JP7504266B1 - Dismantling method for reactor pressure vessel - Google Patents

Dismantling method for reactor pressure vessel Download PDF

Info

Publication number
JP7504266B1
JP7504266B1 JP2023115592A JP2023115592A JP7504266B1 JP 7504266 B1 JP7504266 B1 JP 7504266B1 JP 2023115592 A JP2023115592 A JP 2023115592A JP 2023115592 A JP2023115592 A JP 2023115592A JP 7504266 B1 JP7504266 B1 JP 7504266B1
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor pressure
cut
rpv
dismantling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023115592A
Other languages
Japanese (ja)
Inventor
雅則 西崎
貴史 吉田
大和 進藤
文夫 富田
勇樹 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2023115592A priority Critical patent/JP7504266B1/en
Application granted granted Critical
Publication of JP7504266B1 publication Critical patent/JP7504266B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

Figure 0007504266000001

【課題】熱遮蔽壁で覆われた状態で原子炉圧力容器を解体する。
【解決手段】実施形態に係る原子炉圧力容器の解体方法は、接続配管が接続されるノズルを有する原子炉圧力容器を熱遮蔽壁で周囲を覆われた状態で解体する原子炉圧力容器の解体方法である。実施形態に係る原子炉圧力容器の解体方法は、熱遮蔽壁の外周に沿って接続配管を切断する工程と、原子炉圧力容器を運搬可能な大きさの接続配管の切り残し部を有していない切断片と接続配管の切り残し部を有する切断片を形成する工程と、接続配管の切り残し部を有していない切断片を原子炉格納容器から撤去する第1撤去工程と、接続配管の切り残し部を有する切断片を切り残し部を有していない切断片を撤去した後の空隙方向に移動させることにより、切り残し部を熱遮蔽壁から引き抜く工程と、接続配管の切り残し部を有する切断片を原子炉格納容器から撤去する第2撤去工程と、を含む。
【選択図】図4

Figure 0007504266000001

A reactor pressure vessel is dismantled while covered with a thermal shield wall.
[Solution] A method for dismantling a reactor pressure vessel according to an embodiment is a method for dismantling a reactor pressure vessel having a nozzle to which a connecting pipe is connected while the vessel is surrounded and covered with a thermal shielding wall. The method for dismantling a reactor pressure vessel according to an embodiment includes a step of cutting the connecting pipe along an outer periphery of the thermal shielding wall, a step of forming a cut piece having no remaining part of the connecting pipe and a cut piece having the remaining part of the connecting pipe, each having a size sufficient to transport the reactor pressure vessel, a first removal step of removing the cut piece having no remaining part of the connecting pipe from the reactor containment vessel, a step of moving the cut piece having the remaining part of the connecting pipe in the direction of the gap after removing the cut piece having no remaining part of the connecting pipe to pull out the remaining part from the thermal shielding wall, and a second removal step of removing the cut piece having the remaining part of the connecting pipe from the reactor containment vessel.
[Selected figure] Figure 4

Description

本発明は、原子炉圧力容器の解体方法に関する。 The present invention relates to a method for dismantling a nuclear reactor pressure vessel.

原子力発電所の廃止措置において、高い放射線量を有する原子炉圧力容器は、遠隔操作により解体される。一般的には、円筒形状の原子炉圧力容器を運搬可能な大きさに輪切りにし、クレーンで吊り上げて撤去する解体方法が採用されている。 When decommissioning a nuclear power plant, the reactor pressure vessel, which contains high levels of radiation, is dismantled by remote control. The typical dismantling method used involves cutting the cylindrical reactor pressure vessel into pieces of transportable size, which are then lifted and removed by a crane.

原子炉圧力容器の周囲には、γ線の遮蔽壁である熱遮蔽壁が設けられている。原子炉圧力容器には、配管が接続される複数のノズルが熱遮蔽壁を貫通した状態で設けられている。原子炉圧力容器内部の構造物を解体する際、ノズルに接続された配管は、熱遮蔽壁の外周に沿って切断され、閉止される。そのため、原子炉圧力容器の周囲には、切り残された配管が熱遮蔽壁に貫通した状態で残る。この状態では、輪切りにされた原子炉圧力容器を遠隔操作によりクレーンで吊り上げて撤去する際に、切り残された配管が熱遮蔽壁に引っかかる。そのため、切り残された配管が熱遮蔽壁に引っかからないように、原子炉圧力容器から切り残された配管とノズル部分をくり抜いて撤去した上で、原子炉圧力容器を解体する工法が検討されている。 A thermal shield wall that shields against gamma rays is installed around the reactor pressure vessel. The reactor pressure vessel has multiple nozzles connected to pipes that penetrate the thermal shield wall. When dismantling the structures inside the reactor pressure vessel, the pipes connected to the nozzles are cut along the outer periphery of the thermal shield wall and closed. This leaves uncut pipes around the reactor pressure vessel penetrating the thermal shield wall. In this state, when the cut reactor pressure vessel is lifted by a crane remotely and removed, the uncut pipes will get caught on the thermal shield wall. Therefore, a method is being considered to dismantle the reactor pressure vessel after hollowing out and removing the uncut pipes and nozzles from the reactor pressure vessel so that they do not get caught on the thermal shield wall.

特開2002-311195号公報JP 2002-311195 A

しかしながら、切り残された配管とノズル部分を原子炉圧力容器から撤去する場合は、熱遮蔽壁を介さずに容器近傍で作業することとなるため、作業者の被ばく量が増大するという問題がある。 However, when removing the remaining piping and nozzle sections from the reactor pressure vessel, the work will be carried out close to the vessel without the thermal shielding wall, which poses the problem of increased radiation exposure for workers.

本発明は、上述の事情の下になされたもので、熱遮蔽壁で覆われた状態で原子炉圧力容器を解体することを課題とする。 The present invention was made under the above circumstances, and aims to dismantle a reactor pressure vessel while it is covered with a thermal shield wall.

上記課題を解決するための実施形態に係る原子炉圧力容器の解体方法は、接続配管が接続されるノズルを有する原子炉圧力容器を熱遮蔽壁で周囲を覆われた状態で解体する原子炉圧力容器の解体方法である。実施形態に係る原子炉圧力容器の解体方法は、熱遮蔽壁の外周に沿って接続配管を切断する工程と、原子炉圧力容器を運搬可能な大きさの接続配管の切り残し部を有していない切断片と接続配管の切り残し部を有する切断片を形成する工程と、接続配管の切り残し部を有していない切断片を原子炉格納容器から撤去する第1撤去工程と、接続配管の切り残し部を有する切断片を切り残し部を有していない切断片を撤去した後の空隙方向に移動させることにより、切り残し部を熱遮蔽壁から引き抜く工程と、接続配管の切り残し部を有する切断片を原子炉格納容器から撤去する第2撤去工程と、を含む。 The dismantling method for a reactor pressure vessel according to the embodiment for solving the above problem is a method for dismantling a reactor pressure vessel having a nozzle to which a connecting pipe is connected while the vessel is surrounded by a thermal shielding wall. The dismantling method for a reactor pressure vessel according to the embodiment includes a step of cutting the connecting pipe along the outer periphery of the thermal shielding wall, a step of forming a cut piece having no remaining part of the connecting pipe and a cut piece having the remaining part of the connecting pipe, each of which is large enough to transport the reactor pressure vessel, a first removal step of removing the cut piece having no remaining part of the connecting pipe from the reactor containment vessel, a step of moving the cut piece having the remaining part of the connecting pipe in the direction of the gap after removing the cut piece having no remaining part, thereby pulling out the remaining part from the thermal shielding wall, and a second removal step of removing the cut piece having the remaining part of the connecting pipe from the reactor containment vessel.

実施形態に係る原子炉格納容器の構成図である。FIG. 1 is a configuration diagram of a reactor containment vessel according to an embodiment. 実施形態に係る原子炉圧力容器の部分拡大図である。FIG. 2 is a partially enlarged view of a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の断面図である。1 is a cross-sectional view of a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法を示すフローチャートである。1 is a flowchart showing a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment. 実施形態に係る原子炉圧力容器の解体方法について説明するための図である。FIG. 2 is a diagram for explaining a method for dismantling a reactor pressure vessel according to an embodiment.

以下、実施形態に係る原子炉圧力容器の解体方法について、図を参照して説明する。説明にあたっては、相互に直行するX軸、Y軸、Z軸からなるXYZ座標系を適宜用いる。 The method for dismantling a reactor pressure vessel according to an embodiment will be described below with reference to the drawings. In the description, an XYZ coordinate system consisting of mutually perpendicular X-axis, Y-axis, and Z-axis will be used as appropriate.

図1は、本実施形態に係る原子炉圧力容器(以下、RPV)10を格納する原子炉格納容器2の構成図である。図2は、図1において破線で囲われた部分の拡大図である。RPV10は、周囲を熱遮蔽壁(以下、RSW)30およびRPV保温材40で覆われ、原子炉格納容器2内に格納された状態で、原子炉建屋1に設置されている。 Figure 1 is a schematic diagram of a reactor containment vessel 2 that contains a reactor pressure vessel (hereinafter, RPV) 10 according to this embodiment. Figure 2 is an enlarged view of the portion surrounded by the dashed line in Figure 1. The RPV 10 is surrounded by a thermal shield wall (hereinafter, RSW) 30 and an RPV thermal insulation material 40, and is installed in a reactor building 1 while being contained within the reactor containment vessel 2.

RPV10は、核燃料を収容するために用いる鉄製の容器である。RPV10は、各種の配管(図示略)と接続されるRPVノズル20に接続された複数の接続配管22を周囲に有している。RPV10の+Z側は、上端部15で覆われている。RSW30は、γ線を遮蔽するための壁である。RSW30は、鉄、コンクリート等で形成されている。RPV保温材40は、RPV10から発せられる熱の断熱を目的として設けられている。RPV保温材40は、アルミニウムを含む素材で形成されている。接続配管22は、RPV保温材40に覆われた状態でRSW30を貫通している。 The RPV 10 is an iron vessel used to store nuclear fuel. The RPV 10 has a number of connection pipes 22 around it, which are connected to an RPV nozzle 20 that is connected to various pipes (not shown). The +Z side of the RPV 10 is covered by an upper end 15. The RSW 30 is a wall for blocking gamma rays. The RSW 30 is made of iron, concrete, etc. The RPV thermal insulation material 40 is provided for the purpose of insulating the heat generated by the RPV 10. The RPV thermal insulation material 40 is made of a material containing aluminum. The connection pipes 22 pass through the RSW 30 while covered by the RPV thermal insulation material 40.

RPV10を解体する際、接続配管22は、RSW30の外周に沿って切断される。図3は、図2に示す切断面Kで接続配管22を切断した場合の図1におけるAA断面図である。RPV10の周囲には、RPV10の外周からRSW30の外周までの長さで、接続配管22の切り残し部21が残る。 When dismantling the RPV 10, the connection pipe 22 is cut along the outer periphery of the RSW 30. FIG. 3 is a cross-sectional view taken along line AA in FIG. 1 when the connection pipe 22 is cut at the cut plane K shown in FIG. 2. An uncut portion 21 of the connection pipe 22 remains around the periphery of the RPV 10, with a length from the outer periphery of the RPV 10 to the outer periphery of the RSW 30.

次に、実施形態に係る原子炉圧力容器(RPV)10の解体方法について、図4に示されるフローチャートを参照しながら説明する。RPV10は、クレーン等を遠隔操作することにより解体される。 Next, a method for dismantling a reactor pressure vessel (RPV) 10 according to an embodiment will be described with reference to the flowchart shown in FIG. 4. The RPV 10 is dismantled by remotely operating a crane or the like.

最初に、RSW30の外周に沿って接続配管22を切断する(ステップS11)。図3に示されるように、RPV10の周囲には、RPV保温材40に覆われRSW30を貫通した状態の接続配管22の切り残し部21が残る。 First, the connection pipe 22 is cut along the outer periphery of the RSW 30 (step S11). As shown in FIG. 3, an uncut portion 21 of the connection pipe 22 that is covered with the RPV thermal insulation material 40 and penetrates the RSW 30 remains around the RPV 10.

次に、RPV10を運搬可能な大きさの切断片に切断する。具体的には、図5に線Bで示されるように、RPV10の側面に切り込みを入れ、切り込みを入れた部分を切断して切断片11を形成する(ステップS12)。この切断片11には、RPVノズル20と接続配管22の切り残し部21が含まれないようにする。RPV10は周囲をRSW30で覆われているので、RPV10の外側からRPV10の側面に切り込みを入れることはできない。ステップS12の作業では、RPV10の+Z側からRPV10の内側に切断機を入れ、内側からRPV10を切断する。RPV10を切断する際、RPV保温材40を切断しないようにする。 Next, the RPV 10 is cut into pieces of a size that can be transported. Specifically, as shown by line B in FIG. 5, a cut is made in the side of the RPV 10, and the cut portion is cut to form a cut piece 11 (step S12). The cut piece 11 is made to not include the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipes 22. Since the RPV 10 is surrounded by the RSW 30, it is not possible to make a cut in the side of the RPV 10 from the outside of the RPV 10. In the work of step S12, a cutting machine is inserted into the inside of the RPV 10 from the +Z side of the RPV 10, and the RPV 10 is cut from the inside. When cutting the RPV 10, care is taken not to cut the RPV thermal insulation 40.

図6に示されるように、切断片11を除去した後の空隙のX軸方向の長さL1は、RPV10の周囲に残されたRPVノズル20と接続配管22の切り残し部21のX軸方向の長さL2よりも長く設定される。図5に示すように、切断片11は、円柱状のRPV10の中心を通る対向する位置で2片切断する。図5に示される長さL3は、運搬可能な大きさと重量を考慮して決める。 As shown in FIG. 6, the length L1 in the X-axis direction of the gap after removing the cut piece 11 is set to be longer than the length L2 in the X-axis direction of the remaining cut portion 21 of the RPV nozzle 20 and the connecting pipe 22 that remain around the RPV 10. As shown in FIG. 5, the cut piece 11 is cut into two pieces at opposing positions that pass through the center of the cylindrical RPV 10. The length L3 shown in FIG. 5 is determined taking into consideration the transportable size and weight.

次に、RPVノズル20と接続配管22の切り残し部21を有していない切断片11を原子炉格納容器2から撤去する(ステップS13)。具体的には、図7に示されるように、クレーンで切断片11を+Z方向に持ち上げる。RPV10の周囲を覆うRPV保温材40は、一体に繋がっている。したがって、切断片11を吊り上げると、切断片11はRPV保温材40から分離される。切断片11は、原子炉格納容器2から所定の場所に運搬され、所定の処分用容器に収納される。RPVノズル20と接続配管22の切り残し部21を有していない切断片11を撤去する工程を第1撤去工程とする。図6に示すように、切断片11を除去した後の空隙のX軸方向の長さL1は、切断片の長さである。RPV10の周囲に残されたRPVノズル20と接続配管22の切り残し部21のX軸方向の長さL2は、原子炉圧力容器から突出する切り残し部の長さである。したがって、第1撤去工程で撤去する切断片の長さは、原子炉圧力容器から突出する切り残し部の長さよりも長い。 Next, the cut pieces 11 that do not have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipe 22 are removed from the reactor containment vessel 2 (step S13). Specifically, as shown in FIG. 7, the cut pieces 11 are lifted in the +Z direction by a crane. The RPV thermal insulation material 40 that covers the periphery of the RPV 10 is connected as a whole. Therefore, when the cut pieces 11 are lifted, they are separated from the RPV thermal insulation material 40. The cut pieces 11 are transported from the reactor containment vessel 2 to a predetermined location and stored in a predetermined disposal container. The process of removing the cut pieces 11 that do not have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipe 22 is referred to as the first removal process. As shown in FIG. 6, the length L1 of the gap in the X-axis direction after the cut pieces 11 are removed is the length of the cut pieces. The length L2 in the X-axis direction of the remaining cut portion 21 of the RPV nozzle 20 and the connecting pipe 22 left around the RPV 10 is the length of the remaining cut portion protruding from the reactor pressure vessel. Therefore, the length of the cut piece removed in the first removal process is longer than the length of the remaining cut portion protruding from the reactor pressure vessel.

次に、図8に線Cで示されるように、RPV10の側面に切り込みを入れ、切り込みを入れた部分を切断して切断片12を形成する(ステップS14)。この切断片12は、RPVノズル20と接続配管22の切り残し部21を含んでいる。ステップS14の作業では、RPV10の+Z側からRPV10の内側に切断機を入れ、内側からRPV10を切断する。RPV10を切断する際、RPV保温材40を切断しないようにする。 Next, as shown by line C in Figure 8, a cut is made in the side of the RPV 10, and the cut portion is cut to form a cut piece 12 (step S14). This cut piece 12 includes the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipes 22. In the work of step S14, a cutting machine is inserted into the inside of the RPV 10 from the +Z side of the RPV 10, and the RPV 10 is cut from the inside. When cutting the RPV 10, care is taken not to cut the RPV thermal insulation material 40.

次に、切断片11を撤去した後の空隙方向に、RPVノズル20と接続配管22の切り残し部21を有する切断片12を移動させることにより、切り残し部21をRSW30から引き抜く(ステップS15)。具体的には、図9および図10に示されるように、クレーンで切断片12を+X方向に移動させる。切断片11のX軸方向の長さL1は、切断片12に残された接続配管22の切り残し部21のX軸方向の長さL2よりも長い。したがって、切断片12を+X方向に移動させることにより、切り残し部21をRSW30から引き抜くことができる。RPV10の周囲を覆うRPV保温材40は、一体に繋がっている。したがって、切断片12を+X方向に移動させることにより、RPVノズル20と接続配管22の切り残し部21を有する切断片12はRPV保温材40から分離される。 Next, the cut piece 12 having the remaining cut portion 21 of the RPV nozzle 20 and the connection pipe 22 is moved in the direction of the gap after the cut piece 11 is removed, thereby pulling out the remaining cut portion 21 from the RSW 30 (step S15). Specifically, as shown in FIG. 9 and FIG. 10, the cut piece 12 is moved in the +X direction by a crane. The length L1 of the cut piece 11 in the X-axis direction is longer than the length L2 of the remaining cut portion 21 of the connection pipe 22 left in the cut piece 12 in the X-axis direction. Therefore, by moving the cut piece 12 in the +X direction, the remaining cut portion 21 can be pulled out from the RSW 30. The RPV heat insulating material 40 covering the periphery of the RPV 10 is connected as a single unit. Therefore, by moving the cut piece 12 in the +X direction, the cut piece 12 having the remaining cut portion 21 of the RPV nozzle 20 and the connection pipe 22 is separated from the RPV heat insulating material 40.

次に、RPVノズル20と接続配管22の切り残し部21を有している切断片12を原子炉格納容器2から撤去する(ステップS16)。具体的には、図9に示されるように、クレーンで切断片12を+Z方向に持ち上げる。切断片12は、原子炉格納容器2から所定の場所に運搬され、所定の格納容器に収納される。RPVノズル20と接続配管22の切り残し部21を有する切断片12を撤去する工程を第2撤去工程とする。 Next, the cut piece 12 having the remaining cut portion 21 of the RPV nozzle 20 and the connecting pipe 22 is removed from the reactor containment vessel 2 (step S16). Specifically, as shown in FIG. 9, the cut piece 12 is lifted in the +Z direction by a crane. The cut piece 12 is transported from the reactor containment vessel 2 to a predetermined location and stored in a predetermined containment vessel. The process of removing the cut piece 12 having the remaining cut portion 21 of the RPV nozzle 20 and the connecting pipe 22 is referred to as the second removal process.

次に、ステップS16で撤去した切断片12と対向するRPV10の 部分について、ステップS13からステップS16の作業を行う(ステップS17)。具体的には、切断片12と同様にして、図10に示される切断片13を形成する。クレーンで切断片13を-X方向に移動させることにより、RSW30から接続配管22の切り残し部21を引き抜く。そして、クレーンで切断片13を+Z方向に持ち上げる。切断片13を原子炉格納容器2から所定の場所に運搬し、所定の処分用容器に収納する。 Next, the work from step S13 to step S16 is performed on the portion of the RPV 10 facing the cut piece 12 removed in step S16 (step S17). Specifically, the cut piece 13 shown in FIG. 10 is formed in the same manner as the cut piece 12. The cut piece 13 is moved in the -X direction by a crane, and the remaining portion 21 of the connection pipe 22 is pulled out from the RSW 30. Then, the cut piece 13 is lifted in the +Z direction by the crane. The cut piece 13 is transported from the reactor containment vessel 2 to a predetermined location and stored in a predetermined disposal container.

以下、ステップS11からステップS17の作業を繰り返すことにより、RPV10を解体する。 The RPV 10 is then dismantled by repeating steps S11 to S17.

RPV10を解体した後、RSW30の内側に残されたRPV保温材40を所定の大きさの切断片にして撤去する(ステップS18)。RPV保温材40は、原子炉格納容器2から所定の場所に運搬し、所定の処分用容器に収納される。 After the RPV 10 is dismantled, the RPV thermal insulation material 40 remaining inside the RSW 30 is cut into pieces of a specified size and removed (step S18). The RPV thermal insulation material 40 is transported from the reactor containment vessel 2 to a specified location and stored in a specified disposal container.

以上に説明したように、本実施形態に係る原子炉圧力容器の解体方法は、周囲にRPVノズル20と接続配管22の切り残し部21を有していない切断片11を原子炉格納容器2から撤去する第1撤去工程と、周囲にRPVノズル20と接続配管22の切り残し部21を有する切断片12を、切り残し部21を有していない切断片11を撤去した後の空隙方向に移動させることにより、切り残し部21を熱遮蔽壁(RSW)30から引き抜く工程と、切り残し部21を有する切断片12を吊り上げて原子炉格納容器2から撤去する第2撤去工程と、を含む。第1撤去工程で撤去する切断片11の図6に示されるX軸方向の長さL1は、切り残し部21のX軸方向の長さL2よりも長いので、切り残し部21を熱遮蔽壁(RSW)30から容易に引き抜くことができる。したがって、熱遮蔽壁(RSW)30でRPV10を覆った状態で、原子炉圧力容器(RPV)10を解体することができる。これにより、作業者の被ばく量を低減することができる。 As described above, the method for dismantling a reactor pressure vessel according to this embodiment includes a first removal step of removing the cut pieces 11 that do not have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipes 22 around them from the reactor containment vessel 2, a step of moving the cut pieces 12 that have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipes 22 around them in the direction of the gap after removing the cut pieces 11 that do not have the remaining cut portions 21, thereby pulling out the remaining cut portions 21 from the thermal shield wall (RSW) 30, and a second removal step of lifting the cut pieces 12 that have the remaining cut portions 21 and removing them from the reactor containment vessel 2. Since the length L1 in the X-axis direction of the cut pieces 11 removed in the first removal step shown in FIG. 6 is longer than the length L2 in the X-axis direction of the remaining cut portions 21, the remaining cut portions 21 can be easily pulled out from the thermal shield wall (RSW) 30. Therefore, the reactor pressure vessel (RPV) 10 can be dismantled while the RPV 10 is covered with the thermal shield wall (RSW) 30. This reduces the amount of radiation exposure to workers.

一般的な原子炉圧力容器(RPV)10の解体方法では、RPV10を輪切りして運搬可能な大きさの切断片にする。そして、切断片をクレーンで順次撤去することによりRPV10を解体する。しかし、RPV10の周囲には、RPVノズル20と接続配管22の切り残し部21が残っている。切り残し部21を有する切断片を引き上げようとすると、切り残し部21がRSW30およびRPV保温材40に引っかかり、撤去が出来ない。切り残し部21を先行して撤去する場合、熱遮蔽壁を介さずに容器近傍で作業することとなるため、作業者の被ばく量が増大する。 In a typical method for dismantling a reactor pressure vessel (RPV) 10, the RPV 10 is sliced into pieces of transportable size. The RPV 10 is then dismantled by sequentially removing the cut pieces with a crane. However, uncut portions 21 of the RPV nozzle 20 and connecting pipes 22 remain around the RPV 10. When attempting to pull up the cut pieces with the uncut portions 21, the uncut portions 21 get caught on the RSW 30 and RPV thermal insulation 40 and cannot be removed. If the uncut portions 21 are removed first, workers will be working near the vessel without a thermal shield wall, increasing their radiation exposure.

また、本実施形態に係る原子炉圧力容器の解体方法では、RPV保温材40は、原子炉圧力容器10を原子炉格納容器2内から撤去後に解体して撤去される。RPV保温材40は、原子炉圧力容器10と異なる素材で形成されている。原子炉圧力容器10の撤去工程とRPV保温材40の撤去工程とを分けることにより、異なる素材の切断粉が混在することを防止できる。これにより、のちの廃棄物分別工程の作業時間を短縮することができる。 In addition, in the method for dismantling a reactor pressure vessel according to this embodiment, the RPV thermal insulation material 40 is dismantled and removed after the reactor pressure vessel 10 is removed from inside the reactor containment vessel 2. The RPV thermal insulation material 40 is made of a material different from that of the reactor pressure vessel 10. By separating the process for removing the reactor pressure vessel 10 from the process for removing the RPV thermal insulation material 40, it is possible to prevent cutting chips of different materials from being mixed together. This makes it possible to shorten the work time of the subsequent waste sorting process.

なお、上記の説明では、切断片11を撤去後に図8に線Cで示される切り込みを入れて切断片12を形成する場合について説明した。しかし、解体方法をこれに限定する必要はない。例えば、ステップS13とステップS14の順番を入れ替えてもよい。具体的には、RPV10を図5に示される長さL3で輪切りにした後、Z軸方向の切り込みを入れて、2個の切断片11と切断片12と切断片13を形成し、切断片11を撤去後に切断片12と切断片13を撤去してもよい。 In the above description, a case has been described in which cut piece 12 is formed by making the cut shown by line C in FIG. 8 after removing cut piece 11. However, the dismantling method does not need to be limited to this. For example, the order of steps S13 and S14 may be reversed. Specifically, after cutting RPV 10 into a ring with length L3 as shown in FIG. 5, a cut may be made in the Z-axis direction to form two cut pieces 11, 12, and 13, and cut piece 11 may be removed, followed by removal of cut piece 12 and cut piece 13.

また、上記の説明では、RPV10を2個の切断片11と切断片12と切断片13の4個の切断片に切断する場合について説明したが、輪切りにしたRPV10を分割する切断片の数を限定する必要はない。例えば、切断片の数は3個、5個、6個等であってもよい。この場合も、RPVノズル20と接続配管22の切り残し部21を有さない切断片を先に撤去し、撤去後の空隙方向にRPVノズル20と接続配管22の切り残し部21を有する切断片を移動させることにより、RPVノズル20と接続配管22の切り残し部21をRSW30から引き抜く。これにより、切り残し部21がRSW30に引っかかることを抑制でき、解体作業時間を短縮することができる。また、原子炉圧力容器(RPV)10を熱遮蔽壁(RSW)30で覆った状態で解体することができるので、作業者の被ばく量を低減することができる。 In the above description, the RPV 10 is cut into four pieces, namely, two pieces 11, 12, and 13. However, the number of pieces into which the sliced RPV 10 is divided does not need to be limited. For example, the number of pieces may be three, five, six, etc. In this case, the pieces that do not have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipe 22 are removed first, and the pieces that have the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipe 22 are moved in the direction of the gap after removal, so that the remaining cut portions 21 of the RPV nozzle 20 and the connecting pipe 22 are pulled out from the RSW 30. This makes it possible to prevent the remaining cut portions 21 from getting caught on the RSW 30, and shortens the dismantling work time. In addition, the reactor pressure vessel (RPV) 10 can be dismantled while covered with the thermal shield wall (RSW) 30, thereby reducing the amount of radiation exposure of workers.

上記の説明では、解体前のRPVノズル20に接続された接続配管22がRSW30を貫通している場合について説明した。しかし、RPVノズル20がRSW30を貫通しており、RSW30の外側でRPVノズル20に接続配管22が接続されている場合もある。この場合、RPV10の周囲にRPVノズル20の切り残し部が残る。また、接続配管22を切断することなく、RPVノズル20から接続配管22を引き抜く場合もある。この場合も、短いRPVノズル20がRPV10の周囲に残る。従来の解体方法では、配管の切り残し部もしくはRPVノズル20がRSW30に引っかかるため、クレーン操作により配管の切り残し部もしくはRPVノズル20をRSW30から引き抜くことが困難である。したがって、RSW30を解体しながらRPV10を解体することになる。もしくは、RPV10の解体時間が長くなる。しかし、実施形態に係る解体方法によれば、クレーン操作により接続配管22の切り残し部もしくはRPVノズル20をRSW30から引き抜くことができるので、RSW30でRPV10の周囲を覆った状態でRPV10を解体することができる。また、原子炉圧力容器の解体作業時間を短くすることができる。 In the above explanation, the case where the connection pipe 22 connected to the RPV nozzle 20 before dismantling is passed through the RSW 30 has been described. However, there are also cases where the RPV nozzle 20 passes through the RSW 30 and the connection pipe 22 is connected to the RPV nozzle 20 outside the RSW 30. In this case, the RPV nozzle 20 remains uncut around the RPV 10. There are also cases where the connection pipe 22 is pulled out from the RPV nozzle 20 without cutting the connection pipe 22. In this case, a short RPV nozzle 20 remains around the RPV 10. In the conventional dismantling method, the uncut part of the pipe or the RPV nozzle 20 gets caught on the RSW 30, so it is difficult to pull out the uncut part of the pipe or the RPV nozzle 20 from the RSW 30 by operating a crane. Therefore, the RPV 10 is dismantled while the RSW 30 is being dismantled. Or, the dismantling time of the RPV 10 is prolonged. However, according to the dismantling method of the embodiment, the remaining portion of the connection pipe 22 or the RPV nozzle 20 can be pulled out of the RSW 30 by operating a crane, so the RPV 10 can be dismantled while the RPV 10 is surrounded by the RSW 30. In addition, the dismantling work time for the reactor pressure vessel can be shortened.

また、上記の説明では、RSW30を解体しない状態で、RPV10を撤去した後にRPV保温材40を撤去する場合について説明した。RSW30とRPV保温材40との間の隙間が大きい場合、その隙間に切断機を挿入して、RSW30を解体しない状態で、RPV保温材40を切断して撤去し、その後、RPV10を撤去してもよい。また、RSW30を解体しない状態で、RPV10とRPV保温材40を交互に解体して撤去してもよい。ただし、RPV10の切断片とRPV保温材40の切断片が混ざらないように留意する。 In the above explanation, the RPV insulation material 40 is removed after the RPV 10 is removed without dismantling the RSW 30. If the gap between the RSW 30 and the RPV insulation material 40 is large, a cutting tool may be inserted into the gap to cut and remove the RPV insulation material 40 without dismantling the RSW 30, and then the RPV 10 may be removed. Also, the RPV 10 and the RPV insulation material 40 may be dismantled and removed alternately without dismantling the RSW 30. However, care must be taken not to mix the cut pieces of the RPV 10 and the cut pieces of the RPV insulation material 40.

以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施しうるものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be embodied in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents described in the claims.

1…原子炉建屋
2…原子炉格納容器
10…原子炉圧力容器(RPV)
11,12,13…切断片
15…上端部
20…RPVノズル
21…切り残し部
22…接続配管
30…熱遮蔽壁(RSW)
40…RPV保温材
1... Reactor building 2... Reactor containment vessel 10... Reactor pressure vessel (RPV)
11, 12, 13... Cut pieces 15... Upper end portion 20... RPV nozzle 21... Remaining cut portion 22... Connection pipe 30... Thermal shield wall (RSW)
40...RPV insulation material

Claims (5)

接続配管が接続されるノズルを有する原子炉圧力容器を熱遮蔽壁で周囲を覆われた状態で解体する原子炉圧力容器の解体方法であって、
前記熱遮蔽壁の外周に沿って前記接続配管を切断する工程と、
前記原子炉圧力容器を運搬可能な大きさの前記接続配管の切り残し部を有していない切断片と前記接続配管の切り残し部を有する切断片を形成する工程と、
前記接続配管の切り残し部を有していない切断片を原子炉格納容器から撤去する第1撤去工程と、
前記接続配管の切り残し部を有する切断片を切り残し部を有していない前記切断片を撤去した後の空隙方向に移動させることにより、前記切り残し部を前記熱遮蔽壁から引き抜く工程と、
前記接続配管の切り残し部を有する前記切断片を前記原子炉格納容器から撤去する第2撤去工程と、
を含む原子炉圧力容器の解体方法。
A method for dismantling a reactor pressure vessel, in which a reactor pressure vessel having a nozzle to which a connection pipe is connected is dismantled in a state in which the vessel is surrounded by a thermal shield wall, comprising the steps of:
cutting the connecting pipe along an outer periphery of the heat shield wall;
forming a cut piece having a size allowing the reactor pressure vessel to be transported, the cut piece having no remaining portion of the connection pipe, and a cut piece having the remaining portion of the connection pipe;
a first removal step of removing a cut piece of the connection pipe that does not have an uncut portion from the reactor containment vessel;
a step of pulling out the remaining portion of the connection pipe from the heat shielding wall by moving the remaining portion of the connection pipe in a direction toward a gap left after removing the remaining portion of the connection pipe;
a second removal step of removing the cut piece having an uncut portion of the connection pipe from the reactor containment vessel;
A method for dismantling a reactor pressure vessel, comprising:
前記原子炉圧力容器は、円筒形状であり、
前記原子炉圧力容器を輪切りにした周方向における前記第1撤去工程で撤去する切断片の長さは、前記原子炉圧力容器から突出する前記切り残し部の長さよりも長い、
請求項1に記載の原子炉圧力容器の解体方法。
the reactor pressure vessel is cylindrical;
a length of the cut piece removed in the first removal step in a circumferential direction of the reactor pressure vessel being cut into a ring is longer than a length of the remaining cut portion protruding from the reactor pressure vessel;
The method for dismantling a reactor pressure vessel according to claim 1.
前記原子炉圧力容器および前記ノズルは、保温材で覆われており、
前記切断片を形成する工程では、前記保温材を切断せず、前記原子炉圧力容器のみを切断し、
前記第1撤去工程および前記第2撤去工程では、前記保温材を前記原子炉圧力容器および前記接続配管の切り残し部から分離する工程を含む、
請求項1または2に記載の原子炉圧力容器の解体方法。
the reactor pressure vessel and the nozzle are covered with a thermal insulation material;
In the step of forming the cut piece, the thermal insulation material is not cut, and only the reactor pressure vessel is cut;
The first removal step and the second removal step include a step of separating the thermal insulation material from the reactor pressure vessel and the remaining cut portions of the connecting piping.
3. The method for dismantling a reactor pressure vessel according to claim 1 or 2.
前記熱遮蔽壁で周囲を覆われた状態で前記保温材を切断する工程と、
切断した前記保温材を撤去する工程と、
を含む、
請求項3に記載の原子炉圧力容器の解体方法。
cutting the heat-insulating material while the heat-shielding wall is surrounding the heat-insulating material;
A step of removing the cut heat insulating material;
including,
The method for dismantling a reactor pressure vessel according to claim 3.
前記保温材を撤去する工程は、前記熱遮蔽壁で周囲を覆われた状態で、前記第2撤去工程の後に行われる、
請求項4に記載の原子炉圧力容器の解体方法。
The step of removing the heat-insulating material is performed after the second removal step in a state in which the periphery is covered with the heat shielding wall.
The method for dismantling a reactor pressure vessel according to claim 4.
JP2023115592A 2023-07-14 2023-07-14 Dismantling method for reactor pressure vessel Active JP7504266B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023115592A JP7504266B1 (en) 2023-07-14 2023-07-14 Dismantling method for reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023115592A JP7504266B1 (en) 2023-07-14 2023-07-14 Dismantling method for reactor pressure vessel

Publications (1)

Publication Number Publication Date
JP7504266B1 true JP7504266B1 (en) 2024-06-21

Family

ID=91538806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023115592A Active JP7504266B1 (en) 2023-07-14 2023-07-14 Dismantling method for reactor pressure vessel

Country Status (1)

Country Link
JP (1) JP7504266B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038730A (en) 2004-07-29 2006-02-09 Hitachi Plant Eng & Constr Co Ltd Dismantling method for nuclear reactor pressure vessel
US20160336084A1 (en) 2015-05-12 2016-11-17 LaGuardia and Associates, LLC Systems and methods for nuclear reactor vessel segmenting
JP2019168457A (en) 2018-03-22 2019-10-03 ヌケム・テヒノロギース・エンジニアリング・サービシーズ・ゲーエムベーハーNukem Technologies Engineering Services Gmbh Method for removing container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038730A (en) 2004-07-29 2006-02-09 Hitachi Plant Eng & Constr Co Ltd Dismantling method for nuclear reactor pressure vessel
US20160336084A1 (en) 2015-05-12 2016-11-17 LaGuardia and Associates, LLC Systems and methods for nuclear reactor vessel segmenting
JP2019168457A (en) 2018-03-22 2019-10-03 ヌケム・テヒノロギース・エンジニアリング・サービシーズ・ゲーエムベーハーNukem Technologies Engineering Services Gmbh Method for removing container

Similar Documents

Publication Publication Date Title
US5001870A (en) Method of cutting and disassembling cylindrical structure
KR102144982B1 (en) Dismantling method of radioactive structures of heavy water reactor facilities
JP7504266B1 (en) Dismantling method for reactor pressure vessel
KR20190029803A (en) Method for dismantling Reactor Vessel
JP4898567B2 (en) Reactor removal method
KR102595144B1 (en) Systems and methods for volume reduction of nuclear reactor components
JP4432112B2 (en) Reactor pressure vessel dismantling method
JPH04158297A (en) Cutting out of large sized block of activation part in biological shielding structure of nuclear reactor
JP4088796B2 (en) Reactor pressure vessel dismantling method
JP2012230084A (en) Method for dismantling nuclear power generation plant building
JP2019105584A (en) Reactor pressure vessel dismantling method
US8857027B2 (en) Method of segmenting irradiated boiling water reactor control rod blades
JP2015004555A (en) Method of retrieving fuel debris from boiling water nuclear plant and work house system
JPH0192697A (en) Method for cutting and disassembling cylindrical structure
JPH0192696A (en) Method for cutting and disassembling cylindrical structure
JP2912391B2 (en) Nuclear facility heat shield
JPH0194164A (en) Method of cutting overhaul construction of cylindrical structure
JP2014098570A (en) Opening formation method
JP7267894B2 (en) Dismantling method and equipment for reactor pressure vessel
JP7157712B2 (en) How to store radioactive waste
JP2002048896A (en) Method for removing cable located in radiation control area
JP7142610B2 (en) Boiling Water Reactor Decommissioning Method and Dismantling Equipment
KR101974773B1 (en) Shielding and cutting device of reactor vessel
JP2020076621A (en) Equipment processing method of nuclear power plant
WO2019208062A1 (en) Method for dismantling nuclear reactor containment vessel and biological shielding wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611

R150 Certificate of patent or registration of utility model

Ref document number: 7504266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150