEOS添加終了後に第二中和工程を設けなかった比較例4および5により得られた置換型ε酸化鉄磁性粒子粉についてのそれらの値よりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Example 3]
In Example 3, the substituted ε iron oxide magnetic particles were obtained in the same manner as in Example 1, except that the addition of the aqueous ammonia solution was stopped after the addition of the aqueous ammonia solution until the pH reached 4.0 (first neutralization step), the intermediate aging step was not performed, the addition of TEOS was immediately started, and the remaining aqueous ammonia solution was added after the addition of TEOS was completed (second neutralization step). The pH of the reaction solution at the end of the second neutralization step and the pH of the reaction solution during the stirring for 20 hours were both 8.8. The substituted ε iron oxide magnetic particles according to Example 3 were subjected to XRD measurement, and the content of the α phase was found to be 0%. This value is superior to the values of the substituted ε iron oxide magnetic particles obtained in Comparative Examples 4 and 5, which will be described later, in which the addition of the aqueous ammonia solution was stopped after the addition of the aqueous ammonia solution until the pH reached 4.0 or 6.0 (first neutralization step), the intermediate aging step of 30 min was performed, and then the addition of TEOS was started, but the second neutralization step was not performed after the addition of TEOS was completed. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

[実施例4]
1L反応槽にて、純水737.71gに、Fe濃度11.65mass%の硫酸第二鉄(III)溶液104.81g、Ga濃度11.55mass%の硝酸Ga(III)溶液14.32g、純度97%硝酸コバルト(II)6水和物1.91g、Ti濃度15.1mass%の硫酸チタン(IV)2.02gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.714:0.186:0.050:0.050である。
大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、22.30mass%のアンモニア水溶液15.00gを1.9minで添加(第一の中和工程)し、滴下終了後に30min間撹拌を続けて生成した沈殿物の熟成を行った(中間の熟成工程)。その際、沈殿物を含むスラリーのpHは2.0であった(手順2)。
手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0mass%のテトラエトキシシラン(TEOS)158.88gを10minかけて滴下した。TEOS添加終了後に22.30mass%のアンモニア溶液62.77gを8.1minで添加(第二の中和工程)した。第二中和工程後のpHは8.8であった。その後20hそのまま撹拌し続け、シリコン化合物の化学反応生成物で沈殿物を被覆した(手順3)。前記20hの撹拌をしている間の反応液のpHは8.8であった。なお、この条件で下では、pH2.0以上7.0以下の分散液に添加したテトラエトキシシランに含まれるSi元素の量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比、S1/(F+M)は2.84であり、分散液に滴下するテトラエトキシシランに含まれるSi元素の全量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比S2/(F+M)も2.84である。
その後は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。当該実施例4に係る置換型ε酸化鉄粉体についてXRD測定を行い、α相の含有率を求めたところ0%であった。この値は後述する比較例4および5により得られた置換型ε酸化磁性粒子粉についてのそれらよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Example 4]
In a 1L reaction tank, 104.81g of ferric sulfate (III) solution with a Fe concentration of 11.65 mass%, 14.32g of Ga (III) nitrate solution with a Ga concentration of 11.55 mass%, 1.91g of cobalt (II) nitrate hexahydrate with a purity of 97%, and 2.02g of titanium (IV) sulfate with a Ti concentration of 15.1 mass% were dissolved in 737.71g of pure water while mechanically stirring with a stirring blade in an air atmosphere (Procedure 1). The pH of this solution was about 1. The molar ratio of metal ions in this charged solution was Fe:Ga:Co:Ti=1.714:0.186:0.050:0.050.
In an air atmosphere, this solution was mechanically stirred with a stirring blade at 30° C., while 15.00 g of 22.30 mass% aqueous ammonia solution was added over 1.9 min (first neutralization step), and after the dropwise addition was completed, stirring was continued for 30 min to age the resulting precipitate (intermediate aging step). At that time, the pH of the slurry containing the precipitate was 2.0 (Procedure 2).
While stirring the slurry obtained in step 2, 158.88 g of tetraethoxysilane (TEOS) with a purity of 95.0 mass% was added dropwise over 10 min at 30° C. in the air. After the addition of TEOS was completed, 62.77 g of ammonia solution with a purity of 22.30 mass% was added over 8.1 min (second neutralization step). The pH after the second neutralization step was 8.8. Stirring was continued for 20 h, and the precipitate was covered with the chemical reaction product of the silicon compound (step 3). The pH of the reaction solution during the 20 h of stirring was 8.8. Under these conditions, the molar ratio S1/(F+M) of the amount of elemental Si contained in tetraethoxysilane added to the dispersion having a pH of 2.0 or more and 7.0 or less to the amounts of iron, gallium, cobalt, and titanium ions contained in the raw solution is 2.84, and the molar ratio S2/(F+M) of the total amount of elemental Si contained in tetraethoxysilane added dropwise to the dispersion to the amounts of iron, gallium, cobalt, and titanium ions contained in the raw solution is also 2.84.
Thereafter, substituted ε-iron oxide magnetic particles were obtained in the same manner as in Example 1. The substituted ε-iron oxide powder according to Example 4 was subjected to XRD measurement, and the content of the α-phase was found to be 0%. This value is superior to those of the substituted ε-iron oxide magnetic particles obtained in Comparative Examples 4 and 5 described below. In addition, chemical analysis of the composition and evaluation of the magnetic properties were performed. The measurement results are also shown in Table 2.

[実施例5]
実施例5として、第一中和工程に用いるアンモニア水溶液の添加量および添加時間を51.00gおよび6.5min、第一の中和工程後のpHを3.0、第二の中和工程に用いるアンモニア溶液の添加量および添加時間を27.24gおよび3.5minとした以外は実施例4と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。なお、第二の中和工程終了時点の反応液pH、および前記20hの撹拌をしている間の反応液のpHはいずれも8.8であった。当該実施例5に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。この値は後述する比較例4および5により得られた置換型ε酸化鉄磁性粒子についてのそれらよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Example 5]
As Example 5, a substituted ε iron oxide magnetic particle powder was obtained in the same manner as in Example 4, except that the amount and time of the aqueous ammonia solution added in the first neutralization step were 51.00 g and 6.5 min, the pH after the first neutralization step was 3.0, and the amount and time of the aqueous ammonia solution added in the second neutralization step were 27.24 g and 3.5 min. The pH of the reaction solution at the end of the second neutralization step and during the 20 hours of stirring were both 8.8. The substituted ε iron oxide magnetic particle powder according to Example 5 was subjected to XRD measurement, and the content of the α phase was found to be 0%, which is superior to those of the substituted ε iron oxide magnetic particles obtained in Comparative Examples 4 and 5 described later. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

[実施例6]
実施例6として、第一中和工程に用いるアンモニア水溶液の添加量および添加時間を53.00gおよび6.8min、第一の中和工程後のpHを4.0、第二の中和工程に用いるアンモニア溶液の添加量および添加時間を24.78gおよび3.2minとした以外は実施例4と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。なお、第二の中和工程後の反応液pH、および前記20hの撹拌をしている間の反応液のpHは8.8であった。当該実施例5に係る置換型ε酸化鉄粉体についてXRD測定を行い、α相の含有率を求めたところ0%であった。この値は後述する比較例4および5により得られた置換型ε酸化鉄磁性粒子粉についてのそれらよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表1に併せて示す。
[Example 6]
As Example 6, a substituted ε iron oxide magnetic particle powder was obtained in the same manner as in Example 4, except that the amount and time of the aqueous ammonia solution added in the first neutralization step were 53.00 g and 6.8 min, the pH after the first neutralization step was 4.0, and the amount and time of the aqueous ammonia solution added in the second neutralization step were 24.78 g and 3.2 min. The pH of the reaction solution after the second neutralization step and the pH of the reaction solution during the 20 hours of stirring were 8.8. The substituted ε iron oxide powder according to Example 5 was subjected to XRD measurement, and the content of the α phase was found to be 0%, which is superior to those of the substituted ε iron oxide magnetic particle powders obtained in Comparative Examples 4 and 5 described later. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 1.

参考例7]
1L反応槽にて、純水746.26gに、Fe濃度11.65mass%の硫酸第二鉄(III)溶液102.73g、純度98%硝酸アルミニウム(III)9水和物10.74g、純度97%硝酸コバルト(II)6水和物1.91g、Ti濃度15.1mass%の硫酸チタン(IV)2.02gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。この仕込み溶液中の金属イオンのモル比は、Fe:Al:Co:Ti=1.680:0.220:0.050:0.050である。
大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、22.30mass%のアンモニア水溶液51.59gを60minで添加(第一の中和工程)し、滴下終了後に10min間撹拌を続けて生成した沈殿物の熟成を行った(中間の熟成工程)。その際、沈殿物を含むスラリーのpHは3.0であった(手順2)。
手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0mass%のテトラエトキシシラン(TEOS)158.88gを5minかけて滴下した。TEOS添加終了後に22.30mass%のアンモニア溶液27.09gを14minで添加(第二の中和工程)した。第二中和工程後のpHは8.8であった。その後20hそのまま撹拌し続け、シリコン化合物の化学反応生成物で沈殿物を被覆した(手順3)。前記20hの撹拌をしている間の反応液のpHは8.8であった。なお、この条件で下では、pH2.0以上7.0以下の分散液に添加したテトラエトキシシランに含まれるSi元素の量と、原料溶液中に含まれる鉄、アルミニウム、コバルト、チタンイオンの量とのモル比、S1/(F+M)は2.84であり、分散液に滴下するテトラエトキシシランに含まれるSi元素の全量と、原料溶液中に含まれる鉄、アルミニウム、コバルト、チタンイオンの量とのモル比S2/(F+M)は2.84である。
その後は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。当該参考例7に係る置換型ε酸化鉄粉体についてXRD測定を行い、α相の含有率を求めたところ0%であった。この値は後述する比較例4および5により得られた置換型ε酸化磁性粒子粉についてのそれらよりも優れたものである。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
得られた置換型ε酸化鉄磁性粒子粉につき、上述した方法により電波吸収特性を測定した。その結果、周波数が50GHzから100GHzまでの範囲での圧粉体の最大吸収周波数は80.1GHz、単位厚みあたりの透過減衰量は4.1dB/mmであった。
[ Reference Example 7]
In a 1L reaction tank, 102.73 g of ferric sulfate (III) solution with a Fe concentration of 11.65 mass%, 10.74 g of aluminum nitrate (III) 98% purity 98% hexahydrate, 1.91 g of cobalt nitrate (II) 6-hydrate with a purity of 97%, and 2.02 g of titanium sulfate (IV) with a Ti concentration of 15.1 mass% were dissolved in 746.26 g of pure water while mechanically stirring with a stirring blade in an air atmosphere (Procedure 1). The pH of this solution was about 1. The molar ratio of metal ions in this charged solution was Fe:Al:Co:Ti=1.680:0.220:0.050:0.050.
In an air atmosphere, this solution was mechanically stirred with a stirring blade at 30° C., while 51.59 g of 22.30 mass% aqueous ammonia solution was added over 60 min (first neutralization step), and after the dropwise addition was completed, stirring was continued for 10 min to age the resulting precipitate (intermediate aging step). At that time, the pH of the slurry containing the precipitate was 3.0 (step 2).
While stirring the slurry obtained in step 2, 158.88 g of tetraethoxysilane (TEOS) with a purity of 95.0 mass% was added dropwise over 5 min at 30° C. in the air. After the addition of TEOS was completed, 27.09 g of ammonia solution with a purity of 22.30 mass% was added over 14 min (second neutralization step). The pH after the second neutralization step was 8.8. Stirring was continued for 20 h, and the precipitate was covered with the chemical reaction product of the silicon compound (step 3). The pH of the reaction solution during the 20 h of stirring was 8.8. Under these conditions, the molar ratio S1/(F+M) of the amount of elemental Si contained in tetraethoxysilane added to the dispersion having a pH of 2.0 or more and 7.0 or less to the amounts of iron, aluminum, cobalt, and titanium ions contained in the raw solution is 2.84, and the molar ratio S2/(F+M) of the total amount of elemental Si contained in tetraethoxysilane dropped into the dispersion to the amounts of iron, aluminum, cobalt, and titanium ions contained in the raw solution is 2.84.
Thereafter, substituted ε-iron oxide magnetic particles were obtained in the same manner as in Example 1. The substituted ε-iron oxide powder according to Reference Example 7 was subjected to XRD measurement, and the content of the α-phase was found to be 0%. This value is superior to those of the substituted ε-iron oxide magnetic particles obtained in Comparative Examples 4 and 5 described below. In addition, chemical analysis of the composition and evaluation of the magnetic properties were performed. The measurement results are also shown in Table 2.
The radio wave absorption characteristics of the obtained substituted ε-iron oxide magnetic particles were measured by the above-mentioned method, and the results showed that the maximum absorption frequency of the powder compact in the frequency range of 50 GHz to 100 GHz was 80.1 GHz, and the transmission attenuation per unit thickness was 4.1 dB/mm.

[比較例4]
比較例4として、第二の中和工程を実施しない以外は実施例6と同様の手順で、置換型ε酸化鉄粉体を得た。なお、TEOS添加終了時点での反応液のpH、および前記20hの撹拌をしている間の反応液のpHは4.0であった。当該比較例4に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ87.5%と、実施例1~6、参考例7と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 4]
As Comparative Example 4, a substituted ε iron oxide powder was obtained in the same manner as in Example 6, except that the second neutralization step was not carried out. The pH of the reaction solution at the end of the addition of TEOS and during the 20 hours of stirring were both 4.0. XRD measurement was carried out on the substituted ε iron oxide magnetic particles according to Comparative Example 4, and the content of the α phase was found to be 87.5%, which was a higher value than those of Examples 1 to 6 and Reference Example 7. Chemical analysis of the composition and evaluation of the magnetic properties were also carried out. The measurement results are shown in Table 2.

[比較例5]
比較例5として、第一の中和工程に用いるアンモニア水溶液の添加量および添加時間を57.00gおよび7.3min、第一の中和工程終了時のpHを6.0とした以外は比較例4と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。なお、TEOS添加終了時点での反応液のpH、および前記20hの撹拌をしている間の反応液のpHは6.0であった。当該比較例5に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ36.9%と、実施例1~6、参考例7と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
以上の結果から、第二の中和工程を設けないと、α相の含有率の低い置換型ε酸化鉄磁性粒子粉が得られないことが判る。また、出発物質の鉄原料として硝酸塩および硫酸塩の何れを用いても、ほぼ同じ結果が得られている。
[Comparative Example 5]
As Comparative Example 5, a substituted ε iron oxide magnetic particle powder was obtained in the same manner as in Comparative Example 4, except that the amount of the aqueous ammonia solution added in the first neutralization step was 57.00 g and the addition time was 7.3 min, and the pH at the end of the first neutralization step was 6.0. The pH of the reaction solution at the end of the addition of TEOS and during the 20 hours of stirring were both 6.0. The substituted ε iron oxide magnetic particle powder according to Comparative Example 5 was subjected to XRD measurement, and the content of the α phase was found to be 36.9%, which was a higher value than those of Examples 1 to 6 and Reference Example 7. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.
From the above results, it is understood that unless the second neutralization step is performed, substituted ε iron oxide magnetic particles having a low α phase content cannot be obtained. Furthermore, almost the same results are obtained whether nitrate or sulfate is used as the starting iron raw material.

[実施例8]
中間の熟成工程における撹拌時間を10minとし、テトラエトキシシラン(TEOS)を5minかけて添加した以外は、実施例5と同様の手順により置換型ε酸化鉄磁性粒子粉を得た。なお、TEOS添加終了時点での反応液のpHは3.0であり、前記20hの撹拌をしている間の反応液のpHは8.6であった。
得られた置換型ε酸化鉄磁性粒子粉のα相の含有率は0%であり、上述した方法により電波吸収特性を測定した。その結果、周波数が50GHzから100GHzまでの範囲での圧粉体の最大吸収周波数は67.2GHz、単位厚みあたりの透過減衰量は4.6dB/mmであった。
[Example 8]
Except for changing the stirring time in the intermediate maturation step to 10 min and adding tetraethoxysilane (TEOS) over 5 min, a substituted ε-iron oxide magnetic particle powder was obtained in the same manner as in Example 5. The pH of the reaction solution at the end of the addition of TEOS was 3.0, and the pH of the reaction solution during the 20 h of stirring was 8.6.
The content of the α-phase in the obtained substituted ε-iron oxide magnetic particles was 0%, and the radio wave absorption characteristics were measured by the above-mentioned method. As a result, the maximum absorption frequency of the compact in the frequency range of 50 GHz to 100 GHz was 67.2 GHz, and the transmission attenuation per unit thickness was 4.6 dB/mm.

[比較例6]
5L反応槽にて、純水3688.56gに、Fe濃度11.58mass%の硫酸第二鉄(III)溶液527.22g、Ga濃度11.55mass%の硝酸Ga(III)溶液71.61g、純度97%硝酸コバルト(II)6水和物9.57g、Ti濃度15.1mass%の硫酸チタン(IV)10.11gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.714:0.186:0.050:0.050である。
大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、22.30mass%のアンモニア水溶液388.91gを10minで添加(第一の中和工程)し、滴下終了後に30min間撹拌を続けて生成した沈殿物の熟成を行った(中間の熟成工程)。その際、沈殿物を含むスラリーのpHは8.6であった(手順2)。
手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0mass%のテトラエトキシシラン(TEOS)794.40gを10minかけて滴下した。その後20hそのまま撹拌し続け、シリコン化合物の化学反応生成物で沈殿物を被覆した(手順3)。前記20hの撹拌をしている間の反応液のpHは8.6であった。なお、この条件で下では、pH2.0以上7.0以下の分散液に添加したテトラエトキシシランに含まれるSi元素の量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比、S1/(F+M)は0であり、分散液に滴下するテトラエトキシシランに含まれるSi元素の全量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比S2/(F+M)は2.84である。
その後は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。当該比較例6に係る置換型ε酸化鉄粉体についてXRD測定を行い、α相の含有率を求めたところ4.9%と、実施例8と比較して高い値であった。また組成の化学分析、磁気特性および電波吸収特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 6]
In a 5L reaction tank, 527.22g of ferric sulfate (III) solution with a Fe concentration of 11.58 mass%, 71.61g of Ga (III) nitrate solution with a Ga concentration of 11.55 mass%, 9.57g of cobalt (II) nitrate hexahydrate with a purity of 97%, and 10.11g of titanium (IV) sulfate with a Ti concentration of 15.1 mass% were dissolved in 3688.56g of pure water while mechanically stirring with a stirring blade in an air atmosphere (Procedure 1). The pH of this solution was about 1. The molar ratio of metal ions in this charged solution was Fe:Ga:Co:Ti=1.714:0.186:0.050:0.050.
In an air atmosphere, this solution was mechanically stirred with a stirring blade at 30° C., while 388.91 g of 22.30 mass% aqueous ammonia solution was added over 10 min (first neutralization step), and after the dropwise addition was completed, stirring was continued for 30 min to age the resulting precipitate (intermediate aging step). At that time, the pH of the slurry containing the precipitate was 8.6 (step 2).
While stirring the slurry obtained in step 2, 794.40 g of tetraethoxysilane (TEOS) with a purity of 95.0 mass% was dropped over 10 min at 30° C. in the air. Stirring was continued for 20 h, and the precipitate was covered with the chemical reaction product of the silicon compound (step 3). The pH of the reaction solution during the 20 h of stirring was 8.6. Under these conditions, the molar ratio S1/(F+M) between the amount of Si element contained in the tetraethoxysilane added to the dispersion with a pH of 2.0 to 7.0 and the amount of iron, gallium, cobalt, and titanium ions contained in the raw solution was 0, and the molar ratio S2/(F+M) between the total amount of Si element contained in the tetraethoxysilane dropped into the dispersion and the amount of iron, gallium, cobalt, and titanium ions contained in the raw solution was 2.84.
Thereafter, substituted ε iron oxide magnetic particles were obtained in the same manner as in Example 1. XRD measurement was performed on the substituted ε iron oxide powder according to Comparative Example 6, and the content of the α phase was found to be 4.9%, which was higher than that of Example 8. In addition, chemical analysis of the composition, and evaluation of the magnetic properties and radio wave absorption properties were performed. The measurement results are also shown in Table 2.

参考例9]
硫酸第二鉄(III)溶液101.50g、および硝酸アルミニウム(III)9水和物11.7gを使用した以外は参考例7と同様の手順により、置換型ε酸化鉄粉体を得た。なお、TEOS添加終了時点での反応液のpHは3.0であり、前記20hの撹拌をしている間の反応液のpHは8.6であった。この仕込み溶液中の金属イオンのモル比は、Fe:Al:Co:Ti=1.660:0.240:0.050:0.050である。組成の化学分析、磁気特性および電波吸収特性の評価を行った。測定結果を表2に併せて示す。
[ Reference Example 9]
Substituted ε-iron oxide powder was obtained by the same procedure as in Reference Example 7, except that 101.50 g of ferric sulfate (III) solution and 11.7 g of aluminum nitrate (III) nonahydrate were used. The pH of the reaction solution at the end of the addition of TEOS was 3.0, and the pH of the reaction solution during the 20 hours of stirring was 8.6. The molar ratio of metal ions in this charged solution was Fe:Al:Co:Ti=1.660:0.240:0.050:0.050. Chemical analysis of the composition, and evaluation of magnetic properties and radio wave absorption properties were performed. The measurement results are shown in Table 2.

[比較例7]
1L反応槽にて、純水746.36gに、Fe濃度11.65mass%の硫酸第二鉄(III)溶液101.51g、純度98%硝酸Al(III)9水和物11.72g、純度97%硝酸コバルト(II)6水和物1.91g、Ti濃度15.1mass%の硫酸チタン(IV)2.12gを大気雰囲気中、撹拌羽根により機械的に撹拌しながら溶解した(手順1)。この溶解液のpHは約1であった。この仕込み溶液中の金属イオンのモル比は、Fe:Al:Co:Ti=1.660:0.240:0.050:0.050である。
大気雰囲気中、この仕込み溶解液を30℃の条件下で、撹拌羽根により機械的に撹拌しながら、22.30mass%のアンモニア水溶液78.68gを10minで添加(第一の中和工程)し、滴下終了後に30min間撹拌を続けて生成した沈殿物の熟成を行った(中間の熟成工程)。その際、沈殿物を含むスラリーのpHは8.6であった(手順2)。
手順2で得られたスラリーを撹拌しながら、大気中30℃で、純度95.0mass%のテトラエトキシシラン(TEOS)158.88gを10minかけて滴下した。その後20hそのまま撹拌し続け、シリコン化合物の化学反応生成物で沈殿物を被覆した(手順3)。前記20hの撹拌をしている間の反応液のpHは8.6であった。なお、この条件で下では、pH2.0以上7.0以下の分散液に添加したテトラエトキシシランに含まれるSi元素の量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比、S1/(F+M)は0であり、分散液に滴下するテトラエトキシシランに含まれるSi元素の全量と、原料溶液中に含まれる鉄、ガリウム、コバルト、チタンイオンの量とのモル比S2/(F+M)は2.84である。
その後は実施例1と同様の手順で置換型ε酸化鉄磁性粒子粉を得た。当該比較例7に係る置換型ε酸化鉄粉体についてXRD測定を行い、α相の含有率を求めたところ8.7%と、追加実施例2と比較して高い値であった。また化学分析、磁気特性および電波吸収特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 7]
In a 1L reaction tank, 101.51 g of ferric sulfate (III) solution with a Fe concentration of 11.65 mass%, 11.72 g of Al (III) nitrate nonahydrate with a purity of 98%, 1.91 g of cobalt (II) nitrate hexahydrate with a purity of 97%, and 2.12 g of titanium (IV) sulfate with a Ti concentration of 15.1 mass% were dissolved in 746.36 g of pure water while mechanically stirring with a stirring blade in an air atmosphere (Procedure 1). The pH of this solution was about 1. The molar ratio of metal ions in this charged solution was Fe:Al:Co:Ti=1.660:0.240:0.050:0.050.
In an air atmosphere, this solution was mechanically stirred with a stirring blade at 30° C., and 78.68 g of 22.30 mass% aqueous ammonia solution was added over 10 min (first neutralization step). After the dropwise addition was completed, stirring was continued for 30 min to age the resulting precipitate (intermediate aging step). At that time, the pH of the slurry containing the precipitate was 8.6 (Procedure 2).
While stirring the slurry obtained in step 2, 158.88 g of tetraethoxysilane (TEOS) with a purity of 95.0 mass% was dropped over 10 min at 30° C. in the air. Stirring was continued for 20 h, and the precipitate was covered with the chemical reaction product of the silicon compound (step 3). The pH of the reaction solution during the 20 h of stirring was 8.6. Under these conditions, the molar ratio S1/(F+M) between the amount of Si element contained in the tetraethoxysilane added to the dispersion with a pH of 2.0 to 7.0 and the amount of iron, gallium, cobalt, and titanium ions contained in the raw solution was 0, and the molar ratio S2/(F+M) between the total amount of Si element contained in the tetraethoxysilane dropped into the dispersion and the amount of iron, gallium, cobalt, and titanium ions contained in the raw solution was 2.84.
Thereafter, substituted ε iron oxide magnetic particles were obtained in the same manner as in Example 1. The substituted ε iron oxide powder according to Comparative Example 7 was subjected to XRD measurement, and the content of the α phase was found to be 8.7%, which was a higher value than that of Additional Example 2. In addition, chemical analysis, and evaluation of magnetic properties and radio wave absorption properties were performed. The measurement results are also shown in Table 2.

[比較例8]
本比較例は、参考例7の組成比の従来製法に対応する実験例である。
添加する金属塩の量をFe濃度11.65mass%の硫酸第二鉄(III)溶液102.73g、純度98%硝酸Al(III)9水和物10.74gとした以外は追加比較例2と同様の手順で、置換型ε酸化鉄磁性粒子粉を得た。
なお、TEOS添加終了時点の反応液pH、および前記20hの撹拌をしている間の反応液のpHはいずれも8.6であった。当該比較例に係る置換型ε酸化鉄磁性粒子粉についてXRD測定を行い、α相の含有率を求めたところ8.1%と参考例7と比較して高い値であった。また組成の化学分析および磁気特性の評価を行った。測定結果を表2に併せて示す。
[Comparative Example 8]
This comparative example is an experimental example corresponding to the composition ratio of Reference Example 7 produced by a conventional method.
Substituted ε iron oxide magnetic particles were obtained in the same manner as in Additional Comparative Example 2, except that the amounts of metal salts added were 102.73 g of a ferric sulfate (III) solution with an Fe concentration of 11.65 mass% and 10.74 g of Al (III) nitrate nonahydrate with a purity of 98%.
The pH of the reaction solution at the end of the addition of TEOS and during the 20 hours of stirring were both 8.6. XRD measurement was performed on the substituted ε-iron oxide magnetic particles according to this comparative example to determine the content of the α-phase, which was 8.1%, a higher value than that of Reference Example 7. Chemical analysis of the composition and evaluation of the magnetic properties were also performed. The measurement results are shown in Table 2.

Figure 0007509524000001
Figure 0007509524000001

Figure 0007509524000002
Figure 0007509524000002

Claims (10)

ε-FeのFeサイトの一部を他の金属元素で置換したεタイプの鉄系酸化物を主として含む置換型ε酸化鉄磁性粒子粉であって、前記のFeサイトを一部置換する他の金属元素がCo、TiおよびGaであり、前記置換型ε酸化鉄磁性粒子粉に含まれるFeのモル数をFe、Feサイトを置換した全金属元素のモル数をMeとしたとき、Me/(Fe+Me)で定義される他の金属元素によるFeの置換量が0.08以上0.16以下であり、飽和磁化σsが17.1Am /kg以上であり、かつ、X線回折法により測定されるαタイプの鉄系酸化物の含有率が3%以下である、置換型ε酸化鉄磁性粒子粉。 The substituted epsilon iron oxide magnetic particles mainly contain an epsilon type iron oxide in which part of the Fe sites of epsilon - Fe2O3 is substituted with other metal elements, the other metal elements partially substituting the Fe sites being Co, Ti and Ga, the amount of Fe substituted by other metal elements defined as Me/(Fe+Me) being 0.08 or more and 0.16 or less, where Fe is the number of moles of Fe contained in the substituted epsilon iron oxide magnetic particles and Me is the number of moles of all metal elements substituting the Fe sites, the substituted epsilon iron oxide magnetic particles have a saturation magnetization σs of 17.1 Am2 / kg or more, and the content of α-type iron oxide measured by X-ray diffraction is 3% or less. 請求項に記載の置換型ε酸化鉄磁性粒子粉からなる圧粉体。 A green compact comprising the substituted ε iron oxide magnetic particle powder according to claim 1 . 請求項に記載の置換型ε酸化鉄磁性粒子粉が樹脂またはゴムに分散されてなる電波吸収体。 10. A radio wave absorber comprising the substituted ε iron oxide magnetic particles according to claim 1 dispersed in a resin or rubber. ε-FeのFeサイトの一部を他の金属元素で置換したεタイプの鉄系酸化物を主として含む置換型ε酸化鉄磁性粒子粉の製造方法であって、
原料溶液として3価の鉄イオンと前記Feサイトを一部置換する金属のイオンを含む酸性の水溶液を用い、前記の原料溶液にアルカリを添加してpH8.0以上10.0以下まで中和し、置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水 酸化物の混合物を含む分散液を得る中和工程と、
前記の置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物を含む前記の分散液に、加水分解基を持つシリコン化合物を添加するシリコン化合物添加工程と、
前記の置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物と前記のシリコン化合物を含む分散液を、pH8.0以上10.0以下で保持し、置換金属元素を含むオキシ水酸化鉄もしくはオキシ水酸化鉄と置換金属元素の水酸化物の混合物に前記シリコン化合物の化学反応生成物を被覆する熟成工程と、
を含み、
前記の加水分解基を持つシリコン化合物の添加を、前記の中和工程において分散液のpHが2.0以上7.0以下になった時点で開始し、
pH2.0以上7.0以下の分散液に添加する前記のシリコン化合物のモル数をS1、原料溶液中に含まれるFeイオンのモル数をF、置換金属元素イオンの全モル数をMとしたとき、S1/(F+M)が0.01以上10.0以下であり、かつ、
前記のシリコン化合物の全添加モル数をS2としたとき、S2/(F+M)が0.50以上10.0以下である、
置換型ε酸化鉄磁性粒子粉の製造方法。
A method for producing a substituted ε-iron oxide magnetic particle powder mainly containing an ε-type iron oxide in which a part of the Fe site of ε-Fe 2 O 3 is substituted with another metal element, comprising the steps of:
a neutralization step of using an acidic aqueous solution containing trivalent iron ions and ions of a metal that partially substitutes for the Fe sites as a raw material solution, and adding an alkali to the raw material solution to neutralize it to a pH of 8.0 to 10.0 to obtain a dispersion containing iron oxyhydroxide containing a substitution metal element or a mixture of iron oxyhydroxide and a hydroxide of the substitution metal element;
a silicon compound adding step of adding a silicon compound having a hydrolyzable group to the dispersion liquid containing the iron oxyhydroxide containing the substitution metal element or a mixture of the iron oxyhydroxide and the hydroxide of the substitution metal element;
an aging step of maintaining a pH of the dispersion containing the silicon compound and the iron oxyhydroxide containing the substituting metal element or the mixture of the iron oxyhydroxide and the hydroxide of the substituting metal element at 8.0 to 10.0, and coating the iron oxyhydroxide containing the substituting metal element or the mixture of the iron oxyhydroxide and the hydroxide of the substituting metal element with a chemical reaction product of the silicon compound;
Including,
Addition of the silicon compound having a hydrolyzable group is started when the pH of the dispersion becomes 2.0 or more and 7.0 or less in the neutralization step,
where S1 is the number of moles of the silicon compound added to the dispersion liquid having a pH of 2.0 or more and 7.0 or less, F is the number of moles of Fe ions contained in the raw material solution, and M is the total number of moles of the substitution metal element ions, and S1/(F+M) is 0.01 or more and 10.0 or less,
When the total molar number of the silicon compounds added is S2, S2/(F+M) is 0.50 or more and 10.0 or less.
A method for producing substituted ε-iron oxide magnetic particles.
前記の中和工程におけるアルカリ添加と、前記のシリコン化合物添加工程におけるシリコン化合物の添加を、いずれも連続的に行う、請求項に記載の置換型ε酸化鉄磁性粒子粉の製造方法。 5. The method for producing the substituted ε iron oxide magnetic particles according to claim 4 , wherein the addition of the alkali in the neutralization step and the addition of the silicon compound in the silicon compound addition step are both carried out continuously. 前記の中和工程におけるアルカリ添加を連続的に、前記のシリコン化合物添加工程におけるシリコン化合物の添加を間歇的に行う、請求項に記載の置換型ε酸化鉄磁性粒子粉の製造方法。 5. The method for producing substituted ε iron oxide magnetic particles according to claim 4 , wherein the addition of the alkali in the neutralization step is carried out continuously, and the addition of the silicon compound in the silicon compound addition step is carried out intermittently. 前記の中和工程におけるアルカリ添加と、前記のシリコン化合物添加工程におけるシリコン化合物の添加を、いずれも間歇的に行う、請求項に記載の置換型ε酸化鉄磁性粒子粉の製造方法。 5. The method for producing the substituted ε iron oxide magnetic particles according to claim 4 , wherein the addition of the alkali in the neutralization step and the addition of the silicon compound in the silicon compound addition step are both carried out intermittently. 前記の中和工程におけるアルカリ添加を間歇的に、前記のシリコン化合物添加工程におけるシリコン化合物の添加を連続的に行う、請求項に記載の置換型ε酸化鉄磁性粒子粉の製造方法。 5. The method for producing the substituted ε iron oxide magnetic particles according to claim 4 , wherein the addition of the alkali in the neutralization step is carried out intermittently, and the addition of the silicon compound in the silicon compound addition step is carried out continuously. 前記のFeサイトを一部置換する他の金属元素がCo、TiおよびGaである、請求項に記載の置換型ε酸化鉄磁性粒子粉の製造方法。 5. The method for producing substituted ε iron oxide magnetic particles according to claim 4 , wherein the other metal elements partially substituting the Fe sites are Co, Ti and Ga . 請求項1に記載の置換型ε酸化鉄磁性粒子粉を圧縮成形して圧粉体を得る、圧粉体の製造方法。 A method for producing a green compact, comprising compression molding the substituted ε-iron oxide magnetic particle powder according to claim 1 to obtain a green compact.
JP2019180329A 2019-03-05 2019-09-30 Substituted ε-iron oxide magnetic particles, method for producing substituted ε-iron oxide magnetic particles, compact, method for producing compact, and radio wave absorber Active JP7509524B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080018538.9A CN113508442A (en) 2019-03-05 2020-02-28 Substituted epsilon-iron oxide magnetic particle powder, method for producing substituted epsilon-iron oxide magnetic particle powder, green compact, method for producing green compact, and radio wave absorber
EP20766384.0A EP3937194A4 (en) 2019-03-05 2020-02-28 Substitution-type epsilon-iron oxide magnetic particle powder, method for producing substitution-type epsilon-iron oxide magnetic particle powder, green compact, method for producing green compact, and electromagnetic wave absorber
US17/433,672 US20220089456A1 (en) 2019-03-05 2020-02-28 Substitution-type epsilon-iron oxide magnetic particle powder, method for producing substitution-type epsilon-iron oxide magnetic particle powder, green compact, method for producing green compact, and electromagnetic wave
PCT/JP2020/008278 WO2020179659A1 (en) 2019-03-05 2020-02-28 SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR PRODUCING SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR PRODUCING GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER
TW109107283A TWI768299B (en) 2019-03-05 2020-03-05 SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR MANUFACTURING SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR MANUFACTURING GREEN COMPACT AND ELECTROMAGNETIC WAVE ABSORBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040063 2019-03-05
JP2019040063 2019-03-05

Publications (2)

Publication Number Publication Date
JP2020150249A JP2020150249A (en) 2020-09-17
JP7509524B2 true JP7509524B2 (en) 2024-07-02

Family

ID=72429924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180329A Active JP7509524B2 (en) 2019-03-05 2019-09-30 Substituted ε-iron oxide magnetic particles, method for producing substituted ε-iron oxide magnetic particles, compact, method for producing compact, and radio wave absorber

Country Status (3)

Country Link
JP (1) JP7509524B2 (en)
CN (1) CN113508442A (en)
TW (1) TWI768299B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229820B (en) * 2023-09-22 2024-03-22 山东海嘉石油化工有限公司 Iron oxyhydroxide desulfurizing agent suitable for coal bed gas and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029861A1 (en) 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP2008174405A (en) 2007-01-16 2008-07-31 Univ Of Tokyo METHOD FOR PRODUCING epsilon-Fe2O3 CRYSTAL
WO2008149785A1 (en) 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2009224414A (en) 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
JP2016130208A (en) 2015-01-09 2016-07-21 Dowaエレクトロニクス株式会社 Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium
JP2017024981A (en) 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 Manufacturing method of iron-based oxide magnetic particle powder
JP2018092691A (en) 2016-11-30 2018-06-14 富士フイルム株式会社 ε-IRON OXIDE TYPE FERROMAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND ε-IRON OXIDE TYPE FERROMAGNETIC POWDER-CONTAINING COMPOSITION
JP2019003970A (en) 2017-06-09 2019-01-10 富士フイルム株式会社 Magnetic powder, method for manufacturing magnetic powder, and magnetic recording medium
JP2020113356A (en) 2019-01-16 2020-07-27 富士フイルム株式会社 Magnetic recording medium for microwave assistance recording medium, magnetic recording apparatus, and manufacturing method for magnetic recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111224A1 (en) * 2015-01-09 2016-07-14 Dowaエレクトロニクス株式会社 Iron-based oxide magnetic particle powder, method for producing same, coating, and magnetic recording medium
JP6802759B2 (en) * 2017-06-09 2020-12-16 富士フイルム株式会社 Magnetic powder, method for producing magnetic powder, and magnetic recording medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029861A1 (en) 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP2008277726A (en) 2006-09-01 2008-11-13 Univ Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorber
JP2008174405A (en) 2007-01-16 2008-07-31 Univ Of Tokyo METHOD FOR PRODUCING epsilon-Fe2O3 CRYSTAL
WO2008149785A1 (en) 2007-05-31 2008-12-11 The University Of Tokyo Magnetic iron oxide particle, magnetic material, and radio wave absorber
JP2009224414A (en) 2008-02-20 2009-10-01 Univ Of Tokyo Radio wave absorption material, radio wave absorber using the same, and electromagnetic wave absorption rate measurement method
JP2016130208A (en) 2015-01-09 2016-07-21 Dowaエレクトロニクス株式会社 Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium
JP2017024981A (en) 2015-07-27 2017-02-02 Dowaエレクトロニクス株式会社 Manufacturing method of iron-based oxide magnetic particle powder
JP2018092691A (en) 2016-11-30 2018-06-14 富士フイルム株式会社 ε-IRON OXIDE TYPE FERROMAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND ε-IRON OXIDE TYPE FERROMAGNETIC POWDER-CONTAINING COMPOSITION
JP2019003970A (en) 2017-06-09 2019-01-10 富士フイルム株式会社 Magnetic powder, method for manufacturing magnetic powder, and magnetic recording medium
JP2020113356A (en) 2019-01-16 2020-07-27 富士フイルム株式会社 Magnetic recording medium for microwave assistance recording medium, magnetic recording apparatus, and manufacturing method for magnetic recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
砥綿篤哉,シリカキセロゲル中でのε-Fe2O3の合成条件が粒子特性へ及ぼす影響,粉体工学会誌,日本,粉体工学会,2017年

Also Published As

Publication number Publication date
JP2020150249A (en) 2020-09-17
TWI768299B (en) 2022-06-21
TW202043158A (en) 2020-12-01
CN113508442A (en) 2021-10-15

Similar Documents

Publication Publication Date Title
JP6010181B2 (en) Iron-based oxide magnetic particle powder, method for producing the same, paint, and magnetic recording medium
JP5966064B1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
WO2016047559A1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
WO2016111224A1 (en) Iron-based oxide magnetic particle powder, method for producing same, coating, and magnetic recording medium
JP7509524B2 (en) Substituted ε-iron oxide magnetic particles, method for producing substituted ε-iron oxide magnetic particles, compact, method for producing compact, and radio wave absorber
WO2020162443A1 (en) Iron-based oxide magnetic powder and production method therefor
WO2020195990A1 (en) SUBSTITUTED ε-IRON OXIDE MAGNETIC PARTICLE POWDER, PRODUCTION METHOD FOR SUBSTITUTED ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, PRODUCTION METHOD FOR GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER
WO2020179659A1 (en) SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR PRODUCING SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR PRODUCING GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER
JP7497258B2 (en) Substituted ε-iron oxide magnetic particles and method for producing the same
JP2019056165A (en) Iron powder and method for producing same, and for-inductor compact and inductor
JP2020167365A (en) SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR PRODUCING SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR PRODUCING GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER
WO2021200481A1 (en) Iron-based oxide magnetic powder and method for manufacturing same
JP7503400B2 (en) Manufacturing method of iron oxide magnetic powder
TWI761154B (en) Iron-based oxide magnetic powder, and green compact and radio wave absorber using the same
JP2022135542A (en) Method for manufacturing iron-based oxide magnetic powder
KR20230082127A (en) hard magnetic ferrite particle and preparation method thereof
Arvapalli et al. Role of pinning mechanism in co-precipitation derived cobalt rich, cobalt ferrite nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620

R150 Certificate of patent or registration of utility model

Ref document number: 7509524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150