JP7500133B2 - Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method - Google Patents

Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method Download PDF

Info

Publication number
JP7500133B2
JP7500133B2 JP2020145612A JP2020145612A JP7500133B2 JP 7500133 B2 JP7500133 B2 JP 7500133B2 JP 2020145612 A JP2020145612 A JP 2020145612A JP 2020145612 A JP2020145612 A JP 2020145612A JP 7500133 B2 JP7500133 B2 JP 7500133B2
Authority
JP
Japan
Prior art keywords
vibration
tool
imbalance
machine tool
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020145612A
Other languages
Japanese (ja)
Other versions
JP2022040756A (en
Inventor
岳見 浅井
啓太郎 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2020145612A priority Critical patent/JP7500133B2/en
Publication of JP2022040756A publication Critical patent/JP2022040756A/en
Application granted granted Critical
Publication of JP7500133B2 publication Critical patent/JP7500133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は、振動の立体的位置での評価による不釣合い修正方法及びその方法を自動化可能な工作機械に関し、特に、砥石を含む回転工具を使用する場合に、工具及びその回転軸に内在する不釣合いに起因する振動を防止するために、その不釣り合いに対応する修正を行う機構に関する。 The present invention relates to a method for correcting imbalance by evaluating vibrations in three-dimensional positions and a machine tool that can automate this method, and in particular, to a mechanism that performs corrections to address imbalance in order to prevent vibrations caused by imbalance inherent in a tool and its rotating shaft when using a rotating tool that includes a grinding wheel.

従来、砥石を含む回転工具を使用する場合、工具の釣り合い状態によっては振動を発生し、これを不釣合いと称する。この不釣合いは、工具に限らず工具を回転させる回転軸自体に内在している場合もある。この振動が問題になる場合には、工具または回転軸側にこの不釣合いに対応する修正機構を設けていることも多い。釣り合わせの実態は評価に用いる何らかの振動センサ(変位計や速度計や加速度計)の位置で振動の重ね合わせが0に近づくように振動を発生させる錘を回転体に追加するということである。この現実のため、センサ位置では振動は0に見えて工具先端の振動が抑えられないということも起こりうる。また、遠心力により曲げモーメントが発生する場合には、回転数によって振動が0にならないという状態も発生し得る。そこで、一般に冗長なセンサを設けて最小二乗法などの数値最適化手法を用いてどのセンサが感じる振動も0に近づく方向に錘をつけるとかどの回転数でも0に近づく方向に錘をつけるということを行う(例えば、非特許文献1参照)。 Conventionally, when using a rotating tool including a grinding wheel, vibrations occur depending on the balance state of the tool, which is called unbalance. This unbalance may be inherent not only in the tool but also in the rotating shaft itself that rotates the tool. When this vibration becomes a problem, a correction mechanism to deal with this unbalance is often provided on the tool or rotating shaft side. The reality of balancing is to add a weight that generates vibration to the rotating body so that the vibration superposition approaches zero at the position of some vibration sensor (displacement meter, speed meter, or accelerometer) used for evaluation. Due to this reality, it may happen that the vibration appears to be zero at the sensor position, but the vibration of the tip of the tool cannot be suppressed. In addition, when a bending moment is generated by centrifugal force, a state may occur in which the vibration does not become zero depending on the rotation speed. Therefore, redundant sensors are generally provided and a numerical optimization method such as the least squares method is used to attach weights in a direction that approaches zero for all sensors, or in a direction that approaches zero at all rotation speeds (for example, see Non-Patent Document 1).

また、曲げモーメントに対する対応として回転軸方向に複数修正面を設けるということもよく行われる。この、曲げモーメントに対する対応は剛体ロータであれば回転数によって不釣合いは一定であるが、現実の弾性体ロータでは回転数によって不釣合いは変化することがある。また、固有振動数の関係で工具の位置(ワークと主軸の相対位置)によって同じ不釣合いでも振動の大きさが変化することが普通である。そのため通常、位置と回転数を一定として不釣合いを評価し、それを打ち消すように不釣合いを修正していた。尚、下記の非特許文献1は、本発明において使用する回転機械の振動解析の公知技術に関するものであり、後述する本発明の説明において引用して述べる。 In addition, it is common to provide multiple correction planes in the direction of the rotation axis to deal with bending moments. In the case of a rigid rotor, the unbalance is constant depending on the rotation speed, but in an actual elastic rotor, the unbalance can change depending on the rotation speed. Also, due to the relationship between the natural frequency, the magnitude of vibration usually changes even with the same unbalance depending on the tool position (the relative position of the workpiece and the spindle). For this reason, the unbalance is usually evaluated with the position and rotation speed constant, and then corrected to cancel it out. The following non-patent document 1 relates to a known technique for vibration analysis of rotating machines used in the present invention, and will be cited in the explanation of the present invention below.

回転機械の振動-実用的振動解析の基本(松下修己ほか)コロナ社、2009年10月2日発行Vibration of Rotating Machinery - Fundamentals of Practical Vibration Analysis (by Osami Matsushita et al.), Corona Publishing, October 2, 2009

しかしながら、工作機械によるワークの加工中には、工具回転軸の回転数も可変させるし、工具によるワークの加工位置も変位する。そこで、どの位置および回転数でも均等に良好になるように不釣合い修正を行うことが可能な技術の開発が切望される。また、不釣合いの修正を自動不釣合い修正機構を搭載して、全自動化する工作機械の開発が望まれている。 However, when a workpiece is being machined using a machine tool, the rotation speed of the tool's rotation axis is also changed, and the machining position of the workpiece using the tool also shifts. Therefore, there is a strong demand for the development of technology that can perform imbalance correction so that the result is uniformly good at all positions and rotation speeds. There is also a demand for the development of machine tools that are equipped with an automatic imbalance correction mechanism to fully automate the correction of imbalance.

本発明は上述のような事情から為されたものであり、その目的は、工作機械によるワークの加工中に、どの位置および回転数でも均等に良好になるように不釣合い修正を行うことが可能な技術を提供することにある。また、本発明の他の目的は、不釣合いの修正を自動不釣合い修正機構を搭載して、全自動化する工作機械を提供することにある。 The present invention was made in light of the above-mentioned circumstances, and its purpose is to provide technology that can perform uniform and good imbalance correction at any position and rotation speed while a workpiece is being machined by a machine tool. Another purpose of the present invention is to provide a machine tool that is equipped with an automatic imbalance correction mechanism and that fully automates the correction of imbalance.

本発明者は、上述した工作機械によるワークの加工中に、どの位置および回転数でも均等に良好になるように不釣合い修正を行うことが可能な技術について鋭意研究した結果、上述した非特許文献1に記載の技術を応用することで、そのような工作機械の構成と、その不釣合い修正方法に関する新規且つ有用な着想を得るに至った。 The inventors have conducted extensive research into technology that can correct imbalance so that it is uniformly good at any position and rotation speed while the machine tool is machining a workpiece, and as a result, by applying the technology described in Non-Patent Document 1 above, have come up with a new and useful idea for the configuration of such a machine tool and its method of correcting imbalance.

本発明では、非特許文献1に記載の技術を加工中の動く範囲周辺で立体的(直線でないということを表現している)に位置を決めて加工中に使う回転数と位置の組み合わせを使って不釣合いを評価して一定の重み付けを行い、どの位置および回転数でも均等に良好になるように数値最適化手法を用いて不釣合い修正を行う。また、不釣合いの修正を自動不釣合い修正機構を搭載して、全自動化する工作機械を構成する。即ち、本発明の不釣合い修正方法では、工具回転軸と、該工具回転軸により回転される工具とを備える工作機械であって、該工作機械の少なくとも2軸以上の駆動軸で前記工具をワークに対して直線移動ないし回転移動及びその組み合わせをさせることにより該ワークの加工を行う工作機械における振動の評価による不釣合い修正方法であって、前記ワークの加工中に前記工具が動く範囲内で立体的な座標位置を決めて、加工中に使う各回転数と各座標位置の組み合わせを使って振動の不釣合いを評価して一定の重み付けを行い、どの位置および回転数でも振動が均等に良好になるように数値最適化手法を用いて振動の不釣合い修正を行うことを特徴とする。
また、本発明の工作機械では、工具回転軸と、該工具回転軸により回転される工具とを備える工作機械であって、該工作機械の少なくとも2軸以上の駆動軸を使って前記工具をワークに対して移動させることにより該ワークの加工を行う工作機械において、前記ワークの加工中に前記工具が動く範囲内で立体的ないし平面的な座標位置を決めて、加工中に使う各回転数と各座標位置の組み合わせを使って振動の不釣合いを評価して一定の重み付けを行い、どの位置および回転数でも振動が均等に良好になるように数値最適化手法を用いて振動の不釣合い修正を行う工作機械であって、前記不釣合い修正を実行するための自動不釣合い修正機構を搭載したことを特徴とする。
尚、被工作物を回転する場合の振動の釣り合わせについても同様の修正方法及び工作機械を構成可能である。
In the present invention, the technique described in Non-Patent Document 1 is used to determine a three-dimensional (not linear) position around the range of movement during machining, evaluate the imbalance using a combination of the rotation speed and position used during machining, and perform a certain weighting, and perform unbalance correction using a numerical optimization method so that the vibration is uniformly good at any position and rotation speed. Also, a machine tool is configured that is equipped with an automatic imbalance correction mechanism to fully automate the imbalance correction. That is, the imbalance correction method of the present invention is a machine tool that includes a tool rotation axis and a tool rotated by the tool rotation axis, and processes the workpiece by linearly moving or rotating the tool relative to the workpiece and combining them with at least two or more drive axes of the machine tool, and is characterized in that a three-dimensional coordinate position is determined within the range in which the tool moves during machining of the workpiece, and the vibration imbalance is evaluated using a combination of each rotation speed and each coordinate position used during machining, and perform a certain weighting, and perform unbalance correction using a numerical optimization method so that the vibration is uniformly good at any position and rotation speed.
In addition, the machine tool of the present invention is a machine tool equipped with a tool rotation axis and a tool rotated by the tool rotation axis, and machines a workpiece by moving the tool relative to the workpiece using at least two or more drive axes of the machine tool, in which a three-dimensional or two-dimensional coordinate position is determined within the range in which the tool moves while machining the workpiece, vibration imbalance is evaluated and weighted using a combination of each rotation speed and each coordinate position used during machining, and the machine tool performs vibration imbalance correction using a numerical optimization method so that vibration is uniformly good at all positions and rotation speeds, and is characterized in being equipped with an automatic imbalance correction mechanism for performing the imbalance correction .
It is also possible to configure a similar correction method and machine tool for balancing vibrations when rotating a workpiece.

本発明によれば、工作機械によるワークの加工中に、どの位置および回転数でも均等に良好になるように不釣合い修正を行うことが可能な技術を提供することができる。また、不釣合いの修正を自動不釣合い修正機構を搭載して、全自動化する工作機械を提供することができる。 The present invention provides a technology that can correct imbalance so that it is uniformly good at any position and rotation speed while a workpiece is being machined by a machine tool. It also provides a machine tool that is equipped with an automatic imbalance correction mechanism to fully automate the correction of imbalance.

非特許文献1に記載の公知技術を説明するための図である。FIG. 1 is a diagram for explaining the known technology described in Non-Patent Document 1. 図1のような装置を備えた工作機械の一例を示す図である。FIG. 2 is a diagram showing an example of a machine tool equipped with a device as shown in FIG. 1 . 図1のような装置を備えた工作機械の他の一例を示す図である。FIG. 2 is a diagram showing another example of a machine tool equipped with a device such as that shown in FIG. 1 . 本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法において、振動を評価させる座標を立体的に分布させることを説明するための図である。1 is a diagram for explaining how to three-dimensionally distribute coordinates for evaluating vibration in an imbalance correction method based on evaluation of vibration at three-dimensional positions according to an embodiment of the present invention; FIG. 本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法の部分サイクルである振動測定の1サイクルを示すフローチャートである。1 is a flowchart showing one cycle of vibration measurement, which is a partial cycle of a method for correcting imbalance by evaluating vibration in a three-dimensional position according to an embodiment of the present invention. 本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法を示すフローチャートである。1 is a flowchart showing a method for correcting imbalance by evaluating vibration in three-dimensional positions according to an embodiment of the present invention. 図5に示した振動測定の1サイクルを一般化した例で示すフローチャートである。6 is a flowchart showing a generalized example of one cycle of the vibration measurement shown in FIG. 5 . 図6に示した不釣合い修正方法を一般化した例で示すフローチャートである。7 is a flowchart showing a generalized example of the unbalance correction method shown in FIG. 6. 修正錘の空間と振動評価の空間の対応関係を説明するための図である。FIG. 13 is a diagram for explaining the correspondence relationship between a space of a correcting weight and a space of vibration evaluation.

まず、本発明の理解を容易にするため、図1を参照して、上述した非特許文献1に記載の公知技術について述べる。非特許文献1に従えば、例えば、以下のように考え得る。即ち、図1に示すような回転機械を想定する。図1に示すように、この回転機械では、回転体10の修正面11、12、13には、ねじ穴(図示せず)があって、ねじ(図示せず)を錘(図示せず)として残せるようになっていたり、駄肉部分(特には、図示せず)があり、その駄肉部分を削れるようになっていたり、錘(図示せず)を動かして固定できるようになっていたりする。尚、図1中、16は、ツールや砥石、17、18は、それぞれ加速度センサの一例である。 First, in order to facilitate understanding of the present invention, the known technology described in the above-mentioned non-patent document 1 will be described with reference to FIG. 1. According to non-patent document 1, for example, the following can be considered. That is, assume a rotating machine as shown in FIG. 1. As shown in FIG. 1, in this rotating machine, the correction surfaces 11, 12, and 13 of the rotating body 10 have screw holes (not shown) so that screws (not shown) can be left as weights (not shown), there are waste parts (not shown in particular), the waste parts can be cut off, and the weights (not shown) can be moved and fixed. In FIG. 1, 16 is a tool or grindstone, and 17 and 18 are examples of acceleration sensors.

ここで、非特許文献1の103頁から104頁に記載されているように、バランス修正面をm面、振動測定箇所をn箇所とする。初期振動A0を計測する。以下の数式(1)が得られる。

Figure 0007500133000001
各要素は各センサの振動観測の結果である。軸方向にn箇所にセンサが配置されていて、振動を観測できるとする。ここでは、ある回転数S1における振幅と位相の情報を有する複素数とする。このような観測はロックインアナライザ(たとえば、得られる振動計の信号に回転に同期した90度位相の異なる正弦波をかけて直流成分だけを捉える)などの回転同期型のフィルタを用いて行われるとなお良い。 As described in Non-Patent Document 1, pages 103 to 104, the number of balance correction surfaces is m, and the number of vibration measurement points is n. The initial vibration A 0 is measured. The following formula (1) is obtained.
Figure 0007500133000001
Each element is the result of vibration observation by each sensor. Assume that sensors are arranged at n locations in the axial direction and vibration can be observed. Here, it is assumed that it is a complex number having amplitude and phase information at a certain rotation speed S1 . It is even better if such observation is performed using a rotation-synchronous filter such as a lock-in analyzer (for example, by applying a sine wave with a phase difference of 90 degrees synchronized with the rotation to the obtained signal of the vibrometer to capture only the DC component).

次に、不釣合い修正面1に試しおもりW1(位相と大きさを持つ複素数)を付加したときの同じ回転数で回転したとき各センサの観測する振動A1を計測する。以下の数式(2)が得られる。

Figure 0007500133000002
よって、修正面1に試しおもりをつける効果を単位おもり当たりに換算した係数α1は、以下の数式(3)により得られる。
Figure 0007500133000003
ただしαi,jはi番目のセンサ位置、j修正面番号をあらわす。この手順を各修正面について繰り返しすべての係数を求める(各修正面の単位おもりが各センサに与える影響係数)。以下の数式(4)が得られる。
Figure 0007500133000004
釣り合わせでは、初期振動A0を打ち消すように各修正面におもりCj(大きさと位相を持つ複素数)をつければよく、次の数式(5)のように得られる。
Figure 0007500133000005
ただし、次の数式(6A)(6B)が成り立つ。
Figure 0007500133000006
よく行われるのはn=m=1またはn=m=2である。n=mの場合には、次の数式(7)として求まる。
Figure 0007500133000007
参考文献にあるとおり、n>mの場合には、最小二乗法として、次の数式(8)が成り立つ。
Figure 0007500133000008
なお、数(9A)は数(9B)の共役転置を表現しただけである。
Figure 0007500133000009
また、影響係数αiについて各修正面について繰り返しすべての係数を求める計算には、上述のように右辺がAとの差をとりそのとき追加した試し錘で割る形式であることは必要なく、以下の数式(10)のような形式でもよい。
Figure 0007500133000010
この場合には、ある修正面に試し錘をつけて振動を評価したら、一つ前までにつけた試し錘を残したまま各修正面に錘を増やしたときの影響係数を計算するということになる。特に駄肉部分を削るような不釣合い修正面を使う場合には、一旦削り落とすと元に戻せないのでこのような形式となることがある。 Next, vibration A1 observed by each sensor is measured when a test weight W1 ( a complex number having a phase and a magnitude) is added to the unbalance correction surface 1 and rotated at the same rotation speed. The following formula (2) is obtained.
Figure 0007500133000002
Therefore, the coefficient α 1 , which converts the effect of attaching a trial weight to the correction surface 1 into a unit weight, can be obtained by the following formula (3).
Figure 0007500133000003
Here, αi,j represents the i-th sensor position and j-th correction plane number. This procedure is repeated for each correction plane to obtain all the coefficients (the coefficients of the influence of the unit weight of each correction plane on each sensor). The following formula (4) is obtained.
Figure 0007500133000004
In balancing, weights C j (complex numbers having magnitude and phase) are attached to each correction surface so as to cancel the initial vibration A 0 , and this is obtained as shown in the following equation (5).
Figure 0007500133000005
However, the following equations (6A) and (6B) hold.
Figure 0007500133000006
What is often done is n = m = 1 or n = m = 2. When n = m, it is obtained as the following formula (7).
Figure 0007500133000007
As described in the reference, when n>m, the following formula (8) holds true as the least squares method.
Figure 0007500133000008
Note that number (9A) simply represents the conjugate transpose of number (9B).
Figure 0007500133000009
In addition, the calculation for repeatedly finding all the coefficients of the influence coefficient αi for each correction surface does not need to be in the form in which the right side takes the difference from A0 and divides it by the test weight added at that time as described above, but may be in the form of the following formula (10).
Figure 0007500133000010
In this case, a test weight is attached to a certain correction surface to evaluate the vibration, and then the influence coefficient is calculated when the weight is added to each correction surface while leaving the previous test weight in place. This format is sometimes used, especially when using an unbalance correction surface that removes excess material, because once it is removed it cannot be restored.

通常、多くのフィールドバランサ(現場で不釣合いを評価しまた修正するための道具)では評価の回転数は一定にしてくださいと記述されているが、
ここで、回転数Sを変え複数の回転数S ,Sで試験をする場合にはA0、…、Aの要素数nを拡張する。つまり、回転数ごとに別センサの出力と考える。
このことを、例えば次の数式(11)のように表現して考える。

Figure 0007500133000011
ここで、先ほどまでnとしていた要素数は「振動測定箇所」の「回転数の個数」倍で、n×kになる。
結果的には、α、…、αの要素数を拡張することにも繋がる。よって次の数式(12)が成り立つ。
Figure 0007500133000012
ただし、注意すべき点はCの要素数mは拡張しない。
どんどん先述のn(要素数)⋙ mに近づいていく。手計算では面倒でも、このような計算をこなす不釣合い修正システムは多面多速度釣り合わせ対応と称され商品化されている(例えば、シグマ電子工業株式会社SB-7705Rなど)。逆にCを置けば不釣合い修正で残る予測(各回転数ごと)も次の数式(13)により可能である。
Figure 0007500133000013
Usually, many field balancers (tools for evaluating and correcting imbalance on-site) state that the evaluation rotation speed should be constant, but
Here, when the rotation speed S1 is changed and testing is performed at a plurality of rotation speeds S1 , S2 , ..., Sk , the number of elements n of A0 , ..., Am is expanded. In other words, each rotation speed is considered as the output of a different sensor.
This can be expressed as in the following equation (11), for example.
Figure 0007500133000011
Here, the number of elements, which was previously n, is now n×k, which is the number of rotations of the vibration measurement points.
As a result, this also leads to an expansion of the number of elements of α 0 , ..., α m . Therefore, the following formula (12) holds.
Figure 0007500133000012
However, it should be noted that the number of elements m of C is not expanded.
It gets closer and closer to the aforementioned n (number of elements) × m. Although it is troublesome to calculate by hand, imbalance correction systems that can handle such calculations are called multi-surface, multi-speed balancing systems and are commercially available (for example, Sigma Electronics Co., Ltd. SB-7705R). Conversely, if you place C, the remaining predictions (for each rotation speed) in imbalance correction can also be made using the following formula (13).
Figure 0007500133000013

通常、上述のような複数速度を扱える装置であっても、機械の座標は一定にしてくださいと説明される。これは、回転体の不釣合いを0にすればこれを工具回転機構として使用した場合、振動を生じさせる力である加振力は0なのでどの座標に工具回転装置を持っていっても振動は0であるとの考えに基づく。しかし、釣り合わせとは実際にはセンサの位置で振動を打ち消すように調整するものであるので、完全に加振力は0にするものではないことは当然である。この残留する加振力が機械の座標を移したときに共振を生み振動を大きくし得る。ある座標で0に出来ても座標を転じた場合に振動が大きくなる状況を生じうる。
作業者によってはこれを「工具の座標によってバランスが変化する」と表現する場合があるが、多くの場合には、回転体の不釣合いはそのままでの座標の変化で残留した振動が共振しやすくなったり共振しにくくなったりするということの方が多い。もちろん、現実の弾性体ロータでは回転数によって不釣合いが変化することがある。
Usually, even in the case of a device that can handle multiple speeds as mentioned above, it is explained that the coordinates of the machine should be kept constant. This is based on the idea that if the unbalance of the rotating body is made zero, when it is used as a tool rotation mechanism, the excitation force, which is the force that generates vibration, will be zero, so no matter what coordinate the tool rotation device is placed on, the vibration will be zero. However, since balancing actually involves adjusting the sensor position to cancel out the vibration, it is natural that the excitation force is not made completely zero. This residual excitation force can create resonance when the machine coordinates are moved, increasing the vibration. Even if it is possible to make it zero at one coordinate, a situation may arise where the vibration increases when the coordinate is changed.
Some workers may express this as "balance changes depending on the tool coordinates," but in many cases, the unbalance of the rotor remains the same, but a change in coordinates causes the residual vibration to resonate more easily or less easily. Of course, in an actual elastic rotor, the unbalance can change depending on the rotation speed.

そこで、上の考えを拡張して、機械の座標Pを変え複数の座標P,Piで試験をする場合にも、A0、…、Aの要素数nを再度拡張する。つまり、回転数のみならず座標ごとに別センサの出力と考える。
このことを、例えば次の数式(14)のように表現して考える。

Figure 0007500133000014
結果的には、次の数式(15)
Figure 0007500133000015
の計算から、α0、…、αの要素数を拡張することにも繋がる。これにより先ほどまでnとしていた要素数はn×k×lと飛躍的に増加するが、電子計算器を用いれば容易に計算可能である。
回転数S ,Sでおよび機械の座標P,Piは使用する範囲内で分布させる。特に座標は複数の送り軸および回転軸を使用する場合にはその範囲内で立体的に分布させる。
このようにとったとき、最小二乗法によって得られる修正の指示は、回転数S ,Sでおよび機械の座標P,Piの範囲内で全体的に振動を小さく保つ指示に近い。
ここで,PiとはX-Y-Zの3軸を有する機械なら3次元,5軸を有する機械なら5次元の要素を有し得るベクトル変数である。 Therefore, by expanding the above idea, even when changing the machine coordinate P1 and testing at multiple coordinates P1 , P2 , ... , Pi , the number of elements n of A0 , ..., Am is expanded again. In other words, it is considered that not only the rotation speed but also the output of a different sensor is used for each coordinate.
This can be expressed as in the following equation (14), for example.
Figure 0007500133000014
As a result, the following formula (15)
Figure 0007500133000015
This calculation also leads to the expansion of the number of elements of α 0 , ..., α m . As a result, the number of elements, which was previously n, increases dramatically to n x k x l, but this can be easily calculated using an electronic calculator.
The rotational speeds S1 , S2 , ... Sk and the coordinates P1 , P2 , ... Pi of the machine are distributed within the range of use. In particular, the coordinates are distributed three-dimensionally within the range when a plurality of feed axes and rotary axes are used.
When taken in this way, the correction instructions obtained by the least squares method are close to those which keep the vibrations small overall at the rotational speeds S 1 , S 2 , . . . Sk and within the range of machine coordinates P 1 , P 2 , . . . Pi.
Here, P i is a vector variable that can have three-dimensional elements for a machine having three axes, XYZ, and five-dimensional elements for a machine having five axes.

尚、このような観測はロックインアナライザ(たとえば、得られる振動計の信号に回転に同期した90度位相の異なる正弦波をかけて直流成分だけを捉える)などの回転同期型のフィルタなどの装置が無い場合にも、非特許文献1には、互いに平行でない3つの位相にそれぞれ試し錘をつける場合と試しおもりをつけない場合について評価すると作図によって影響係数を求められることを示している(非特許文献1の128頁から130頁参照)。 In addition, even if there is no device such as a rotation-synchronous filter such as a lock-in analyzer (for example, a sine wave with a phase shift of 90 degrees synchronized with the rotation is applied to the obtained signal from the vibrometer to capture only the DC component), non-patent document 1 shows that the influence coefficient can be obtained by drawing a diagram when evaluating the case where test weights are attached to three phases that are not parallel to each other and the case where test weights are not attached (see pages 128 to 130 of non-patent document 1).

次に、本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法及びその方法を自動化可能な工作機械について述べる。まず、上述した図1のような切削工具または砥石の回転モータ装置を考える。この装置には手動で調整可能な不釣り合い修正面が2つ内蔵されておりまた工具の側に1つ修正面が設けられており合計3つの修正面で不釣り合いに対応できる。釣り合わせ用に2つの加速度計(センサ)を搭載している。 Next, we will describe a method for correcting imbalance by evaluating vibrations in three-dimensional positions according to an embodiment of the present invention, and a machine tool that can automate this method. First, consider a rotary motor device for a cutting tool or grinding wheel, as shown in Figure 1 above. This device has two built-in imbalance correction surfaces that can be manually adjusted, and one correction surface is provided on the tool side, making it possible to address imbalance with a total of three correction surfaces. Two accelerometers (sensors) are installed for balancing.

図2は、本発明の実施形態に係る不釣合い修正方法を自動化可能な工作機械で、図1のような装置を備えた一例を示す図である。即ち、この工作機械は、図2に示すように、相互に直交するX軸とZ軸、X軸廻りの旋回A軸、Z軸廻りの旋回C軸を備え、X送りモータ21、A回転モータ22、Z送りモータ23、C回転モータ24、砥石モータ25、ツール(砥石)26を有し、ワークWを加工する工作機械であり、図1のような装置を砥石モータ25の箇所に備えている。 Figure 2 shows an example of a machine tool capable of automating the imbalance correction method according to an embodiment of the present invention, equipped with a device as shown in Figure 1. That is, as shown in Figure 2, this machine tool is equipped with mutually orthogonal X-axis and Z-axis, A-axis rotating about the X-axis, and C-axis rotating about the Z-axis, and has an X-feed motor 21, an A-rotation motor 22, a Z-feed motor 23, a C-rotation motor 24, a grindstone motor 25, and a tool (grindstone) 26, and is a machine tool for machining a workpiece W, and is equipped with a device as shown in Figure 1 at the location of the grindstone motor 25.

図3は、本発明の実施形態に係る不釣合い修正方法を自動化可能な工作機械で、図1のような装置を備えた他の一例を示す図である。即ち、この工作機械は、図3に示すように、相互に直交するX軸、Y軸、Z軸と、Z軸廻りの旋回C軸を備え、X送り装置31、Z送り装置32、工具主軸33、工具34、ワークテーブル35、C回転装置36を有し、工具34によりワークWを加工する工作機械であり、図1のような装置を工具主軸33の箇所に備えている。尚、Y送り装置は図示を省略している。即ち、ここでは、図3のようなX-Y-Zを備える工作機械を考える。C軸座標はある加工中は一意の座標をとるとする。たとえば、P=(x, y, z) = (0, 0, 0), P=(-200, 0, 0), P=(0, -200, 0), P=(-200, -200, 0), P=(0, 0, -200), P=(-200, 0, -200), P=(-200, -200, -200)とする。回転数についてもたとえばS = 1000, S = 2000とする。 Fig. 3 is a diagram showing another example of a machine tool capable of automating the unbalance correction method according to the embodiment of the present invention, which is equipped with the device as shown in Fig. 1. That is, as shown in Fig. 3, this machine tool is equipped with mutually orthogonal X-axis, Y-axis, and Z-axis, and a rotating C-axis around the Z-axis, and has an X-feed device 31, a Z-feed device 32, a tool spindle 33, a tool 34, a work table 35, and a C-rotation device 36, and is a machine tool that processes a workpiece W with the tool 34, and is equipped with a device as shown in Fig. 1 at the tool spindle 33. Note that the Y-feed device is not shown. That is, here, a machine tool equipped with X-Y-Z as shown in Fig. 3 is considered. It is assumed that the C-axis coordinate is a unique coordinate during a certain machining process. For example, P0 = (x, y, z) = (0, 0, 0), P1 = (-200, 0, 0), P2 = (0, -200, 0), P3 = (-200, -200, 0), P4 = (0, 0, -200), P5 = (-200, 0, -200), P6 = (-200, -200, -200). For the rotation speed, S1 = 1000, S2 = 2000.

図4は、本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法において、振動を評価させる座標を立体的に分布させることを説明するための図である。図4に示すように、立体的とは,平面上や直線上ではなく使う範囲内で座標を分布させること。ただし、1軸や2軸しか使わない場合はその限りではない。
また、図4に示すように、残りの軸(回転軸)についても分布させるし、回転数についても分布させる。
4 is a diagram for explaining the three-dimensional distribution of coordinates for evaluating vibration in the method for correcting imbalance by evaluating vibration in three-dimensional positions according to an embodiment of the present invention. As shown in FIG. 4, three-dimensional means that the coordinates are distributed within the range to be used, not on a plane or a straight line. However, this does not apply when only one or two axes are used.
As shown in FIG. 4, the remaining axes (rotation axes) are also distributed, and the rotation speeds are also distributed.

図5は、本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法の部分サイクルである振動測定の1サイクルを示すフローチャートである。即ち、図5に示すように、振動測定の1サイクル500では、1サイクルが開始されると(S501)、i=1とし(S502)、iが6(座標数)以下であるか否かを判定し(S503)、6(座標数)以下であれば(S503でYes)、座標Piに移動する(S504)。j=1とし(S505)、jが2(回転数)以下であるか否かを判定し(S506)、2(回転数)以下であれば(S506でYes)、j=j+1とし(S507)、回転数Sjに変更する(S508)。そして、n個のセンサで振動を評価する(S509)ように、S506からS508までの処理を繰り返す。一方、S506でjが2(回転数)以下でなければ(S506でNo)、i=i+1とし(S510)、S503以降の処理を繰り返す。また、S503でiが6(座標数)以下でなければ(S503でNo)、この1サイクルが終了する(S511)。このような振動評価のサイクルにより、3×6×2(つまりn×(座標点数l)×(回転数の数k))の振動評価(大きさと位相を持つ情報、ただし2センサ分を1つと数えた場合)が得られる。なお位置及び回転数の変更、各条件での振動評価は、工作機械の制御装置により自動的に行わせることが出来る。 Figure 5 is a flowchart showing one cycle of vibration measurement, which is a partial cycle of the method for correcting imbalance by evaluating the three-dimensional position of vibration according to an embodiment of the present invention. That is, as shown in Figure 5, in one cycle of vibration measurement 500, when one cycle is started (S501), i = 1 is set (S502), and it is determined whether i is 6 (coordinate number) or less (S503), and if it is 6 (coordinate number) or less (Yes in S503), it moves to coordinate Pi (S504). j = 1 is set (S505), and it is determined whether j is 2 (rotation number) or less (S506), and if it is 2 (rotation number) or less (Yes in S506), j = j + 1 is set (S507), and the number of rotations is changed to Sj (S508). Then, the processes from S506 to S508 are repeated so that vibration is evaluated with n sensors (S509). On the other hand, if j is not 2 (number of rotations) or less in S506 (No in S506), then i = i + 1 is set (S510) and the processes from S503 onwards are repeated. Also, if i is not 6 (number of coordinates) or less in S503 (No in S503), then this cycle ends (S511). This cycle of vibration evaluation results in a 3 x 6 x 2 (that is, n x (number of coordinate points l) x (number of rotations k)) vibration evaluation (information with magnitude and phase, where two sensors are counted as one). Changes in position and rotation speed, and vibration evaluation under each condition can be automatically performed by the machine tool's control device.

図6は、本発明の実施形態に係る振動の立体的位置での評価による不釣合い修正方法を示すフローチャートである。即ち、図6に示すように、図5に示した振動測定を1サイクル実行し(S600)、修正の試し錘を付加しないで初期振動の測定を行う。そして、まず、修正面1に試し錘を付加(S601)した上で、振動測定を1サイクル実行する(S602)。次に、修正面2に試し錘を付加(S603)した上で、振動測定を1サイクル実行する(S604)。このとき、修正面1に付加した試し錘(S602)は除去する。更に、修正面3に試し錘を付加(S605)した上で、振動測定を1サイクル実行する(S606)。このとき、修正面2に付加した試し錘(S603)は除去する。以上のS601からS606の処理により、試し錘の影響を測定する。この後、最適修正量を計算し(S607)、最終修正を行う(S608)。これらS607及びS608の処理により不釣り合いの修正がなされる。最後に、振動測定を1サイクル実行する(S609)が、これは効果の確認のためのサイクルである。上記S606の振動測定1サイクルを実行した時点で、4×2×6×2(4:1初期の測定+3試し錘つきの測定、2:回転数の個数、6:座標の個数、2:センサ数)の要素を振動評価(大きさと位相を持つ情報)が得られる。
ところで、図6のように一面ずつ試し錘を付けて振動を評価すると、試し錘の影響測定が終わると、各面の振動の各要素への影響を影響係数として、以下の数式(16)で計算できる。

Figure 0007500133000016
なお、修正面に試し錘をつけるときに、一々、一つ前の試し錘を除去すると記述したが、しない場合や出来ない場合には、影響係数の計算式を以下の数式(17)のように変更する。
Figure 0007500133000017
なおこの影響係数が厳密に有効なのは、各面への錘の追加と振動の大きさの関係が線形の場合に限る。ただ、最終の修正の時の錘の追加と試し錘が数十倍の差がなければ評価として有用である。以下の数式(18)
Figure 0007500133000018
と置き、εの絶対値が最小になるように、C, C, Cを探す数値最小化問題として扱うことができる。その一解法として最小二乗法が適用できる。
以上を一般化すると、以下の図7と図8のようになる。 Fig. 6 is a flow chart showing an unbalance correction method by evaluation of vibration in a three-dimensional position according to an embodiment of the present invention. That is, as shown in Fig. 6, one cycle of vibration measurement shown in Fig. 5 is performed (S600), and initial vibration is measured without adding a correction test weight. Then, first, a test weight is added to the correction plane 1 (S601), and one cycle of vibration measurement is performed (S602). Next, a test weight is added to the correction plane 2 (S603), and one cycle of vibration measurement is performed (S604). At this time, the test weight added to the correction plane 1 (S602) is removed. Furthermore, a test weight is added to the correction plane 3 (S605), and one cycle of vibration measurement is performed (S606). At this time, the test weight added to the correction plane 2 (S603) is removed. The influence of the test weight is measured by the above processes from S601 to S606. After this, the optimal correction amount is calculated (S607), and the final correction is performed (S608). The imbalance is corrected by the processes of S607 and S608. Finally, one cycle of vibration measurement is performed (S609), which is a cycle for confirming the effect. At the time when one cycle of vibration measurement of S606 is performed, vibration evaluation (information having magnitude and phase) is obtained for 4 x 2 x 6 x 2 elements (4: 1 initial measurement + 3 measurements with test weights, 2: number of rotations, 6: number of coordinates, 2: number of sensors).
Incidentally, when a test weight is attached to each surface as shown in FIG. 6 to evaluate vibration, after the measurement of the influence of the test weight is completed, the influence of each surface on each element of vibration can be calculated as an influence coefficient using the following formula (16).
Figure 0007500133000016
In addition, it has been described that when attaching a test weight to the correction surface, the previous test weight is removed each time. However, if this is not done or if it is not possible, the formula for calculating the influence coefficient is changed to the following formula (17).
Figure 0007500133000017
This influence coefficient is strictly valid only when the relationship between the addition of weights to each surface and the magnitude of vibration is linear. However, it is useful as an evaluation if the difference between the addition of weights at the time of final correction and the trial weight is not several tens of times. The following formula (18)
Figure 0007500133000018
Then, it can be treated as a numerical minimization problem of finding C 1 , C 2 , and C 3 so that the absolute value of ε is minimized. The least squares method can be applied as one of the solving methods.
If the above is generalized, it becomes as shown in FIG. 7 and FIG. 8 below.

図7は、図5に示した振動測定の1サイクルを一般化した例で示すフローチャートである。即ち、図7に示すように、振動測定の1サイクル700では、1サイクルが開始されると(S701)、i=1とし(S702)、iがl(座標数)以下であるか否かを判定し(S703)、l(座標数)以下であれば(S703でYes)、座標Piに移動する(S704)。j=1とし(S705)、jがk(回転数)以下であるか否かを判定し(S706)、k(回転数)以下であれば(S706でYes)、j=j+1とし(S707)、回転数Sjに変更する(S708)。そして、n個のセンサで振動を評価する(S709)ように、S706からS708までの処理を繰り返す。一方、S706でjがk(回転数)以下でなければ(S706でNo)、i=i+1とし(S710)、S703以降の処理を繰り返す。また、S703でiがl(座標数)以下でなければ(S703でNo)、この1サイクルが終了する(S711)。このような振動評価のサイクルにより、n×(座標点数l)×(回転数の数k)の振動評価(大きさと位相を持つ情報)が得られる。 Figure 7 is a flow chart showing a generalized example of one cycle of vibration measurement shown in Figure 5. That is, as shown in Figure 7, in one cycle of vibration measurement 700, when one cycle is started (S701), i = 1 is set (S702), and it is determined whether i is l (number of coordinates) or less (S703), and if it is l (number of coordinates) or less (Yes in S703), it moves to coordinate Pi (S704). j = 1 is set (S705), and it is determined whether j is k (number of rotations) or less (S706), and if it is k (number of rotations) or less (Yes in S706), j = j + 1 is set (S707), and the number of rotations is changed to Sj (S708). Then, the processing from S706 to S708 is repeated so that vibration is evaluated with n sensors (S709). On the other hand, if j is not k (number of rotations) or less in S706 (No in S706), i = i + 1 is set (S710), and the processing from S703 onwards is repeated. Furthermore, if i is not equal to or less than l (number of coordinates) in S703 (No in S703), this cycle ends (S711). This cycle of vibration evaluation produces a vibration evaluation (information with magnitude and phase) of n x (number of coordinate points l) x (number of rotations k).

図8は、図6に示した不釣合い修正方法を一般化した例で示すフローチャートである。即ち、図8に示すように、図7に示した振動測定を1サイクル実行する(S800)。そして、修正面1を試し、錘を付加(S801)した上で、振動測定を1サイクル実行する(S802)。次に、修正面2を試し、錘を付加(S803)した上で、振動測定を1サイクル実行する(S804)。これを、修正面mを試し、錘を付加(S805)した上で、振動測定を1サイクル実行する(S806)まで繰り返す。この後、最適修正量を計算し(S807)、最終修正を行う(S808)。最後に、振動測定を1サイクル実行する(S809)が、これは効果の確認のためのサイクルである。 Figure 8 is a flow chart showing a generalized example of the unbalance correction method shown in Figure 6. That is, as shown in Figure 8, one cycle of vibration measurement shown in Figure 7 is performed (S800). Then, correction plane 1 is tried, a weight is added (S801), and one cycle of vibration measurement is performed (S802). Next, correction plane 2 is tried, a weight is added (S803), and one cycle of vibration measurement is performed (S804). This is repeated until correction plane m is tried, a weight is added (S805), and one cycle of vibration measurement is performed (S806). After this, the optimal correction amount is calculated (S807), and the final correction is performed (S808). Finally, one cycle of vibration measurement is performed (S809), which is a cycle to confirm the effect.

図9は、修正錘の空間と振動評価の空間の対応関係を説明するための図である。即ち、ここまでは、陽に影響係数αiを解いているが、各修正面に錘の組み合わせCaをつけて振動の評価をAaとし、図9に示すように修正錘と振動評価に一定の関数があると仮定し、以下の数式(19A)と(19B)のように、振動評価Aaの大きさを最小化するCaを探索する問題として直接扱うことも可能である。

Figure 0007500133000019
Fig. 9 is a diagram for explaining the correspondence between the space of the corrected weights and the space of the vibration evaluation. That is, up to this point, the influence coefficient αi has been explicitly solved, but it is also possible to directly deal with the problem of searching for Ca that minimizes the magnitude of the vibration evaluation Aa by attaching a combination of weights Ca to each corrected surface and assuming that there is a certain function for the corrected weights and the vibration evaluation as shown in Fig. 9, as shown in the following formulas (19A) and (19B).
Figure 0007500133000019

10 回転体、 11、12、13 修正面、 16 ツール(砥石)、 17、18 加速度センサ、
21 X送りモータ、 22 A回転モータ、 23 Z送りモータ、24 C回転モータ、 25 砥石モータ、 26 ツール(砥石)、 W ワーク、
31 X送り装置、 32 Z送り装置、 33 工具主軸、 34 工具、 35 ワークテーブル、 36 C回転装置

10 Rotating body, 11, 12, 13 Correcting surface, 16 Tool (grindstone), 17, 18 Acceleration sensor,
21 X feed motor, 22 A rotation motor, 23 Z feed motor, 24 C rotation motor, 25 grindstone motor, 26 tool (grindstone), W workpiece,
31 X-feed device, 32 Z-feed device, 33 Tool spindle, 34 Tool, 35 Work table, 36 C-rotation device

Claims (2)

工具回転軸と、該工具回転軸により回転される工具とを備える工作機械であって、該工作機械の少なくとも2軸以上の駆動軸を使って前記工具をワークに対して移動させることにより該ワークの加工を行う工作機械における振動の評価による不釣合い修正方法であって、
前記ワークの加工中に前記工具が動く範囲内で立体的ないし平面的な座標位置を決めて、加工中に使う各回転数と各座標位置の組み合わせを使って振動の不釣合いを評価して一定の重み付けを行い、どの位置および回転数でも振動が均等に良好になるように数値最適化手法を用いて振動の不釣合い修正を行うことを特徴とする振動の立体的位置での評価による不釣合い修正方法。
1. A method for correcting imbalance by evaluating vibration in a machine tool including a tool rotation shaft and a tool rotated by the tool rotation shaft, the machine tool machining a workpiece by moving the tool relative to the workpiece using at least two or more drive shafts of the machine tool, comprising:
A method for correcting an imbalance by evaluating a three-dimensional position of vibration, characterized in that a three-dimensional or two-dimensional coordinate position is determined within the range in which the tool moves during machining of the workpiece, the vibration imbalance is evaluated and weighted using a combination of each rotation speed and each coordinate position used during machining, and the vibration imbalance is corrected using a numerical optimization method so that the vibration is uniformly good at all positions and rotation speeds.
工具回転軸と、該工具回転軸により回転される工具とを備える工作機械であって、該工作機械の少なくとも2軸以上の駆動軸を使って前記工具をワークに対して移動させることにより該ワークの加工を行う工作機械において、
前記ワークの加工中に前記工具が動く範囲内で立体的ないし平面的な座標位置を決めて、加工中に使う各回転数と各座標位置の組み合わせを使って振動の不釣合いを評価して一定の重み付けを行い、どの位置および回転数でも振動が均等に良好になるように数値最適化手法を用いて振動の不釣合い修正を行う工作機械であって、前記不釣合い修正を実行するための自動不釣合い修正機構を搭載したことを特徴とする工作機械。
A machine tool including a tool rotation shaft and a tool rotated by the tool rotation shaft, the machine tool machining a workpiece by moving the tool relative to the workpiece using at least two or more drive shafts of the machine tool,
A machine tool that determines three-dimensional or two-dimensional coordinate positions within the range in which the tool moves while machining the workpiece, evaluates the vibration imbalance using a combination of each rotation speed and each coordinate position used during machining, assigns a certain weighting to it, and corrects the vibration imbalance using a numerical optimization method so that the vibration is uniformly good at all positions and rotation speeds , and is characterized by being equipped with an automatic imbalance correction mechanism for performing the imbalance correction .
JP2020145612A 2020-08-31 2020-08-31 Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method Active JP7500133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020145612A JP7500133B2 (en) 2020-08-31 2020-08-31 Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145612A JP7500133B2 (en) 2020-08-31 2020-08-31 Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method

Publications (2)

Publication Number Publication Date
JP2022040756A JP2022040756A (en) 2022-03-11
JP7500133B2 true JP7500133B2 (en) 2024-06-17

Family

ID=80499492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145612A Active JP7500133B2 (en) 2020-08-31 2020-08-31 Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method

Country Status (1)

Country Link
JP (1) JP7500133B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174658A1 (en) 2010-09-29 2013-07-11 Kabushiki Kaisha Toyota Jidoshokki Imbalance correction method and imbalance correction amount calculation device for rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174658A1 (en) 2010-09-29 2013-07-11 Kabushiki Kaisha Toyota Jidoshokki Imbalance correction method and imbalance correction amount calculation device for rotor

Also Published As

Publication number Publication date
JP2022040756A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
Edwards et al. Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down
Stepan et al. Chatter avoidance in cutting highly flexible workpieces
JP2976578B2 (en) How to correct rotor balance
US7370524B2 (en) Adaptive vibration control using synchronous demodulation with machine tool controller motor commutation
Castro et al. Correction of dynamic effects on force measurements made with piezoelectric dynamometers
JPH0830669B2 (en) How to balance the rotor
Ahmadi et al. Modeling the mechanics and dynamics of arbitrary edge drills
JPH10507271A (en) Apparatus and method for performing high precision calibration of machine tools
WO2019043852A1 (en) Numerical control system and motor controller
Stepan et al. On stability of emulated turning processes in HIL environment
CN110118632A (en) By the method for the degree of unbalancedness of displacement sensor axis elastic rotor
Zhang et al. A new method for field dynamic balancing of rigid motorized spindles based on real-time position data of CNC machine tools
Mohammadi et al. In-process frequency response function measurement for robotic milling
JP7500133B2 (en) Method for correcting imbalance by evaluating vibration in three-dimensional positions and machine tool capable of automating said method
Kang et al. A modified influence coefficient method for balancing unsymmetrical rotor-bearing systems
Kalinski et al. A technique of experiment aided virtual prototyping to obtain the best spindle speed during face milling of large-size structures
Höfener et al. A method for increasing the accuracy of “on-workpiece” machining with small industrial robots for composite repair
Liu et al. Mechanics and dynamics of helical milling operations
CN108349064B (en) Instrumented tool for monitoring interaction dynamics in contact tasks
JP5622178B2 (en) How to obtain influence coefficient
US6044553A (en) Method and apparatus for reducing the weight critical flexural amplitude of a rotor having anisotropic flexural stiffness
EP3767255A1 (en) Field calibration for torsional vibration transducer
Figueroa Díaz et al. Methodology to improve mode identification and modal parameter extraction for rotor dynamic analysis
Brandt et al. Modeling the influence of unbalances for ultra‐precision cutting processes
Mohamed et al. Uncertainties in the calibration process of blade tip timing data against finite element model predictions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7500133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150