JP7500897B2 - Composition for improving intestinal flora - Google Patents

Composition for improving intestinal flora Download PDF

Info

Publication number
JP7500897B2
JP7500897B2 JP2020101762A JP2020101762A JP7500897B2 JP 7500897 B2 JP7500897 B2 JP 7500897B2 JP 2020101762 A JP2020101762 A JP 2020101762A JP 2020101762 A JP2020101762 A JP 2020101762A JP 7500897 B2 JP7500897 B2 JP 7500897B2
Authority
JP
Japan
Prior art keywords
asg
intestinal flora
mass
group
phylum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020101762A
Other languages
Japanese (ja)
Other versions
JP2021195326A (en
Inventor
浩幸 渡邊
賢希 井治
康英 奥原
知基 足立
幸彦 伊藤
喜子 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
Original Assignee
Fancl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp filed Critical Fancl Corp
Priority to JP2020101762A priority Critical patent/JP7500897B2/en
Publication of JP2021195326A publication Critical patent/JP2021195326A/en
Application granted granted Critical
Publication of JP7500897B2 publication Critical patent/JP7500897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

本発明は、腸内菌叢の改善作用を有する組成物に関する。 The present invention relates to a composition that has the effect of improving the intestinal flora.

ヒトの腸内菌叢の99%以上は、Firmicutes門、Bacteroidetes門、Proteobacteria門、又はActinobacteria門のいずれかに属することが明らかになっている。また健常者においては、Firmicutes門が全体の60%程度を占め、次いでBacteroidetes門が全体の20%程度を占めていることがわかっている。
一方、肥満者や肥満マウスでは、Firmicutes門の比率が上昇し、入れ替わるようにBacteroidetes門の比率が低下することが知られており、BMIとFirmicutes/Bacteroidetes比に正の相関関係があるともいわれている(非特許文献1、2参照)。
また腸内菌叢に占めるFirmicutes門の比率が高まると、腸内の異常発酵や、便秘が続き、不快な気分に至り、さらに長期間腸内菌叢がFirmicutes門主体の状態が続くと大腸がんが発生するなどの問題も指摘されている。このため腸内菌叢を改善することは健康を維持する上で重要であると考えられている。
It has been revealed that 99% or more of the human intestinal flora belongs to any one of the phyla Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. In addition, it has been found that in healthy individuals, the phylum Firmicutes accounts for about 60% of the total, followed by the phylum Bacteroidetes, which accounts for about 20% of the total.
On the other hand, it is known that in obese individuals and obese mice, the ratio of the Firmicutes phylum increases and, in exchange, the ratio of the Bacteroidetes phylum decreases, and it is said that there is a positive correlation between BMI and the Firmicutes/Bacteroidetes ratio (see non-patent documents 1 and 2).
In addition, it has been pointed out that an increase in the proportion of Firmicutes in the intestinal flora can lead to abnormal fermentation in the intestines, continued constipation, and discomfort, and that if the intestinal flora continues to be dominated by Firmicutes for a long period of time, it can lead to problems such as the development of colon cancer. For this reason, improving the intestinal flora is considered important for maintaining health.

腸内菌叢の改善状態は、前記のFirmicutes門の割合が減少することを指標として評価するか、あるいは、分類学上の目のレベルで、善玉菌と呼ばれるLactobacillales目の乳酸菌、属のレベルではビフィドバクテリウム属のビフィズス菌の占有率が高まり、悪玉菌と呼ばれるClostridium属の細菌群の腸内菌叢占有比率が低下することなどを指標として評価することができるとされている。また、このような腸内菌叢の変化を指標として、様々な腸内菌叢改善物質や食生活改善方法が、見出されている。 The improved state of the intestinal flora can be evaluated using as an indicator a decrease in the proportion of the Firmicutes phylum, or an increase in the proportion of lactic acid bacteria of the Lactobacillales order, known as good bacteria, or an increase in the proportion of bifidobacteria of the Bifidobacterium genus, known as bad bacteria, in the intestinal flora, and a decrease in the proportion of bacteria of the Clostridium genus, known as bad bacteria. In addition, various substances for improving the intestinal flora and methods for improving diet have been discovered using such changes in the intestinal flora as indicators.

腸内菌叢改善作用は、様々な化合物や組成物に見出されている。代表的なものとしてオリゴ糖類や多糖類などの糖類(特許文献1~3)がある。また食物繊維(特許文献4~5)や、食品由来の化合物(特許文献6)やたんぱく質・ペプチド(特許文献7)、あるいは微生物とその培養産物(特許文献8~9)などを挙げることができる。現在も様々な腸内菌叢改善作用を有する物質や、組成物の探索が進められている。 Various compounds and compositions have been found to have an intestinal flora-improving effect. Representative examples include sugars such as oligosaccharides and polysaccharides (Patent Documents 1 to 3). Other examples include dietary fiber (Patent Documents 4 to 5), food-derived compounds (Patent Document 6), proteins and peptides (Patent Document 7), and microorganisms and their culture products (Patent Documents 8 to 9). Currently, the search for various substances and compositions that have an intestinal flora-improving effect is ongoing.

アシル化ステロール配糖体は、玄米や米糠、大豆及びコーンなどの穀類に多く含まれステロール骨格に糖又は糖鎖が結合し、さらにこの糖又は糖鎖にアシル基が結合している化合物である。アシル化ステロール配糖体は、ステロールに結合する糖又は糖鎖の異なる化合物やアシル基の異なる化合物の総称であって、天然物中から得られるアシル化ステロール配糖体には通常複数の成分が含まれる。このアシル化ステロール配糖体には様々な生理作用が知られており、多数の提案がなされている(特許文献10~14参照)。 Acylated sterol glycosides are found in large quantities in grains such as brown rice, rice bran, soybeans, and corn, and are compounds in which a sugar or sugar chain is bound to a sterol skeleton, and an acyl group is further bound to this sugar or sugar chain. Acylated sterol glycosides is a general term for compounds with different sugars or sugar chains bound to sterols or different acyl groups, and acylated sterol glycosides obtained from natural products usually contain multiple components. Acylated sterol glycosides are known to have various physiological effects, and many proposals have been made (see Patent Documents 10 to 14).

特開2019-94307号公報JP 2019-94307 A 国際公開第2018/193897号International Publication No. 2018/193897 特開2019-92469号公報JP 2019-92469 A 特開2019-198281号公報JP 2019-198281 A 国際公開第2018/056284号International Publication No. 2018/056284 特開2018-12677号公報JP 2018-12677 A 国際公開第2017/142080号International Publication No. 2017/142080 特表2019-528763号公報JP 2019-528763 A 特開2016-204355号公報JP 2016-204355 A 特開2017-81841号公報JP 2017-81841 A 特開2017-43544号公報JP 2017-43544 A 特開2015-86153号公報JP 2015-86153 A 特開2014-156432号公報JP 2014-156432 A 特開2015-42627号公報JP 2015-42627 A 特開2015-86151号公報JP 2015-86151 A

Nature,Vol.444,1022-1023,2006Nature, Vol. 444, 1022-1023, 2006 日本化学療法学会雑誌、Vol.66,No.1,129-138,2018Japanese Journal of Chemotherapy, Vol. 66, No. 1, 129-138, 2018 帯大研報.10(1977): 507~514Obidai Research Bulletin. 10(1977): 507-514

本発明は、新たな腸内菌叢改善用組成物を提供することを課題とする。 The objective of the present invention is to provide a new composition for improving the intestinal flora.

本発明者らは、発芽玄米や玄米の糠に含有されるアシル化ステロール配糖体について研究を行っている。その研究の過程で、アシル化ステロール配糖体を含有する組成物に腸内菌叢改善作用を見いだし、本発明を完成させた。 The present inventors have been conducting research into acylated sterol glycosides contained in germinated brown rice and brown rice bran. During the course of their research, they discovered that compositions containing acylated sterol glycosides have an effect of improving the intestinal flora, leading to the completion of the present invention.

本発明は、以下の構成である。
(1)アシル化ステロール配糖体を有効成分として含有する腸内菌叢改善用組成物。
(2)アシル化ステロール配糖体を0.1質量%以上含有する(1)に記載の腸内菌叢改善用組成物。
The present invention has the following configuration.
(1) A composition for improving the intestinal flora, comprising an acylated sterol glycoside as an active ingredient.
(2) A composition for improving the intestinal flora according to (1), which contains 0.1% by mass or more of an acylated sterol glycoside.

本発明により、新たな腸内菌叢改善用組成物が提供される。 The present invention provides a new composition for improving the intestinal flora.

対照である高脂肪食(以下「HF」)投与群、アシル化ステロール配糖体(以下「ASG」)0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内容物の重量測定結果を示すグラフである。1 is a graph showing the results of measuring the weight of the cecal contents after 55 days of feeding in a control high fat diet (hereinafter referred to as "HF") group, a 0.5% acylated sterol glycoside (hereinafter referred to as "ASG") group, and a 1.0% ASG group. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内容物のpH測定結果を示すグラフである。1 is a graph showing the results of measuring the pH of the cecal contents in the HF administration group, the 0.5% ASG administration group, and the 1.0% ASG administration group after 55 days of rearing. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のFirmicutes門の占有率を示すグラフである。1 is a graph showing the occupancy rate of the Firmicutes phylum in the cecal flora of the HF-administered group, the 0.5% ASG-administered group, and the 1.0% ASG-administered group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のBacteroidetes門の占有率を示すグラフである。1 is a graph showing the occupancy rate of the Bacteroidetes phylum in the cecal flora of the HF-administered group, the 0.5% ASG-administered group, and the 1.0% ASG-administered group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のFirmicutes/Bacteroidetes比を示すグラフである。1 is a graph showing the Firmicutes/Bacteroidetes ratio in the cecal flora of the HF administration group, the ASG 0.5% administration group, and the ASG 1.0% administration group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のLactobacillales目に分類される細菌群の占有率を示すグラフである。1 is a graph showing the occupancy rate of bacteria classified into the order Lactobacillales in the cecal flora of the HF-administered group, the 0.5% ASG-administered group, and the 1.0% ASG-administered group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のClostridium cluster XIに分類される細菌群の占有率を示すグラフである。1 is a graph showing the occupancy rate of a bacterial group classified as Clostridium cluster XI in the cecal flora of the HF administration group, the ASG 0.5% administration group, and the ASG 1.0% administration group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群の55日飼育後の盲腸内菌叢のClostridium subcluster XIVaに分類される細菌群の占有率を示すグラフである。1 is a graph showing the occupancy rate of a bacterial group classified as Clostridium subcluster XIVa in the cecal flora of the HF administration group, the ASG 0.5% administration group, and the ASG 1.0% administration group after 55 days of feeding. HF投与群、ASG0.5%投与群、ASG1.0%投与群それぞれの飼育期間の平均体重変化(平均増加量)示すグラフである。1 is a graph showing the average body weight change (average gain) during the rearing period for each of the HF administration group, the ASG 0.5% administration group, and the ASG 1.0% administration group.

本発明は、アシル化ステロール配糖体を有効成分として含有する、腸内菌叢改善用組成物に係るものである。
本発明でいう腸内菌叢の改善とは、哺乳動物の大腸内における微生物群のうちFirmicutes門の占有比率を低下させ、Bacteroidetes門の占有比率を上昇させること、及び/又はラクトバシラス目(Lactobacillales)に分類される細菌群の占有比率を増加させクロストリジウム属(Clostridium)に分類される細菌群の占有比率を減少させることをいう。
本発明でいう腸内菌叢改善用組成物とは、医薬品、医薬部外品、飲料、食品、健康食品、サプリメントである。
The present invention relates to a composition for improving intestinal flora, which contains an acylated sterol glycoside as an active ingredient.
In the present invention, improvement of the intestinal flora refers to decreasing the proportion of bacteria belonging to the Firmicutes phylum and increasing the proportion of bacteria belonging to the Bacteroidetes phylum among the microbial groups in the large intestine of a mammal, and/or increasing the proportion of bacteria belonging to the Lactobacillales order and decreasing the proportion of bacteria belonging to the Clostridium genus.
The intestinal flora-improving composition according to the present invention includes medicines, quasi-drugs, beverages, foods, health foods, and supplements.

本発明の腸内菌叢改善用組成物に含まれる有効成分であるアシル化ステロール配糖体は、玄米や米糠、大豆及びコーンなどの原料から得ることができる。
本発明でいうアシル化ステロール配糖体とは、ステロール骨格に糖又は糖鎖が結合し、糖又は糖鎖にアシル基が結合した化合物をいう。さらにまた、本発明でいうアシル化ステロール配糖体なる用語は、ステロールに結合した糖又は糖鎖が異なる化合物、及び糖又は糖鎖に結合したアシル基が異なる化合物を包含する。天然物からの抽出物中には、通常複数種の異なるアシル化ステロール配糖体が含有される。アシル化ステロール配糖体の構成糖は、主にグルコースであるが、それ以外の単糖又はオリゴ糖であってもよい。また構成ステロールはβ-シトステロール、スチグマステロール、カンペステロールである。
アシル化ステロール配糖体は、主にステロールに結合したグルコースの6位が、脂肪酸によってアシル化されており、脂肪酸は、主としてリノール酸、オレイン酸、パルミチン酸であることが明らかとなっている(非特許文献3参照)。
The acylated sterol glycoside, which is an active ingredient contained in the intestinal flora-improving composition of the present invention, can be obtained from raw materials such as brown rice, rice bran, soybeans, and corn.
The term "acylated sterol glycoside" as used herein refers to a compound in which a sugar or sugar chain is bound to a sterol skeleton, and an acyl group is bound to the sugar or sugar chain. Furthermore, the term "acylated sterol glycoside" as used herein includes compounds in which the sugar or sugar chain bound to the sterol is different, and compounds in which the acyl group bound to the sugar or sugar chain is different. Extracts from natural products usually contain a plurality of different acylated sterol glycosides. The constituent sugar of acylated sterol glycosides is mainly glucose, but may be other monosaccharides or oligosaccharides. The constituent sterols are β-sitosterol, stigmasterol, and campesterol.
Acylated sterol glycosides are mainly acylated at the 6-position of glucose bound to sterol with fatty acids, and it has been revealed that the fatty acids are mainly linoleic acid, oleic acid, and palmitic acid (see non-patent document 3).

本発明に用いるアシル化ステロール配糖体は、天然物から抽出したものが好ましい。また、化学的に合成したものも用いることができる。天然物から抽出したものは、分析するときアシル化ステロール1質量%以上含有するものであれば、本発明の組成物の原料として使用可能である。また抽出物の形態は、本発明の組成物に配合するに適した液体、固体、粉末等いずれの形態であって適宜選択して使用することが可能である。 The acylated sterol glycosides used in the present invention are preferably extracted from natural products. Chemically synthesized products can also be used. Products extracted from natural products can be used as raw materials for the composition of the present invention as long as they contain 1% by mass or more of acylated sterols when analyzed. The form of the extract can be selected appropriately from any form suitable for incorporation into the composition of the present invention, such as liquid, solid, or powder.

本発明の有効成分であるアシル化ステロール配糖体を、玄米や米糠、大豆及びコーンなどの穀類から抽出物として得るための方法として、溶媒抽出法、超臨界抽出法等を例示できる。 Examples of methods for obtaining the acylated sterol glycoside, which is the active ingredient of the present invention, as an extract from grains such as brown rice, rice bran, soybeans, and corn include solvent extraction and supercritical extraction.

玄米や米糠、大豆及びコーンなどの穀類からアシル化ステロール配糖体を得る方法について概略を説明する。
玄米や米糠、大豆及びコーンなどの穀類を原料とする。このとき、これらの原料に含まれている外皮などの異物を選別除去した後、ノルマルヘキサンを用いて脱脂する。得られた脱脂糠を蒸留装置により脱溶媒し、さらにノルマルヘキサン、アセトン、エタノール、水などの溶媒によって溶媒抽出する。かくして得られた溶媒抽出液を、脱溶剤装置を用いて脱溶剤することで本発明の有効成分であるアシル化ステロール配糖体を含有する、発芽玄米糠または玄米糠の抽出物を得ることができる。この抽出物は、本発明の腸内菌叢改善用組成物の原料として使用することができる。
またこの抽出物をさらにクロロホルム、メタノール等の溶媒を用いた溶媒抽出を繰り返すことで、アシル化ステロール配糖体の純度を高めることができる。あるいは分取用液体クロマトグラフィー装置やカラムクロマトグラフィーを用いてアシル化ステロール配糖体をさらに高純度に精製することもできる。この精製アシル化ステロール配糖体を賦形剤等と混合して、腸内菌叢改善用組成物とすることができる。
A method for obtaining acylated sterol glycosides from grains such as brown rice, rice bran, soybeans, and corn is outlined below.
The raw materials are cereals such as brown rice, rice bran, soybeans, and corn. At this time, foreign matter such as the outer skin contained in these raw materials is selected and removed, and then defatted using normal hexane. The obtained defatted bran is desolvated using a distillation apparatus, and further solvent extracted with a solvent such as normal hexane, acetone, ethanol, or water. The solvent extract thus obtained is desolvated using a desolvation apparatus to obtain germinated brown rice bran or an extract of brown rice bran containing the acylated sterol glycoside, which is the active ingredient of the present invention. This extract can be used as a raw material for the intestinal flora improving composition of the present invention.
Furthermore, the purity of the acylated sterol glycoside can be increased by repeating solvent extraction of this extract using a solvent such as chloroform or methanol. Alternatively, the acylated sterol glycoside can be purified to a higher purity using a preparative liquid chromatography device or column chromatography. The purified acylated sterol glycoside can be mixed with an excipient or the like to prepare a composition for improving the intestinal flora.

アシル化ステロール配糖体の含有量は、以下の方法により測定することができる。
(1)前記の抽出物を適量秤取し、クロロホルム/メタノール混液(クロロホルム:メタノール=2:1)を加え、メスフラスコにてメスアップする。
(2)(1)で得られた溶液は、成分濃度に応じて適宜希釈し、分析用試料溶液とする。
(3)アシル化ステロール配糖体の標品は、Esterified Steryl Glucoside(フナコシ)を用いる。測定は、高速液体クロマトグラフ法によりアシル化ステロール配糖体の濃度を算出する。
(4)高速液体クロマトグラフ法による分析条件
分析装置 :HPLC
移動相A :メタノール:水=95:5(v/v)
移動相B :クロロホルム=100(v/v)
ポンプ :Model 582
solvent delivery system
分析カラム :LiChrospher Si60(5μm)
HPLC-Cartridge(MERCK)
検出器 :荷電化粒子検出器(コロナ ダイオネクス社)
Injection Volume:20μL
カラムオーブン:40℃(FLO社 model 502)
分析時間 :40min
脱泡装置 :uniflows Degasys
Ultimate DV 3003
流速 :1mL/min
グラジェント条件
以下に示すとおり
0-15分
移動相A: 1%→25%、移動相B:99%→75%
15-20分
移動相A:25%→90%、移動相B:75%→10%
20-25分
移動相A:90%、 移動相B:10%
25-30分
移動相A:90%→ 1%、移動相B:10%→99%
30-40分
移動相A: 1%、 移動相B:99%
The content of acylated sterol glycosides can be measured by the following method.
(1) Weigh out an appropriate amount of the extract, add a chloroform/methanol mixture (chloroform:methanol=2:1), and dilute to volume in a measuring flask.
(2) The solution obtained in (1) is diluted appropriately depending on the component concentration to prepare a sample solution for analysis.
(3) Esterified Steryl Glycoside (Funakoshi) is used as a standard specimen of acylated sterol glycoside. The concentration of acylated sterol glycoside is calculated by high performance liquid chromatography.
(4) Analysis conditions by high performance liquid chromatography Analytical equipment: HPLC
Mobile phase A: methanol: water = 95: 5 (v/v)
Mobile phase B: Chloroform = 100 (v/v)
Pump: Model 582
Solvent delivery system
Analytical column: LiChrospher Si60 (5 μm)
HPLC-Cartridge (MERCK)
Detector: Charged particle detector (Corona Dionex)
Injection Volume: 20 μL
Column oven: 40°C (FLO model 502)
Analysis time: 40 min
Defoaming device: Uniflows Degasys
Ultimate DV 3003
Flow rate: 1 mL / min
Gradient conditions: 0-15 min. Mobile phase A: 1% → 25%, Mobile phase B: 99% → 75%
15-20 min Mobile phase A: 25% → 90%, Mobile phase B: 75% → 10%
20-25 min Mobile phase A: 90%, Mobile phase B: 10%
25-30 min Mobile phase A: 90% → 1%, Mobile phase B: 10% → 99%
30-40 min Mobile phase A: 1%, Mobile phase B: 99%

アシル化ステロール配糖体を含有する抽出物は、加水分解したときに、加水分解前の質量に対して20~30質量%のリノール酸、24~37質量%のオレイン酸、11~17質量%のパルミチン酸を含有する。 When the extract containing acylated sterol glycosides is hydrolyzed, it contains 20-30% by mass of linoleic acid, 24-37% by mass of oleic acid, and 11-17% by mass of palmitic acid, based on the mass before hydrolysis.

前記した加水分解後のリノール酸、オレイン酸、パルミチン酸の量は、以下の方法により測定できる。
すなわち、前記抽出物に0.5mol/Lの水酸化ナトリウムを含有するメタノールを加えてケン化し、三フッ化ホウ素メタノール錯体メタノール溶液を添加してメチルエステル化する。ヘキサンと飽和食塩水を加えて脂肪酸のメチルエステル化物を分配抽出し、ガスクロマトグラフィーで水素炎イオン検出器を用いて定量分析する。
The amounts of linoleic acid, oleic acid and palmitic acid after the above-mentioned hydrolysis can be measured by the following method.
That is, the extract is saponified by adding methanol containing 0.5 mol/L sodium hydroxide, and then methyl esterified by adding a boron trifluoride-methanol complex methanol solution. Methyl esters of fatty acids are partitioned and extracted by adding hexane and saturated saline, and quantitatively analyzed by gas chromatography using a hydrogen flame ionization detector.

本発明の有効成分であるアシル化ステロール配糖体を含有する抽出物は、加水分解したときに、加水分解前の質量に対して1.7~2.6質量%の植物ステロールを含有している。なお植物ステロールの主成分は、β-シトステロール、スチグマステロール、カンペステロールである。 When the extract containing the acylated sterol glycoside, which is the active ingredient of the present invention, is hydrolyzed, it contains 1.7 to 2.6% by mass of plant sterols based on the mass before hydrolysis. The main components of plant sterols are β-sitosterol, stigmasterol, and campesterol.

そして、植物ステロールの量は、以下の方法により測定できる。
玄米や米糠、大豆及びコーンなどの原料からの抽出物に塩化ナトリウム水溶液、ピロガロール-エタノール溶液、水酸化カリウム水溶液、水酸化カリウムを順次加えて、ケン化する。塩化ナトリウム水溶液とヘキサン、酢酸エチル混液を添加して、不ケン化物を分配抽出する。不ケン化物からシリカカートリッジカラムを用いて植物ステロール画分を分離し、植物ステロール画分中の植物ステロールをガスクロマトグラフィーで水素炎イオン検出器を用いて定量分析することで植物ステロールの量を測定できる。
The amount of plant sterol can be measured by the following method.
Extracts from raw materials such as brown rice, rice bran, soybeans, and corn are saponified by sequentially adding an aqueous solution of sodium chloride, a pyrogallol-ethanol solution, an aqueous solution of potassium hydroxide, and potassium hydroxide. An aqueous solution of sodium chloride and a mixture of hexane and ethyl acetate are added to perform partition extraction of the unsaponifiable matter. The plant sterol fraction is separated from the unsaponifiable matter using a silica cartridge column, and the amount of plant sterols in the plant sterol fraction can be measured by quantitatively analyzing the plant sterols in the plant sterol fraction by gas chromatography using a flame ionization detector.

本発明に係るアシル化ステロール配糖体を含有する玄米や米糠、大豆及びコーンなどの穀類からの抽出物、あるいは高純度に精製したアシル化ステロール配糖体は、公知の方法により、賦形剤とともに任意の形態に製剤化して、経口摂取(投与)用の剤型とすることができる。具体的な剤型は、カプセル剤又は錠剤、顆粒剤、細粒剤、散剤、液剤を例示できる。
また飲食品とする場合、それぞれの飲食品の製造方法に従って添加して飲食品とすることができる。
The extracts from grains such as brown rice, rice bran, soybean and corn containing the acylated sterol glycoside according to the present invention, or the highly purified acylated sterol glycoside, can be formulated into any form together with an excipient by a known method to provide a dosage form for oral ingestion (administration). Specific dosage forms include capsules, tablets, granules, fine granules, powders and liquids.
When preparing food or drink, the additive can be added according to the manufacturing method of each food or drink.

本発明の腸内菌叢改善用組成物は、アシル化ステロール配糖体を0.1質量%以上、好ましくは0.3~10質量%、より好ましくは0.5~3質量%含有する。
本発明の腸内菌叢改善用組成物の投与量は、投与方法と、対象者の年齢、病状や一般状態等によって変更し得るが、成人では体重1kg当たり通常、1日当たりアシル化ステロール換算で0.1~500mg投与することが適当である。
The composition for improving intestinal flora of the present invention contains 0.1% by mass or more, preferably 0.3 to 10% by mass, and more preferably 0.5 to 3% by mass of an acylated sterol glycoside.
The dosage of the composition for improving intestinal flora of the present invention may vary depending on the administration method and the age, medical condition, general condition, etc. of the subject. For adults, it is usually appropriate to administer 0.1 to 500 mg, calculated as acylated sterol, per kg of body weight per day.

以下に、実施例を示し、本発明をさらに詳細に説明する。
<高脂肪食摂取による腸内菌叢の悪化状態の改善試験>
高脂肪食を長期間摂取すると、腸内菌叢におけるいわゆる「善玉菌」と呼ばれる乳酸菌群やビフィズス菌群の比率が減少し、「悪玉菌」と呼ばれるクロストリジウム属の細菌群が増加していることが、従来技術に記載の通り、知られている。本試験は、高脂肪食の持続摂取によるこのような腸内菌叢の変化(悪化)をアシル化ステロール配糖体が改善することを確認するために行った。
The present invention will be described in more detail below with reference to examples.
<Test to improve the deterioration of intestinal flora caused by high-fat diet intake>
It is known, as described in the prior art, that when a high-fat diet is ingested for a long period of time, the ratio of the so-called "good bacteria" Lactobacillus and Bifidobacterium groups in the intestinal flora decreases, and the "bad bacteria" Clostridium group increases. This test was conducted to confirm that acylated sterol glycosides improve such changes (deterioration) in the intestinal flora caused by the continuous intake of a high-fat diet.

<1.動物試験用高純度アシル化ステロール配糖体の調製>
市場に流通している玄米糠を選別し、混入している胚乳や異物を除いた玄米糠を得た。得られた選別済みの玄米糠10kgに対して50Lのノルマルヘキサンを用い、常法により脱脂した。この脱脂作業をもう一度繰り返し、脱脂玄米糠を得た。得られた脱脂玄米糠を、蒸留装置を用いて溶媒を除去した。
この脱脂玄米糠8kgに対し、50Lのエタノールを用いて70±3℃の温度条件にて1時間還流抽出した。これを3回繰り返し、得られた抽出液について、脱溶剤装置を用いてエタノールを除去した。なお以上の抽出操作は特許文献15に開示されている方法に基づいて行った。
この玄米糠抽出物中のアシル化ステロール配糖体の含有量は3.4質量%であった。
1. Preparation of high-purity acylated sterol glycosides for animal testing
Brown rice bran distributed on the market was selected, and brown rice bran from which contaminating endosperm and foreign matter had been removed was obtained. 10 kg of the obtained selected brown rice bran was defatted using 50 L of normal hexane in a conventional manner. This degreasing process was repeated once more to obtain defatted brown rice bran. The obtained defatted brown rice bran was subjected to a distillation apparatus to remove the solvent.
8 kg of this defatted brown rice bran was extracted with 50 L of ethanol at 70±3° C. for 1 hour under reflux. This was repeated three times, and the ethanol was removed from the resulting extract using a solvent remover. The above extraction procedure was carried out based on the method disclosed in Patent Document 15.
The content of acylated sterol glycosides in this brown rice bran extract was 3.4% by mass.

前記のアシル化ステロール配糖体(以下「アシル化ステロール配糖体」を「ASG」と略記する)含有玄米糠抽出物(以下「抽出物」)を再度溶媒抽出とカラムクロマトグラフィー操作を行い、溶媒を除去し、ASG 91質量%純度の白色のグリース状物質を得た。具体的な方法として1:1の容積比で混合したヘキサン-クロロホルム混合液(以下「ヘキクロ」)90mLを抽出物142gと均質に混合した後、25℃,5000rpm×10min.の条件で遠心し上澄みを精製サンプルとした。精製用のカラムには直径100mmのガラス製のオープンカラムを用いた。カラム単体にはシリカゲル700gを用いヘキクロ1Lと均質に混合した後にカラムへ充填した。充填した後約60分間静置し精製サンプル全量をアプライした。アプライ後、ヘキクロ2.2L、クロロホルム3.2L及びクロロホルムとメタノールを容積比9:1で均質に混合したクロロホルム-メタノール混合液(以下「クロメタ」)3Lの順で通液し、クロメタの通液時に溶出される1番目と2番目の褐色色素(リング状)の間をASG画分として分取した。分取したASG画分を含む溶液はエバポレーターにて濃縮後、24時間凍結乾燥しASG91質量%純度の精製物を得た。これを以下の動物試験用試料とした。 The brown rice bran extract (hereinafter "extract") containing the acylated sterol glycosides (hereinafter "acylated sterol glycosides" will be abbreviated as "ASG") was subjected to solvent extraction and column chromatography again, and the solvent was removed to obtain a white grease-like substance with an ASG purity of 91% by mass. As a specific method, 90 mL of a 1:1 volumetric ratio hexane-chloroform mixture (hereinafter "hexane") was mixed homogeneously with 142 g of the extract, and then centrifuged at 25°C and 5000 rpm for 10 min. to obtain the supernatant as a purified sample. A glass open column with a diameter of 100 mm was used for purification. 700 g of silica gel was used as the column alone, and was mixed homogeneously with 1 L of hexane, and then packed into the column. After filling, the column was left to stand for about 60 minutes, and the entire amount of the purified sample was applied. After application, 2.2 L of hexachloro, 3.2 L of chloroform, and 3 L of a chloroform-methanol mixture (hereafter referred to as "chrometa"), a homogeneous mixture of chloroform and methanol in a volume ratio of 9:1, were passed through in that order, and the ASG fraction was separated between the first and second brown pigments (ring-shaped) eluted when chrometa was passed through. The solution containing the separated ASG fraction was concentrated in an evaporator and then freeze-dried for 24 hours to obtain a purified product with an ASG purity of 91% by mass. This was used as the sample for the following animal tests.

<2.動物試験>
1.試験動物
入荷時7週齢のC57BL/6J雄マウス(日本エスエルシー株式会社)を試験に用いた。マウスは、ブリーダーより導入後、MF飼料(オリエンタル酵母工業)と飲用水(水道水)を自由摂取させ、7日間予備飼育した後、健常な動物一群8匹とし、3群に群分けした。
2. Animal testing
1. Test animals Seven-week-old C57BL/6J male mice (Japan SLC Co., Ltd.) were used in the test. After being introduced by a breeder, the mice were fed MF feed (Oriental Yeast Co., Ltd.) and drinking water (tap water) ad libitum and were pre-bred for 7 days. After that, the mice were divided into three groups of eight healthy animals each.

2.飼育条件
動物飼育室は、室温24℃、湿度55%、12時間の明暗サイクル(明期はAM7:00~PM7:00、暗期はPM7:00~AM7:00)の条件で管理した。
2. Breeding Conditions The animal breeding room was maintained under the following conditions: room temperature 24° C., humidity 55%, and a 12-hour light/dark cycle (light period 7:00 AM to 7:00 PM, dark period 7:00 PM to 7:00 AM).

3.試験期間(飼育期間)
本試験におけるASG投与期間を55日として、動物試験を行った。
3. Test period (breeding period)
In this study, the ASG administration period was set to 55 days, and the animal study was performed.

4.試験用餌料の調製
ASGの腸内菌叢に対する効果を確認するため試験用餌料を調製した。
試験用餌料に配合するASGは、上記した高純度精製ASG (純度91%)を使用した。
試験用餌料は、ラードを30%とした高脂肪食(HF)にASGを0.5%(0.5%ASG)、又は1.0%(1.0%ASG)添加したものを調製した。
また対照の高脂肪食(以下「HF」と略記)は市販の標準飼料AIN93G(オリエンタル酵母株式会社)の組成をベースとし、これを高脂肪にした組成に改変したものである。このHF及び上記の試験用餌料は、本発明者らが調製した。
このHFの調製に当たっては、餌料100質量部当たり、カゼイン(ミルクカゼイン:日本配合餌料株式会社)20質量部、L-シスチン(富士フィルム和光純薬工業株式会社)0.3質量部、シュクロース(第一糖業株式会社)13質量部、デキストリン(三晶株式会社)17.1986質量部、とうもろこし油(ビタミンEフリー(タマ生化学株式会社))10質量部、ラード(株式会社ADEKA)30質量部、セルロースパウダー(オリエンタル酵母工業株式会社)5質量部、AIN-93G ミネラル混合(オリエンタル酵母工業株式会社)3.5質量部、AIN-93ビタミン コリン有(オリエンタル酵母工業株式会社)1質量部、第三ブチルヒドロキノン(富士フイルム和光純薬工業株式会社)0.0014質量部を用い、攪拌装置に投入し、十分攪拌混合して餌料とした。また0.5%ASG配合餌料は、前記の精製品を0.55質量部加え、とうもろこし油を9.45質量部に減量して調製した。また1.0%ASG配合餌料は、同様に精製ASG1.11質量部、とうもろこし油8.89質量部に減量して調製した。各餌料の原料配合量を、下記表1に示した。
4. Preparation of test feed Test feed was prepared to confirm the effect of ASG on the intestinal flora.
The ASG used in the test feed was the above-mentioned highly purified ASG (purity 91%).
The test diet was prepared by adding 0.5% (0.5% ASG) or 1.0% (1.0% ASG) ASG to a high fat diet (HF) containing 30% lard.
The control high-fat diet (hereinafter abbreviated as "HF") was based on the composition of the commercially available standard feed AIN93G (Oriental Yeast Co., Ltd.), which was modified to have a high-fat composition. This HF and the above test feeds were prepared by the present inventors.
In preparing this HF, 20 parts by mass of casein (milk casein: Nippon Formula Feed Co., Ltd.), 0.3 parts by mass of L-cystine (Fujifilm Wako Pure Chemical Industries, Ltd.), 13 parts by mass of sucrose (Daiichi Sugar Co., Ltd.), 17.1986 parts by mass of dextrin (Sansho Co., Ltd.), 10 parts by mass of corn oil (vitamin E free (Tama Biochemical Co., Ltd.)), 30 parts by mass of lard (ADEKA Corporation), 5 parts by mass of cellulose powder (Oriental Yeast Co., Ltd.), 3.5 parts by mass of AIN-93G mineral mix (Oriental Yeast Co., Ltd.), 1 part by mass of AIN-93 vitamin choline (Oriental Yeast Co., Ltd.), and 0.0014 parts by mass of tert-butylhydroquinone (Fujifilm Wako Pure Chemical Industries, Ltd.) were used per 100 parts by mass of feed, and the ingredients were placed in a stirrer and thoroughly stirred and mixed to prepare the feed. The 0.5% ASG feed was prepared by adding 0.55 parts by mass of the refined product and reducing the amount of corn oil to 9.45 parts by mass. The 1.0% ASG feed was similarly prepared by reducing the amount of refined ASG to 1.11 parts by mass and corn oil to 8.89 parts by mass. The amounts of raw materials used in each feed are shown in Table 1 below.

Figure 0007500897000001
Figure 0007500897000001

5.試験の実施
試験用餌料を、それぞれ群分けしたマウス3群に無作為に割り付けた。そして各群の毎日の摂取カロリーを同じにするため、HF群を基準とするペアフィーディング法による餌料の投与を行った。なお、水は自由摂取とした。
55日間試験用餌料を上記の通り給餌して飼育した。また、毎週1回体重を測定した。
試験動物は、飼育期間が終了した後、イソフルランによる吸引麻酔下で、心臓採血により脱血死させた。屠体を解剖し、盲腸を摘出して、その重量を測定した。さらに腸内菌叢解析のため盲腸内容物を回収し重量を測定した。
5. Testing The test food was randomly assigned to three groups of mice. To ensure that each group had the same daily calorie intake, the food was administered by pair-feeding based on the HF group. Water was available ad libitum.
The rats were fed the test diet as described above for 55 days, and their body weight was measured once a week.
After the rearing period, the test animals were killed by cardiac bleed under isoflurane inhalation anesthesia. The carcasses were dissected, and the cecum was removed and weighed. The cecal contents were then collected and weighed for intestinal flora analysis.

6.腸内細菌叢の解析方法
回収した盲腸内容物は、15mlの生理食塩水に懸濁してpHを測定し、さらにこの懸濁液を検体として腸内細菌叢の細菌群解析を行った。
腸内細菌叢の解析は、末端標識制限酵素断片多型分析(Terminal Restriction Fragment Length Polymorphism:T-RFLP)法(株式会社テクノスルガ・ラボ)により行った。
解析対象とした細菌群は、T-RFLP法で提供されている分類に従い、分類学上の門のレベルでFirmicutes門、Bacteroidetes門の2門、目のレベルでは、Lactobacillalesに分類される細菌群、属のレベルではクロストリジウム(Clostridium)属に分類されるClostridium cluster XI、Clostridium subcluster XIVa、Clostridium cluster XVIII、Clostridium cluster IV、Bifidobacterium(ビフィドバクテリウムに分類される細菌群、Prevotella属に分類される細菌群、Bacteroides属に分類される細菌群を選定して解析対象とした。また、検体から抽出したDNAの16SrDNA部分をPCRで増幅し、制限酵素で切断したDNAの長さが、上記の細菌群に該当しないものについては、その他(other)として解析した。
6. Analysis method of intestinal bacterial flora The collected cecal contents were suspended in 15 ml of physiological saline, and the pH was measured. Furthermore, this suspension was used as a sample for bacterial group analysis of the intestinal bacterial flora.
The intestinal flora was analyzed by the Terminal Restriction Fragment Length Polymorphism (T-RFLP) method (Techno Suruga Lab., Inc.).
The bacterial groups analyzed were classified into two phyla, Firmicutes and Bacteroidetes, at the taxonomic phylum level, Lactobacillales at the order level, and Clostridium cluster XI, Clostridium subcluster XIVa, Clostridium cluster XVIII, and Clostridium cluster XIVIII, all of which are classified into the Clostridium genus, according to the classification provided by the T-RFLP method. IV. Bifidobacterium (a group of bacteria classified as Bifidobacterium, a group of bacteria classified as Prevotella, and a group of bacteria classified as Bacteroides were selected as the analysis subjects. In addition, the 16S rDNA portion of DNA extracted from the specimen was amplified by PCR, and DNA cleaved with restriction enzymes whose length did not correspond to the above bacterial groups was analyzed as "other."

解析に当たっては、検体から抽出したDNAの16SrDNA部分をPCRで増幅し、制限酵素で切断したDNAの長さが近いものをグループ化した。菌種ごとに全細菌数に対する細菌数に換算して腸内菌叢における占有率(%)を求め、細菌群集の構成を解析した。なお結果は、Tukeyの多重比較検定法によって有意差検定を行った。有意水準をp<0.05、P<0.01の2水準で評価した。 For the analysis, the 16SrDNA portion of DNA extracted from the samples was amplified by PCR, and DNA cleaved with restriction enzymes was grouped into groups with similar lengths. The number of bacteria per species was converted to the total number of bacteria to determine the percentage of the intestinal flora, and the composition of the bacterial community was analyzed. The results were tested for significance using Tukey's multiple comparison test. Significance was evaluated at two levels: p<0.05 and P<0.01.

7.解析結果
(1)盲腸内容物重量
盲腸内容物の重量測定結果を図1に示した。
ASG0.5%、1.0%投与群の両群とも、盲腸内容物重量が、HF群に比して有意に増加していた。
7. Analysis Results (1) Cecal Content Weight The results of measuring the cecal content weight are shown in Figure 1.
In both the 0.5% and 1.0% ASG groups, the cecal content weight was significantly increased compared to the HF group.

(2)盲腸内容物のpH
盲腸内容物のpHを図2に示した。
盲腸内容物のpHは、HF投与群に対してASG1.0%投与群において有意に低下した。
(2) pH of cecal contents
The pH of the cecal contents is shown in FIG.
The pH of the cecal contents was significantly decreased in the 1.0% ASG group compared to the HF group.

(3)Firmicutes門
全細菌数に対するFirmicutes門の占有率を図3に示した。HF投与群と比べ、ASG0.5%投与群及び1.0%投与群ともにFirmicutes門の占有率が明らかに有意に減少した。
(3) Firmicutes phylum The occupancy rate of the Firmicutes phylum relative to the total bacterial count is shown in Figure 3. Compared with the HF administration group, the occupancy rate of the Firmicutes phylum was clearly significantly decreased in both the ASG 0.5% administration group and the ASG 1.0% administration group.

(4)Bacteroidetes門
全細菌数に対するBacteroidetes門の占有率を図4に示した。HF投与群と比べ、ASG0.5%投与群のBacteroidetes門の占有率が明らかに有意に増加した。
(4) Bacteroidetes phylum The occupancy rate of the Bacteroidetes phylum relative to the total bacterial count is shown in Figure 4. Compared with the HF administration group, the occupancy rate of the Bacteroidetes phylum in the 0.5% ASG administration group was clearly significantly increased.

(5)Firmicutes門/Bacteroidetes門の比
腸内菌叢の変化を見る指標としてFirmicutes門の占有率とBacteroidetes門の占有率の比、すなわちFirmicutes門/Bacteroidetes門の比を見ることが重要である。Firmicutes門/Bacteroidetes門の比を図5に示した。
図5から、Firmicutes門/Bacteroidetes門の比がHF群に対してASG0.5%投与群及び1.0%投与群ともに有意に減少していることが明らかとなった。すなわちマウス盲腸内の菌叢は、ASG投与群においてFirmicutes門の細菌群が減少しBacteroidetes門の細菌群が増加していた。
以上のFirmicutes門とBacteroidetes門の盲腸内におけるそれぞれの占有率と、Firmicutes門/Bacteroidetes門の比を見ることによって、高脂肪食による腸内菌叢を、ASGがFirmicutes門を減少させ、Bacteroidetes門を増加させていることが明らかとなった。
(5) Ratio of Firmicutes/Bacteroidetes As an index of changes in the intestinal flora, it is important to look at the ratio of the occupancy rate of the Firmicutes phylum to the occupancy rate of the Bacteroidetes phylum, that is, the ratio of the Firmicutes phylum/Bacteroidetes phylum. The ratio of the Firmicutes phylum/Bacteroidetes phylum is shown in FIG. 5.
5, it was revealed that the ratio of Firmicutes/Bacteroidetes phylum was significantly decreased in both the 0.5% and 1.0% ASG groups compared to the HF group. That is, in the ASG group, the bacterial flora in the mouse cecum decreased in the Firmicutes phylum and increased in the Bacteroidetes phylum.
By examining the respective occupancy rates of the Firmicutes and Bacteroidetes phyla in the cecum and the Firmicutes/Bacteroidetes ratio, it became clear that ASG reduced the Firmicutes phylum and increased the Bacteroidetes phylum in the intestinal flora induced by a high-fat diet.

(6)Lactobacillales目
全細菌数に対するLactobacillalesの占有率を図6に示した。HF投与群と比べ、ASG1.0%投与群の占有率が明らかに有意に増加した。Lactobacillalesは、いわゆる「善玉菌」に分類されている乳酸菌群が含まれる。ASGは善玉菌を増加させる作用を有していることが明らかである。
(6) Lactobacillales The occupancy rate of Lactobacillales relative to the total number of bacteria is shown in FIG. 6. Compared with the HF administration group, the occupancy rate of the ASG 1.0% administration group was significantly increased. Lactobacillales includes the lactic acid bacteria group classified as so-called "good bacteria". It is clear that ASG has the effect of increasing good bacteria.

(7)Clostridium cluster XI
全細菌数に対するClostridium cluster XIの占有率を図7に示した。HF投与群と比べ、ASG0.5%投与群及び1.0%投与群の、腸内全細菌数に対するClostridium cluster XIの占有率が明らかに有意に減少した。
(7) Clostridium cluster XI
The occupancy rate of Clostridium cluster XI relative to the total bacterial count is shown in Figure 7. Compared with the HF administration group, the occupancy rate of Clostridium cluster XI relative to the total bacterial count in the intestine was clearly significantly decreased in the ASG 0.5% administration group and the ASG 1.0% administration group.

(8)Clostridium subcluster XIVa
全細菌数に対するClostridium subcluster XIVaの占有率を図8に示した。HF投与群と比べ、ASG0.5%投与群及び1.0%投与群の、腸内全細菌数に対するClostridium subcluster XIVaの占有率が明らかに有意に減少した。
(8) Clostridium subcluster XIVa
The occupancy rate of Clostridium subcluster XIVa relative to the total bacterial count is shown in Figure 8. Compared with the HF administration group, the occupancy rate of Clostridium subcluster XIVa relative to the total bacterial count in the intestine was clearly significantly decreased in the ASG 0.5% administration group and the ASG 1.0% administration group.

(9)体重変化(体重増加量)
各試験動物群の、試験開始日からの体重変化(体重増加量)の推移を図9に示す。
HF投与群の体重増加量に対して、ASG0.5%投与群及び1.0%投与群において、投与開始5週目以降の体重増加量は、有意に抑制されていた。
(9) Weight change (weight gain)
FIG. 9 shows the time course of changes in body weight (body weight gain) for each test animal group from the start of the test.
Compared with the weight gain in the HF group, the weight gain in the 0.5% and 1.0% ASG groups from the start of administration onwards was significantly suppressed.

8.解析結果の総括
ASGの投与により盲腸内容物重量が、HF群に比し増加し、あわせて盲腸内容物のpHも低下した。このことから、ASGの投与により盲腸内で短鎖脂肪酸や腸内細菌由来発酵物の産生が亢進し、盲腸内容物の重量が増加しているものと考えられた。これは腸内菌叢の変化に由来しているものと推測された。
8. Summary of the analysis results The weight of the cecal contents increased with the administration of ASG compared to the HF group, and the pH of the cecal contents also decreased. From this, it was considered that the administration of ASG enhanced the production of short-chain fatty acids and fermentation products derived from intestinal bacteria in the cecum, and the weight of the cecal contents increased. It was speculated that this was due to a change in the intestinal flora.

腸内菌叢の解析から、HF投与によりFirmicutes門が増加したことが確認された。このFirmicutes門の増加は、ASG投与により減少したことが確認された。そして、Firmicutes門の占有率とBacteroidetes門の占有率の比、すなわちFirmicutes門/Bacteroidetes門の比が低下しており、腸内菌叢が改善していることが明らかである。
Bacteroidetes門もHF投与群と比べASG投与群で増加し、さらにFirmicutes/Bacteroidetes比は、この結果を反映して、ASG投与により有意に低下した。これは、ASGの、生理的な腸内菌叢改善作用を裏付けるデータである。すなわち、従来技術に述べた通り、肥満者や肥満マウスでは、Firmicutes門の占有比率が上昇し、Bacteroidetes門が増加しその結果、図9に示すような高脂肪食(HF)摂取による体重増加を抑制したものと考えられる。
ASGの腸内菌叢改善効果は、従来知られておらず、全く予想外であった。
Analysis of the intestinal flora confirmed that the Firmicutes phylum was increased by HF administration. This increase in the Firmicutes phylum was confirmed to be reduced by ASG administration. Furthermore, the ratio of the occupancy rate of the Firmicutes phylum to the occupancy rate of the Bacteroidetes phylum, i.e., the ratio of the Firmicutes phylum/Bacteroidetes phylum, was reduced, and it was clear that the intestinal flora was improved.
The Bacteroidetes phylum also increased in the ASG-administered group compared to the HF-administered group, and the Firmicutes/Bacteroidetes ratio, reflecting this result, was significantly decreased by ASG administration. This data supports the physiological intestinal flora improving effect of ASG. That is, as described in the prior art, in obese individuals and obese mice, the occupancy ratio of the Firmicutes phylum increased, and the Bacteroidetes phylum increased, which is considered to have suppressed the weight gain caused by the intake of a high-fat diet (HF) as shown in Figure 9.
The effect of ASG in improving the intestinal flora was previously unknown and completely unexpected.

さらにまた、細菌群の目レベルや属レベルでの詳細な占有率解析から見ると、ASG投与により善玉菌として知られているLactobacillales目の細菌群の占有比率の増加が確認された。また、Clostridium属のうち、Clostridium cluster XIとClostridium subcluster XIVaが、ASG投与において占有比率が顕著に減少した。Clostridium cluster XIやClostridium subcluster XIVaに属するClostridium sordelliiやClostridium scindensは、デオキシコール酸を産生し、悪玉菌として一般には理解されており、ASGはこれらの悪玉菌を減少させる効果を有することが明らかとなった。すなわち、ASGは善玉菌を増加させ、悪玉菌を減少させるという作用効果を示すことが明らかとなった。
すなわちASGは腸内菌叢改善剤として極めて有用であると考えられる。
Furthermore, detailed analysis of the occupancy rate of the bacterial group at the order and genus levels confirmed that the occupancy rate of the Lactobacillales order, which is known as a good bacterium, increased with ASG administration. In addition, the occupancy rate of Clostridium cluster XI and Clostridium subcluster XIVa in the Clostridium genus was significantly reduced with ASG administration. Clostridium sordellii and Clostridium scindens, which belong to Clostridium cluster XI and Clostridium subcluster XIVa, produce deoxycholic acid and are generally understood to be bad bacteria, and it was revealed that ASG has the effect of reducing these bad bacteria. In other words, it was revealed that ASG has the effect of increasing good bacteria and decreasing bad bacteria.
In other words, ASG is considered to be extremely useful as an agent for improving the intestinal flora.

Claims (2)

アシル化ステロール配糖体を有効成分として含有する腸内菌数中のFirmicutes門の菌占有率低下及びBacteroidetes門の菌占有率増加用組成物。
(但し、アシル化ステロール配糖体を2.7~4.1質量%、γ-オリザノールを0.6質量%又は1.4~2.1質量%含有する米糠抽出物を含むVLDL分泌抑制剤を除く)。
A composition for decreasing the bacterial occupancy rate of the Firmicutes phylum and increasing the bacterial occupancy rate of the Bacteroidetes phylum in the intestinal flora, comprising an acylated sterol glycoside as an active ingredient.
(However, this does not include VLDL secretion inhibitors containing a rice bran extract containing 2.7 to 4.1% by mass of acylated sterol glycosides and 0.6% by mass or 1.4 to 2.1% by mass of γ-oryzanol).
アシル化ステロール配糖体を0.1質量%以上含有する請求項1に記載の腸内菌数中のFirmicutes門の菌占有率低下及びBacteroidetes門の菌占有率増加用組成物。 2. A composition for reducing the bacterial occupancy rate of Firmicutes and increasing the bacterial occupancy rate of Bacteroidetes in intestinal bacteria according to claim 1, comprising 0.1% by mass or more of an acylated sterol glycoside.
JP2020101762A 2020-06-11 2020-06-11 Composition for improving intestinal flora Active JP7500897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101762A JP7500897B2 (en) 2020-06-11 2020-06-11 Composition for improving intestinal flora

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101762A JP7500897B2 (en) 2020-06-11 2020-06-11 Composition for improving intestinal flora

Publications (2)

Publication Number Publication Date
JP2021195326A JP2021195326A (en) 2021-12-27
JP7500897B2 true JP7500897B2 (en) 2024-06-18

Family

ID=79197132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101762A Active JP7500897B2 (en) 2020-06-11 2020-06-11 Composition for improving intestinal flora

Country Status (1)

Country Link
JP (1) JP7500897B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086153A (en) 2013-10-29 2015-05-07 株式会社ファンケル Vldl secretion inhibitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086153A (en) 2013-10-29 2015-05-07 株式会社ファンケル Vldl secretion inhibitor

Also Published As

Publication number Publication date
JP2021195326A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
Dingeo et al. Phytochemicals as modifiers of gut microbial communities
Singh et al. Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds
Li et al. Stachyose-enriched α-galacto-oligosaccharides regulate gut microbiota and relieve constipation in mice
EP3458073A1 (en) Synthetic composition
Tian et al. Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation
US11890293B2 (en) Synthetic composition for treating metabolic disorders
Luo et al. Tianhuang formula reduces the oxidative stress response of NAFLD by regulating the gut microbiome in mice
Liu et al. Integrated microbiota and metabolite profiling analysis of prebiotic characteristics of Phellinus linteus polysaccharide in vitro fermentation
US20240081382A1 (en) Composition for improving intestinal flora
US10272100B2 (en) Non-reducing end unsaturated mannuronic acid oligosaccharides and compositions containing same as active ingredient
Vieira et al. A beverage containing ora-pro-nobis flour improves intestinal health, weight, and body composition: A double-blind randomized prospective study
JP7500897B2 (en) Composition for improving intestinal flora
CN108403970B (en) Prebiotic composition and preparation method and application thereof
Liu et al. Lotus seed resistant starch and sodium lactate regulate small intestinal microflora and metabolite to reduce blood lipid
TW201515659A (en) Rice bran extract composition
Deng et al. Mulberry leaf and konjac compound powder improves the metabolic capacity of old mice on a high‐protein diet by regulating the structure of the intestinal microbiota
Xu et al. Loganin regulates glycolipid metabolism by influencing intestinal microbiota and AMPK signaling in obese mice
Ribeiro et al. Consumption of yacon flour and energy-restricted diet increased the relative abundance of intestinal bacteria in obese adults
WO2021185802A1 (en) Composition for enhancing urolithin production in a human subject
KR101893311B1 (en) Composition for Protecting or Treating Diabetes Comprising Non-reducing end of Unsaturated Mannuronic Acid Oligosaccharides(OligoM)
Pan et al. Antiobesity effect of lactiplantibacillus plantarum fermented barley extracts via the interactions with gut microbiota of the obese adult humans
Fang et al. Effects of Sargassum-derived oligosaccharides, polysaccharides and residues on ameliorating enteritis and dysbiosis in a murine model of food allergy
Yang et al. The short-term and long-term effects of Dendrobium officinale leaves polysaccharides on the gut microbiota differ
WO2022075222A1 (en) Growth promoter for intestinal bacteria, blood glucose lowering agent, serum cholesterol lowering agent, and food or beverage composition containing same
KR20160127332A (en) Composition for Enhancing Intestinal Beneficial Bacteria Comprising Non-reducing end of Unsaturated Mannuronic Acid Oligosaccharides as Active Ingredient

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240508

R150 Certificate of patent or registration of utility model

Ref document number: 7500897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150