JP7497871B2 - AlN particle dispersed resin compact and method for producing same - Google Patents

AlN particle dispersed resin compact and method for producing same Download PDF

Info

Publication number
JP7497871B2
JP7497871B2 JP2020168666A JP2020168666A JP7497871B2 JP 7497871 B2 JP7497871 B2 JP 7497871B2 JP 2020168666 A JP2020168666 A JP 2020168666A JP 2020168666 A JP2020168666 A JP 2020168666A JP 7497871 B2 JP7497871 B2 JP 7497871B2
Authority
JP
Japan
Prior art keywords
aln
particles
thermal conductivity
molded body
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020168666A
Other languages
Japanese (ja)
Other versions
JP2022060905A (en
JP2022060905A5 (en
Inventor
昌樹 松本
将太 渡邉
健治 西谷
孝浩 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U-MAP CO., LTD.
Original Assignee
U-MAP CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U-MAP CO., LTD. filed Critical U-MAP CO., LTD.
Priority to JP2020168666A priority Critical patent/JP7497871B2/en
Publication of JP2022060905A publication Critical patent/JP2022060905A/en
Publication of JP2022060905A5 publication Critical patent/JP2022060905A5/ja
Application granted granted Critical
Publication of JP7497871B2 publication Critical patent/JP7497871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、窒化アルミニウム(AlN)粒子を分散させた樹脂成形体及びその製造方法に関する。 The present invention relates to a resin molded body containing dispersed aluminum nitride (AlN) particles and a method for manufacturing the same.

窒化アルミニウム(AlN)は高い熱伝導性を有する絶縁体であることから、電子デバイスなどの絶縁性の放熱部材としての利用がされている。例えば、これを焼結させたAlN焼結体は、シリコン(Si)に近い熱膨張係数を有するため、シリコンを用いた半導体装置の放熱板や基板として好適である。一方、AlN粒子を分散させた樹脂成形体のような粒子分散複合材料の利用も提案されている。 Aluminum nitride (AlN) is an insulator with high thermal conductivity, and is therefore used as an insulating heat dissipation material for electronic devices. For example, an AlN sintered body made by sintering it has a thermal expansion coefficient close to that of silicon (Si), making it suitable as a heat sink or substrate for semiconductor devices that use silicon. On the other hand, the use of particle-dispersed composite materials such as resin molded bodies with AlN particles dispersed therein has also been proposed.

例えば、特許文献1では、熱伝導性と成形加工性とを兼ね備えた樹脂成形体として、AlN単結晶粒子が融着して繊維状になった異方性形状のAlNフィラーを等方性形状の粒子とともに含有する樹脂成形体を開示している。エポキシ樹脂やシリコン樹脂のような熱硬化性樹脂からなる樹脂成形体において、AlNフィラー100重量部に対して、等方性形状の粒子100重量部以上、及び、熱硬化性樹脂40重量部以上として、1W/m・K以上の高い熱伝導率を得られるとしている。このような高い熱伝導率を得られる理由として、成形体中の異方性形状のAlNフィラーが等方性形状の粒子の存在により、成形加工中に折れ曲がりの少ない状態で存在できるため、熱伝導経路が確保されやすくなると説明している。 For example, Patent Document 1 discloses a resin molded body that combines thermal conductivity and moldability, and contains anisotropically shaped AlN filler in the form of fibrous AlN single crystal particles fused together with isotropically shaped particles. In a resin molded body made of a thermosetting resin such as epoxy resin or silicone resin, a high thermal conductivity of 1 W/m·K or more can be obtained by using 100 parts by weight of AlN filler, 100 parts by weight or more of isotropically shaped particles, and 40 parts by weight or more of thermosetting resin. The reason for obtaining such a high thermal conductivity is explained to be that the presence of the isotropically shaped particles allows the anisotropically shaped AlN filler in the molded body to exist in a state with less bending during molding, making it easier to ensure a heat conduction path.

また、特許文献2では、不純物の混入を抑えて熱伝導性の低下を抑えたAlNウィスカーを含むエポキシ樹脂やシリコン樹脂からなる樹脂組成物を開示している。外形のアスペクト比を5以上としたAlNウィスカーを切断せず樹脂組成物中に均一に分散して存在するように剪断応力を小さくしつつミキサー等の混練機で混合して含むことで、ウィスカー同士を接触し易くして熱伝導パス(熱伝導経路)を確保し、熱伝導性の向上が図られることを述べている。かかるAlNウィスカーは、長軸に垂直方向の断面における面積の平均が0.1μm~50μm、当該ウィスカーの高さの平均が10μm~50mmであって、樹脂組成物100においてウィスカー及び樹脂部の重量比(配合比)は5~60%程度であるとしている。 Patent Document 2 discloses a resin composition made of an epoxy resin or a silicone resin containing AlN whiskers that suppresses the inclusion of impurities and suppresses the decrease in thermal conductivity. It states that by mixing and including AlN whiskers with an aspect ratio of 5 or more in the resin composition while reducing the shear stress so that the AlN whiskers are uniformly dispersed in the resin composition without being cut, the whiskers are made to easily come into contact with each other, ensuring a thermal conduction path (thermal conduction route), and improving thermal conductivity. It states that the average area of such AlN whiskers in a cross section perpendicular to the long axis is 0.1 μm 2 to 50 μm 2 , the average height of the whiskers is 10 μm to 50 mm, and the weight ratio (mixing ratio) of the whiskers and the resin portion in the resin composition 100 is about 5 to 60%.

特開2010-235842号公報JP 2010-235842 A 特開2016-145120号公報JP 2016-145120 A

上記したように、アスペクト比の高いAlN粒子をその長さ方向にランダムな方向を向くように樹脂成形体中に分散させることで、分散量が少量であっても、樹脂成形体に高い熱伝導性を付与することができる。また、分散量を一定に抑えることで、樹脂成形体の機械的性質を維持できる。 As described above, by dispersing AlN particles with a high aspect ratio in a resin molded body so that they are randomly oriented along their length, it is possible to impart high thermal conductivity to the resin molded body even with a small amount of dispersion. In addition, by keeping the amount of dispersion constant, it is possible to maintain the mechanical properties of the resin molded body.

本発明は以上のような状況に鑑みてなされたものであって、その目的は、少ない分散量でありながら高い熱伝導率を与えるAlN粒子を分散させた樹脂成形体及びその製造方法を提供することにある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a resin molded body containing dispersed AlN particles that provide high thermal conductivity even with a small amount of dispersion, and a method for manufacturing the same.

本発明による樹脂成形体は、AlNからなる粒子を分散させた樹脂成形体であって、前記粒子の体積率を20%以下としつつ、D50での前記粒子の長径を3μm以上とした単結晶ウィスカーを熱硬化性樹脂に分散混合させて1~10W/m・Kの熱伝導率を有することを特徴とする。 The resin molded body according to the present invention is a resin molded body in which particles made of AlN are dispersed, and is characterized in that the volume fraction of the particles is 20% or less, and single crystal whiskers with a major axis of the particles of 3 μm or more at D50 are dispersed and mixed in a thermosetting resin, resulting in a thermal conductivity of 1 to 10 W/m·K.

かかる特徴によれば、AlNからなる粒子を少ない分散量で樹脂に与えつつ高い熱伝導率を得られ、熱硬化性樹脂の機械的性質を維持できるのである。 This feature makes it possible to obtain high thermal conductivity while providing the resin with a small amount of dispersed AlN particles, and to maintain the mechanical properties of the thermosetting resin.

上記した発明において、前記粒子のD50でのアスペクト比を5以上とすることを特徴としてもよい。かかる特徴によれば、AlNからなる粒子を少ない分散量で樹脂に与えつつより高い熱伝導率を得られ、熱硬化性樹脂の機械的性質を維持できるのである。 In the above-mentioned invention, the aspect ratio of the particles at D50 may be 5 or more. With this feature, it is possible to obtain a higher thermal conductivity while providing the resin with a small amount of AlN particles dispersed therein, and to maintain the mechanical properties of the thermosetting resin.

上記した発明において、シート形状を有し、厚さ方向に対する面方向の熱伝導率を大とするように、前記粒子を配向させて分散していることを特徴としてもよい。また、前記厚さ方向の熱伝導率を2W/m・K以下とするように前記粒子を配向させていることを特徴としてもよい。かかる発明によれば、AlNからなる粒子を少ない分散量で樹脂に与えつつ高い熱伝導率を得られ、シート成形体としての破断強度などの機械的性質を高め得る。 The above-mentioned invention may be characterized in that the particles are oriented and dispersed so as to have a sheet shape and to increase the thermal conductivity in the planar direction relative to the thickness direction. The particles may also be oriented so as to make the thermal conductivity in the thickness direction 2 W/m·K or less. According to this invention, it is possible to obtain high thermal conductivity while providing a resin with a small amount of dispersed particles made of AlN, and to improve mechanical properties such as the breaking strength of the sheet molded body.

本発明による製造方法は、AlNからなる粒子を分散させた樹脂成形体の製造方法であって、AlNからなる単結晶ウィスカーを体積率で20%以下となるように溶融させた熱硬化性樹脂に混合し分散させた後に真空引きしつつ所定形状に成形加工し、D50での前記粒子の長径を3μm以上とした前記粒子を分散混合させた1~10W/m・Kの熱伝導率を有する前記樹脂成形体とすることを特徴とする。 The manufacturing method according to the present invention is a method for manufacturing a resin molded body with dispersed particles made of AlN, which is characterized in that single crystal whiskers made of AlN are mixed and dispersed in a molten thermosetting resin so that the volume fraction is 20% or less, and then molded into a predetermined shape while drawing a vacuum, to produce a resin molded body having a thermal conductivity of 1 to 10 W/m·K in which the particles with a major axis of 3 μm or more at D50 are dispersed and mixed.

かかる特徴によれば、アスペクト比の高い粒子の混合時の破損を抑制できるとともに、単結晶ウィスカーと樹脂の接触を高めて、結果として、AlNからなる粒子を少ない分散量で樹脂に与えつつ高い熱伝導率を得られ、熱硬化性樹脂の機械的性質を維持する樹脂成形体を得られるのである。 This feature makes it possible to suppress breakage of particles with high aspect ratios when mixed, and to increase contact between the single crystal whiskers and the resin. As a result, it is possible to obtain a resin molded body that maintains the mechanical properties of thermosetting resin while providing the resin with a small amount of dispersed AlN particles and achieving high thermal conductivity.

上記した発明において、前記粒子のD50でのアスペクト比を5以上とすることを特徴としてもよい。かかる特徴によれば、AlNからなる粒子を少ない分散量で樹脂に与えつつより高い熱伝導率を得られ、熱硬化性樹脂の機械的性質を維持できるのである。 In the above-mentioned invention, the aspect ratio of the particles at D50 may be 5 or more. With this feature, it is possible to obtain a higher thermal conductivity while providing the resin with a small amount of AlN particles dispersed therein, and to maintain the mechanical properties of the thermosetting resin.

上記した発明において、厚さ方向に対する面方向の熱伝導率を大とするように、前記ウィスカーを配向させて分散させるようにシート形状にコーターで成形加工し、真空引きしつつ乾燥させることを特徴としてもよい。かかる特徴によれば、シート形状に成形加工しつつ配向させようとしたときのアスペクト比の高い粒子の破損を抑制できるとともに、樹脂中に閉じ込められる空気を減じ得るから、結果として、AlNからなる粒子を少ない分散量で樹脂に与えつつ高い熱伝導率を得られ、熱硬化性樹脂の機械的性質を維持するシート形状の樹脂成形体を得られるのである。 In the above-mentioned invention, the whiskers may be oriented and dispersed in a sheet shape using a coater to increase the thermal conductivity in the surface direction relative to the thickness direction, and then dried under vacuum. This feature can suppress damage to particles with a high aspect ratio when attempting to orient the whiskers while shaping them into a sheet shape, and can reduce the amount of air trapped in the resin. As a result, a small amount of AlN particles can be dispersed in the resin while obtaining a high thermal conductivity, and a sheet-shaped resin molded body that maintains the mechanical properties of the thermosetting resin can be obtained.

上記した発明において、基板の上に前記コーターで成形後、前記基板のまま乾燥させることを特徴としてもよい。かかる特徴によれば、高い熱伝導率を有しつつ、熱硬化性樹脂の機械的性質を維持するシート形状の樹脂成形体を簡便に得られるのである。 In the above-mentioned invention, a feature may be that after molding on a substrate with the coater, the substrate is dried as is. With this feature, a sheet-shaped resin molded body that has high thermal conductivity and maintains the mechanical properties of a thermosetting resin can be easily obtained.

上記した発明において、前記厚さ方向の熱伝導率を2W/m・K以下とするように前記粒子を配向させることを特徴としてもよい。かかる発明によれば、AlNからなる粒子を少ない分散量で樹脂に与えつつ高い熱伝導率を得られ、シート成形体としての破断強度などの機械的性質を高め得る。 The above-mentioned invention may be characterized in that the particles are oriented so that the thermal conductivity in the thickness direction is 2 W/m·K or less. According to this invention, it is possible to obtain high thermal conductivity while providing a resin with a small amount of dispersed particles made of AlN, and to improve mechanical properties such as the breaking strength of the sheet molded body.

本発明による1実施例における樹脂成形体の断面図である。1 is a cross-sectional view of a resin molded body in one embodiment according to the present invention. 樹脂成形体の製造方法を示すフロー図である。FIG. 2 is a flow diagram showing a method for producing a resin molded body. 製造試験で得られた樹脂成形体の断面の電子顕微鏡写真である。1 is an electron microscope photograph of a cross section of a resin molded body obtained in a production test. 樹脂成形体の粒子の体積分率と熱伝導率との関係を示すグラフである。1 is a graph showing the relationship between the volume fraction of particles in a resin molded body and thermal conductivity. 樹脂成形体に含有される粒子の長径の度数分布のグラフである。1 is a graph showing frequency distribution of the major axis of particles contained in a resin molding. 樹脂成形体に含有される粒子のアスペクト比の度数分布のグラフである。1 is a graph showing a frequency distribution of the aspect ratio of particles contained in a resin molding.

以下、本発明の代表的な一例としての樹脂成形体について、図1を用いて説明する。 Below, a resin molded body as a representative example of the present invention will be described with reference to Figure 1.

図1に示すように、本実施例における樹脂成形体10は樹脂2の内部にAlNからなる粒子1を分散させた樹脂成形体である。特に、粒子1の体積率を20%以下とした上で、熱伝導率を1~10W/m・Kとする。このような熱伝導率を得るために、粒子1はAlNの単結晶ウィスカーからなり、かかる粒子の長径をD50で3μm以上としている。 As shown in FIG. 1, the resin molded body 10 in this embodiment is a resin molded body in which particles 1 made of AlN are dispersed inside the resin 2. In particular, the volume ratio of the particles 1 is set to 20% or less, and the thermal conductivity is set to 1 to 10 W/m·K. To obtain such a thermal conductivity, the particles 1 are made of single crystal whiskers of AlN, and the major axis of the particles is set to 3 μm or more in D50.

粒子1は、単結晶ウィスカーからなるので多結晶体に比べて熱伝導率が高い。また、粒子1は、その長径をD50で3μm以上と比較的大きくすることで粒子1同士での接触箇所を多くすることができる。そのため、上記したように体積率20%以下と少ない量で粒子1が分散されていても、粒子1同士の接触による熱伝導経路を多く確保でき、樹脂成形体10として高い熱伝導率を維持することができる。なお、粒子1としては、純度の高い単結晶ウィスカーを用いることで、不純物の多い単結晶体に比べても熱伝導率を高くでき、体積率を低下させ得て好ましい。また、粒子1として用いる単結晶ウィスカーは、その結晶構造を六方晶のウルツ鉱型構造としており、c軸方向と垂直に(0002)面が位置することが好ましい。このような単結晶ウィスカーは、熱伝導率として120~320W/m・Kを得ることができる。 The particles 1 are made of single crystal whiskers, and therefore have a higher thermal conductivity than polycrystals. In addition, the particles 1 can have a relatively large major axis of 3 μm or more in D50, which allows for a large number of contact points between the particles 1. Therefore, even if the particles 1 are dispersed in a small amount of 20% or less by volume as described above, many thermal conduction paths can be secured through contact between the particles 1, and the resin molded body 10 can maintain a high thermal conductivity. It is preferable to use single crystal whiskers with high purity as the particles 1, since it is possible to increase the thermal conductivity and reduce the volume fraction compared to single crystals with a large amount of impurities. In addition, it is preferable that the single crystal whiskers used as the particles 1 have a hexagonal wurtzite structure as their crystal structure, and the (0002) plane is located perpendicular to the c-axis direction. Such single crystal whiskers can achieve a thermal conductivity of 120 to 320 W/m·K.

また、粒子1は、D50でのアスペクト比を5以上とすることが好ましい。上記したように粒子1同士の接触箇所を多くすることができ、これによっても樹脂成形体10としての熱伝導率を維持しつつ、体積率を低下させ得る。 In addition, it is preferable that the particle 1 has an aspect ratio of 5 or more at D50. As described above, the number of contact points between the particles 1 can be increased, which also makes it possible to reduce the volume fraction while maintaining the thermal conductivity of the resin molded body 10.

なお、樹脂成形体10として得られる熱伝導率について上限値を10W/m・Kと定めたが、これによって粒子1のアスペクト比を極端に大きくすることを防止している。アスペクト比が極端に大きいと製造途中に粒子1を折損させるなど破損させやすくして微粉末を増加させてしまい、D50での長径を維持できず、却って熱伝導率を低下させてしまうためである。 The upper limit of the thermal conductivity of the resin molded body 10 is set to 10 W/m·K, which prevents the aspect ratio of the particles 1 from becoming too large. If the aspect ratio is too large, the particles 1 will be easily broken or damaged during production, resulting in an increase in fine powder, and the major axis at D50 cannot be maintained, which would actually decrease the thermal conductivity.

次に、樹脂成形体10の製造方法について図2を用いて説明する。 Next, the manufacturing method of the resin molded body 10 will be explained with reference to FIG.

図2に示すように、まず、粒子1として所定形状のAlNからなる単結晶ウィスカーを用意し、溶融した熱硬化性樹脂と混合して分散させ、複合樹脂材料を得る(混合:S1)。このとき、単結晶ウィスカーからなるアスペクト比の大きな粒子1の破損を抑制するように混合する。例えば、ボールミルなどの高い剪断力を付与するような装置は使用せず、付与される剪断力の比較的小さい攪拌装置を用いたり、手作業による攪拌を行ったりして混合させる。なお、上記したように体積分率を20%以下とするように粒子1を含ませているため、粒子同士が絡むことを減じて、破損を抑制できる。 As shown in FIG. 2, first, single crystal whiskers made of AlN with a predetermined shape are prepared as particles 1, and mixed and dispersed with molten thermosetting resin to obtain a composite resin material (mixing: S1). At this time, mixing is performed to suppress damage to particles 1 made of single crystal whiskers with a large aspect ratio. For example, mixing is performed using a stirring device that applies a relatively small shear force or by manual stirring, rather than using a device that applies a high shear force such as a ball mill. Note that, as described above, particles 1 are included so that the volume fraction is 20% or less, which reduces entanglement between particles and suppresses damage.

次いで、複合樹脂材料を真空引きしつつ所定形状に成形加工する(成形:S2)。真空引きするのは粒子1と樹脂2とを密着させて空気等のガス成分を排除し、得られる樹脂成形体10の熱伝導率の低下を抑制するためである。例えば、真空引きしながら焼成して熱硬化性樹脂を硬化させて成形することができる。 Next, the composite resin material is molded into a predetermined shape while being evacuated (molding: S2). The purpose of evacuating is to bring the particles 1 and the resin 2 into close contact with each other, to eliminate gas components such as air, and to prevent a decrease in the thermal conductivity of the resulting resin molded body 10. For example, the thermosetting resin can be cured and molded by baking while being evacuated.

以上によって、上記したような樹脂成形体10を得ることができる。 By the above steps, the resin molded body 10 as described above can be obtained.

[製造試験]
次に、実際にシート状の樹脂成形体を作製した結果について、図3乃至図6を用いて説明する。
[Production testing]
Next, the results of actually producing a sheet-shaped resin molding will be described with reference to FIGS.

まず、アルミナ板にアルミニウムと他の金属との混合物を載せ、加熱炉に装入した。炉内をアルゴン雰囲気としてから加熱し、所定の加熱温度に到達後に窒素を炉内に導入し保持した。これによってアルミニウムを窒化させて析出させ、結晶成長させた。その後2日間かけて徐冷し、白い棉状のAlNウィスカーを得た。加熱炉から取り出されたアルミナ板上のAlNウィスカーは、ピンセットを用いて手作業で回収し、又は、有機溶媒中に分散して吸引ろ過によって回収し、必要に応じて分級された。このような製造方法により純度の高いAlN単結晶ウィスカーを得ることができた。 First, a mixture of aluminum and other metals was placed on an alumina plate and then loaded into a heating furnace. The furnace was heated after creating an argon atmosphere, and once the specified heating temperature was reached, nitrogen was introduced into the furnace and maintained there. This caused the aluminum to be nitrided and precipitated, resulting in crystal growth. It was then slowly cooled over two days, yielding white, cotton-like AlN whiskers. The AlN whiskers on the alumina plate removed from the heating furnace were either manually collected using tweezers, or dispersed in an organic solvent and collected by suction filtration, and classified as necessary. This manufacturing method made it possible to obtain high-purity AlN single crystal whiskers.

得られたAlNウィスカーを溶融させた熱硬化性のシリコン樹脂とともに容器に計り入れて攪拌した。攪拌装置によって攪拌した他、さらに手作業でも攪拌した。つまり、AlNウィスカーは破損を防止するように攪拌され、シリコン樹脂に分散された。 The resulting AlN whiskers were weighed into a container along with molten thermosetting silicone resin and stirred. The mixture was stirred using a stirring device and also by hand. In other words, the AlN whiskers were stirred to prevent breakage and dispersed in the silicone resin.

撹拌されたAlNウィスカーとシリコン樹脂との複合樹脂材料を、コーターを用いてポリテトラフルオロエチレン(polytetrafluoroethylene, PTFE)板上に一方向に塗布し、500μm厚さのシート状体に成形した。 The mixed composite resin material of AlN whiskers and silicone resin was applied in one direction onto a polytetrafluoroethylene (PTFE) plate using a coater and formed into a sheet-like body with a thickness of 500 μm.

ついで、PTFE板ごと定温乾燥機内に装入し、真空引きして減圧下で焼成した。焼成においては、160℃で3時間の加熱条件とした。これにてシート状の樹脂成形体10を得ることができた。 Then, the PTFE plate was placed in a constant temperature dryer, evacuated, and baked under reduced pressure. The baking was performed at 160°C for 3 hours. This resulted in a sheet-shaped resin molded body 10.

図3に示すように、このようにして製造された樹脂成形体10について、断面を電子顕微鏡にて観察した。AlNウィスカーによる粒子がその長手方向を複合樹脂材料の塗布された方向(同図において紙面左右方向)に向けて配向されていることが判る。 As shown in Figure 3, the cross section of the resin molded body 10 produced in this manner was observed under an electron microscope. It can be seen that the AlN whisker particles are oriented with their longitudinal direction facing the direction in which the composite resin material was applied (the left-right direction on the paper in the figure).

図4に示すように、AlNウィスカーの体積分率を変化させたときの樹脂成形体10の熱伝導率について測定した。「シート成形方向」(上記した複合樹脂の塗布された方向)の熱伝導率は、AlNウィスカーの体積分率を5%、10%、20%としたいずれにおいても1~10W/m・Kの範囲内であり、体積分率を高くすると熱伝導率も向上する傾向にあった。ところで、体積分率を20%よりも大きくすると、体積分率の増加に対して熱伝導率の増加を鈍化させ得る。つまり、上記した熱伝導率には、体積分率の増加による効果以外に、粒子1の長径の大きさによる粒子1同士の接触箇所の増加の効果が含まれていることを推定できる。一方、配向の結果、シート状体の樹脂成形体10の「厚さ方向」の熱伝導率はAlNウィスカーの体積分率を変化させてもほとんど変化せず、いずれも2W/m・K以下であった。好ましくは、1W/m・K未満とする。 As shown in FIG. 4, the thermal conductivity of the resin molded body 10 was measured when the volume fraction of the AlN whiskers was changed. The thermal conductivity in the "sheet molding direction" (the direction in which the composite resin was applied) was in the range of 1 to 10 W/m·K for all AlN whisker volume fractions of 5%, 10%, and 20%, and there was a tendency for the thermal conductivity to improve as the volume fraction was increased. However, if the volume fraction is increased to more than 20%, the increase in thermal conductivity with respect to the increase in volume fraction can be slowed down. In other words, it can be estimated that the above-mentioned thermal conductivity includes the effect of increasing the contact points between particles 1 due to the size of the major axis of the particles 1 in addition to the effect of increasing the volume fraction. On the other hand, as a result of the orientation, the thermal conductivity in the "thickness direction" of the resin molded body 10 in the sheet-like body hardly changed even when the volume fraction of the AlN whiskers was changed, and was 2 W/m·K or less in all cases. It is preferably less than 1 W/m·K.

さらに、測定に用いた樹脂成形体10に含まれるAlNウィスカーの詳細について調査するため、大気中で樹脂成形体10を加熱して樹脂成分を揮発させた。加熱温度は、例えば、600~800℃の範囲内とすることで、樹脂だけを揮発させてAlNウィスカーを反応させないようにできる。残存したAlNウィスカーについてその粒子のアスペクト比及び長径を調査し、粒子数基準での度数(頻度)分布を100分率でまとめた。 Furthermore, in order to investigate the details of the AlN whiskers contained in the resin molded body 10 used in the measurement, the resin molded body 10 was heated in the atmosphere to volatilize the resin components. By setting the heating temperature within the range of, for example, 600 to 800°C, it is possible to volatilize only the resin and prevent the AlN whiskers from reacting. The particle aspect ratio and major axis of the remaining AlN whiskers were investigated, and the frequency distribution based on the particle number was summarized as a percentage.

図5に示すように、長径はD50で18μmであった。このように、長径をD50で3μm以上とすることで、樹脂成形体10に1~10W/m・Kの熱伝導率を付与できた。なお、製造過程における粒子同士の絡みなどによるAlNウィスカーの破損も想定され得たが、体積分率を20%以下とすることでそのような破損をほとんど生じなかったものと考えられる。なお、AlNウィスカーの長径をD50で3μm以上と定めたことについては、3μm以上の長い粒子の体積分率、すなわち数密度を一定以上にすることである。つまり、AlNウィスカー同士の接触箇所の数密度とAlNウィスカー1本で熱伝導させる距離とを長径を大とする粒子によって向上させ、これによって熱伝導率を向上させることができたと考えられる。 As shown in FIG. 5, the long diameter was 18 μm at D50. In this way, by making the long diameter 3 μm or more at D50, it was possible to impart a thermal conductivity of 1 to 10 W/m·K to the resin molded body 10. It is possible to imagine that the AlN whiskers would be damaged due to entanglement between particles during the manufacturing process, but by setting the volume fraction to 20% or less, it is believed that such damage hardly occurred. The reason why the long diameter of the AlN whiskers is set to 3 μm or more at D50 is to set the volume fraction of long particles of 3 μm or more, i.e., the number density, to a certain level or higher. In other words, it is believed that the number density of contact points between AlN whiskers and the distance through which heat is conducted by a single AlN whisker are improved by particles with a large long diameter, which in turn improves the thermal conductivity.

図6に示すように、アスペクト比はD50で5であった。このようにアスペクト比を5以上とすることで上記した熱伝導率の向上に寄与したものと考えられる。なお、アスペクト比の高いAlNウィスカーを主面に平行な面方向に配向分散させたことで、樹脂成形体10はシート体としての破断強度に優れるものになったものと考えられる。 As shown in FIG. 6, the aspect ratio was 5 at D50. It is believed that making the aspect ratio 5 or more contributed to the improvement in thermal conductivity mentioned above. In addition, it is believed that by orienting and dispersing the AlN whiskers with a high aspect ratio in a planar direction parallel to the main surface, the resin molding 10 has excellent breaking strength as a sheet body.

以上のように、体積分率で20%以下の少ない量でAlNウィスカーを分散させても、1~10W/m・Kの高い熱伝導率を得ることができた。 As described above, even when AlN whiskers are dispersed in a small amount (volume fraction of 20% or less), a high thermal conductivity of 1 to 10 W/m·K can be obtained.

ここまで本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらの例に限定されるものではない。また、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the present invention has been described above with reference to examples and variations thereof, the present invention is not necessarily limited to these examples. Furthermore, a person skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.

1 粒子
2 樹脂
10 樹脂成形体

1 Particle 2 Resin 10 Resin molded body

Claims (9)

AlNからなる粒子を熱硬化性樹脂に分散させた樹脂成形体であって、
1~10W/m・Kの熱伝導率を有し、
AlN単結晶ウィスカーからなる前記粒子をD50での長径を3μm以上とし20%以下の体積率で含むことを特徴とするAlN粒子分散樹脂成形体。
A resin molded body in which particles made of AlN are dispersed in a thermosetting resin ,
It has a thermal conductivity of 1 to 10 W/m K,
An AlN particle-dispersed resin molding comprising AlN single crystal whiskers having a major axis of 3 μm or more at D50 and a volume ratio of 20% or less.
前記AlN単結晶ウィスカーの熱伝導率を120~320W/m・K、前記粒子のD50でのアスペクト比を5以上とすることを特徴とする請求項1記載のAlN粒子分散樹脂成形体。 The AlN particle-dispersed resin molding according to claim 1, characterized in that the thermal conductivity of the AlN single crystal whiskers is 120 to 320 W/m·K, and the aspect ratio of the particles at D50 is 5 or more. シート形状を有し主面に平行な面方向に前記粒子を配向させて分散し、厚さ方向に対する面方向の熱伝導率を大としていることを特徴とする請求項1又は2に記載のAlN粒子分散樹脂成形体。 3. The AlN particle-dispersed resin molded body according to claim 1, characterized in that it has a sheet shape, the particles are oriented and dispersed in a plane direction parallel to the main surface, and the thermal conductivity in the plane direction is greater than that in the thickness direction. 前記厚さ方向の熱伝導率を2W/m・K以下とするように前記粒子を配向させていることを特徴とする請求項記載のAlN粒子分散樹脂成形体。 4. The AlN particle-dispersed resin molded body according to claim 3 , wherein the particles are oriented so as to provide a thermal conductivity in the thickness direction of the resin molded body of 2 W/m·K or less. AlNからなる粒子を分散させた樹脂成形体の製造方法であって、
AlN単結晶ウィスカーを溶融させた熱硬化性樹脂に混合し分散させた後に所定形状に成形加工し、前記粒子をD50での長径を3μm以上として20%以下の体積率で分散させ、1~10W/m・Kの熱伝導率を有する前記樹脂成形体とすることを特徴とするAlN粒子分散樹脂成形体の製造方法。
A method for producing a resin molded body having AlN particles dispersed therein, comprising the steps of:
A method for producing an AlN particle-dispersed resin molded body, comprising mixing and dispersing AlN single crystal whiskers in a molten thermosetting resin, forming the mixture into a predetermined shape, dispersing the particles at a volume ratio of 20% or less with a major axis of 3 μm or more at D50, and producing the resin molded body having a thermal conductivity of 1 to 10 W/m·K.
前記AlN単結晶ウィスカーの熱伝導率を120~320W/m・K、前記粒子のD50でのアスペクト比を5以上とすることを特徴とする請求項記載のAlN粒子分散樹脂成形体の製造方法。 6. The method for producing an AlN particle-dispersed resin molded body according to claim 5, wherein the thermal conductivity of the AlN single crystal whiskers is 120 to 320 W/m·K, and the aspect ratio of the particles at D50 is 5 or more. 厚さ方向に対する面方向の熱伝導率を大とするように、シート形状にコーターで成形加工し主面に平行な面方向に前記粒子を配向させて分散し、真空引きしつつ乾燥させることを特徴とする請求項記載のAlN粒子分散樹脂成形体の製造方法。 The method for producing an AlN particle-dispersed resin molding according to claim 6, characterized in that the AlN particle-dispersed resin molding is formed into a sheet shape using a coater , the particles are oriented and dispersed in a planar direction parallel to the main surface so as to increase the thermal conductivity in the planar direction relative to the thickness direction, and then dried while being evacuated. 基板の上に前記コーターで成形後、前記基板のまま乾燥させることを特徴とする請求項記載のAlN粒子分散樹脂成形体の製造方法。 8. The method for producing an AlN particle-dispersed resin molded article according to claim 7 , wherein after molding onto the substrate by the coater, the substrate is dried as it is. 前記厚さ方向の熱伝導率を2W/m・K以下とするように前記粒子を配向させることを特徴とする請求項記載のAlN粒子分散樹脂成形体の製造方法。 9. The method for producing an AlN particle-dispersed resin molded body according to claim 8 , wherein the particles are oriented so as to make the thermal conductivity in the thickness direction equal to or less than 2 W/m·K.
JP2020168666A 2020-10-05 2020-10-05 AlN particle dispersed resin compact and method for producing same Active JP7497871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020168666A JP7497871B2 (en) 2020-10-05 2020-10-05 AlN particle dispersed resin compact and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168666A JP7497871B2 (en) 2020-10-05 2020-10-05 AlN particle dispersed resin compact and method for producing same

Publications (3)

Publication Number Publication Date
JP2022060905A JP2022060905A (en) 2022-04-15
JP2022060905A5 JP2022060905A5 (en) 2023-05-08
JP7497871B2 true JP7497871B2 (en) 2024-06-11

Family

ID=81125161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168666A Active JP7497871B2 (en) 2020-10-05 2020-10-05 AlN particle dispersed resin compact and method for producing same

Country Status (1)

Country Link
JP (1) JP7497871B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478047A (en) * 2022-01-17 2022-05-13 南京航空航天大学 Anti-leakage honeycomb graded-hole ceramic-based photothermal storage material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339352A (en) 2003-05-15 2004-12-02 Nsk Ltd Phenolic resin molding compound and pulley
JP2010235842A (en) 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Thermosetting resin composition containing anisotropic aluminum nitride filler
JP2016145120A (en) 2015-02-06 2016-08-12 株式会社フジクラ Aluminum nitride whisker, resin composition, method for manufacturing aluminum nitride whisker
JP2020105242A (en) 2018-12-26 2020-07-09 東レ株式会社 Resin film and method for producing resin film
WO2020145083A1 (en) 2019-01-07 2020-07-16 日東シンコー株式会社 Resin composition, method for producing said resin composition, and thermally conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339352A (en) 2003-05-15 2004-12-02 Nsk Ltd Phenolic resin molding compound and pulley
JP2010235842A (en) 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Thermosetting resin composition containing anisotropic aluminum nitride filler
JP2016145120A (en) 2015-02-06 2016-08-12 株式会社フジクラ Aluminum nitride whisker, resin composition, method for manufacturing aluminum nitride whisker
JP2020105242A (en) 2018-12-26 2020-07-09 東レ株式会社 Resin film and method for producing resin film
WO2020145083A1 (en) 2019-01-07 2020-07-16 日東シンコー株式会社 Resin composition, method for producing said resin composition, and thermally conductive sheet

Also Published As

Publication number Publication date
JP2022060905A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
TWI838500B (en) Blocky boron nitride particles, heat conductive resin composition, and heat dissipation member
EP2511091A2 (en) A high solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
US11845697B2 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
JP7497871B2 (en) AlN particle dispersed resin compact and method for producing same
US20210305083A1 (en) Stacked structure and semiconductor manufacturing apparatus member
JP3633636B2 (en) Aluminum nitride sintered body
Kim et al. The effect of MnO 2 content on the permeability and electrical resistance of porous alumina-based ceramics
JPH09165265A (en) Silicon nitride ceramic having high heat conduction and its production
JPH0617270B2 (en) Boron nitride atmospheric pressure sintered body
KR20150061577A (en) Sintered boron nitride body and method for producing a sintered boron nitride body
JP2022060906A (en) Ain whisker-dispersed resin molding
KR101402501B1 (en) Sintered body of aluminium nitride using yttria nitrate as sintering aid and preparation method of the same
CN113186416A (en) SiC reinforced copper-based composite material and preparation method thereof
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
JP4469461B2 (en) Ceramic sintered body, sliding member using the same, semiconductor substrate, and manufacturing method thereof
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JP2008143748A (en) Silicon carbide sintered compact free from warp and method for producing the same
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
JP2022145088A (en) Thermal conducting material and production method of the same
WO2021117829A1 (en) Plate-like silicon nitride-based sintered body and method for producing same
KR20200052841A (en) MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
JP6721793B2 (en) Aluminum nitride sintered body and manufacturing method thereof
KR102459473B1 (en) Silicon nitride sintered body substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240523

R150 Certificate of patent or registration of utility model

Ref document number: 7497871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150