JP7505176B2 - Battery Temperature Management Device - Google Patents

Battery Temperature Management Device Download PDF

Info

Publication number
JP7505176B2
JP7505176B2 JP2019210534A JP2019210534A JP7505176B2 JP 7505176 B2 JP7505176 B2 JP 7505176B2 JP 2019210534 A JP2019210534 A JP 2019210534A JP 2019210534 A JP2019210534 A JP 2019210534A JP 7505176 B2 JP7505176 B2 JP 7505176B2
Authority
JP
Japan
Prior art keywords
temperature
transfer fluid
heat transfer
flow path
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210534A
Other languages
Japanese (ja)
Other versions
JP2021082528A (en
Inventor
篤徳 橋本
正文 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2019210534A priority Critical patent/JP7505176B2/en
Priority to DE102020129589.8A priority patent/DE102020129589A1/en
Priority to CN202011308822.8A priority patent/CN112825376A/en
Publication of JP2021082528A publication Critical patent/JP2021082528A/en
Application granted granted Critical
Publication of JP7505176B2 publication Critical patent/JP7505176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両に備えられるバッテリー温度管理装置に関する。 The present invention relates to a battery temperature management device installed in a vehicle.

上記構成のバッテリー温度管理装置に関連する技術として、特許文献1には、冷媒が循環する冷媒流路と、ポンプと、内燃機関の運転時に冷媒の加温が可能な冷媒加温装置とを備え、暖機モードでは、冷媒を冷媒加温装置で加温することでバッテリーの温度上昇を図る点が記載されている。 As a technology related to the battery temperature management device configured as above, Patent Document 1 describes a battery temperature management device that includes a refrigerant flow path through which the refrigerant circulates, a pump, and a refrigerant heating device that can heat the refrigerant while the internal combustion engine is operating, and in warm-up mode, the refrigerant is heated by the refrigerant heating device to increase the temperature of the battery.

また、特許文献1には、バッテリーに冷媒を循環させる冷媒流路に、ラジエータと冷媒加温装置とポンプとを直列に備えており、暖機モードでは、冷媒加温装置で冷媒を加温し、冷媒の冷却を必要とする場合には車両の走行に伴う走行風をラジエータに供給できるように構成されている。 In addition, in Patent Document 1, a radiator, a refrigerant heating device, and a pump are arranged in series in a refrigerant flow path that circulates the refrigerant in the battery, and in warm-up mode, the refrigerant is heated by the refrigerant heating device, and when cooling of the refrigerant is required, the wind generated by the vehicle while it is moving can be supplied to the radiator.

また、特許文献1では、暖機モードにおいて冷媒を供給することによりバッテリーの温度が規定温度に達した後に、ポンプを逆回転させることにより冷媒を逆方向に流し、バッテリーを構成する複数のセルの温度差を抑制する点が記載されている。 Patent Document 1 also describes how, after the battery temperature reaches a specified temperature by supplying refrigerant in warm-up mode, the pump is rotated in reverse to cause the refrigerant to flow in the opposite direction, thereby suppressing the temperature difference between the multiple cells that make up the battery.

特開2019-55649号公報JP 2019-55649 A

特許文献1に記載されるハイブリッド車のように、バッテリーの電力で走行可能に構成された車両を考えると、バッテリーは、温度により充放電特性が変化するものであり、良好な充放電特性を得るために、バッテリーの温度管理が重要となる。 When considering a vehicle that is configured to run on battery power, such as the hybrid vehicle described in Patent Document 1, the charge and discharge characteristics of the battery change depending on the temperature, and it is important to manage the battery temperature in order to obtain good charge and discharge characteristics.

ハイブリッド車(HV)、電気自動車(EV)、プラグインハイブリッド車(PHV)等に用いられるバッテリーは、最小単位のセルを複数積層した構造のモジュールを複数個備えて構成されている。従って、バッテリーの温度管理を行う際には、複数のモジュールに対して個別に冷媒の給排を行う必要があった。 Batteries used in hybrid vehicles (HVs), electric vehicles (EVs), plug-in hybrid vehicles (PHVs), etc. are composed of multiple modules, each of which is made up of multiple stacked cells, the smallest unit of the battery. Therefore, when managing the temperature of the battery, it was necessary to supply and discharge refrigerant to each of the multiple modules individually.

また、特許文献1では、内燃機関が運転時に発生する熱や、運転時の発電による電気ヒータからの熱により冷媒加温装置で冷媒の加温を行うため、内燃機関が停止する状況では冷媒の温度上昇を図れないものであった。 In addition, in Patent Document 1, the refrigerant is heated by the refrigerant heating device using heat generated when the internal combustion engine is operating and heat from an electric heater generated by electricity during operation, so the refrigerant temperature cannot be increased when the internal combustion engine is stopped.

このような理由から、適切にバッテリーの温度制御が可能な装置が求められる。 For these reasons, there is a demand for a device that can properly control the temperature of a battery.

本発明に係るバッテリー温度管理装置の特徴構成は、複数のセルを1つのモジュールとした複数の前記モジュールを含み、電流を供給するバッテリーと、複数の前記セルの温度を各別に計測する複数の温度センサと、複数の前記モジュールを冷却単位として、複数の前記モジュールの複数の前記セルに対し熱媒流体を供給する熱交換流路と、前記熱媒流体の温度を制御する温度制御ユニットと、を備え、前記熱交換流路は、主流路と、ラジエータ流路とを有しており、前記主流路には、前記熱媒流体を送り出す電動ポンプと、前記熱交換流路を流れる前記熱媒流体を加熱する加熱部と、前記熱交換流路を流れる前記熱媒流体を、車両のルーム内の空調を行うことが可能な冷媒によって冷却するチラー部とが配置されており、前記ラジエータ流路は、前記モジュールに流れた前記熱媒流体の熱を放熱可能なラジエータが配置されており、前記主流路から前記モジュールに流れる前記熱媒流体の流動方向を切り換える切換弁を備え、前記温度制御ユニットは、複数の前記温度センサで検出される温度情報に基づき、前記電動ポンプと前記加熱部と、前記チラー部と、前記切換弁とを制御する点にある。 A characteristic configuration of a battery temperature management device according to the present invention includes a battery including a plurality of modules each having a plurality of cells as one module, the battery supplying current, a plurality of temperature sensors measuring the temperatures of the plurality of cells separately, a heat exchange flow path supplying a heat transfer fluid to the plurality of cells of the plurality of modules as cooling units, and a temperature control unit controlling the temperature of the heat transfer fluid, the heat exchange flow path having a main flow path and a radiator flow path, the main flow path including an electric pump for delivering the heat transfer fluid, and a temperature control unit for controlling the temperature of the heat transfer fluid. a heating section which heats the heat transfer fluid and a chiller section which cools the heat transfer fluid flowing through the heat exchange passage with a refrigerant capable of conditioning the air in the vehicle compartment , the radiator passage is provided with a radiator capable of dissipating heat of the heat transfer fluid that has flowed to the module, and is equipped with a switching valve which switches the flow direction of the heat transfer fluid flowing from the main passage to the module, and the temperature control unit controls the electric pump, the heating section, the chiller section, and the switching valve based on temperature information detected by the multiple temperature sensors.

この特徴構成によると、温度センサで検出される温度情報に基づいてバッテリーの温度上昇を図る場合には、温度制御ユニットが、電動ポンプを駆動し、加熱部で熱媒流体の温度を上昇させることにより、バッテリーの温度上昇が図られる。また、バッテリーの温度低下を図る場合には、温度制御ユニットが、電動ポンプを駆動し、チラー部によって熱媒流体の温度を低下させ、結果として、バッテリーの放熱が図られる。特に、熱交換流路は、バッテリーのモジュールを構成する複数のセルに対して熱媒流体を供給するため、複数のセルの温度の調整が実現する According to this characteristic configuration, when the temperature of the battery is to be increased based on the temperature information detected by the temperature sensor, the temperature control unit drives the electric pump and increases the temperature of the heat transfer fluid in the heating section, thereby increasing the temperature of the battery. When the temperature of the battery is to be decreased, the temperature control unit drives the electric pump and decreases the temperature of the heat transfer fluid in the chiller section, thereby dissipating heat from the battery. In particular, the heat exchange passage supplies the heat transfer fluid to the multiple cells that constitute the battery module, thereby realizing the adjustment of the temperatures of the multiple cells .

上記構成に加えた構成として、前記熱交換流路が、前記電動ポンプと前記チラー部と前記加熱部とを直列に配置した主流路と、前記モジュールを構成する複数の前記セルに対して所定の順序で前記熱媒流体を流す調温流路とを備え、前記切換弁が、前記調温流路に対して順方向に前記熱媒流体を流す順流状態と、前記調温流路に対して前記順方向と逆方向に前記熱媒流体を流す逆流状態とに切り換え自在に構成されても良い。 In addition to the above configuration, the heat exchange flow path may include a main flow path in which the electric pump, the chiller unit, and the heating unit are arranged in series, and a temperature control flow path that flows the heat transfer fluid in a predetermined order through the multiple cells that make up the module, and the switching valve may be configured to be freely switched between a forward flow state in which the heat transfer fluid flows in a forward direction through the temperature control flow path, and a reverse flow state in which the heat transfer fluid flows in a direction opposite to the forward direction through the temperature control flow path.

主流路の電動ポンプを駆動する状態でチラー部と加熱部とによって熱媒流体の温度を設定し、この熱媒流体を順流状態(順方向)に供給することで複数のセルの温度の管理が可能となる。また、熱媒流体を順流状態で供給する状態を継続した場合には、複数のセルのうち熱媒流体の流動方向の上流側と下流側とで温度差が拡大することもあり、このように温度差が拡大した場合に、熱媒流体を逆方向に流すように切換弁を操作することにより、熱媒流体を逆流状態で供給しモジュールを構成する複数のセルの温度の均一化も可能となる。 The temperature of the heat transfer fluid is set by the chiller and heating units while the electric pump in the main flow path is driven, and the heat transfer fluid is supplied in a forward flow state (forward direction), making it possible to manage the temperature of multiple cells. Furthermore, if the heat transfer fluid is continuously supplied in a forward flow state, the temperature difference between the upstream and downstream sides of the flow direction of the heat transfer fluid among the multiple cells may increase. If this temperature difference increases, the switching valve can be operated to flow the heat transfer fluid in the reverse direction, making it possible to supply the heat transfer fluid in a reverse flow state and equalize the temperature of the multiple cells that make up the module.

上記構成に加えた構成として、前記温度制御ユニットは、複数の前記温度センサで検出された温度のうちの最高温値と、最低温値との差が予め設定された設定値を超えた場合に、前記切換弁を制御して前記熱媒流体の流動方向を切り換えても良い。 In addition to the above configuration, the temperature control unit may control the switching valve to switch the flow direction of the heat transfer fluid when the difference between the maximum and minimum temperatures detected by the multiple temperature sensors exceeds a preset value.

これによると、複数の温度センサで検出された温度情報のうち最高温値と、最低温値との温度差に基づいて熱媒流体の流動方向を切り換えることにより、複数のセルの温度差を小さくすることが可能となる。 This makes it possible to reduce the temperature difference between multiple cells by switching the flow direction of the heat transfer fluid based on the temperature difference between the highest and lowest temperature values among the temperature information detected by multiple temperature sensors.

上記構成に加えた構成として、前記温度制御ユニットは、1つの前記モジュールを構成する複数の前記セルの温度を各別に検出する複数の前記温度センサで検出された温度のうちの最高温度値と、最低温度値との差が、予め設定された設定値を超えた場合に前記熱媒流体の流動方向を切り換えても良い。 In addition to the above configuration, the temperature control unit may switch the flow direction of the heat transfer fluid when the difference between the maximum and minimum temperatures detected by the multiple temperature sensors that separately detect the temperatures of the multiple cells that make up one module exceeds a preset value.

これによると、1つのモジュールを構成する複数のセルの温度を温度センサで検出した最高温値と最低温値とに基づいて切換弁を制御することにより、1つのモジュールの複数のセルの温度差を大きくすることがない。 By controlling the switching valve based on the maximum and minimum temperatures detected by a temperature sensor for the multiple cells that make up a single module, the temperature difference between the multiple cells in a single module is not allowed to increase.

上記構成のいずれかに加えた構成として、前記温度制御ユニットが、複数の前記温度センサの少なくとも1つで検出される温度情報が低温設定値未満である場合に、前記電動ポンプを作動させると共に、前記加熱部で前記熱媒流体を加熱し、複数の前記温度センサの少なくとも1つで検出される温度情報が高温設定値を超える場合に、前記電動ポンプを作動させると共に、前記チラー部で前記熱媒流体を冷却しても良い。 As an additional configuration to any of the above configurations, the temperature control unit may operate the electric pump and heat the heat transfer fluid with the heating section when the temperature information detected by at least one of the multiple temperature sensors is less than the low temperature setting value, and operate the electric pump and cool the heat transfer fluid with the chiller section when the temperature information detected by at least one of the multiple temperature sensors exceeds the high temperature setting value.

これによると、複数の温度センサの少なくとも1つで検出される温度情報が低温設定値未満である場合には加熱部で熱媒流体を加熱し、複数の温度センサのすくなくとも1つで検出される温度情報が高温設定値を超える場合にはチラー部で熱媒流体の放熱を行うため、バッテリーを構成するすべてのセルを、高温設定値未満から低温設定値を超える温度範囲に維持することが可能となる。 According to this, when the temperature information detected by at least one of the multiple temperature sensors is below the low temperature setting value, the heating section heats the heat transfer fluid, and when the temperature information detected by at least one of the multiple temperature sensors exceeds the high temperature setting value, the chiller section dissipates heat from the heat transfer fluid, making it possible to maintain all of the cells that make up the battery in a temperature range from below the high temperature setting value to above the low temperature setting value.

温度管理装置の熱交換流路等を模式的に示す図である。FIG. 2 is a diagram showing a schematic diagram of a heat exchange passage etc. of a temperature management device. 温度制御ユニットのブロック回路図である。FIG. 2 is a block circuit diagram of a temperature control unit. バッテリーのモジュールで熱媒流体の順方向への流れを示す図である。FIG. 2 is a diagram showing the forward flow of heat transfer fluid in a battery module. バッテリーのモジュールで熱媒流体の逆方向への流れを示す図である。FIG. 2 is a diagram showing the reverse flow of heat transfer fluid in a battery module. 温度制御ユニットの制御形態を示すフローチャートである。4 is a flowchart showing a control mode of a temperature control unit. 別実施形態(a)の温度管理装置を模式的に示す図である。FIG. 13 is a diagram showing a schematic diagram of a temperature control device according to another embodiment (a). 別実施形態(a)の温度管理装置を模式的に示す図である。FIG. 13 is a diagram showing a schematic diagram of a temperature control device according to another embodiment (a). 別実施形態(b)のバッテリーのモジュールで熱媒流体の順方向への流れを示す図である。FIG. 11 is a diagram showing the forward flow of heat transfer fluid in a battery module of another embodiment (b). 別実施形態(b)のバッテリーのモジュールで熱媒流体の逆方向への流れを示す図である。FIG. 11 is a diagram showing the flow of heat transfer fluid in the reverse direction in a battery module of another embodiment (b). 別実施形態(c)の温度制御ユニットの制御形態を示すフローチャートである。13 is a flowchart showing a control mode of a temperature control unit of another embodiment (c). 別実施形態(d)のモジュール内の調温流路を示す図である。FIG. 13 is a diagram showing a temperature control flow path in a module of another embodiment (d). 別実施形態(e)のモジュール内の調温流路を示す図である。FIG. 13 is a diagram showing a temperature control flow path in a module of another embodiment (e).

以下、本発明の実施形態を図面に基づいて説明する。
〔全体構成〕
図1には、ハイブリッド型の車両において電動型の走行モータ1に電流を供給するバッテリーBの温度管理を行うバッテリー温度管理装置C(以下、温度管理装置Cと称する)の熱交換流路10などを示している。また、図2には、温度管理装置Cの温度制御ユニット8を示している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
〔overall structure〕
Fig. 1 shows a heat exchange passage 10 of a battery temperature management device C (hereinafter referred to as temperature management device C) that manages the temperature of a battery B that supplies current to an electric traction motor 1 in a hybrid vehicle. Fig. 2 shows a temperature control unit 8 of the temperature management device C.

ハイブリッド型の車両は、走行用エンジン(図示せず)と、走行モータ1との少なくとも一方の駆動力で走行可能に構成され、走行モータ1の駆動力を得る場合にはバッテリーBの電流がインバータ2を介して走行モータ1に供給される。走行モータ1は発電機としても機能し、例えば、車両の走行速度を減ずる場合や、車両が坂道を下る場合には回生制動を行うことにより、走行モータ1によって車両の運動エネルギーを電流に変換し、この電流がバッテリーBに充電される。 A hybrid vehicle is configured to be able to run using at least one of the driving forces of a running engine (not shown) and a running motor 1, and when obtaining driving force from the running motor 1, the current of the battery B is supplied to the running motor 1 via the inverter 2. The running motor 1 also functions as a generator, and for example, when the vehicle's running speed is reduced or the vehicle is going downhill, regenerative braking is performed, and the kinetic energy of the vehicle is converted into current by the running motor 1, and this current is charged to the battery B.

バッテリーBは、温度により充電性能と放電性能とが変化するため、バッテリーBが充放電に適さない温度にある場合には、温度管理装置Cが熱媒流体の温度上昇と温度低下との何れかを行うことで、バッテリーBの温度が充放電に適した温度に維持される。 The charging and discharging performance of battery B changes depending on the temperature, so when battery B is at a temperature that is not suitable for charging or discharging, temperature management device C either increases or decreases the temperature of the heat transfer fluid, thereby maintaining the temperature of battery B at a temperature suitable for charging and discharging.

〔温度管理装置:熱交換流路〕
図1に示すように、温度管理装置Cの熱交換流路は、冷却水を用いた熱媒流体をバッテリーBに供給する調温用の熱交換流路10と、エアコン冷媒を車体の空調用の熱交換器23とチラー部12とに供給する冷媒流路20とを備えている。また、同図には、走行モータ1と、この走行モータ1に供給する電流を制御するインバータ2との冷却を可能にする水を用いた熱媒流体を供給する温度制御流路30を示している。尚、この温度制御流路30は、走行モータ1やインバータ2から得た熱でバッテリーBの暖機にも用いることが可能である。
[Temperature control device: heat exchange channel]
As shown in Fig. 1, the heat exchange flow path of the temperature management device C includes a temperature control heat exchange flow path 10 that supplies a heat transfer fluid using cooling water to the battery B, and a refrigerant flow path 20 that supplies air conditioner refrigerant to a heat exchanger 23 for air conditioning of the vehicle body and a chiller section 12. The figure also shows a temperature control flow path 30 that supplies a heat transfer fluid using water that enables cooling of the travel motor 1 and the inverter 2 that controls the current supplied to the travel motor 1. The temperature control flow path 30 can also be used to warm up the battery B using heat obtained from the travel motor 1 and the inverter 2.

熱交換流路10は、主流路10aと、調温流路10bと、ラジエータ流路10cと、バイパス流路10dとを備えている。尚、熱交換流路10と、温度制御流路30とは独立した流路として形成されているため、夫々の流路の熱媒流体は混じり合うことはない。 The heat exchange flow path 10 includes a main flow path 10a, a temperature control flow path 10b, a radiator flow path 10c, and a bypass flow path 10d. Since the heat exchange flow path 10 and the temperature control flow path 30 are formed as independent flow paths, the heat transfer fluids in the respective flow paths do not mix with each other.

主流路10aには、調温ポンプ11(電動ポンプの一例)と、チラー部12と、電気ヒータで成る加熱部13とが直列に配置されている。調温流路10bは、主流路10aから供給される熱媒流体をバッテリーBの複数のセル6(図3、図4の調温流路を参照)に供給するように構成され、電動式に作動する四方弁で成る切換弁14を備えることにより熱媒流体の流動方向の切り換えが可能に構成されている。この切換弁14が主流路10aと調温流路10bとの境界に配置されている。 In the main flow path 10a, a temperature control pump 11 (an example of an electric pump), a chiller section 12, and a heating section 13 consisting of an electric heater are arranged in series. The temperature control flow path 10b is configured to supply the heat transfer fluid supplied from the main flow path 10a to multiple cells 6 of the battery B (see the temperature control flow paths in Figures 3 and 4), and is configured to be able to switch the flow direction of the heat transfer fluid by including a switching valve 14 consisting of an electrically operated four-way valve. This switching valve 14 is arranged at the boundary between the main flow path 10a and the temperature control flow path 10b.

チラー部12は、冷媒流路20から冷媒が供給されるエバポレータの機能を有し、熱媒流体の放熱を行う。加熱部13は電流が供給されることにより発熱する発熱体を有する電気ヒータとして構成され、発熱により熱媒流体の加熱を行う。 The chiller section 12 functions as an evaporator to which refrigerant is supplied from the refrigerant flow path 20, and dissipates heat from the heat transfer fluid. The heating section 13 is configured as an electric heater having a heating element that generates heat when an electric current is supplied, and heats the heat transfer fluid by generating heat.

特に、切換弁14の制御によりバッテリーBに供給される熱媒流体の流動方向を切り換えることにより、バッテリーBを構成する複数のセル6の温度差を小さくするように構成されている(制御形態は後述する)。 In particular, the flow direction of the heat transfer fluid supplied to battery B is switched by controlling the switching valve 14, thereby reducing the temperature difference between the multiple cells 6 that make up battery B (the control method will be described later).

三方弁15は、調温流路10bからの熱媒流体を、ラジエータ流路10cを介して第1ラジエータ16に供給する状態と、調温流路10bからの熱媒流体をバイパス流路10dに流す状態との選択を可能に構成されている。 The three-way valve 15 is configured to be able to select between a state in which the heat transfer fluid from the temperature control flow path 10b is supplied to the first radiator 16 via the radiator flow path 10c, and a state in which the heat transfer fluid from the temperature control flow path 10b is flowed to the bypass flow path 10d.

これにより、三方弁15の制御により、調温流路10bの熱媒流体を、ラジエータ流路10cを介して第1ラジエータ16に供給して放熱を行い、放熱の後の熱媒流体を調温ポンプ11に戻すことが可能となる。また、三方弁15の制御により、調温流路10bの熱媒流体を、バイパス流路10dを介して調温ポンプ11に戻すことも可能となる。 As a result, by controlling the three-way valve 15, the heat transfer fluid in the temperature control flow path 10b can be supplied to the first radiator 16 via the radiator flow path 10c to dissipate heat, and the heat transfer fluid after heat dissipation can be returned to the temperature control pump 11. In addition, by controlling the three-way valve 15, the heat transfer fluid in the temperature control flow path 10b can also be returned to the temperature control pump 11 via the bypass flow path 10d.

冷媒流路20は、冷媒を圧縮する電動型のコンプレッサー21と、圧縮された冷媒の放熱を行うコンデンサ22と、車両のルーム内の空調を行うエバポレータとして機能する熱交換器23と、チラー部12に対する冷媒の供給と遮断とを可能にする電磁式の開閉弁24とを備え、熱交換器23の上流側に膨張弁25を備えている。 The refrigerant flow path 20 includes an electric compressor 21 that compresses the refrigerant, a condenser 22 that dissipates heat from the compressed refrigerant, a heat exchanger 23 that functions as an evaporator that conditions the air inside the vehicle, and an electromagnetic on-off valve 24 that allows the supply and cut-off of refrigerant to the chiller section 12, and an expansion valve 25 upstream of the heat exchanger 23.

冷媒流路20には、コンプレッサー21から送り出される冷媒が、コンデンサ22を介して熱交換器23に供給されることで車両のルーム内の空調を可能にすると共に、開閉弁24を解放して冷媒をチラー部12に供給することにより、主流路10aの熱媒流体の放熱(冷却)を可能にする。 In the refrigerant flow path 20, the refrigerant sent from the compressor 21 is supplied to the heat exchanger 23 via the condenser 22, enabling air conditioning in the vehicle cabin, and the opening/closing valve 24 is opened to supply the refrigerant to the chiller section 12, enabling the heat transfer fluid in the main flow path 10a to dissipate heat (cool).

温度制御流路30は、水を用いた熱媒流体を、前述したインバータ2と走行モータ1とに供給する電動型の放熱ポンプ31を備え、熱媒流体の放熱を行う第2ラジエータ32を備えている。 The temperature control flow path 30 includes an electric heat dissipation pump 31 that supplies a heat transfer fluid using water to the inverter 2 and the traction motor 1 described above, and a second radiator 32 that dissipates heat from the heat transfer fluid.

この温度制御流路30では、放熱ポンプ31の駆動によって温度制御流路30に熱媒流体を循環させることでインバータ2と走行モータ1との放熱を可能にしている。尚、この温度制御流路30に熱媒流体を供給する制御は、バッテリーBの温度管理に直接的に関連しないものであり、バッテリー温度管理装置Cの構成には含まれない。 In this temperature control flow path 30, the heat transfer fluid is circulated through the temperature control flow path 30 by driving the heat dissipation pump 31, thereby enabling heat dissipation between the inverter 2 and the traction motor 1. Note that the control of supplying the heat transfer fluid to this temperature control flow path 30 is not directly related to the temperature management of the battery B, and is not included in the configuration of the battery temperature management device C.

〔バッテリー〕
図3、図4に概要を示すように、バッテリーBは、複数のモジュール5を有すると共に、複数のモジュール5の夫々が複数のセル6をモジュール化した形態で備え、複数のモジュール5に対して個別に熱媒流体を供給する調温流路10bが形成されている。また、この構成では複数のモジュール5の夫々が冷却単位となる。
〔battery〕
3 and 4, the battery B has a plurality of modules 5, each of which includes a plurality of cells 6 arranged in a modularized form, and has a temperature control flow path 10b that supplies a heat transfer fluid individually to the plurality of modules 5. In this configuration, each of the plurality of modules 5 serves as a cooling unit.

モジュール5は多数のセル6をモジュール化するものであるが、図3、図4には1つのモジュール5について5つのセル6を示しており、5つのセル6の識別を可能にするため、同図にはセル6の積層方向に沿って(1)~(5)の符号を付している。また、モジュール5の数は4つに限るものではないが、図4には4つのモジュール5を示している。さらに、セル5の個数も5つに限るものではないが、図4には5つのセル5を示している。 A module 5 is a modularization of many cells 6, but Figures 3 and 4 show five cells 6 for one module 5, and in order to make it possible to identify the five cells 6, the cells 6 are numbered (1) to (5) in the stacking direction in the figures. In addition, the number of modules 5 is not limited to four, but Figure 4 shows four modules 5. Furthermore, the number of cells 5 is not limited to five, but Figure 4 shows five cells 5.

図面には示していないがモジュール5は、ケーシングに収容され、このケーシングには複数のセル6の積層する方向に沿って熱媒流体を流すように調温流路10bが形成されている。この調温流路10bは、ケーシングのうちセル6の積層方向での両端部(図3、図4では上下の両端部)に連通している。 Although not shown in the drawings, the module 5 is housed in a casing, and a temperature control flow path 10b is formed in this casing so that a heat transfer fluid flows along the stacking direction of the multiple cells 6. This temperature control flow path 10b is connected to both ends of the casing in the stacking direction of the cells 6 (both upper and lower ends in Figures 3 and 4).

〔温度管理装置:制御構成〕
温度管理装置Cは、図2に示す温度制御ユニット8を備えている。この温度制御ユニット8は、複数のセル6の温度を個別に検出する温度センサ7の検出情報が入力すると共に、調温ポンプ11と、開閉弁24と、加熱部13と、切換弁14と、三方弁15と、コンプレッサー21と、放熱ポンプ31とに制御情報を出力する。温度制御ユニット8は図5にフローチャートとして示す温度管理制御を実行するソフトウエアを備えている。
[Temperature control device: control configuration]
The temperature management device C includes a temperature control unit 8 shown in Fig. 2. This temperature control unit 8 receives detection information from temperature sensors 7 that individually detect the temperatures of the multiple cells 6, and outputs control information to a temperature control pump 11, an on-off valve 24, a heating section 13, a switching valve 14, a three-way valve 15, a compressor 21, and a heat dissipation pump 31. The temperature control unit 8 includes software that executes temperature management control shown as a flowchart in Fig. 5.

図5のフローチャートに示すように、バッテリーBの充放電が行われていない場合には、バッテリーBの温度管理を必要としないため、調温ポンプ11を停止し、本制御をリターンする(#101のNo、#102ステップ)。尚、#102ステップでは、調温ポンプ11が既に停止している場合には、停止状態が維持される。 As shown in the flowchart of FIG. 5, when battery B is not being charged or discharged, there is no need to manage the temperature of battery B, so the temperature control pump 11 is stopped and the control returns (No in #101, step #102). Note that in step #102, if the temperature control pump 11 is already stopped, it remains stopped.

これに対し、バッテリーBの充電や放電が行われていることを判定し(#101ステップのYes)、複数の温度センサ7の検出結果から、温度センサ7の1つでも温度情報が0℃(低温設定値の一例)未満であることを判定した場合には(#103ステップのYes)調温ポンプ11を作動させ、加熱部13に電流を供給して熱媒流体の温度上昇が図られる(#103~#105ステップ)。尚、このように加熱部13で熱媒流体の温度上昇を図る場合には、開閉弁24を閉塞する状態が維持される。 In response to this, if it is determined that battery B is being charged or discharged (Yes in step #101), and the detection results of the multiple temperature sensors 7 indicate that the temperature information from at least one of the temperature sensors 7 is below 0°C (an example of a low temperature setting) (Yes in step #103), the temperature control pump 11 is operated and a current is supplied to the heating unit 13 to increase the temperature of the heat transfer fluid (steps #103 to #105). When attempting to increase the temperature of the heat transfer fluid using the heating unit 13 in this manner, the on-off valve 24 is kept closed.

また、バッテリーBの充電や放電が行われていることを判定し(#101ステップのYes)、温度センサ7の1つでも温度情報が0℃未満でなく(#103ステップのNo)、複数の温度センサ7の検出結果から、温度センサ7の1つでも温度情報が40℃(高温設定値の一例)を超えることを判定した場合には(#106ステップのYes)調温ポンプ11を作動させ、コンプレッサー21を作動させ、開閉弁24を解放することよりチラー部12において熱媒流体の熱を奪い、熱媒流体の温度低下が図られる(#106~#108ステップ)。尚、このようにチラー部12で熱媒流体の温度低下が図られる場合には、加熱部13に対する電流の供給が遮断する状態が維持される。 In addition, if it is determined that battery B is being charged or discharged (Yes in step #101), the temperature information of any one of the temperature sensors 7 is not below 0°C (No in step #103), and it is determined from the detection results of the multiple temperature sensors 7 that the temperature information of any one of the temperature sensors 7 exceeds 40°C (an example of a high temperature setting value) (Yes in step #106), the temperature control pump 11 is operated, the compressor 21 is operated, and the opening/closing valve 24 is opened to remove heat from the heat transfer fluid in the chiller section 12 and lower the temperature of the heat transfer fluid (steps #106 to #108). Note that when the temperature of the heat transfer fluid is lowered in the chiller section 12 in this way, the state in which the supply of current to the heating section 13 is cut off is maintained.

そして、#106ステップで温度センサ7の検出結果の全てが温度情報が40℃を超えないことが判定された場合には(#106ステップのNo)、本制御をリターンする。これによりバッテリーBの充電や放電が行われている場合でも、バッテリーBの温度が適正に維持される。 If it is determined in step #106 that the temperature information from all of the detection results of the temperature sensor 7 does not exceed 40°C (No in step #106), this control is returned. This allows the temperature of battery B to be maintained at an appropriate level even when battery B is being charged or discharged.

更に、熱媒流体の加熱と放熱とが行われた後には、バッテリーBの複数のモジュール5の1つを構成する複数の温度センサ7のうち、熱媒流体が供給される最上流のセル6(図3、図4で(1)のセル6)の温度情報と、最下流のセル6(図3、図4で(5)のセル6)の温度情報との温度差を取得する(#109ステップ)。この温度差の取得は複数のモジュール5の全てについて行われ、モジュール5の数だけ温度差の情報が取得される。 Furthermore, after the heat transfer fluid has been heated and released, the temperature difference between the temperature information of the most upstream cell 6 (cell 6 (1) in Figures 3 and 4) to which the heat transfer fluid is supplied and the temperature information of the most downstream cell 6 (cell 6 (5) in Figures 3 and 4) among the multiple temperature sensors 7 constituting one of the multiple modules 5 of battery B is obtained (step #109). This temperature difference is obtained for all of the multiple modules 5, and temperature difference information is obtained for each module 5.

つまり、図3に示すように熱媒流体が流れる方向を順流状態と決め、図4に示すように熱媒流体が流れる方向を逆流状態と決めると、温度センサ7の1つでも温度情報が0℃未満であることを判定した場合(#103ステップのYes)における#109ステップでは、熱媒流体が順流状態で流れる場合には、最上流のセル6(図3、図4で(1)のセル6)の温度情報が最高温度値となり、最下流のセル6(図3、図4で(5)のセル6)の温度情報が最低温度値となり、温度差は最高温度値と最低温度値との差の絶対値となる。このような理由から、取得した複数の温度差の1つでも、その絶対値が2℃(設定値の一例)より大きい場合に(#110ステップのYes)、切換弁14の制御により熱媒流体の流動方向を逆流状態に切り換え(逆転させ)(#110、#111ステップ)、本制御をリターンする。また。#110において温度差の絶対値が2℃より小さい場合には(#110ステップのNo)、熱媒流体の流動方向を変更することなく(流動方向を維持したまま)、本制御をリターンする。 In other words, if the direction of flow of the heat transfer fluid is determined as the forward flow state as shown in FIG. 3 and the direction of flow of the heat transfer fluid is determined as the reverse flow state as shown in FIG. 4, in step #109 when it is determined that the temperature information of even one of the temperature sensors 7 is less than 0°C (Yes in step #103), if the heat transfer fluid flows in the forward flow state, the temperature information of the most upstream cell 6 (cell 6 (1) in FIG. 3 and FIG. 4) will be the maximum temperature value, and the temperature information of the most downstream cell 6 (cell 6 (5) in FIG. 3 and FIG. 4) will be the minimum temperature value, and the temperature difference will be the absolute value of the difference between the maximum temperature value and the minimum temperature value. For this reason, if the absolute value of even one of the acquired multiple temperature differences is greater than 2°C (an example of a set value) (Yes in step #110), the flow direction of the heat transfer fluid is switched (reversed) to the reverse flow state by controlling the switching valve 14 (steps #110 and #111), and this control is returned. Also. If the absolute value of the temperature difference is less than 2°C in #110 (No in step #110), the flow direction of the heat transfer fluid is not changed (the flow direction is maintained) and the control returns.

つまり、#110、#111ステップの制御において、例えば、加熱部13で熱媒流体の温度上昇が図られている状況において、図3に示す複数のモジュール5の複数のセル6に対し、同図に示す(1)~(5)の各セル6に対し、この順序(順流状態)で熱媒流体が流れる場合には、最上流のセル6(同図で(1)のセル6)の温度と比較して、最下流のセル6(同図で(5)のセル6)の温度が低温となり、複数のセル6の性能が不均一となり、バッテリーBの充放電特性が低下するおそれがある。 In other words, in the control of steps #110 and #111, for example, in a situation where the heating unit 13 is attempting to increase the temperature of the heat transfer fluid, if the heat transfer fluid flows through the multiple cells 6 of the multiple modules 5 shown in FIG. 3 in the order (forward flow state) of each of the cells 6 (1) to (5) shown in the same figure, the temperature of the most downstream cell 6 (cell 6 (5) in the same figure) will be lower than the temperature of the most upstream cell 6 (cell 6 (1) in the same figure), causing the performance of the multiple cells 6 to become uneven, which may result in a deterioration of the charge/discharge characteristics of battery B.

このような理由から、情報との温度差の絶対値が2℃を超えた場合には、図4に示すように熱媒流体の流動方向の逆転させることにより、複数のモジュール5の複数のセル6に対し、同図に示す(5)~(1)の順序(逆流状態)で熱媒流体を流すことで、セル6の温度差の拡大を抑制し、セル6の性能が不均一となる不都合を解消し、バッテリーBの充放電特性を良好な状態に維持している。 For this reason, when the absolute value of the temperature difference with the information exceeds 2°C, the flow direction of the heat transfer fluid is reversed as shown in Figure 4, and the heat transfer fluid is made to flow in the order (5) to (1) (reverse flow state) for the multiple cells 6 of the multiple modules 5. This prevents the temperature difference between the cells 6 from increasing, eliminates the inconvenience of uneven performance of the cells 6, and maintains the charge and discharge characteristics of battery B in good condition.

フローチャートには示していないが、インバータ2と走行モータ1とに温度を計測するセンサを備えており、センサで検出される温度が上昇した場合に放熱ポンプ31を駆動し、第2ラジエータ32で熱媒流体を冷却することにより、インバータ2と走行モータ1の温度上昇を抑制し適正な温度に維持できる。 Although not shown in the flowchart, the inverter 2 and the driving motor 1 are equipped with sensors that measure temperature. When the temperature detected by the sensors rises, the heat dissipation pump 31 is driven and the heat transfer fluid is cooled by the second radiator 32, thereby suppressing the temperature rise of the inverter 2 and the driving motor 1 and maintaining them at an appropriate temperature.

〔制御形態の補足説明〕
図5のフローチャートでは、0℃を低温設定値とし、40℃を高温設定値とすることにより、調温制御を実行するものであったが、最低温値と、最高温値は、フローチャートに示した値に限るものではなくフローチャートに示した値と異なる値であっても良い。また、#103、#106では複数の温度センサ7の何れか1つの温度情報に基づいて制御を判断していたが、例えば、複数の温度センサ7で検出される温度情報(例えば、平均値)が、前述した最高温値未満である場合や、複数の温度センサ7で検出される温度情報(例えば平均値)が、最高温値を超えた場合に制御を実行するように制御形態を設定しても良い。
[Additional explanation of control mode]
5, the temperature control is performed by setting 0°C as the low temperature setting value and 40°C as the high temperature setting value, but the minimum temperature value and the maximum temperature value are not limited to the values shown in the flowchart and may be values different from those shown in the flowchart. Also, in #103 and #106, the control is determined based on the temperature information of any one of the multiple temperature sensors 7, but the control form may be set so that the control is performed, for example, when the temperature information (e.g., average value) detected by the multiple temperature sensors 7 is less than the above-mentioned maximum temperature value or when the temperature information (e.g., average value) detected by the multiple temperature sensors 7 exceeds the maximum temperature value.

また、#109ステップでは、複数のモジュール5の各々において最高温度値と最低温度値とを取得していたが、これに代えて、全ての温度センサ7での検知結果から最高温度値と最低温度値とを取得し、この取得によりセル6の温度差を取得し、流動方向を切り換えるように制御形態を設定することも可能である。 In addition, in step #109, the maximum and minimum temperature values were obtained for each of the multiple modules 5. Alternatively, it is also possible to obtain the maximum and minimum temperature values from the detection results of all temperature sensors 7, obtain the temperature difference of the cells 6 from this, and set the control form to switch the flow direction.

フローチャートでは調温ポンプ11による熱媒流体の流量の設定、あるいは、熱媒流体の温度上昇を図る場合に加熱部13に供給する電流値の設定を説明していないが、例えば、目標値と、センサでの検出値との偏差に基づいて調温ポンプ11の駆動速度を設定し、加熱部13に供給する電流値を設定するように構成することも可能である。 The flowchart does not explain how the temperature control pump 11 sets the flow rate of the heat transfer fluid, or how the current value supplied to the heating unit 13 is set when attempting to increase the temperature of the heat transfer fluid, but it is also possible to configure the system so that, for example, the drive speed of the temperature control pump 11 is set based on the deviation between a target value and the value detected by the sensor, and the current value supplied to the heating unit 13 is set.

〔実施形態の作用効果〕
このように、温度管理装置C(バッテリー温度管理装置Cの一例)が熱交換流路10と、冷媒流路20とを備え、温度制御ユニット8を備えて構成されることにより、バッテリーBを構成する複数のセル6の1つでも、0℃未満まで低下した場合には、加熱部13に電流を供給して熱媒流体の温度を上昇させ、結果として全てのセル6の温度を適正な温度まで上昇させ、バッテリーBの性能低下を抑制する。また、バッテリーBを構成する複数のセル6の1つでも、40℃を超えた場合には、チラー部12に冷媒を供給することで熱媒流体の温度を低下させ、結果として全てのセル6の温度を適正な温度まで低下させ、バッテリーBの性能低下を抑制する。
[Effects of the embodiment]
In this way, the temperature management device C (an example of a battery temperature management device C) is configured to include the heat exchange flow path 10, the refrigerant flow path 20, and the temperature control unit 8, so that if any one of the multiple cells 6 constituting the battery B drops below 0° C., a current is supplied to the heating unit 13 to raise the temperature of the heat transfer fluid, thereby raising the temperatures of all the cells 6 to an appropriate temperature and suppressing a performance degradation of the battery B. Also, if any one of the multiple cells 6 constituting the battery B exceeds 40° C., a refrigerant is supplied to the chiller unit 12 to lower the temperature of the heat transfer fluid, thereby lowering the temperatures of all the cells 6 to an appropriate temperature and suppressing a performance degradation of the battery B.

また、この制御では、加熱部13が電気ヒータで構成されているため、セル6の温度を上昇させるために、例えば、エンジンの排熱を利用するものと比較すると、エンジンが稼働しない状況でも温度上昇が可能となる。しかも、チラー部12が電動型のコンプレッサー21からの冷媒が供給されるため、例えば、エンジンで駆動されるコンプレッサーで冷媒を送る構成と比較すると、エンジンが稼働しない状況でも温度低下が可能となる。特に外気の供給によって放熱を行うものと比較して温度低下を確実に行える。 In addition, in this control, since the heating unit 13 is configured as an electric heater, it is possible to increase the temperature of the cell 6 even when the engine is not running, compared to, for example, a system that uses exhaust heat from an engine to raise the temperature. Moreover, since the chiller unit 12 is supplied with refrigerant from the electric compressor 21, it is possible to reduce the temperature even when the engine is not running, compared to, for example, a system that sends refrigerant using a compressor driven by the engine. In particular, it is possible to reduce the temperature more reliably, compared to a system that dissipates heat by supplying outside air.

このような主流路10aにおける制御により熱媒流体の温度を設定する制御として、全てのセル6のうちの最も高温となる温度情報、最も低温である温度情報とに基づいて加熱と放熱とを行うため、全てのセル6の温度を適正な範囲に維持する。 This control in the main flow path 10a sets the temperature of the heat transfer fluid, and heating and dissipation are performed based on the highest and lowest temperature information of all cells 6, so the temperatures of all cells 6 are maintained within an appropriate range.

特に、図3、図4に示すように、バッテリーBを構成する複数のモジュール5の各々において複数のセル6が積層する方向に熱媒流体を流す構成に起因して、各モジュール5において最上流のセル6と、最下流のセル6との間に温度差が生ずる場合でも、熱媒流体の流動方向を逆転させることにより複数のセル6の間の温度差を小さくし、各セル6の性能を高く維持する。 In particular, as shown in Figures 3 and 4, even if a temperature difference occurs between the most upstream cell 6 and the most downstream cell 6 in each module 5 due to the configuration in which the heat transfer fluid flows in the direction in which the multiple cells 6 are stacked in each of the multiple modules 5 that make up battery B, the temperature difference between the multiple cells 6 is reduced by reversing the flow direction of the heat transfer fluid, and the performance of each cell 6 is maintained at a high level.

このように熱媒流体の流動方向を切り換える制御を行う際には、複数のモジュール5の何れか1つのモジュール5を構成するセル6の温度差の絶対値が2℃を超えた場合に、熱媒流体の流動方向を逆向きに切り換えるため、全てのモジュール5を構成する複数のセル6(バッテリーBの全てのセル6に等しい)の温度差を小さくする。 When controlling the change in the flow direction of the heat transfer fluid in this manner, if the absolute value of the temperature difference between the cells 6 constituting any one of the multiple modules 5 exceeds 2°C, the flow direction of the heat transfer fluid is changed to the opposite direction, thereby reducing the temperature difference between the multiple cells 6 constituting all of the modules 5 (equal to all of the cells 6 of battery B).

尚、この温度管理装置Cは、インバータ2と走行モータ1とを適正な温度に維持することも可能となる。 In addition, this temperature control device C can also maintain the inverter 2 and the traction motor 1 at appropriate temperatures.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
The present invention may be configured as follows in addition to the above-described embodiment (common numbers and symbols as in the embodiment are used to designate components having the same functions as in the embodiment).

(a)図6に示すように、熱交換流路10のうち、調温ポンプ11と、チラー部12と、電気ヒータで成る加熱部13とを直列に配置した主流路10aにおいて熱媒流体の放熱と加熱とを行えるように構成し、主流路10aから調温流路10bに供給される熱媒流体の流動方向を切り換える切換弁14を備える。この別実施形態(a)では、実施形態に記載した第1ラジエータ16と第2ラジエータ32とに代えて複合ラジエータ33を備えており、熱交換流路10の熱媒流体と温度制御流路30の熱媒流体とを共通して用いるように構成されている。 (a) As shown in FIG. 6, the heat exchange flow path 10 is configured so that the heat transfer fluid can be radiated and heated in the main flow path 10a in which the temperature control pump 11, the chiller section 12, and the heating section 13 consisting of an electric heater are arranged in series, and a switching valve 14 is provided to switch the flow direction of the heat transfer fluid supplied from the main flow path 10a to the temperature control flow path 10b. In this alternative embodiment (a), a composite radiator 33 is provided instead of the first radiator 16 and the second radiator 32 described in the embodiment, and the heat transfer fluid of the heat exchange flow path 10 and the heat transfer fluid of the temperature control flow path 30 are used in common.

つまり、この別実施形態(a)では、熱交換流路10が、上記の実施形態と共通する構成の主流路10aと、切換弁14を備えた調温流路10bと、バイパス流路10dとを備えている。また、冷媒流路20が、上記の実施形態と共通する構成のコンプレッサー21と、コンデンサ22と、熱交換器23と、開閉弁24とを備えている。 In other words, in this alternative embodiment (a), the heat exchange flow path 10 includes a main flow path 10a having a configuration common to the above-mentioned embodiment, a temperature control flow path 10b having a switching valve 14, and a bypass flow path 10d. Also, the refrigerant flow path 20 includes a compressor 21, a condenser 22, a heat exchanger 23, and an on-off valve 24 having a configuration common to the above-mentioned embodiment.

これに対し、温度制御流路30は、インバータ2と、走行モータ1と熱媒流体を供給するため実施形態と共通する流路構造を備えるものであるが、上記の実施形態と異なる位置に放熱ポンプ31を備え、熱交換流路10と温度制御流路30との間で流体の流れを制御するため電動式に作動する四方弁で成る流路切換弁34を備えている。温度制御流路30には、熱媒流体の放熱を行うために複合ラジエータ33を備えており、温度制御流路30に流れる熱媒流体を複合ラジエータ33に流さずに戻すため三方弁で成る流路制御弁36と放熱バイパス流路35とを備えている。 In contrast, the temperature control flow path 30 has a flow path structure common to the embodiment for supplying the inverter 2 and the driving motor 1 with the heat transfer fluid, but has a heat dissipation pump 31 in a different position from the above embodiment, and has a flow path switching valve 34 consisting of an electrically operated four-way valve for controlling the flow of fluid between the heat exchange flow path 10 and the temperature control flow path 30. The temperature control flow path 30 has a composite radiator 33 for dissipating heat from the heat transfer fluid, and has a flow path control valve 36 consisting of a three-way valve and a heat dissipation bypass flow path 35 for returning the heat transfer fluid flowing in the temperature control flow path 30 without flowing it to the composite radiator 33.

この構成から、別実施形態(a)の温度管理装置C(バッテリー温度管理装置の一例)では、流路切換弁34を図6に示す位置に設定した場合には、調温ポンプ11の駆動により熱交換流路10の主流路10aと、調温流路10bと、バイパス流路10dとに熱媒流体を循環させ、チラー部12と加熱部13とで熱媒流体の調温を可能にしている。更に、このようにバッテリーBの温度管理を行う際に切換弁14の制御により熱媒流体の流動方向の切り換えも可能となる。 In accordance with this configuration, in the temperature management device C of another embodiment (a) (one example of a battery temperature management device), when the flow path switching valve 34 is set to the position shown in FIG. 6, the heat transfer fluid is circulated through the main flow path 10a, the temperature control flow path 10b, and the bypass flow path 10d of the heat exchange flow path 10 by driving the temperature control pump 11, making it possible to control the temperature of the heat transfer fluid in the chiller section 12 and the heating section 13. Furthermore, when performing temperature management of the battery B in this manner, the flow direction of the heat transfer fluid can also be switched by controlling the switching valve 14.

これに対し、流路切換弁34を図7に示す位置に設定した場合には、放熱ポンプ31を駆動することによりインバータ2と走行モータ1とに送られた熱媒流体を複合ラジエータ33に供給して放熱を可能にする。また、このように放熱ポンプ31を駆動する際に、流路制御弁36の制御によって、温度制御流路30の熱媒流体を放熱バイパス流路35に熱媒流体を流し、過剰な放熱を抑制することも可能となる。 In contrast, when the flow path switching valve 34 is set to the position shown in FIG. 7, the heat dissipation pump 31 is driven to supply the heat transfer fluid sent to the inverter 2 and the traction motor 1 to the combined radiator 33, enabling heat dissipation. Also, when the heat dissipation pump 31 is driven in this manner, the flow path control valve 36 can be controlled to flow the heat transfer fluid in the temperature control flow path 30 into the heat dissipation bypass flow path 35, thereby suppressing excessive heat dissipation.

特に、この別実施形態(a)では、流路切換弁34を図7に示す位置に設定した状態で調温ポンプ11と放熱ポンプ31とを同時または単独で駆動することにより、熱交換流路10に流れた熱媒流体を、流路切換弁34を介して温度制御流路30に送り、複合ラジエータ33又は放熱バイパス流路35を介して放熱ポンプ31に戻すように熱媒流体を循環させることが可能となる。 In particular, in this alternative embodiment (a), by driving the temperature control pump 11 and the heat dissipation pump 31 simultaneously or independently with the flow path switching valve 34 set to the position shown in FIG. 7, it becomes possible to circulate the heat transfer fluid that has flowed through the heat exchange flow path 10 by sending it to the temperature control flow path 30 via the flow path switching valve 34 and returning it to the heat dissipation pump 31 via the composite radiator 33 or the heat dissipation bypass flow path 35.

このように熱媒流体が循環するように構成することにより、単一の複合ラジエータ33で放熱が可能となるだけでなく、流路が単純化して装置の小型化も可能にする。 By configuring the heat transfer fluid to circulate in this way, not only is it possible to dissipate heat using a single composite radiator 33, but the flow path is simplified, allowing the device to be made more compact.

(b)図8、図9に示すように、バッテリーBの複数のモジュール5に形成される調温流路10bを、複数のセル6の夫々において、セル6が積層する方向に熱媒流体を流す縦流路10yと、この縦流路10yの中央から分岐する分岐流路10xとで構成する。この構成では、複数のモジュール5の数に等しい数の分岐流路10xが形成されるが、これらの分岐流路10xに流れる熱媒流体を合流させて流すように単一の分岐流路10xを示している。 (b) As shown in Figures 8 and 9, the temperature control flow paths 10b formed in the multiple modules 5 of battery B are configured with a vertical flow path 10y for flowing heat transfer fluid in the direction in which the cells 6 are stacked in each of the multiple cells 6, and a branch flow path 10x branching from the center of this vertical flow path 10y. In this configuration, the same number of branch flow paths 10x as the number of multiple modules 5 are formed, but a single branch flow path 10x is shown so that the heat transfer fluid flowing in these branch flow paths 10x is merged and flows.

モジュール5は多数のセル6を積層するものであるが、図8、図9には1つのモジュール5に対して5つのセル6を有するものを示しており、5つのセル6の識別を可能にするため、同図には積層方向に沿って(1)~(5)の符号を付している。従って、この別実施形態(b)では、分岐流路10xは(3)の符号を付したセル6の位置において縦流路10yから分岐することになる。 Although the module 5 is made up of a large number of stacked cells 6, Figures 8 and 9 show one module 5 having five cells 6, and in order to make it possible to identify the five cells 6, the figures are labeled (1) to (5) along the stacking direction. Therefore, in this alternative embodiment (b), the branch flow path 10x branches off from the vertical flow path 10y at the position of the cell 6 labeled (3).

この別実施形態(b)では、図8に示すようにセル6の積層方向の両端から縦流路10yに熱媒流体が供給された場合には、分岐流路10xから熱媒流体が送り出されることになる。これに対し、図9に示すように分岐流路10xから熱媒流体が供給された場合には、この分岐流路10xから供給された熱媒流体がセル6の積層方向の両端側に向け、縦流路10yを流れることになる。 In this alternative embodiment (b), when heat transfer fluid is supplied to the vertical flow passage 10y from both ends of the stacking direction of the cells 6 as shown in FIG. 8, the heat transfer fluid is sent out from the branch flow passage 10x. In contrast, when heat transfer fluid is supplied from the branch flow passage 10x as shown in FIG. 9, the heat transfer fluid supplied from this branch flow passage 10x flows through the vertical flow passage 10y toward both ends of the stacking direction of the cells 6.

このように別実施形態(b)では、図8に示すように熱媒流体が供給される状態と、図9に示すように熱媒流体が供給される状態とに切り換えることにより、両端位置のセル6と中央のセル6との温度差を小さくすることが可能となる、 In this way, in another embodiment (b), by switching between a state in which a heat transfer fluid is supplied as shown in FIG. 8 and a state in which a heat transfer fluid is supplied as shown in FIG. 9, it is possible to reduce the temperature difference between the cells 6 at both ends and the cell 6 in the center.

(c)前述した別実施形態(b)のよう流路が形成されたバッテリーBを備えた車両では、温度管理装置Cの制御形態を図10のフローチャートのように設定することが考えられる。また、この別実施形態(c)では、実施形態の図1に示された構成の温度管理装置Cにおける制御形態を説明している。 (c) In a vehicle equipped with a battery B having a flow path formed as in the above-mentioned alternative embodiment (b), it is possible to set the control mode of the temperature management device C as shown in the flowchart of FIG. 10. Also, this alternative embodiment (c) describes the control mode of the temperature management device C having the configuration shown in FIG. 1 of the embodiment.

つまり、図10のフローチャートに示すように、バッテリーBの充放電が行われていない場合には、バッテリーBの温度調整を必要としないため、調温ポンプ11を停止し、本制御をリターンする(#201のNo、#202ステップ)。尚、#202ステップでは、調温ポンプ11が既に停止している場合には、停止状態が維持される。 In other words, as shown in the flowchart of FIG. 10, when battery B is not being charged or discharged, there is no need to adjust the temperature of battery B, so the temperature control pump 11 is stopped and the control returns (No in #201, step #202). Note that in step #202, if the temperature control pump 11 is already stopped, it remains stopped.

これに対し、バッテリーBの充電や放電が行われていることを判定し(#201ステップのYes)、複数の温度センサ7の検出結果から、温度センサ7の1つでも温度情報が0℃(低温設定値の一例)未満であることを判定した場合には(#203ステップのYes)調温ポンプ11を作動させ、加熱部13に電流を供給して熱媒流体の温度上昇が図られる(#203~#205ステップ)。尚、このように加熱部13で熱媒流体の温度上昇を図る場合には、開閉弁24を閉塞する状態が維持される。 In response to this, if it is determined that battery B is being charged or discharged (Yes in step #201), and the detection results of the multiple temperature sensors 7 indicate that the temperature information from at least one of the temperature sensors 7 is below 0°C (an example of a low temperature setting) (Yes in step #203), the temperature control pump 11 is operated and a current is supplied to the heating unit 13 to increase the temperature of the heat transfer fluid (steps #203 to #205). When attempting to increase the temperature of the heat transfer fluid using the heating unit 13 in this manner, the on-off valve 24 is kept closed.

また、バッテリーBの充電や放電が行われていることを判定し(#201ステップのYes)、温度センサ7の1つでも温度情報が0℃未満でなく(#203ステップのNo)、複数の温度センサ7の検出結果から、温度センサ7の1つでも温度情報が40℃(高温設定値の一例)を超えることを判定した場合には(#206ステップのYes)調温ポンプ11を作動させ、コンプレッサー21を作動させ、開閉弁24を解放することよりチラー部12において熱媒流体の熱を奪い、熱媒流体の温度低下が図られる(#206~#208ステップ)。尚、このようにチラー部12で熱媒流体の温度低下が図られる場合には、加熱部13に対する電流の供給が遮断する状態が維持される。 In addition, if it is determined that battery B is being charged or discharged (Yes in step #201), the temperature information of any one of the temperature sensors 7 is not below 0°C (No in step #203), and it is determined from the detection results of the multiple temperature sensors 7 that the temperature information of any one of the temperature sensors 7 exceeds 40°C (an example of a high temperature setting value) (Yes in step #206), the temperature control pump 11 is operated, the compressor 21 is operated, and the opening/closing valve 24 is opened to remove heat from the heat transfer fluid in the chiller section 12 and lower the temperature of the heat transfer fluid (steps #206 to #208). Note that when the temperature of the heat transfer fluid is lowered in the chiller section 12 in this way, the state in which the supply of current to the heating section 13 is cut off is maintained.

そして、#206ステップで温度センサ7の検出結果の全てが温度情報が40℃を超えないことが判定された場合には(#206ステップのNo)、全ての温度センサ7の温度情報を取得し、熱媒流体が流れる始端と終端のセル6のセル間温度差を個別に取得し、取得したセル間温度差(厳密には温度差の絶対値)が2℃(設定値の一例)を超える場合には、調温ポンプ11を作動させるものの、加熱も放熱も行わない制御が行われる(#209、#210ステップ)。 If it is determined in step #206 that the temperature information from all of the temperature sensors 7 does not exceed 40°C (No in step #206), the temperature information from all of the temperature sensors 7 is acquired, and the inter-cell temperature difference between the cells 6 at the start and end where the heat transfer fluid flows is acquired individually. If the acquired inter-cell temperature difference (strictly speaking, the absolute value of the temperature difference) exceeds 2°C (an example of a set value), the temperature control pump 11 is operated but no heating or heat dissipation is performed (steps #209 and #210).

つまり、図8において始端(最上流)のセル6は、(1)、(5)のセル6であり、終端(最下流)のセル6は、(3)のセル6である。また、図9において始端(最上流)のセル6は、(3)のセル6であり、終端(最下流)のセル6は、図8の(1)、(5)のセル6である。特に、セル間温度差を取得する場合に、モジュール単位でなくても良く、バッテリーBの始端のセル6と終端のセル6との温度差をセル間温度差として取得しても良い。 In other words, in FIG. 8, the starting (most upstream) cell 6 is cell 6 (1) and (5), and the end (most downstream) cell 6 is cell 6 (3). Also, in FIG. 9, the starting (most upstream) cell 6 is cell 6 (3), and the end (most downstream) cell 6 is cell 6 (1) and (5) in FIG. 8. In particular, when acquiring the inter-cell temperature difference, it is not necessary to acquire it on a module basis, and the temperature difference between the starting cell 6 and the end cell 6 of battery B may be acquired as the inter-cell temperature difference.

特に、図10のフローチャートでは、#209ステップの後には、調温ポンプ11を作動させると共に、セル間温度差を小さくするように熱媒流体の加熱あるいは放熱を行うように制御形態を設定しても良い。 In particular, in the flowchart of FIG. 10, after step #209, the temperature control pump 11 may be operated and the control mode may be set to heat or dissipate heat from the heat transfer fluid so as to reduce the temperature difference between the cells.

そして、#209ステップでセル間温度差が2℃を超えない場合には(#209ステップのNo)、本制御をリターンする。これによりバッテリーBの充電や放電が行われている場合でも、バッテリーBの温度が適正に維持される。 If the inter-cell temperature difference does not exceed 2°C in step #209 (No in step #209), this control is returned. This allows the temperature of battery B to be maintained at an appropriate level even when battery B is being charged or discharged.

また、熱媒流体の加熱と放熱とが行われた後には、バッテリーBの複数のモジュール5の1つを構成する複数の温度センサ7のうち、熱媒流体が供給される最上流のセル6(図8で(1)、(5)のセル6、図9で(3)のセル6)の温度情報と、最下流のセル6(図8で(3)のセル6、図9で(1)、(5)のセル6)の温度情報との温度差を取得する(#211ステップ)。このような温度差の取得は複数のモジュール5の全てについて行われ、モジュール5の数だけ温度差の情報が取得される。 After the heat transfer fluid has been heated and released, the temperature difference between the temperature information of the most upstream cell 6 (cell 6 (1) and (5) in FIG. 8, cell 6 (3) in FIG. 9) to which the heat transfer fluid is supplied and the temperature information of the most downstream cell 6 (cell 6 (3) in FIG. 8, cell 6 (1) and (5) in FIG. 9) among the multiple temperature sensors 7 constituting one of the multiple modules 5 of battery B is obtained (step #211). This temperature difference is obtained for all of the multiple modules 5, and temperature difference information is obtained for each module 5.

そして、取得した複数の温度差の1つでも、その絶対値が2℃より大きい場合に(#212ステップのYes)、切換弁14の制御により熱媒流体の流動方向を切り換え(逆転させ)(#212、#213ステップ)、本制御をリターンする。また。#110において温度差の絶対値が2℃より小さい場合には(#212ステップのNo)、熱媒流体の流動方向を変更することなく(流動方向を維持したまま)、本制御をリターンする。 If the absolute value of any one of the acquired temperature differences is greater than 2°C (Yes in step #212), the flow direction of the heat transfer fluid is switched (reversed) by controlling the switching valve 14 (steps #212 and #213), and the control returns. Also, if the absolute value of the temperature difference in #110 is less than 2°C (No in step #212), the flow direction of the heat transfer fluid is not changed (the flow direction is maintained), and the control returns.

この別実施形態(c)の制御では、調温制御を実行する際の温度値はフローチャートに示した値に限るものではなく、異なる値であっても良い。また、#203、#206では温度センサ7の1つの温度情報に基づいて制御を判断していたが、例えば、複数の温度センサ7で検出される温度情報(例えば、平均値)が、前述した最高温値未満である場合や、複数の温度センサ7で検出される温度情報(例えば平均値)が、最高温値を超えた場合に制御を実行するように制御形態を設定しても良い。 In the control of this alternative embodiment (c), the temperature value when performing temperature adjustment control is not limited to the value shown in the flowchart, and may be a different value. Also, in #203 and #206, control was determined based on one piece of temperature information from temperature sensor 7, but the control form may be set to perform control, for example, when the temperature information (e.g., average value) detected by multiple temperature sensors 7 is less than the maximum temperature value described above, or when the temperature information (e.g., average value) detected by multiple temperature sensors 7 exceeds the maximum temperature value.

図10に示すフローチャートでは調温ポンプ11による熱媒流体の流量の設定、あるいは、熱媒流体の温度上昇を図る場合に加熱部13に供給する電流値の設定を説明していないが、例えば、目標値と、センサでの検出値との偏差に基づいて調温ポンプ11の駆動速度を設定し、加熱部13に供給する電流値を設定するように構成することも可能である。 The flowchart shown in FIG. 10 does not explain how the temperature control pump 11 sets the flow rate of the heat transfer fluid, or how the current value supplied to the heating unit 13 is set when attempting to increase the temperature of the heat transfer fluid. However, it is also possible to configure the system so that, for example, the drive speed of the temperature control pump 11 is set based on the deviation between a target value and a value detected by a sensor, and the current value supplied to the heating unit 13 is set.

(d)図11に示す主流路10aは、実施形態の図3、図4に示した調温流路の変形例であり、バッテリーBの外部から供給される熱媒流体が、複数のモジュール5の何れに供給される場合でも、等しい距離だけ流れた後にバッテリーBから排出されるように調温流路10bが構成されている。 (d) The main flow path 10a shown in Figure 11 is a modified example of the temperature control flow path shown in Figures 3 and 4 of the embodiment, and the temperature control flow path 10b is configured so that the heat transfer fluid supplied from outside the battery B flows an equal distance before being discharged from the battery B, regardless of which of the multiple modules 5 it is supplied to.

この別実施形態(d)では、実施形態と同様に調温ポンプ11(電動ポンプの一例)と、チラー部12と、電気ヒータで成る加熱部13とが主流路10aにおいて直列に配置され、熱媒流体の流動方向を切り換えてバッテリーBの調温流路10bに供給する切換弁14を備えている。尚、図11に示す調温流路においても切換弁14の制御により熱媒流体の流動方向を逆流状態に切り換えることが可能である。 In this alternative embodiment (d), similar to the embodiment, a temperature control pump 11 (an example of an electric pump), a chiller section 12, and a heating section 13 consisting of an electric heater are arranged in series in the main flow path 10a, and a switching valve 14 is provided that switches the flow direction of the heat transfer fluid and supplies it to the temperature control flow path 10b of battery B. Note that in the temperature control flow path shown in FIG. 11, the flow direction of the heat transfer fluid can also be switched to a reverse flow state by controlling the switching valve 14.

図11に示すように調温流路10bが構成されることにより、切換弁14の制御により熱媒流体の流動方向が何れの方向に設定されていても、複数のモジュール5の夫々に流れる熱媒流体に作用する流路抵抗が等しくなり、結果として複数のモジュール5に流れる熱媒流体の量を均一化し、複数のモジュール5での温度の均一化を可能にする。 By configuring the temperature control flow path 10b as shown in FIG. 11, the flow path resistance acting on the heat transfer fluid flowing through each of the multiple modules 5 is equalized regardless of the direction of flow of the heat transfer fluid set by the control of the switching valve 14, which results in the amount of heat transfer fluid flowing through the multiple modules 5 being made uniform, making it possible to uniformize the temperature in the multiple modules 5.

(e)図12に示す主流路10aは、別実施形態(b)の図8、図9に示した調温流路の変形例であり、バッテリーBの外部から供給される熱媒流体が、縦流路10yに流れる際に複数のモジュール5の何れにおいても積層方向の両端側に作用する圧力を均一化するように構成されている。 (e) The main flow path 10a shown in FIG. 12 is a modified example of the temperature control flow path shown in FIG. 8 and FIG. 9 of another embodiment (b), and is configured to equalize the pressure acting on both ends in the stacking direction in each of the multiple modules 5 when the heat transfer fluid supplied from outside the battery B flows through the vertical flow path 10y.

この別実施形態(e)では、別実施形態(b)と同様に調温ポンプ11(電動ポンプの一例)と、チラー部12と、電気ヒータで成る加熱部13とが主流路10aにおいて直列に配置され、熱媒流体の流動方向を切り換えてバッテリーBの調温流路10bに供給する切換弁14を備えている。尚、図12に示す調温流路においても切換弁14の制御により熱媒流体を縦流路10yから分岐流路10xに流す方向と、この逆に熱媒流体を流す方向とに切り換えることが可能である。 In this alternative embodiment (e), similar to alternative embodiment (b), a temperature control pump 11 (an example of an electric pump), a chiller section 12, and a heating section 13 consisting of an electric heater are arranged in series in the main flow path 10a, and a switching valve 14 is provided that switches the flow direction of the heat transfer fluid to supply it to the temperature control flow path 10b of battery B. Note that in the temperature control flow path shown in FIG. 12, the switching valve 14 can be controlled to switch the direction of the heat transfer fluid from the vertical flow path 10y to the branch flow path 10x, or vice versa.

図12に示すように調温流路10bが構成されることにより、同図に示すように切換弁14が制御され、縦流路10yから分岐流路10xに熱媒流体が流れる場合には複数のモジュール5の両端に作用する圧力を均一化できる。また、切換弁14の制御により分岐流路10xから縦流路10yに熱媒流体が流れる場合には、複数のモジュール5にの縦流路10yに作用する流路抵抗の均一化できる。この結果、複数のモジュール5の夫々に流れる熱媒流体の流量のバラツキの抑制が可能となる。 By configuring the temperature control flow path 10b as shown in FIG. 12, the switching valve 14 is controlled as shown in the figure, and when the heat transfer fluid flows from the vertical flow path 10y to the branch flow path 10x, the pressure acting on both ends of the multiple modules 5 can be made uniform. In addition, when the heat transfer fluid flows from the branch flow path 10x to the vertical flow path 10y by controlling the switching valve 14, the flow path resistance acting on the vertical flow path 10y of the multiple modules 5 can be made uniform. As a result, it is possible to suppress the variation in the flow rate of the heat transfer fluid flowing through each of the multiple modules 5.

(f)バッテリーBに対する熱媒流体の流動方向の切り換えを可能にするため、実施形態に記載した四方弁で成る単一の切換弁14に代えて、例えば、複数の開閉弁や三方弁等を組み合わせ、これらを選択的に制御することにより、熱媒流体の流動方向の切り換えを可能にするように構成する。 (f) In order to enable switching of the flow direction of the heat transfer fluid to battery B, instead of the single switching valve 14 consisting of a four-way valve described in the embodiment, for example, a combination of multiple on-off valves or three-way valves, etc., is configured to enable switching of the flow direction of the heat transfer fluid by selectively controlling these.

(g)例えば、バッテリーBの充放電が行われない状況であっても、バッテリーBの温度管理を可能にするため、例えば、車両のメインスイッチをON操作した場合等のタイミングで温度管理のバッテリーBが充放電されない状況において温度制御ユニット8による制御を実行するように制御形態を設定しても良い。 (g) For example, in order to enable temperature management of battery B even in a situation where battery B is not being charged or discharged, the control form may be set so that control by the temperature control unit 8 is performed in a situation where the temperature-managed battery B is not being charged or discharged, for example, at a timing such as when the vehicle's main switch is turned ON.

この別実施形態(g)のように制御形態を設定することにより、例えば、車両の走行を開始する際に、必要とする電流を走行モータ1に即座に供給することが可能となり、走行性能を低下させることもない。 By setting the control mode as in this alternative embodiment (g), for example, when the vehicle starts to move, it is possible to instantly supply the required current to the driving motor 1 without degrading the driving performance.

本発明は、車両に備えられるバッテリー温度管理装置に利用することができる。 This invention can be used in battery temperature management devices installed in vehicles.

1 走行モータ
5 モジュール
6 セル
7 温度センサ
8 温度制御ユニット
10 熱交換流路
10a 主流路
10b 調温流路
11 調温ポンプ(電動ポンプ)
12 チラー部
13 加熱部
14 切換弁
B バッテリー
C 温度管理装置(バッテリー温度管理装置)
1 Travel motor 5 Module 6 Cell 7 Temperature sensor 8 Temperature control unit 10 Heat exchange flow path 10a Main flow path 10b Temperature control flow path 11 Temperature control pump (electric pump)
12 Chiller section 13 Heater section 14 Switching valve B Battery C Temperature management device (battery temperature management device)

Claims (8)

複数のセルを1つのモジュールとした複数の前記モジュールを含み、電流を供給するバッテリーと、
複数の前記セルの温度を各別に計測する複数の温度センサと、
複数の前記モジュールを冷却単位として、複数の前記モジュールの複数の前記セルに対し熱媒流体を供給する熱交換流路と、
前記熱媒流体の温度を制御する温度制御ユニットと、を備え、
前記熱交換流路は、主流路と、ラジエータ流路とを有しており、
前記主流路には、前記熱媒流体を送り出す電動ポンプと、前記熱交換流路を流れる前記熱媒流体を加熱する加熱部と、前記熱交換流路を流れる前記熱媒流体を、車両のルーム内の空調を行うことが可能な冷媒によって冷却するチラー部とが配置されており、
前記ラジエータ流路は、前記モジュールに流れた前記熱媒流体の熱を放熱可能なラジエータが配置されており、
前記主流路から前記モジュールに流れる前記熱媒流体の流動方向を切り換える切換弁を備え、
前記温度制御ユニットは、複数の前記温度センサで検出される温度情報に基づき、前記電動ポンプと前記加熱部と、前記チラー部と、前記切換弁とを制御するバッテリー温度管理装置。
a battery including a plurality of modules each having a plurality of cells as one module, the battery supplying a current;
A plurality of temperature sensors for measuring the temperatures of the plurality of cells respectively;
a heat exchange passage for supplying a heat transfer fluid to a plurality of cells of the plurality of modules as cooling units;
A temperature control unit for controlling the temperature of the heat transfer fluid,
The heat exchange passage includes a main passage and a radiator passage,
an electric pump that pumps out the heat transfer fluid, a heating unit that heats the heat transfer fluid flowing through the heat exchange flow path, and a chiller unit that cools the heat transfer fluid flowing through the heat exchange flow path with a refrigerant capable of air conditioning a vehicle interior ,
The radiator flow path includes a radiator that is capable of radiating heat of the heat transfer fluid that has flowed through the module.
a switching valve that switches a flow direction of the heat transfer fluid flowing from the main flow path to the module ,
The temperature control unit is a battery temperature management device that controls the electric pump, the heating section, the chiller section, and the switching valve based on temperature information detected by the multiple temperature sensors.
前記熱交換流路は、前記モジュールに前記熱媒流体を流す調温流路を更に有しており、
前記調温流路は、複数の前記モジュールを並列に接続しており、
前記切換弁が、前記調温流路に対して順方向に前記熱媒流体を流す順流状態と、前記調温流路に対して前記順方向と逆方向に前記熱媒流体を流す逆流状態とに切り換え自在に構成されている請求項1に記載のバッテリー温度管理装置。
The heat exchange passage further includes a temperature control passage through which the heat transfer fluid flows in the module,
the temperature control flow path connects a plurality of the modules in parallel,
2. The battery temperature management device according to claim 1, wherein the switching valve is configured to be freely switched between a forward flow state in which the heat transfer fluid flows in a forward direction relative to the temperature control flow path, and a reverse flow state in which the heat transfer fluid flows in a direction opposite to the forward direction relative to the temperature control flow path.
前記調温流路は、複数の前記セルの積層方向に前記熱媒流体を流す縦流路と、前記縦流路の中央から分岐する分岐流路とで構成されている請求項2に記載のバッテリー温度管理装置。 3. The battery temperature management device according to claim 2, wherein the temperature control flow path is composed of a vertical flow path through which the heat transfer fluid flows in a stacking direction of the plurality of cells, and a branch flow path branching off from a center of the vertical flow path . 前記熱交換流路は、前記電動ポンプに前記熱媒流体を戻す位置に接続するバイパス流路を更に有しており、
前記調温流路に流れた前記熱媒流体を、前記バイパス流路と、前記ラジエータ流路との一方を選択して流す三方弁を備えている請求項2又は3に記載のバッテリー温度管理装置。
The heat exchange passage further includes a bypass passage connected to a position for returning the heat transfer fluid to the electric pump,
4. The battery temperature management device according to claim 2, further comprising a three-way valve that selectively directs the heat transfer fluid flowing in the temperature adjustment flow path to either the bypass flow path or the radiator flow path .
前記冷媒の放熱を行うコンデンサを更に備え、前記チラー部には前記コンデンサから送り出された前記冷媒が供給される請求項1~4のいずれか一項に記載のバッテリー温度管理装置。 The battery temperature management device according to any one of claims 1 to 4, further comprising a condenser that dissipates heat from the refrigerant, and the chiller section is supplied with the refrigerant discharged from the condenser . 前記温度制御ユニットは、複数の前記温度センサで検出された温度のうちの最高温値と、最低温値との差が予め設定された設定値を超えた場合に、前記切換弁を制御して前記熱媒流体の流動方向を切り換える請求項1~5のいずれか一項に記載のバッテリー温度管理装置。 The battery temperature management device according to any one of claims 1 to 5, wherein the temperature control unit controls the switching valve to switch the flow direction of the heat transfer fluid when a difference between a maximum temperature value and a minimum temperature value among the temperatures detected by the plurality of temperature sensors exceeds a preset value. 前記温度制御ユニットは、1つの前記モジュールを構成する複数の前記セルの温度を各別に検出する複数の前記温度センサで検出された温度のうちの最高温度値と、最低温度値との差が、予め設定された設定値を超えた場合に前記熱媒流体の流動方向を切り換える請求項1~5のいずれか一項に記載のバッテリー温度管理装置。 The battery temperature management device according to any one of claims 1 to 5, wherein the temperature control unit switches the flow direction of the heat transfer fluid when a difference between a maximum temperature value and a minimum temperature value among temperatures detected by a plurality of temperature sensors that separately detect the temperatures of a plurality of cells that constitute one module exceeds a preset value. 前記温度制御ユニットが、複数の前記温度センサの少なくとも1つで検出される温度情報が低温設定値未満である場合に、前記電動ポンプを作動させると共に、前記加熱部で前記熱媒流体を加熱し、複数の前記温度センサの少なくとも1つで検出される温度情報が高温設定値を超える場合に、前記電動ポンプを作動させると共に、前記チラー部で前記熱媒流体を冷却する請求項1~のいずれか一項に記載のバッテリー温度管理装置。 The battery temperature management device according to any one of claims 1 to 7, wherein the temperature control unit operates the electric pump and heats the heat transfer fluid in the heating section when temperature information detected by at least one of the plurality of temperature sensors is less than a low temperature setting value, and operates the electric pump and cools the heat transfer fluid in the chiller section when temperature information detected by at least one of the plurality of temperature sensors exceeds a high temperature setting value.
JP2019210534A 2019-11-21 2019-11-21 Battery Temperature Management Device Active JP7505176B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019210534A JP7505176B2 (en) 2019-11-21 2019-11-21 Battery Temperature Management Device
DE102020129589.8A DE102020129589A1 (en) 2019-11-21 2020-11-10 Device for controlling the battery temperature
CN202011308822.8A CN112825376A (en) 2019-11-21 2020-11-20 Battery temperature management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210534A JP7505176B2 (en) 2019-11-21 2019-11-21 Battery Temperature Management Device

Publications (2)

Publication Number Publication Date
JP2021082528A JP2021082528A (en) 2021-05-27
JP7505176B2 true JP7505176B2 (en) 2024-06-25

Family

ID=75784817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210534A Active JP7505176B2 (en) 2019-11-21 2019-11-21 Battery Temperature Management Device

Country Status (3)

Country Link
JP (1) JP7505176B2 (en)
CN (1) CN112825376A (en)
DE (1) DE102020129589A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022190760A (en) * 2021-06-15 2022-12-27 トヨタ自動車株式会社 Heat management system
DE102021131539A1 (en) * 2021-12-01 2023-06-01 Bayerische Motoren Werke Aktiengesellschaft Method for controlling a cooling system, control device and motor vehicle
CN114690346B (en) * 2022-05-09 2024-01-12 武汉光迅科技股份有限公司 Distributed liquid cooling control system suitable for optical module and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257394A (en) 2011-06-09 2012-12-27 Toyota Motor Corp Power source system of vehicle, and vehicle equipped with the same
JP2015082353A (en) 2013-10-21 2015-04-27 株式会社日立製作所 Secondary battery module and secondary battery pack
WO2016132641A1 (en) 2015-02-19 2016-08-25 本田技研工業株式会社 Vehicular power source device and cooling circuit
JP2019055649A (en) 2017-09-20 2019-04-11 本田技研工業株式会社 Battery temperature control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257394A (en) 2011-06-09 2012-12-27 Toyota Motor Corp Power source system of vehicle, and vehicle equipped with the same
JP2015082353A (en) 2013-10-21 2015-04-27 株式会社日立製作所 Secondary battery module and secondary battery pack
WO2016132641A1 (en) 2015-02-19 2016-08-25 本田技研工業株式会社 Vehicular power source device and cooling circuit
JP2019055649A (en) 2017-09-20 2019-04-11 本田技研工業株式会社 Battery temperature control system

Also Published As

Publication number Publication date
DE102020129589A1 (en) 2021-05-27
CN112825376A (en) 2021-05-21
JP2021082528A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US11688903B2 (en) Cooling modes to manage a high voltage battery for a vehicle
JP7185469B2 (en) vehicle thermal management system
US11370325B2 (en) Thermal system layout designed for high cooling capacity at idle condition
JP7260986B2 (en) vehicle thermal management system
JP7202124B2 (en) vehicle thermal management system
JP5644648B2 (en) Battery temperature control device
US20190202261A1 (en) Vehicle equipped with electric motor
JP5403766B2 (en) Vehicle cooling system
JP7505176B2 (en) Battery Temperature Management Device
KR102565350B1 (en) Heating system of vehicle
US20060060340A1 (en) Exchanging device for motor vehicles
US20160023532A1 (en) EV Integrated Temperature Control System
JP2015120505A (en) Electric vehicle or hybrid electric vehicle battery cooling system
US10562367B2 (en) Heating, ventilation, and air conditioning system for vehicle
JP2002352867A (en) Battery temperature controller for electric vehicle
US11318814B2 (en) Cooling apparatus
CN112976991A (en) Vehicle cabin thermal management system and control method
KR20220036260A (en) Vehicle thermal management system
CN112277572A (en) Cabin air conditioning system for vehicle and method of controlling the vehicle and system
US11552347B2 (en) Bi-directional switchable cooling flow for traction battery
JP7203794B2 (en) Vehicle circuit temperature regulation system
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat
CN117429225A (en) Electrically driven vehicle with temperature control system
JP2024001400A (en) Heat management system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527