JP7502547B1 - Method for removing deposits on blast furnace walls and method for operating a blast furnace - Google Patents

Method for removing deposits on blast furnace walls and method for operating a blast furnace Download PDF

Info

Publication number
JP7502547B1
JP7502547B1 JP2023194903A JP2023194903A JP7502547B1 JP 7502547 B1 JP7502547 B1 JP 7502547B1 JP 2023194903 A JP2023194903 A JP 2023194903A JP 2023194903 A JP2023194903 A JP 2023194903A JP 7502547 B1 JP7502547 B1 JP 7502547B1
Authority
JP
Japan
Prior art keywords
deposits
furnace
blast furnace
water
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023194903A
Other languages
Japanese (ja)
Inventor
慶喜 筒井
大成 郷原
敏生 塩田
秀明 築地
紀文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2023194903A priority Critical patent/JP7502547B1/en
Application granted granted Critical
Publication of JP7502547B1 publication Critical patent/JP7502547B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

【課題】溶鉱炉の炉壁付着物除去方法および操業方法を提案する。【解決手段】溶鉱炉への装入物の上面を付着物の下部まで下げ、付着物を露出させ、露出させた付着物に散水して、付着物を除去する、溶鉱炉の炉壁付着物除去方法である。その方法は、散水では、散水-散水間にインターバルを設け間欠的に散水すること、所定の炉熱水準を保持するよう1回あたりの散水時間、インターバル時間、散水流量および総散水量を調整し、付着物の除去を行うことが好ましい。操業中又は休風中に、溶鉱炉への装入物を付着物の下部まで減量させ、上記溶鉱炉の炉壁付着物除去方法により、炉壁の付着物を除去する付着物除去工程を含む、溶鉱炉の操業方法である。【選択図】図1[Problem] A method for removing deposits on the walls of a blast furnace and an operating method are proposed. [Solution] A method for removing deposits on the walls of a blast furnace, in which the upper surface of the charge to the blast furnace is lowered to below the deposits, exposing the deposits, and then watering the exposed deposits to remove them. In this method, it is preferable to perform intermittent water spraying with intervals between water sprays, and to adjust the water spray time per spray, the interval time, the water spray flow rate, and the total water spray amount to maintain a specified furnace heat level, and to remove the deposits. This is a method for operating a blast furnace, which includes a step of reducing the amount of charge to the blast furnace to below the deposits during operation or during a cessation of air flow, and removing the deposits on the furnace walls by the above-mentioned method for removing deposits on the walls of a blast furnace. [Selected Figure] Figure 1

Description

本発明は、溶鉱炉内の炉壁に付着する付着物を除去する方法および溶鉱炉の操業方法に関する。本明細書において、質量を表す単位の「t」は1000kgを表す。 The present invention relates to a method for removing deposits adhering to the walls of a blast furnace and a method for operating a blast furnace. In this specification, the unit "t" representing mass represents 1000 kg.

溶鉱炉内の炉壁に付着する付着物の生成メカニズムは以下のように考えられる。すなわち、まず、鉱石に内包されるZn(亜鉛)やNa(ナトリウム)などのアルカリ類が、温度の高い溶鉱炉の下部で蒸発し、シャフトや炉口近傍の炉壁などの比較的低温の部分に凝縮する。この凝縮物が結合材となって装入された鉱石やコークスを固め、強固な付着物となる。 The mechanism by which the deposits that adhere to the walls of a blast furnace are formed is thought to be as follows. First, alkalis such as Zn (zinc) and Na (sodium) contained in the ore evaporate in the lower part of the blast furnace, where the temperature is high, and condense on relatively low-temperature parts such as the shaft and the furnace wall near the throat. This condensate acts as a binder to solidify the ore and coke that are charged, forming a strong deposit.

この付着物が炉壁で成長すると炉内形状がいびつとなり、炉内のガス流れが不安定となる。そのため、炉内物の荷下がり不調や炉内の通気性悪化を招く。そして、溶鉱炉の生産性が低下する。一方で、付着物が崩落すると、付着物の再溶解に伴う熱量不足から、炉温低下を生じる。そのため、コークス比の悪化、ひいては、生産性の低下につながる。 When this deposit grows on the furnace wall, the shape of the furnace interior becomes distorted and the gas flow inside the furnace becomes unstable. This leads to poor lowering of the contents inside the furnace and poor ventilation inside the furnace, which in turn reduces the productivity of the blast furnace. On the other hand, if the deposit collapses, the furnace temperature drops due to a lack of heat caused by the remelting of the deposit. This leads to a deterioration in the coke rate and ultimately a decrease in productivity.

このような事情から、溶鉱炉の操業にあたっては、亜鉛やアルカリなどの炉内循環量を抑制するために、原料装入物での亜鉛やアルカリ類の含有量を厳しく制限すること、または、炉壁の付着物を除去することが行われてきた。 For these reasons, when operating a blast furnace, the amount of zinc and alkalis in the raw material charge has been strictly restricted in order to reduce the amount of zinc, alkali, and other substances circulating within the furnace, or deposits on the furnace walls have been removed.

従来の付着物除去方法は、休風時や操業時に原料装入物を減尺し、付着物を放冷することでサーマルショックを与え、剥離・除去していた。また、特許文献1には、装入物を入れたまま、あるいは、減尺してダイナマイト等の爆薬で爆破除去することが開示されている。 Conventional methods for removing deposits involve reducing the size of the raw material charge during shutdowns or during operation, allowing the deposits to cool and cause a thermal shock, which then peels off and removes them. Patent Document 1 also discloses a method in which the charge is either left in the mine or reduced in size and then blasted with explosives such as dynamite to remove the deposits.

また、特許文献2には、付着物を検知し、装入物を減尺して休風し、気体を冷媒として吹き付けて冷却し、付着物の物理的性状、たとえば、熱膨張を急激に変化させて亀裂を生じさせ、付着物を脱落除去させることが開示されている。また、特許文献3には、付着物の発生を把握し、減尺休風操業を行い、操業への復帰時に装入原料を付着物に衝突させて付着物除去を行うことが開示されている。 Patent Document 2 also discloses a method of detecting adhesions, reducing the size of the charged materials, suspending airflow, and blowing in gas as a refrigerant to cool the materials, causing a sudden change in the physical properties of the adhesions, such as thermal expansion, to cause cracks and allow the adhesions to fall off and be removed. Patent Document 3 also discloses a method of detecting the occurrence of adhesions, reducing the size and suspending airflow, and then removing the adhesions by colliding the charged materials with the adhesions when operation is resumed.

特公昭42-026377号公報Japanese Patent Publication No. 42-026377 特開昭54-033808号公報Japanese Patent Application Laid-Open No. 54-033808 特開昭55-115903号公報Japanese Patent Application Laid-Open No. 55-115903

しかしながら、上記従来技術には以下の問題があった。
まず、従来法の原料装入物での亜鉛やアルカリ類の含有量を厳しく制限することは、原料の選択幅を狭くし、製品の高騰を招くことから、経済的に採用しがたい。また、単に付着物を放冷するだけでは、剥離する量が少なく、効果が小さい問題があった。とくに、操業中の減尺は、時間も短く、付着物の除去効果が小さい。
However, the above-mentioned conventional techniques have the following problems.
First, strictly restricting the zinc and alkali content in the raw material charge in the conventional method narrows the range of raw material choices and leads to a rise in product prices, making it economically difficult to adopt. Also, simply leaving the deposits to cool has the problem that the amount of material that peels off is small and the effect is small. In particular, the time required for reduction during operation is short, so the effect of removing the deposits is small.

また、特許文献1に記載の方法は、付着物の除去という観点では有効であるものの、爆破により周辺設備、たとえば、鉄皮やレンガなどの炉体を損傷するおそれが大きい。 In addition, although the method described in Patent Document 1 is effective in terms of removing deposits, there is a high risk of damage to surrounding equipment, such as the furnace body, such as the iron shell and bricks, due to the blast.

また、特許文献2や3に記載の技術は、休風を前提としており、操業中に適用することを想定していない。休風は数か月に1度の作業であり、頻度が限定的で、付着物が肥大してしまうおそれがあった。また、特許文献2に記載の気体冷却では熱容量が小さく、冷却の効果を発揮するのに長時間を要する問題があった。さらに、空気を用いた冷却では、休風時に炉内の燃焼性ガスを非燃焼性ガスに置換しなければ、爆発のおそれがあり、操業中には適用できない。 The techniques described in Patent Documents 2 and 3 are based on the premise that the furnace is shut down, and are not intended to be applied during operation. Shutting down the furnace is done once every few months, and the frequency is limited, which raises the risk of causing the deposits to thicken. In addition, the gas cooling method described in Patent Document 2 has a small heat capacity, and there is an issue that it takes a long time for the cooling effect to be exerted. Furthermore, when cooling using air, unless the combustible gas in the furnace is replaced with a non-combustible gas during the shut down, there is a risk of explosion, and therefore it cannot be applied during operation.

また、特許文献3に記載の装入物を付着物に衝突させる方法は、付着物の除去後、装入物がレンガに衝突して損傷するおそれがある。 In addition, the method described in Patent Document 3 in which the charge material is collided with the attached material has the risk of the charge material colliding with the bricks and damaging them after the attached material is removed.

そこで、本発明は、従来技術が抱えている上述した問題点に鑑みてなされたものであり、その目的は、休風時や操業時に効果的に炉壁の付着物を除去することが可能な溶鉱炉の炉壁付着物除去方法および操業方法を提案することにある。 The present invention was made in consideration of the above-mentioned problems of the conventional technology, and its purpose is to propose a method for removing deposits from the furnace walls of a blast furnace and an operating method that can effectively remove deposits from the furnace walls during cessation of blowing and operation.

発明者らは、付着物を露出させたうえで適切な条件で散水して冷却することにより付着物を効率的に除去できることを見出した。 The inventors discovered that deposits can be removed efficiently by exposing them and then spraying water under appropriate conditions to cool them.

上記課題を有利に解決する本発明にかかる溶鉱炉の炉壁付着物除去方法は、溶鉱炉への装入物の上面を付着物の下部まで下げ、前記付着物を露出させ、露出させた前記付着物に散水を行い、前記付着物を除去することを特徴とする。 The method for removing deposits from the walls of a blast furnace according to the present invention, which advantageously solves the above problem, is characterized by lowering the top surface of the charge into the blast furnace to the bottom of the deposits, exposing the deposits, spraying water on the exposed deposits, and removing the deposits.

なお、本発明にかかる溶鉱炉の炉壁付着物除去方法は、
a.前記散水では、散水-散水間にインターバルを設け、間欠的に散水すること、
b.前記散水では、所定の炉熱水準を保持するよう1回あたりの散水時間、インターバル時間、散水流量および総散水量を調整し、前記付着物を除去すること、
c.前記散水は複数回に分けて行い、1回の散水時間を30~120sの範囲とし、散水のインターバル時間を60~240sの範囲とし、炉容積1mに対する散水流量を8~23kg/hの範囲とし、炉容積1mに対する総散水量を13~39kgの範囲とすることで、前記付着物を除去すること、
がより好ましい解決手段になる。
The method for removing deposits from a blast furnace wall according to the present invention is as follows:
a. The watering is performed intermittently with an interval between waterings;
b. In the water spraying, the water spraying time, interval time, water spray flow rate and total water spray amount are adjusted so as to maintain a predetermined furnace heat level, and the deposits are removed;
c. The water is sprayed in a number of times, with each spray time in the range of 30 to 120 seconds, the interval between sprays in the range of 60 to 240 seconds, the water spray flow rate per 1 m3 of furnace volume in the range of 8 to 23 kg/h, and the total amount of water sprayed per 1 m3 of furnace volume in the range of 13 to 39 kg, thereby removing the deposits;
would be a more preferable solution.

上記課題を有利に解決する本発明にかかる溶鉱炉の操業方法は、操業中又は休風中に、溶鉱炉への装入物を付着物の下部まで減量させ、上記いずれかの溶鉱炉の炉壁付着物除去方法により、炉壁の付着物を除去する付着物除去工程を含むことを特徴とする。 The method of operating a blast furnace according to the present invention, which advantageously solves the above problems, is characterized by including a deposit removal step in which, during operation or during cessation of operation, the charge into the blast furnace is reduced to the bottom of the deposits, and the deposits on the furnace walls are removed by any of the above-mentioned methods for removing deposits on the blast furnace walls.

なお、本発明にかかる溶鉱炉の操業方法は、さらに、溶鉱炉の炉壁への付着物を検知する工程を有し、溶鉱炉内の炉壁に前記付着物の付着を検知したら、前記付着物除去工程を実行することがより好ましい解決手段になる。 The blast furnace operating method according to the present invention further includes a step of detecting deposits on the walls of the blast furnace, and when the deposition of the deposits on the walls of the blast furnace is detected, a more preferable solution is to carry out the deposit removal step.

本発明によれば、休風中だけでなく操業中においても付着物を除去できるので、課題に挙げた不具合が解消出来た。また、減尺することでシャフト部の付着物も除去できるようになった。 According to the present invention, the adhesions can be removed not only during the shutdown period but also during operation, which has resolved the problems mentioned above. In addition, by reducing the length, it has become possible to remove adhesions from the shaft section.

溶鉱炉の上部垂直断面を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an upper vertical section of a blast furnace. 本発明の実施形態にかかる散水条件の一例を示す図であって、(a)は図1のX-X視模式断面図であり、(b)は散水パターンを表す図である。2A and 2B are diagrams showing an example of water spray conditions according to an embodiment of the present invention, in which FIG. 2A is a schematic cross-sectional view taken along the line XX in FIG. 1, and FIG. 2B is a diagram showing a water spray pattern. 上記実施形態にかかる散水条件の他の例を示す図であって、(a)は図1のX-X視模式断面図であり、(b)は散水パターンを表す図である。1A is a schematic cross-sectional view taken along the line XX in FIG. 1; and FIG. 1B is a diagram showing a water spray pattern.

以下、図面を参照しながら、本発明の実施の形態を具体的に説明する。図1は本発明にかかる溶鉱炉の炉壁付着物除去方法を適用して好適な溶鉱炉の上部垂直断面を表す概略断面図である。
本実施形態にかかる溶鉱炉1は、鉄鉱石やマンガン鉱石を主原料として、銑鉄やフェロマンガンを製造する設備である。とくに、マンガン鉱石を原料としてフェロマンガンを製造する溶鉱炉1に適用して好適である。マンガン鉱石を原料とする溶鉱炉1の炉壁付着物6はNa(ナトリウム)分やK(カリウム)分が多く、Zn(亜鉛)分が少ない特徴がある。したがって、マンガン鉱石を原料とする溶鉱炉の付着物はNaOやKOの水和膨張が大きい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Fig. 1 is a schematic sectional view showing an upper vertical section of a blast furnace to which a method for removing deposits from a blast furnace wall according to the present invention is suitable.
The blast furnace 1 according to this embodiment is a facility for producing pig iron and ferromanganese using iron ore and manganese ore as the main raw materials. It is particularly suitable for application to a blast furnace 1 that produces ferromanganese using manganese ore as the raw material. The furnace wall deposits 6 of a blast furnace 1 using manganese ore as the raw material are characterized by having a high Na (sodium) and K (potassium) content and a low Zn (zinc) content. Therefore, the deposits of a blast furnace using manganese ore as the raw material have a large hydration expansion of Na 2 O and K 2 O.

本実施形態にかかる溶鉱炉の炉壁付着物除去方法では、付着物6の発生の検知を特に限定するものではないが、炉口3近傍の炉壁2に付着した付着物6の発生を以下のいずれかの方法で検知することが好ましい。
(1)溶鉱炉1の炉内装入物Sの減尺7を行い、つまり、減尺前の装入物レベルSL0から減尺後の装入物レベルSLまで下げることにより、炉壁2の内面を目視や撮影画像で観察して、たとえば、水冷のシャフトステーブ5への付着物6の高さや厚みを直接把握すること。
(2)炉体外部に設置した温度計の周方向の温度差や温度の時間変化から炉壁2への付着物6の発生を検知すること。
(3)炉体を冷却する冷却水の温度変化から付着物6の発生を検知すること。
In the method for removing deposits from the furnace wall of a blast furnace according to this embodiment, the detection of the occurrence of the deposits 6 is not particularly limited, but it is preferable to detect the occurrence of the deposits 6 adhering to the furnace wall 2 in the vicinity of the furnace throat 3 by any of the following methods.
(1) The load S inside the blast furnace 1 is reduced in size 7, that is, lowered from the load level SL0 before reduction to the load level SL after reduction, and the inner surface of the furnace wall 2 is observed visually or by photographic images to directly grasp, for example, the height and thickness of the deposits 6 on the water-cooled shaft stave 5.
(2) Detecting the occurrence of deposits 6 on the furnace wall 2 from the circumferential temperature difference and the change in temperature over time measured by a thermometer installed outside the furnace body.
(3) The occurrence of deposits 6 is detected from a change in temperature of the cooling water that cools the furnace body.

本実施形態では、たとえば、操業中に散水ノズル4から散水4Aによって溶鉱炉1の温度が低下するのを補償するために、事前に操業温度を通常より高めに設定したうえで、炉内装入物Sの上面(装入物レベルSL)を炉壁2への付着物6の下部まで下げて、付着物6を露出させる。そして、露出させた付着物6に対し、所定の条件で散水する。そして、冷却による熱膨張差によって付着物6に発生する亀裂と、亀裂から浸入した水とアルカリ分との反応による水和膨張を主因とする亀裂の進展とによって、付着物6の脱落・除去8を行う。なお、減尺休風中に散水することも可能である。同様の付着物除去効果が得られる。 In this embodiment, for example, in order to compensate for the temperature of the blast furnace 1 decreasing due to the water spray 4A from the water spray nozzle 4 during operation, the operating temperature is set higher than usual in advance, and the upper surface of the furnace load S (charge level SL) is lowered to the bottom of the deposits 6 on the furnace wall 2 to expose the deposits 6. Water is then sprayed on the exposed deposits 6 under specified conditions. The deposits 6 are then removed 8 by cracks that occur in the deposits 6 due to differences in thermal expansion caused by cooling, and the progression of the cracks mainly due to hydration expansion caused by the reaction between water that has entered through the cracks and alkali. It is also possible to spray water during the reduction and cooling period. A similar effect of removing deposits can be obtained.

本実施形態における散水方法は、所定時間tsの散水4Aと、散水-散水間に散水を行わないインターバル時間tiを設け、間欠的に散水することが好ましい。インターバル時間tiを置くことで、散水での冷却による収縮と復熱による膨張とで付着物6に亀裂が入りやすくなる。また、散水条件を調整し、溶鉱炉1の炉熱水準を所定の範囲とすることが好ましい。ここで、溶鉱炉1の炉熱水準は、溶鉱炉1の操業温度および製造物の成分変動を用いて評価する。溶鉱炉1の操業温度を所定の範囲に納め、製造物、たとえば、フェロマンガンの成分であるSiなどの濃度変動を所定の範囲に納めることができる。 In the water sprinkling method of this embodiment, it is preferable to provide intermittent water sprinkling 4A for a predetermined time ts and an interval time ti during which no water sprinkling is performed between each water sprinkling. By providing an interval time ti, the deposit 6 is more likely to crack due to contraction caused by cooling caused by the water sprinkling and expansion caused by reheating. It is also preferable to adjust the water sprinkling conditions to keep the furnace heat level of the blast furnace 1 within a predetermined range. Here, the furnace heat level of the blast furnace 1 is evaluated using the operating temperature of the blast furnace 1 and the component fluctuations of the product. By keeping the operating temperature of the blast furnace 1 within a predetermined range, it is possible to keep the concentration fluctuations of the product, such as Si, a component of ferromanganese, within a predetermined range.

1回あたりの散水時間tiは30~120sの範囲とすることが好ましい。下限未満では、付着物6の除去効果が小さすぎるおそれがある。上限超えでは炉熱を低下させすぎ、水性ガス反応により水素ガスが発生するおそれがある。インターバル時間tiは60~240sの範囲とすることが好ましい。下限未満では、炉熱の回復が不十分となるおそれがある。上限超えでは、付着物6の完全除去が長時間となるおそれがある。インターバル時間tiは散水時間tsの2倍程度とすることが好ましい。炉熱の回復および付着物6へのサーマルショックが期待できる。炉容積1mに対する散水流量は8~23kg/hの範囲とすることが好ましい。下限未満では、付着物の除去効果が小さすぎるおそれがある。上限超えでは、炉熱が低下しすぎ、水性ガス反応により水素ガスが発生するおそれがある。炉容積1mに対する総散水量を13~39kgの範囲とすることが好ましい。下限未満では、付着物6の除去残りが懸念される。上限超えでは、炉熱が低下しすぎるおそれがある。炉熱の低下は、還元材比を上昇させ、Si濃度が上昇するなど操業の安定性を阻害する。 The water spray time ti per time is preferably in the range of 30 to 120 s. Below the lower limit, the effect of removing the deposits 6 may be too small. Above the upper limit, the furnace heat may be lowered too much, and hydrogen gas may be generated by the water-gas reaction. The interval time ti is preferably in the range of 60 to 240 s. Below the lower limit, the furnace heat may not be fully restored. Above the upper limit, it may take a long time to completely remove the deposits 6. The interval time ti is preferably about twice the water spray time ts. The furnace heat can be restored and thermal shock to the deposits 6 can be expected. The water spray flow rate per 1 m3 of furnace volume is preferably in the range of 8 to 23 kg/h. Below the lower limit, the effect of removing the deposits may be too small. Above the upper limit, the furnace heat may be lowered too much, and hydrogen gas may be generated by the water-gas reaction. The total amount of water sprayed per 1 m3 of furnace volume is preferably in the range of 13 to 39 kg. Below the lower limit, there is a concern that the deposits 6 may not be completely removed. If the upper limit is exceeded, the furnace heat may be too low, which increases the reducing agent rate and increases the silicon concentration, hindering the stability of operation.

本実施形態にかかる散水ノズル4は散水4Aの向きを付着物6に向けて調整可能な1個を配置し、または、複数を炉口3の周方向に配置することができる。炉口3の周方向に配置した複数の散水ノズル4は、予め散水する順番を決めて一本ずつ、もしくは複数本ずつ順に散水することで、付着物除去を均一にかつ効率的に行うことができる。
図1は、炉壁2の付着物6に向けて散水ノズル4を配置した様子を示した。図2(a)は図1のX-X断面で見た炉口3に等間隔に配置した8本の散水ノズル4を示す概略図である。斜体数字で散水順4Bを示す。図2(b)は予め決めておいた場所の付着物を狙って散水ノズル4を時計回りに順にインターバル時間tiを設けながら連続的に散水する様子を示したパターン図である。こうすることで偏りなく散水でき、均一かつ効率的に付着物除去を行うことができる。図2(b)中のtsは散水時間を表し、taは総散水時間を表す。パターン図の黒塗りの期間に散水している。
The sprinkler nozzle 4 according to the present embodiment can be arranged as a single nozzle that can adjust the direction of the water spray 4A toward the deposits 6, or as a plurality of nozzles arranged in the circumferential direction of the furnace throat 3. The plurality of sprinkler nozzles 4 arranged in the circumferential direction of the furnace throat 3 can uniformly and efficiently remove deposits by spraying water one by one or in sequence, with the order of spraying water being determined in advance.
FIG. 1 shows the arrangement of the sprinkler nozzles 4 aimed at the deposits 6 on the furnace wall 2. FIG. 2(a) is a schematic diagram showing eight sprinkler nozzles 4 arranged at equal intervals on the furnace throat 3 as seen in the X-X cross section of FIG. 1. The sprinkler order 4B is indicated by italicized numbers. FIG. 2(b) is a pattern diagram showing the manner in which the sprinkler nozzles 4 are continuously sprinkled in a clockwise direction with interval times ti aimed at deposits at predetermined locations. In this way, water can be sprinkled evenly, and the deposits can be removed uniformly and efficiently. In FIG. 2(b), ts represents the sprinkler time, and ta represents the total sprinkler time. Water is sprinkled during the periods shaded in black in the pattern diagram.

また、炉壁2の一部に付着物6がある場合は、それを狙った散水ノズル4を選択し、散水4Aに供することができる。図3(a)は、散水ノズルCとGは対向する位置に付着物6はないのでこれらは用いずに、散水ノズルA,B、D,E、F、Hを選択した様子を示す。図3(b)は対向する位置の付着物6に対し、予め決めておいた場所の付着物6を狙って散水ノズル4を用いて散水時間tsの2倍のインターバル時間tiを設け、散水した例である。こうすることで炉壁2に偏在する付着物6を均一かつ効率的に除去を行うことができる。 Also, if there is an attachment 6 on a part of the furnace wall 2, a water spray nozzle 4 can be selected to target it and used for water spray 4A. Figure 3(a) shows that water spray nozzles C and G are not used because there is no attachment 6 in the opposing position, and water spray nozzles A, B, D, E, F, and H are selected. Figure 3(b) shows an example in which water spray nozzles 4 are used to target attachment 6 in a predetermined location in an opposing position, with an interval time ti that is twice the water spray time ts. In this way, attachment 6 unevenly distributed on the furnace wall 2 can be removed uniformly and efficiently.

本実施形態にかかる溶鉱炉の操業方法では、操業中又は休風中に、溶鉱炉への装入物を付着物の下部まで減量させ、上記炉壁付着物除去方法により、炉壁に付着した付着物を除去する付着物除去工程を含む。除去された付着物は、原料など装入物とともに溶鉱炉を下降する。付着物中の原料成分はそのまま炉下部で溶解される。付着物中のアルカリ分など揮発成分はガス化して上昇する。ガス化した成分の一部は原料等に捕捉されて、炉内循環する。その他は、ダストなどとして系外に排出される。 The method of operating a blast furnace according to this embodiment includes a step of reducing the amount of material charged to the blast furnace to below the deposits during operation or during refueling, and removing the deposits attached to the furnace wall by the furnace wall deposit removal method. The removed deposits descend into the blast furnace together with the charged materials such as raw materials. The raw material components in the deposits are dissolved as they are in the lower part of the furnace. The volatile components in the deposits, such as alkali, are gasified and rise. Some of the gasified components are captured by the raw materials and circulated within the furnace. The rest are discharged to the outside of the system as dust, etc.

本実施形態にかかる溶鉱炉の操業方法では、溶鉱炉の炉壁への付着物を検知する工程を有し、溶鉱炉内の炉壁に付着物の付着を検知したら、上記付着物除去工程を実行することが好ましい。付着物の検知には、上記した(1)~(3)の3つの方法が例示される。 The blast furnace operating method according to this embodiment includes a step of detecting deposits on the walls of the blast furnace, and it is preferable to execute the deposit removal step when the deposition of deposits on the walls of the blast furnace is detected. The above-mentioned three methods (1) to (3) are exemplified for detecting deposits.

<実施例1>
内容積450mの溶鉱炉を用い、炉壁への付着物を除去するための専用散水ノズルを炉体円周上に8本設置した。散水ノズルは、付着物へ散水できるようノズル向きを調整し、散水ノズルの管径は下記散水流量を満たす管径を選定した。散水ノズルは、炉内風速によって向きが変わらないよう単管ノズルを選定し、以下の確認を行った。
Example 1
A blast furnace with an internal volume of 450 m3 was used, and eight dedicated water sprinkler nozzles for removing deposits from the furnace walls were installed around the circumference of the furnace body. The direction of the water sprinkler nozzles was adjusted so that they could sprinkle water on the deposits, and the pipe diameter of the water sprinkler nozzle was selected to satisfy the water sprinkler flow rate below. A single-pipe nozzle was selected for the water sprinkler nozzle so that its direction would not change depending on the wind speed inside the furnace, and the following checks were performed.

溶鉱炉内の炉壁の付着物の付着検知は、炉体に設置した炉体温度計、または炉体に設置した冷却水の水温の変化で検知することとした。また、付着物が除去出来たかの判断も炉体温度計による測定温度の変化、または冷却水の水温の変化で確認した。付着物が除去できなかったら温度変化はなく、付着物が除去できたら測定温度が上昇する。本実施例では、炉体に設置した冷却水の水温の変化で検知した。 Detection of adhesions on the furnace walls inside a blast furnace was carried out by a furnace body thermometer installed in the furnace body, or by changes in the temperature of the cooling water installed in the furnace body. In addition, whether the adhesions had been removed was determined by changes in the temperature measured by the furnace body thermometer, or by changes in the temperature of the cooling water. If the adhesions could not be removed, there would be no change in temperature, and if the adhesions were removed, the measured temperature would rise. In this example, detection was carried out by changes in the temperature of the cooling water installed in the furnace body.

炉体冷却水温の変化から、炉体付着物が5.8tの質量と推定された。この状態で休風中に溶鉱炉内の装入物の上面を付着物の下部まで下げ、付着物を露出させた。各ノズル1本ずつ、60sずつ散水を行い、散水流量を8t/hで行った。このとき、各ノズル当たりのインターバル時間は420sであった。2時間の散水により、推定付着量が0.6tまで低減できた。つまり、約9割の付着物除去効果を確認した。 The amount of deposits on the furnace body was estimated to be 5.8 t based on the change in the furnace body cooling water temperature. In this state, during a cooling off period, the top surface of the charge in the blast furnace was lowered to the bottom of the deposits, exposing the deposits. Each nozzle sprayed water for 60 s at a spray flow rate of 8 t/h. At this time, the interval time for each nozzle was 420 s. After two hours of spraying water, the estimated amount of deposits was reduced to 0.6 t. In other words, the removal of approximately 90% of the deposits was confirmed.

<比較例1>
実施例1と同様の設備を用い、付着物が付着した状態で、休風時に減尺を行い、付着物を約24時間散水せずに放冷した。サーマルショックにより4割程度の付着物除去効果を得た。
<Comparative Example 1>
Using the same equipment as in Example 1, the scale was reduced when the wind was turned off and the deposits were left to cool for about 24 hours without spraying water. The thermal shock removed about 40% of the deposits.

<比較例2>
実施例1と同様の設備を用い、付着物が付着した状態で、操業時に減尺を行い、付着物を約5時間散水せずに放冷した。サーマルショックにより3割程度の付着物除去効果を得た。
<Comparative Example 2>
Using the same equipment as in Example 1, the scale was reduced during operation while the deposits were still attached, and the deposits were left to cool for about 5 hours without spraying water. The thermal shock achieved the effect of removing about 30% of the deposits.

<実施例2>
実施例1と同様の設備を用い、炉体冷却水温から炉内付着物が9.7tと推定された。その状態で操業中に減尺を行い、5時間の間欠的な散水を付着物に向けて行った。散水条件は、60sの散水ののち120sのインターバル時間を置いた。散水流量10t/hとした。総散水量は約17tであった。その結果、推定付着量1.0tまで低減できた。実施例1と同様に9割の付着物除去効果を確認した。
Example 2
Using the same equipment as in Example 1, the amount of deposits inside the furnace was estimated to be 9.7 t based on the furnace body cooling water temperature. Under this condition, the furnace was scaled down during operation, and intermittent water spraying was performed for 5 hours toward the deposits. The water spraying conditions were 60 s of water spraying followed by an interval of 120 s. The water spray flow rate was 10 t/h. The total amount of water sprayed was approximately 17 t. As a result, the estimated amount of deposits could be reduced to 1.0 t. As in Example 1, the effect of removing 90% of the deposits was confirmed.

<実施例3>
実施例1と同様の設備を用い、炉体冷却水温から炉内付着物が6.8tと推定された。その状態で操業中に減尺を行い、1時間の間欠的な散水を付着物に向けて行った。散水条件は、50sの散水ののち120sのインターバル時間を置いた。散水流量8t/hとした。総散水量は約3tであった。その結果、推定付着量4.1tまで低減できた。約4割の付着物除去効果を確認した。
Example 3
Using the same equipment as in Example 1, the amount of deposits inside the furnace was estimated to be 6.8 t based on the furnace body cooling water temperature. Under this condition, the furnace was scaled down during operation, and intermittent water spraying was performed for 1 hour toward the deposits. The water spraying conditions were 50 s of water spraying followed by an interval of 120 s. The water spray flow rate was 8 t/h. The total amount of water sprayed was approximately 3 t. As a result, the estimated amount of deposits could be reduced to 4.1 t. The effect of removing approximately 40% of the deposits was confirmed.

<実施例4>
実施例1と同様の設備を用い、炉体冷却水温から炉内付着物が7.9tと推定された。その状態で操業中に減尺を行い、3時間の間欠的な散水を付着物に向けて行った。散水条件は、45sの散水ののち120sのインターバル時間を置いた。散水流量6t/hとした。総散水量は約5tであった。その結果、推定付着量4.0tまで低減できた。約5割の付着物除去効果を確認した。
Example 4
Using the same equipment as in Example 1, the amount of deposits inside the furnace was estimated to be 7.9 t based on the furnace body cooling water temperature. Under this condition, the furnace was scaled down during operation, and intermittent water spraying was performed on the deposits for 3 hours. The water spraying conditions were 45 s of water spraying followed by an interval of 120 s. The water spray flow rate was 6 t/h. The total amount of water sprayed was approximately 5 t. As a result, the estimated amount of deposits could be reduced to 4.0 t. The effect of removing approximately 50% of the deposits was confirmed.

<実施例5>
炉内に散水する場合、炉内原料や溶融物が温度低下し、炉熱低下となるおそれがある。吸熱反応である水性ガス反応を起こさないことが必要と考えた。そこで、溶鉱炉の排ガス分析を連続的に行い、水性ガス反応に伴う水素ガスの発生のない散水条件を求めた。実施例1と同じ設備を使い、8本のうち1本の散水で好ましい条件の確認を行った。表1に結果を示す。
Example 5
When water is sprayed inside the furnace, the temperature of the raw materials and molten material in the furnace may drop, which may result in a drop in furnace heat. It was thought that it was necessary to prevent the water-gas reaction, which is an endothermic reaction, from occurring. Therefore, the exhaust gas analysis of the blast furnace was carried out continuously to determine the water spraying conditions that would not generate hydrogen gas associated with the water-gas reaction. Using the same equipment as in Example 1, the preferable conditions were confirmed by spraying water from one of the eight nozzles. The results are shown in Table 1.

Figure 0007502547000002
Figure 0007502547000002

散水時間と散水流量を徐々に増加していき、水素ガスが発生した条件で、散水流量を低下させ、水素ガスの発生有無を試験した。散水時間120s以下および散水流量10t/h以下であれば水素ガスの発生なく散水できることがわかった。炉熱低下となる散水流量は炉容積によって変化するため、炉容積1mに対する散水流量は23kg/h以下が好ましいとわかった。 The water spray time and water spray flow rate were gradually increased, and under conditions where hydrogen gas was generated, the water spray flow rate was lowered to test whether hydrogen gas was generated. It was found that water could be sprayed without generating hydrogen gas if the water spray time was 120 seconds or less and the water spray flow rate was 10 t/h or less. Since the water spray flow rate at which the furnace heat is reduced varies depending on the furnace volume, it was found that the water spray flow rate for 1 m3 of furnace volume is preferably 23 kg/h or less.

<実施例6>
次に、付着物の除去を効率的に行うための散水条件、つまり、散水時間および散水流量を把握する試験を行った。実施例1と同様の設備を用い、除去用散水ノズル8本のうち6本を使用して、各ノズル計1hずつ散水し表2の6つの条件で除去効果を確認した。処理No.1を1h行い、次に、処理No.2を1h行い、・・・、最後に処理No.6を1h行うという順で試験した。付着物が除去できたかどうかの判断は炉体に設置した熱電対により計測した炉体温度の変化を確認した。つまり、付着物が除去できなかったら温度変化「無し」、付着物が除去できたら温度「上昇」と判定した。なお、インターバル時間は、散水時間の2倍に固定した。
Example 6
Next, a test was conducted to determine the watering conditions for efficiently removing the deposits, that is, the watering time and watering flow rate. Using the same equipment as in Example 1, six of the eight removal watering nozzles were used to spray water for a total of one hour each, and the removal effect was confirmed under the six conditions in Table 2. The test was conducted in the following order: treatment No. 1 was performed for one hour, then treatment No. 2 was performed for one hour, and finally treatment No. 6 was performed for one hour. The determination of whether the deposits were removed was made by checking the change in the furnace body temperature measured by a thermocouple installed in the furnace body. In other words, if the deposits could not be removed, the temperature was judged to be "none", and if the deposits were removed, the temperature was judged to be "increased". The interval time was fixed at twice the watering time.

Figure 0007502547000003
Figure 0007502547000003

処理No.1~6ではいずれも水性ガス反応による水素ガスの発生はなかった。表2の結果から、付着物を除去するためには、散水時間を30s以上および散水流量を4t/h以上確保する必要があることがわかった。このため、炉容積1mに対する散水流量は8kg/h以上が好ましいとわかった。 In all of the treatments No. 1 to 6, no hydrogen gas was generated due to the water-gas reaction. From the results in Table 2, it was found that in order to remove the deposits, it is necessary to ensure that the water spray time is 30 seconds or more and the water spray flow rate is 4 t/h or more. Therefore, it was found that the water spray flow rate per 1 m3 of furnace volume is preferably 8 kg/h or more.

本発明に係る溶鉱炉の炉壁付着物除去方法および操業方法は、溶鉱炉に適用して、とくに、マンガン鉱石を原料とする溶鉱炉に適用して効果が大きく、生産性が向上するので産業上有用である。 The method for removing deposits from the walls of a blast furnace and the operating method of the present invention are highly effective when applied to blast furnaces, particularly those that use manganese ore as a raw material, and are industrially useful because they improve productivity.

1 溶鉱炉
2 炉壁
3 炉口
4 散水ノズル
4A 散水
4B 散水順
5 (水冷)シャフトステーブ
6 (炉壁)付着物
7 減尺
8 (付着物の)脱落・除去
S (炉内)装入物
SL (減尺後の)装入物レベル
SL0 (減尺前の)装入物レベル
ts 散水時間
ti インターバル時間
ta 総散水時間
1 Blast furnace 2 Furnace wall 3 Furnace mouth 4 Sprinkler nozzle 4A Sprinkler 4B Sprinkler order 5 (Water-cooled) shaft stave 6 (Furnace wall) deposit 7 Reduction in length 8 (Deposition) falling off/removal S (Inside furnace) Charge SL Charge level SL0 (after reduction) Charge level ts (before reduction) Sprinkler time ti Interval time ta Total water spray time

Claims (6)

溶鉱炉への装入物の上面を付着物の下部まで下げ、前記付着物を露出させ、露出させた前記付着物に散水を行い、前記付着物を除去する、溶鉱炉の炉壁付着物除去方法。 A method for removing deposits from the walls of a blast furnace, which involves lowering the top surface of the material being charged to the blast furnace to the bottom of the deposits, exposing the deposits, and spraying water on the exposed deposits to remove them. 前記散水では、散水-散水間にインターバルを設け、間欠的に散水する、請求項1に記載の溶鉱炉の炉壁付着物除去方法。 The method for removing deposits from the walls of a blast furnace according to claim 1, wherein the water spraying is performed intermittently with intervals between sprays. 前記散水では、所定の炉熱水準を保持するよう1回あたりの散水時間、インターバル時間、散水流量および総散水量を調整し、前記付着物を除去する、請求項2に記載の溶鉱炉の炉壁付着物除去方法。 The method for removing deposits from the walls of a blast furnace as described in claim 2, in which the water spraying time, interval time, water spray flow rate, and total water spray amount are adjusted to maintain a predetermined furnace heat level, and the deposits are removed. 前記散水は複数回に分けて行い、1回の散水時間を30~120sの範囲とし、散水のインターバル時間を60~240sの範囲とし、炉容積1mに対する散水流量を8~23kg/hの範囲とし、炉容積1mに対する総散水量を13~39kgの範囲とすることで、前記付着物を除去する、請求項3に記載の溶鉱炉の炉壁付着物除去方法。 The method for removing deposits on a furnace wall of a blast furnace according to claim 3 , wherein the water is sprayed in a plurality of times, the water spray time is in the range of 30 to 120 seconds, the interval time between water sprays is in the range of 60 to 240 seconds, the water spray flow rate per 1 m3 of furnace volume is in the range of 8 to 23 kg/h, and the total amount of water sprayed per 1 m3 of furnace volume is in the range of 13 to 39 kg, thereby removing the deposits. 操業中又は休風中に、溶鉱炉への装入物を付着物の下部まで減量させ、請求項1ないし4のいずれか1項に記載の溶鉱炉の炉壁付着物除去方法により、炉壁の付着物を除去する付着物除去工程を含む、溶鉱炉の操業方法。 A method for operating a blast furnace, comprising a step of reducing the amount of material charged to the blast furnace to below the deposits during operation or during cessation of operation, and removing the deposits from the furnace walls by a method for removing deposits from the furnace walls of a blast furnace as described in any one of claims 1 to 4. さらに、溶鉱炉の炉壁への付着物を検知する工程を有し、
前記溶鉱炉内の炉壁に前記付着物の付着を検知したら、前記付着物除去工程を実行する、請求項5に記載の溶鉱炉の操業方法。
Further, the method includes a step of detecting deposits on a wall of the blast furnace,
6. The method for operating a blast furnace according to claim 5, further comprising the step of: executing the deposit removing step when adhesion of the deposit to a furnace wall inside the blast furnace is detected.
JP2023194903A 2023-11-16 2023-11-16 Method for removing deposits on blast furnace walls and method for operating a blast furnace Active JP7502547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023194903A JP7502547B1 (en) 2023-11-16 2023-11-16 Method for removing deposits on blast furnace walls and method for operating a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023194903A JP7502547B1 (en) 2023-11-16 2023-11-16 Method for removing deposits on blast furnace walls and method for operating a blast furnace

Publications (1)

Publication Number Publication Date
JP7502547B1 true JP7502547B1 (en) 2024-06-18

Family

ID=91483433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023194903A Active JP7502547B1 (en) 2023-11-16 2023-11-16 Method for removing deposits on blast furnace walls and method for operating a blast furnace

Country Status (1)

Country Link
JP (1) JP7502547B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048528A (en) 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace
JP2012219352A (en) 2011-04-12 2012-11-12 Nippon Steel Corp Method for evaluating deposit on furnace wall and method for operating blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048528A (en) 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace
JP2012219352A (en) 2011-04-12 2012-11-12 Nippon Steel Corp Method for evaluating deposit on furnace wall and method for operating blast furnace

Similar Documents

Publication Publication Date Title
TW472126B (en) Temperature control device and temperature control method for high-temperature exhaust gas
CN110396564B (en) Treatment method for upper junction thickness of blast furnace wall
JP7502547B1 (en) Method for removing deposits on blast furnace walls and method for operating a blast furnace
JP4932308B2 (en) Method and apparatus for processing molten blast furnace slag
CN108344307B (en) A kind of revolving furnace fume hood accumulated slag method for cleaning and revolving furnace fume hood accumulated slag clear up rifle
JP4870063B2 (en) Slag processing method
JP2009126748A (en) Treatment method for slag
JP5517063B2 (en) Slag processing method
KR100983947B1 (en) Manufacturing equipment of magmesium powder
JP2005512012A5 (en) Method and apparatus for increasing capacity of waste heat boiler in metallurgy and financial furnace
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JPH09503481A (en) Resurge (PbO) manufacturing process and equipment
JPH0741880A (en) Cooling method and device for sponge titanium reducing furnace
JP2019065352A (en) Method for protecting furnace bottom brick in blast furnace
JPH0368710A (en) Water cooling method for blast furnace contents
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP2684945B2 (en) Ash removal method on the inner surface of blast furnace tuyere
JPS6328816A (en) Coating method of converter slag
US3345053A (en) Apparatus for stopping air flow into blast furnaces
JPH10287879A (en) Retardation of carbon attachment to brick in oven top space of coke oven, and device therefor
JPH02277707A (en) Lowering stock level and blowing-down method for blast furnace
JPS57192233A (en) Operation of copper-refining converter
JP2024012113A (en) Blast furnace operation method
KR100434736B1 (en) Method for managing the top gas temperature in lowering the level of charge in the blast furnace
JPH0776369B2 (en) Blast furnace scale-down operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240606

R150 Certificate of patent or registration of utility model

Ref document number: 7502547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150