JP7497568B2 - Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same - Google Patents

Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same Download PDF

Info

Publication number
JP7497568B2
JP7497568B2 JP2019208706A JP2019208706A JP7497568B2 JP 7497568 B2 JP7497568 B2 JP 7497568B2 JP 2019208706 A JP2019208706 A JP 2019208706A JP 2019208706 A JP2019208706 A JP 2019208706A JP 7497568 B2 JP7497568 B2 JP 7497568B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
epoxy resin
parts
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208706A
Other languages
Japanese (ja)
Other versions
JP2021080363A (en
Inventor
由希 出口
悠人 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2019208706A priority Critical patent/JP7497568B2/en
Publication of JP2021080363A publication Critical patent/JP2021080363A/en
Application granted granted Critical
Publication of JP7497568B2 publication Critical patent/JP7497568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリアリーレンスルフィド樹脂組成物、成形品、複合成形体およびそれらの製造方法に関する。 The present invention relates to a polyarylene sulfide resin composition, a molded article, a composite molded body, and a method for producing the same.

ポリフェニレンスルフィド(以下PPSと略すことがある)樹脂に代表されるポリアリーレンスルフィド(以下PASと略すことがある)樹脂は、高融点で耐熱性に優れつつ、かつ、機械的強度、耐薬品性、成形加工性、寸法安定性にも優れることが知られている。そこで、一般的には、PAS樹脂に、充填剤やエラストマー等の添加剤を配合し、これらがPAS樹脂からなるマトリックス中に分散されるよう溶融混練してPAS樹脂組成物とした上で、溶融成形して電気・電子機器部品、自動車部品等として使用される成形品に加工される。 Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resins, such as polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin, are known to have a high melting point and excellent heat resistance, as well as excellent mechanical strength, chemical resistance, moldability, and dimensional stability. Therefore, PAS resins are generally mixed with additives such as fillers and elastomers, and melt-kneaded so that these are dispersed in a matrix made of PAS resin to form a PAS resin composition, which is then melt-molded and processed into molded products to be used as electrical and electronic equipment parts, automobile parts, etc.

そして、これら部品はその二次加工としてエポキシ樹脂等からなる部品材料と接着する場合が多々見られる。しかし、PAS樹脂は他の樹脂との接着性、特にエポキシ樹脂との接着性が比較的悪い。そのため、例えば、エポキシ系接着剤によるPAS同士の接合、PAS樹脂と他の材料との接合、あるいはエポキシ樹脂による電気・電子部品の封止等の際に、PAS樹脂とエポキシ樹脂を含む硬化性樹脂組成物との接着性(以下、エポキシ樹脂接着性ということがある)の悪さが問題となっていた。 These parts are often bonded to part materials made of epoxy resins and the like as a secondary process. However, PAS resin has relatively poor adhesion to other resins, especially to epoxy resins. For this reason, for example, when joining PAS resins together with epoxy adhesives, joining PAS resins to other materials, or sealing electrical and electronic parts with epoxy resins, the poor adhesion between PAS resins and curable resin compositions containing epoxy resins (hereinafter sometimes referred to as epoxy resin adhesion) has been a problem.

そこで、エポキシ樹脂接着性の低下を改善するために、PAS樹脂と、ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂と、ガラス繊維及びガラスフレークとを特定量で含むPAS樹脂組成物により、成形品のエポキシ樹脂接着性と耐冷熱衝撃性とをバランス良く改良する方法が提案されている(特許文献1参照)。しかし、この場合もPAS樹脂成形品のエポキシ樹脂接着性は低く、さらなるエポキシ樹脂接着性の向上が望まれていた。また、該PAS樹脂組成物およびPAS樹脂成形品は、製造時に、PAS樹脂の融点以上の温度で加熱して溶融状態とするが、その際に発生するガス量(以下、溶融時のガス発生量ということがある)が多くなるという傾向があった。このため、臭気問題による作業環境の悪化や、金型汚れによるメンテナンス性の低下を招くことがあり、さらに、金型表面や成型品表面にシミ焼けやヤニ状の物質が付着することもあり、溶融時のガス発生量の低いPAS樹脂組成物の開発が望まれていた。 In order to improve the deterioration of epoxy resin adhesion, a method has been proposed for improving the epoxy resin adhesion and cold and thermal shock resistance of molded products in a well-balanced manner by using a PAS resin composition containing a specific amount of PAS resin, a novolac type epoxy resin, a bisphenol type epoxy resin, glass fibers, and glass flakes (see Patent Document 1). However, even in this case, the epoxy resin adhesion of the PAS resin molded product is low, and further improvement of the epoxy resin adhesion was desired. In addition, the PAS resin composition and the PAS resin molded product are heated to a temperature above the melting point of the PAS resin during production to make it in a molten state, but there is a tendency for the amount of gas generated at that time (hereinafter sometimes referred to as the amount of gas generated during melting) to be large. This can lead to a deterioration of the working environment due to odor problems and a decrease in maintainability due to mold contamination, and further, stains and tar-like substances can adhere to the mold surface and molded product surface, so the development of a PAS resin composition with a low amount of gas generated during melting was desired.

そこで、PAS樹脂と、ナフチルエーテル型エポキシ樹脂を特定量で含むPAS樹脂組成物、成形品、エポキシ樹脂成形品との複合成形体が提案されている(特許文献2参照)。しかしながら、当該エポキシ樹脂接着性の向上効果と、前記溶融時のガス発生量の低減効果は十分とは言えず、当該エポキシ樹脂接着性のさらなる向上と、前記溶融時のガス発生量のさらなる低減が求められていた。 Therefore, a PAS resin composition containing a specific amount of a naphthyl ether type epoxy resin, a molded article, and a composite molded article of an epoxy resin molded article have been proposed (see Patent Document 2). However, the effect of improving the epoxy resin adhesiveness and the effect of reducing the amount of gas generated during melting are not sufficient, and there is a demand for further improvement of the epoxy resin adhesiveness and further reduction of the amount of gas generated during melting.

国際公開第2013/141363号パンフレットInternational Publication No. 2013/141363 特開2018-104534号公報JP 2018-104534 A

本発明が解決しようとする課題は、溶融時のガス発生量が低く、かつエポキシ樹脂接着性に優れた成形品となるPAS樹脂組成物を提供すること、それを成形して得られる、エポキシ樹脂接着性に優れた成形品を提供すること、さらに該成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供すること、エポキシ樹脂接着性に優れた成形品となるPAS樹脂組成物のガス発生量を抑制して製造する方法、および、エポキシ樹脂接着性に優れた成形品のガス発生量を抑制して製造する方法を提供することにある。 The problems that the present invention aims to solve are to provide a PAS resin composition that generates a low amount of gas when melted and that produces a molded article with excellent epoxy resin adhesion, to provide a molded article with excellent epoxy resin adhesion obtained by molding the composition, to provide a composite molded article in which the molded article is bonded to a cured product of a curable resin composition containing an epoxy resin, and to provide a method for producing the composite molded article, to provide a method for producing a PAS resin composition that produces a molded article with excellent epoxy resin adhesion while suppressing the amount of gas generation, and to provide a method for producing a molded article with excellent epoxy resin adhesion while suppressing the amount of gas generation.

本発明者は上記課題を解決するために鋭意研究した結果、PAS樹脂に、脂環式構造を有するエポキシ樹脂を必須成分として配合することにより、耐熱分解性に優れ、溶融時のガス発生量を低減できること、エポキシ基に由来して優れたエポキシ樹脂接着性を奏することを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that blending an epoxy resin having an alicyclic structure with a PAS resin as an essential component provides excellent thermal decomposition resistance, reduces the amount of gas generated during melting, and exhibits excellent epoxy resin adhesion due to the epoxy groups, which led to the completion of the present invention.

すなわち、本発明は、ポリアリーレンスルフィド樹脂(A)と、繰り返し単位中に、脂環式構造(α)と芳香族構造(β)とを有するエポキシ樹脂(B)とを必須成分として配合してなること、
ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記エポキシ樹脂(B)が0.01~50質量部の範囲であること、を特徴とするポリアリーレンスルフィド樹脂組成物に関する。
That is, the present invention provides a composition comprising a polyarylene sulfide resin (A) and an epoxy resin (B) having an alicyclic structure (α) and an aromatic structure (β) in a repeating unit as essential components,
The polyarylene sulfide resin composition is characterized in that the epoxy resin (B) is in the range of 0.01 to 50 parts by mass per 100 parts by mass of the polyarylene sulfide resin (A).

加えて本発明は、前記PAS樹脂組成物を成形してなる成形品、に関する。 In addition, the present invention relates to a molded article obtained by molding the PAS resin composition.

さらに本発明は前記PAS樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品、に関する。 The present invention further relates to a composite molded article formed by bonding a molded article made by molding the PAS resin composition to a cured product of a curable resin composition containing an epoxy resin.

また、本発明は、ポリアリーレンスルフィド樹脂(A)と、脂環式構造(α)を有するエポキシ樹脂(B)とを必須成分として配合し、ポリアリーレンスルフィド樹脂(A)の融点以上で溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法に関する。 The present invention also relates to a method for producing a polyarylene sulfide resin composition, which is characterized by blending polyarylene sulfide resin (A) and epoxy resin (B) having an alicyclic structure (α) as essential components, and melt-kneading the mixture at a temperature equal to or higher than the melting point of polyarylene sulfide resin (A).

加えて本発明は、前記PAS樹脂組成物を溶融成形する成形品の製造方法、に関する。 In addition, the present invention relates to a method for producing a molded article by melt molding the PAS resin composition.

さらに本発明は前記PAS樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とを接着する工程を有する複合成形品の製造方法、に関する。 The present invention further relates to a method for producing a composite molded product, which includes a step of bonding a molded product obtained by molding the PAS resin composition to a cured product of a curable resin composition containing an epoxy resin.

本発明によれば、溶融時のガス発生量が低く、かつエポキシ樹脂接着性に優れた成形品となるPAS樹脂組成物を提供すること、それを成形して得られる、エポキシ樹脂接着性に優れた成形品を提供すること、さらに該成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品およびその製造方法を提供すること、エポキシ樹脂接着性に優れた成形品となるPAS樹脂組成物のガス発生量を抑制して製造する方法、および、エポキシ樹脂接着性に優れた成形品のガス発生量を抑制して製造する方法を提供することができる。 According to the present invention, it is possible to provide a PAS resin composition that generates a low amount of gas when melted and that produces a molded article with excellent epoxy resin adhesion, to provide a molded article with excellent epoxy resin adhesion obtained by molding the PAS resin composition, to provide a composite molded article in which the molded article is bonded to a cured product of a curable resin composition containing an epoxy resin, and to provide a method for producing the composite molded article, to provide a method for producing a PAS resin composition that produces a molded article with excellent epoxy resin adhesion while suppressing the amount of gas generation, and to provide a method for producing a molded article with excellent epoxy resin adhesion while suppressing the amount of gas generation.

本発明のPAS樹脂組成物は、ポリアリーレンスルフィド樹脂(A)と、繰り返し単位中に、脂環式構造(α)と芳香族構造(β)とを有するエポキシ樹脂(B)とを必須成分として配合してなること、
ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記エポキシ樹脂(B)が0.01~50質量部の範囲であること、を特徴とする。
The PAS resin composition of the present invention comprises, as essential components, a polyarylene sulfide resin (A) and an epoxy resin (B) having an alicyclic structure (α) and an aromatic structure (β) in a repeating unit;
The epoxy resin (B) is contained in an amount of 0.01 to 50 parts by mass relative to 100 parts by mass of the polyarylene sulfide resin (A).

本発明のPAS樹脂組成物は、PAS樹脂(A)を必須成分として配合してなる。本発明で用いるPAS樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1) The PAS resin composition of the present invention is composed of PAS resin (A) as an essential component. The PAS resin used in the present invention has a resin structure in which a repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, the PAS resin has the following general formula (1):

Figure 0007497568000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure 0007497568000001
(wherein R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group), and, if necessary, a structural portion represented by the following general formula (2):

Figure 0007497568000002
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001~3モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。
Figure 0007497568000002
The trifunctional structural unit represented by formula (2) is preferably in the range of 0.001 to 3 mol %, particularly preferably 0.01 to 1 mol %, based on the total number of moles of the trifunctional structural unit and other structural units.

ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記PAS樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, the structural portion represented by the general formula (1), particularly R1 and R2 in the formula, are preferably hydrogen atoms from the viewpoint of the mechanical strength of the PAS resin. In this case, examples of the structural portion include those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4).

Figure 0007497568000003
これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記PAS樹脂の耐熱性や結晶性の面で好ましい。
Figure 0007497568000003
Among these, a structure in which the bond between the sulfur atom and the aromatic ring in the repeating unit is bonded at the para position represented by the general formula (3) is particularly preferred in terms of heat resistance and crystallinity of the PAS resin.

また、前記PAS樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8) The PAS resin may contain not only the structural moieties represented by the general formulas (1) and (2) but also the structural moieties represented by the following structural formulas (5) to (8):

Figure 0007497568000004
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、PAS樹脂の耐熱性、機械的強度の点から好ましい。前記PAS樹脂中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure 0007497568000004
The structural moiety represented by the general formula (1) and the structural moiety represented by the general formula (2) may be contained in an amount of 30 mol % or less of the total of the structural moieties represented by the general formula (1) and the general formula (2). In particular, in the present invention, it is preferable that the structural moieties represented by the general formulas (5) to (8) are 10 mol % or less in terms of the heat resistance and mechanical strength of the PAS resin. When the structural moieties represented by the general formulas (5) to (8) are contained in the PAS resin, the bonding mode thereof may be either a random copolymer or a block copolymer.

また、前記PAS樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 The PAS resin may also have naphthyl sulfide bonds in its molecular structure, but this is preferably 3 mol % or less, and more preferably 1 mol % or less, relative to the total number of moles including other structural parts.

また、PAS樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。 The physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of the present invention, but are as follows:

(溶融粘度)
本発明に用いるPAS樹脂の溶融粘度は特に限定されないが、300℃で測定した溶融粘度(V6)が2~1000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから10~500〔Pa・s〕の範囲がより好ましく、特に60~200〔Pa・s〕の範囲であることが特に好ましい。但し、本発明において、溶融粘度(V6)は、PAS樹脂を島津製作所製フローテスター、CFT-500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に溶融粘度を測定した値とする。
(Melt Viscosity)
The melt viscosity of the PAS resin used in the present invention is not particularly limited, but the melt viscosity (V6) measured at 300°C is preferably in the range of 2 to 1000 [Pa·s], more preferably in the range of 10 to 500 [Pa·s], and particularly preferably in the range of 60 to 200 [Pa·s], since this provides a good balance between fluidity and mechanical strength. However, in the present invention, the melt viscosity (V6) is a value measured by holding the PAS resin at 300°C, a load of 1.96×10 6 Pa, L/D=10 (mm)/1 (mm) for 6 minutes using a Shimadzu flow tester, CFT-500D.

(非ニュートン指数)
本発明に用いるPAS樹脂(A)の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90以上から、2.00以下の範囲であることが好ましい。リニア型PAS樹脂を用いる場合には、非ニュートン指数が好ましくは0.90以上、より好ましくは0.95以上から、好ましくは1.50以下、より好ましくは1.20以下の範囲である。このようなPAS樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。
(Non-Newtonian Exponents)
The non-Newtonian index of the PAS resin (A) used in the present invention is not particularly limited as long as it does not impair the effects of the present invention, but is preferably in the range of 0.90 or more to 2.00 or less. When a linear type PAS resin is used, the non-Newtonian index is preferably 0.90 or more, more preferably 0.95 or more, and preferably 1.50 or less, more preferably 1.20 or less. Such a PAS resin is excellent in mechanical properties, fluidity, and abrasion resistance. However, the non-Newtonian index (N value) is a value calculated using the following formula by measuring the shear rate and shear stress using a capillograph under the conditions of 300 ° C. and the ratio of the orifice length (L) to the orifice diameter (D), L / D = 40.

Figure 0007497568000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどPPSは線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。
Figure 0007497568000005
[where SR is shear rate (sec -1 ), SS is shear stress (dynes/ cm2 ), and K is a constant.] The closer the N value is to 1, the more linear the PPS structure is, and the higher the N value, the more branched the structure is.

(製造方法)
前記PAS樹脂(A)の製造方法としては、特に限定されないが、例えば1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりPAS樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの範囲の有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
(Production method)
The method for producing the PAS resin (A) is not particularly limited, but examples thereof include 1) a method in which a dihalogenoaromatic compound is added in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogenoaromatic compound or other copolymerization component is added, and polymerized; 2) a method in which a dihalogenoaromatic compound is added in the presence of a sulfidizing agent or the like in a polar solvent, and if necessary, a polyhalogenoaromatic compound or other copolymerization component is added, and polymerized; and 3) a method in which p-chlorothiophenol is added, and if necessary, other copolymerization components are added, and self-condensed. Among these methods, method 2) is generally used and is preferred. During the reaction, an alkali metal salt of a carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above-mentioned 2) methods, there is a method for producing a PAS resin by introducing a water-containing sulfidizing agent into a mixture containing a heated organic polar solvent and a dihalogeno-aromatic compound at a rate at which water can be removed from the reaction mixture, and then reacting the dihalogeno-aromatic compound and the sulfidizing agent in the organic polar solvent, and optionally adding a polyhalogeno-aromatic compound, and controlling the amount of water in the reaction system to within a range of 0.02 to 0.5 moles per mole of the organic polar solvent (see JP-A-07-228699). Particularly preferred is a method in which a dihalogeno-aromatic compound and, if necessary, a polyhalogeno-aromatic compound or other copolymerization component are added in the presence of a metal sulfide and an aprotic polar organic solvent, and an alkali metal hydrosulfide and an organic acid alkali metal salt are reacted while controlling the organic acid alkali metal salt in the range of 0.01 to 0.9 mol per mol of the sulfur source and the amount of water in the reaction system to be 0.02 mol or less per mol of the aprotic polar organic solvent (see WO2010/058713 pamphlet). Specific examples of the dihalogeno aromatic compound include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p,p'-dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-di Examples of the polyhalogeno aromatic compounds include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene, etc. The halogen atoms contained in the above compounds are preferably chlorine atoms or bromine atoms.

重合工程により得られたPAS樹脂を含む反応混合物の後処理方法としては、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPASに対しては貧溶媒である溶媒)を沈降剤として添加して、PASや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。 The method for post-treating the reaction mixture containing the PAS resin obtained by the polymerization step is not particularly limited, but may be, for example, (1) after the polymerization reaction is completed, the reaction mixture is left as is or after the addition of an acid or base, and the solvent is removed under reduced pressure or normal pressure, and the solid matter remaining after the solvent removal is washed once or twice or more times with a solvent such as water, the reaction solvent (or an organic solvent having a similar solubility to the low molecular weight polymer), acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, filtered, and dried; or (2) after the polymerization reaction is completed, the reaction mixture is washed with a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, or aliphatic hydrocarbons (a solvent that is soluble in the polymerization solvent used and has poor solubility at least for PAS). (3) After the polymerization reaction is completed, the reaction mixture is added with a reaction solvent (or an organic solvent having a solubility equivalent to that of the low molecular weight polymer) and stirred, and then filtered to remove the low molecular weight polymer. The mixture is then washed once or twice with a solvent such as water, acetone, methyl ethyl ketone, or alcohols, and then neutralized, washed with water, filtered, and dried. (4) After the polymerization reaction is completed, water is added to the reaction mixture, washed with water, filtered, and if necessary, acid is added during the water washing for acid treatment, and the mixture is dried. (5) After the polymerization reaction is completed, the reaction mixture is filtered, and if necessary, washed with the reaction solvent once or twice, filtered, and dried.

尚、上記(1)~(5)に例示したような後処理方法において、PAS樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods exemplified above in (1) to (5), the PAS resin may be dried in a vacuum, in air, or in an inert gas atmosphere such as nitrogen.

本発明のPAS樹脂組成物は、脂環構造(α)と芳香環構造(β)とを繰り返し単位として有するエポキシ樹脂(B)を必須成分として配合してなる。
前記エポキシ樹脂(B)は、分子中に脂環構造(α)と芳香環構造(β)を有するものであればその具体構造や製造方法等は特に限定されず、種々多様なものを用いることができる。前記分子中に脂環構造(α)と芳香環構造(β)を有するエポキシ樹脂(B)の一例としては、例えば、不飽和脂環式化合物(α1)とフェノール性水酸基含有芳香族化合物(β1)との付加重合物のポリグリシジルエーテル等が挙げられる。
The PAS resin composition of the present invention contains, as an essential component, an epoxy resin (B) having an alicyclic structure (α) and an aromatic ring structure (β) as repeating units.
The epoxy resin (B) is not particularly limited in its specific structure or manufacturing method, etc., so long as it has an alicyclic structure (α) and an aromatic ring structure (β) in the molecule, and various kinds of epoxy resins can be used. An example of the epoxy resin (B) having an alicyclic structure (α) and an aromatic ring structure (β) in the molecule is polyglycidyl ether of an addition polymer of an unsaturated alicyclic compound (α1) and a phenolic hydroxyl group-containing aromatic compound (β1).

前記不飽和脂環式化合物(α1)は、分子構造中に脂環構造を有し、かつ、前記フェノール性水酸基含有芳香族化合物(β1)と反応して付加重合物を生成し得る化合物であれば特に限定されないが、分子構造中に脂環構造を有し、かつ、不飽和結合(炭素-炭素二重結合)を2つ以上有する化合物が挙げられる。具体例としては、シクロペンタジエン、メチルシクロペンタジエン等の脂環式共役ジエン化合物が挙げられ、また前記脂環式共役ジエン化合物、及び、ブタジエン、イソプレン、ピペリレン等の鎖状共役ジエン化合物からなる群から選ばれる少なくとも1種以上の化合物のディールス・アルダー反応物等が挙げられる。中でも、エポキシ接着性に優れ、溶融時のガス発生量をより低減できる点からジシクロペンタジエンが好ましい。 The unsaturated alicyclic compound (α1) is not particularly limited as long as it has an alicyclic structure in its molecular structure and can react with the phenolic hydroxyl group-containing aromatic compound (β1) to produce an addition polymer, but examples of such compounds include those having an alicyclic structure in its molecular structure and having two or more unsaturated bonds (carbon-carbon double bonds). Specific examples include alicyclic conjugated diene compounds such as cyclopentadiene and methylcyclopentadiene, and Diels-Alder reaction products of at least one compound selected from the group consisting of the alicyclic conjugated diene compounds and linear conjugated diene compounds such as butadiene, isoprene, and piperylene. Among these, dicyclopentadiene is preferred because of its excellent epoxy adhesiveness and the ability to further reduce the amount of gas generated during melting.

前記フェノール性水酸基含有芳香族化合物(β1)は、例えば、フェノール、クレゾール、ナフトール、アントラセノールの他、これらの芳香環上の水素原子の一つ乃至複数が、脂肪族炭化水素基、芳香環含有炭化水素基、アルコキシ基、ハロゲン原子等で置換された化合物が挙げられ、このうち、エポキシ接着性に優れ、溶融時のガス発生量をより低減できる点からフェノール、クレゾールが好ましい。 The phenolic hydroxyl group-containing aromatic compound (β1) may be, for example, phenol, cresol, naphthol, anthracenol, or a compound in which one or more hydrogen atoms on the aromatic ring of these compounds are substituted with an aliphatic hydrocarbon group, an aromatic ring-containing hydrocarbon group, an alkoxy group, a halogen atom, or the like. Of these, phenol and cresol are preferred because they have excellent epoxy adhesive properties and can further reduce the amount of gas generated when melted.

前記不飽和脂環式化合物(α1)と前記フェノール性水酸基含有芳香族化合物(β1)との付加重合反応は公知慣用の方法にて行うことができる。その一例としては、例えば、酸触媒条件下、70~90℃程度の温度条件下で反応させる方法が挙げられる。両者の反応比率は適宜調整されるが、耐熱性に優れる分子量になることから両者のモル比[(α1)/(β1)]が1/1.5~1/5の範囲となることが好ましい。 The addition polymerization reaction between the unsaturated alicyclic compound (α1) and the phenolic hydroxyl group-containing aromatic compound (β1) can be carried out by a known, commonly used method. One example of such a method is a method in which the reaction is carried out under acid catalyst conditions at a temperature of about 70 to 90°C. The reaction ratio of the two is appropriately adjusted, but it is preferable that the molar ratio of the two [(α1)/(β1)] is in the range of 1/1.5 to 1/5 in order to obtain a molecular weight with excellent heat resistance.

前記不飽和脂環式化合物(α1)と前記フェノール性水酸基含有芳香族化合物(β1)との付加重合反応によって得られる反応物(以下、当該付加重合反応によって得られる反応物を、単に「付加反応物」ということがある)のポリグリシジルエーテル化反応は、公知慣用の方法にて行うことができる。その一例としては、例えば、前記付加重合物が有するフェノール性水酸基1モルに対し、2~10モルのエピハロヒドリンを用い、フェノール性水酸基1モルに対し0.9~2.0モルの塩基性触媒を一括又は分割添加しながら20~120℃の温度で0.5~10時間反応させる方法が挙げられる。 The polyglycidyl etherification reaction of the reaction product obtained by the addition polymerization reaction of the unsaturated alicyclic compound (α1) and the phenolic hydroxyl group-containing aromatic compound (β1) (hereinafter, the reaction product obtained by the addition polymerization reaction may be simply referred to as the "addition reaction product") can be carried out by a known, conventional method. One example of such a method is to use 2 to 10 moles of epihalohydrin per mole of phenolic hydroxyl group in the addition polymerization product, and react for 0.5 to 10 hours at a temperature of 20 to 120°C while adding 0.9 to 2.0 moles of a basic catalyst per mole of phenolic hydroxyl group all at once or in portions.

前記エポキシ樹脂(B)のエポキシ当量は特に限定されないが、エポキシ接着性に優れ、溶融時のガス発生量をより低減できる点から、好ましくは100g/当量以上、より好ましくは200g/当量以上、さらに好ましくは270g/当量以上から、好ましくは500g/当量以下、より好ましくは400g/当量以下、さらに好ましくは300g/当量以下の範囲である。なお、エポキシ当量は、JIS K 7236に準拠した方法により測定した値である。 The epoxy equivalent of the epoxy resin (B) is not particularly limited, but is preferably 100 g/equivalent or more, more preferably 200 g/equivalent or more, and even more preferably 270 g/equivalent or more, and preferably 500 g/equivalent or less, more preferably 400 g/equivalent or less, and even more preferably 300 g/equivalent or less, in terms of excellent epoxy adhesion and further reducing the amount of gas generated during melting. The epoxy equivalent is a value measured by a method conforming to JIS K 7236.

前記エポキシ樹脂(B)の軟化点は特に限定されないが、エポキシ接着性に優れ、溶融時のガス発生量をより低減できる点から、好ましくは50℃以上、より好ましくは65℃以上、さらに好ましくは75℃以上から、好ましくは150℃以下、より好ましくは130℃以下、さらに好ましくは110℃以下の範囲である。なお、軟化点は、JIS K7234に準拠した方法による。 The softening point of the epoxy resin (B) is not particularly limited, but is preferably in the range of 50°C or higher, more preferably 65°C or higher, and even more preferably 75°C or higher, and preferably 150°C or lower, more preferably 130°C or lower, and even more preferably 110°C or lower, in order to provide excellent epoxy adhesiveness and further reduce the amount of gas generated during melting. The softening point is measured according to a method in accordance with JIS K7234.

また、本発明では前記エポキシ樹脂(B)として市販のエポキシ樹脂を用いてもよい。具体的には、DIC株式会社製「EPICLON HP-7200L」、「EPICLON HP-7200」、「EPICLON HP-7200H」、「EPICLON HP-7200HH」、「EPICLON HP-7200HHH」、日本化薬株式会社製「XD-1000」、株式会社ADEKA製「EP-4085」、「EP-4088S」、新日鉄住金化学株式会社製「ZX-1658GS」等が挙げられる。 In the present invention, a commercially available epoxy resin may be used as the epoxy resin (B). Specific examples include "EPICLON HP-7200L", "EPICLON HP-7200", "EPICLON HP-7200H", "EPICLON HP-7200HH", and "EPICLON HP-7200HHH" manufactured by DIC Corporation, "XD-1000" manufactured by Nippon Kayaku Co., Ltd., "EP-4085" and "EP-4088S" manufactured by ADEKA Corporation, and "ZX-1658GS" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.

前記エポキシ樹脂(B)の具体的な構造としては、例えば、下記の一般式 The specific structure of the epoxy resin (B) is, for example, the following general formula:

Figure 0007497568000006
で表される高分子化合物を含む樹脂などが挙げられる。式中、nは繰り返し単位を表し、0以上から、好ましくは10以下、より好ましく5以下の範囲である。
Figure 0007497568000006
In the formula, n represents a repeating unit and is in the range of 0 or more, preferably 10 or less, and more preferably 5 or less.

PAS樹脂組成物中における前記エポキシ樹脂(B)の配合の割合は、PAS樹脂(A)100質量部に対して、0.01質量部以上、好ましくは0.1質量部以上、より好ましくは1質量部以上から、50質量部以下、好ましくは35質量部以下、より好ましくは10質量部以下の範囲である。上記範囲内であると、PAS樹脂成形品が優れたエポキシ樹脂接着性、機械的強度を有しつつ、かつPAS樹脂組成物の溶融時におけるガス発生量の低減と溶融成形時の増粘を抑えることにより流動性に優れたものとすることができる。 The proportion of the epoxy resin (B) in the PAS resin composition is in the range of 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and 50 parts by mass or less, preferably 35 parts by mass or less, more preferably 10 parts by mass or less, relative to 100 parts by mass of the PAS resin (A). Within the above range, the PAS resin molded product has excellent epoxy resin adhesion and mechanical strength, and also has excellent flowability by reducing the amount of gas generated when the PAS resin composition is melted and suppressing thickening during melt molding.

本発明のPAS樹脂組成物は、必要に応じて、充填剤を任意成分として含有することができる。これら充填剤としては本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の充填剤等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。 The PAS resin composition of the present invention may contain a filler as an optional component, if necessary. As these fillers, known and commonly used materials may be used as long as they do not impair the effects of the present invention. For example, fillers of various shapes, such as fibrous ones and non-fibrous ones such as granular and plate-shaped ones, may be used. Specifically, fibrous fillers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, and natural fibers may be used. In addition, non-fibrous fillers such as glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, glass beads, zeolite, milled fiber, and calcium sulfate may also be used.

本発明において充填剤は必須成分ではなく、配合する場合、その含有量は本発明の効果を損ねなければ特に限定されるものではない。充填剤の配合量としては例えば、PAS樹脂(A)100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上から、好ましくは600質量部以下、より好ましくは200質量部以下の範囲である。かかる範囲において、樹脂組成物が良好な機械強度と成形性を示すため好ましい。 In the present invention, the filler is not an essential component, and when it is blended, its content is not particularly limited as long as it does not impair the effects of the present invention. The blending amount of the filler is, for example, preferably 1 part by mass or more, more preferably 10 parts by mass or more, and preferably 600 parts by mass or less, more preferably 200 parts by mass or less, per 100 parts by mass of the PAS resin (A). In such a range, the resin composition exhibits good mechanical strength and moldability, which is preferable.

本発明のPAS樹脂組成物は、必要に応じて、シランカップリング剤を任意成分として配合することができる。シランカップリング剤としては、本発明の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基または水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。本発明においてシランカップリング剤は必須成分ではないが、配合する場合、その配合量は、本発明の効果を損ねなければその添加量は特に限定されないが、PAS樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、樹脂組成物が良好な耐コロナ性と成形性、特に離形性を有し、かつ成形品がエポキシ樹脂と優れた接着性を呈しつつ、さらに機械的強度が向上するため好ましい。 The PAS resin composition of the present invention can be blended with a silane coupling agent as an optional component, if necessary. The silane coupling agent is not particularly limited as long as it does not impair the effects of the present invention, but preferred examples include silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group. Examples of such silane coupling agents include epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; isocyanato group-containing alkoxysilane compounds such as γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, and γ-isocyanatopropyltrichlorosilane; amino group-containing alkoxysilane compounds such as γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, and γ-aminopropyltrimethoxysilane; and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane. In the present invention, a silane coupling agent is not an essential component, but when it is used, the amount of the silane coupling agent is not particularly limited as long as it does not impair the effects of the present invention, and is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass or less, relative to 100 parts by mass of the PAS resin (A). In such a range, the resin composition has good corona resistance and moldability, especially releasability, and the molded product exhibits excellent adhesion to the epoxy resin while also improving mechanical strength, which is preferable.

本発明のPAS樹脂組成物は、必要に応じて、熱可塑性エラストマーを任意成分として含有することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、その配合量は、本発明の効果を損ねなければ特に限定されないが、PAS樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、得られるPAS樹脂組成物の耐衝撃性が向上するため好ましい。 The PAS resin composition of the present invention may contain a thermoplastic elastomer as an optional component, if necessary. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers, among which polyolefin-based elastomers are preferred. When these elastomers are added, the amount of the elastomers is not particularly limited as long as it does not impair the effects of the present invention, but is preferably in the range of 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, to preferably 10 parts by mass or less, more preferably 5 parts by mass or less, per 100 parts by mass of PAS resin (A). In such a range, the impact resistance of the resulting PAS resin composition is improved, which is preferable.

例えば、前記ポリオレフィン系エラストマーは、α-オレフィンの単独重合体、または2以上のα-オレフィンの共重合体、1または2以上のα-オレフィンと、官能基を有するビニル重合性化合物との共重合体が挙げられる。この際、前記α-オレフィンとしては、エチレン、プロピレン、1-ブテン等の炭素原子数が2以上から8以下までの範囲のα-オレフィンが挙げられる。また、前記官能基としては、カルボキシ基、酸無水物基(-C(=O)OC(=O)-)、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、オキサゾリン基等が挙げられる。そして、前記官能基を有するビニル重合性化合物としては、酢酸ビニル;(メタ)アクリル酸等のα,β-不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のα,β-不飽和カルボン酸のアルキルエステル;アイオノマー等のα,β-不飽和カルボン酸の金属塩(金属としてはナトリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、亜鉛等);グリシジルメタクリレート等のα,β-不飽和カルボン酸のグリシジルエステル等;マレイン酸、フマル酸、イタコン酸等のα,β-不飽和ジカルボン酸;前記α,β-不飽和ジカルボン酸の誘導体(モノエステル、ジエステル、酸無水物)等の1種または2種以上が挙げられる。 For example, the polyolefin-based elastomer may be a homopolymer of an α-olefin, a copolymer of two or more α-olefins, or a copolymer of one or more α-olefins and a vinyl polymerizable compound having a functional group. In this case, examples of the α-olefin include α-olefins having 2 or more to 8 or less carbon atoms, such as ethylene, propylene, and 1-butene. Examples of the functional group include a carboxy group, an acid anhydride group (-C(=O)OC(=O)-), an epoxy group, an amino group, a hydroxyl group, a mercapto group, an isocyanate group, and an oxazoline group. Examples of the vinyl polymerizable compound having the functional group include one or more of vinyl acetate; α,β-unsaturated carboxylic acids such as (meth)acrylic acid; alkyl esters of α,β-unsaturated carboxylic acids such as methyl acrylate, ethyl acrylate, and butyl acrylate; metal salts of α,β-unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, and zinc); glycidyl esters of α,β-unsaturated carboxylic acids such as glycidyl methacrylate; α,β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; and derivatives of the α,β-unsaturated dicarboxylic acids (monoesters, diesters, and acid anhydrides).

上述の熱可塑性エラストマーは、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned thermoplastic elastomers may be used alone or in combination of two or more.

更に、本発明のPAS樹脂組成物は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂(以下、単に合成樹脂という)を任意成分として配合することができる。本発明において前記合成樹脂は必須成分ではないが、配合する場合、その配合の割合は本発明の効果を損ねなければ特に限定されるものではなく、また、それぞれの目的に応じて異なり、一概に規定することはできないが、本発明に係る樹脂組成物中に配合する合成樹脂の割合として、例えばPAS樹脂(A)100質量部に対し5~15質量部の範囲程度が挙げられる。換言すれば、PAS樹脂(A)と合成樹脂との合計に対してPAS樹脂(A)の割合は質量基準で、好ましくは(100/115)以上の範囲であり、より好ましくは(100/105)以上の範囲である。 In addition to the above components, the PAS resin composition of the present invention may further contain synthetic resins such as polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, phenolic resin, urethane resin, and liquid crystal polymer (hereinafter simply referred to as synthetic resin) as optional components depending on the application. The synthetic resin is not an essential component in the present invention, but when it is added, the ratio of the synthetic resin is not particularly limited as long as it does not impair the effects of the present invention, and it differs depending on each purpose and cannot be generally defined, but the ratio of the synthetic resin to be added in the resin composition of the present invention is, for example, in the range of about 5 to 15 parts by mass per 100 parts by mass of PAS resin (A). In other words, the ratio of PAS resin (A) to the total of PAS resin (A) and synthetic resin is preferably in the range of (100/115) or more, more preferably in the range of (100/105) or more, based on mass.

また本発明のPAS樹脂組成物は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、およびカップリング剤等の公知慣用の添加剤を必要に応じ、任意成分として含有してもよい。これらの添加剤は必須成分ではなく、例えば、PAS樹脂(A)100質量部に対して、好ましくは0.01~1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 The PAS resin composition of the present invention may also contain other known and commonly used additives as optional components, such as colorants, antistatic agents, antioxidants, heat stabilizers, UV stabilizers, UV absorbers, foaming agents, flame retardants, flame retardant assistants, rust inhibitors, and coupling agents, as necessary. These additives are not essential components, and may be used, for example, in an amount of preferably 0.01 to 1000 parts by mass per 100 parts by mass of PAS resin (A), adjusted appropriately according to the purpose and application so as not to impair the effects of the present invention.

本発明のPAS樹脂組成物の製造方法は、PAS樹脂(A)と、前記エポキシ樹脂(B)と、を必須成分として、PAS樹脂(A)の融点以上で溶融混練する。 The method for producing the PAS resin composition of the present invention involves melt-kneading the PAS resin (A) and the epoxy resin (B) as essential components at a temperature equal to or higher than the melting point of the PAS resin (A).

本発明のPAS樹脂組成物の好ましい製造方法は、上述した含有量となるよう、PAS樹脂(A)と、前記エポキシ樹脂(B)の各必須成分と、必要に応じて、充填剤などの任意成分を、粉末、ペレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンダーなどに投入してドライブレンドした後、バンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどの公知の溶融混練機に投入し、樹脂温度がPAS樹脂の融点以上となる温度範囲、好ましくは融点+10℃以上となる温度範囲、より好ましくは融点+10℃~融点+100℃となる温度範囲、さらに好ましくは融点+20~融点+50℃となる温度範囲で溶融混練する工程を経て製造することができる。溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。 The preferred method for producing the PAS resin composition of the present invention is to dry blend the PAS resin (A) and the essential components of the epoxy resin (B), and, if necessary, optional components such as fillers, in various forms such as powder, pellets, and fine pieces in a ribbon blender, Henschel mixer, V blender, etc., so that the content is as described above, and then to feed them into a known melt kneader such as a Banbury mixer, mixing roll, single-screw or twin-screw extruder, and kneader, and melt kneading them in a temperature range in which the resin temperature is equal to or higher than the melting point of the PAS resin, preferably in a temperature range of melting point + 10°C or higher, more preferably in a temperature range of melting point + 10°C to melting point + 100°C, and even more preferably in a temperature range of melting point + 20°C to melting point + 50°C. The components may be added and mixed into the melt kneader simultaneously or in portions.

前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、前記成分のうち、充填剤や添加剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、0.1~0.9の範囲であることが好ましい。中でも0.3~0.7の範囲であることが特に好ましい。 As the melt kneader, a twin-screw kneading extruder is preferred from the viewpoint of dispersibility and productivity. For example, it is preferred to melt knead while appropriately adjusting the resin component discharge rate in the range of 5 to 500 (kg/hr) and the screw rotation speed in the range of 50 to 500 (rpm), and it is even more preferred to melt knead under conditions where the ratio (discharge rate/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). In addition, when adding fillers or additives among the components, it is preferred from the viewpoint of dispersibility to feed them into the twin-screw kneading extruder from a side feeder. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin input section to the side feeder to the total screw length of the twin-screw kneading extruder is in the range of 0.1 to 0.9. Of these, it is particularly preferred that the ratio is in the range of 0.3 to 0.7.

このように溶融混練して得られる本発明のPAS樹脂組成物は、必須成分であるPAS樹脂(A)と、前記エポキシ樹脂(B)と、必要に応じて加える任意成分およびそれらの由来成分を含む溶融混合物であり、該溶融混練後に、公知の方法でペレット、チップ、顆粒、粉末等の形態に加工してから、必要に応じて100~150℃の温度で予備乾燥を施して、各種成形に供することが好ましい。 The PAS resin composition of the present invention obtained by melt kneading in this manner is a molten mixture containing the essential component PAS resin (A), the epoxy resin (B), and optional components added as necessary and components derived therefrom. After the melt kneading, it is preferably processed into pellets, chips, granules, powder, etc., by a known method, and then pre-dried at a temperature of 100 to 150°C as necessary, before being used for various molding processes.

上記製造方法により製造される本発明のPAS樹脂組成物は、PAS樹脂をマトリックスとし、当該マトリックス中に、必須成分である前記エポキシ樹脂(B)、それらに由来する成分、必要に応じて添加する任意成分が分散したモルフォロジーを形成する。その結果、PAS樹脂成形品が優れたエポキシ樹脂接着性、機械的強度および難燃性を有しつつ、かつPAS樹脂組成物の溶融時におけるガス発生量の低減と溶融成形時の増粘を抑えることにより流動性に優れたものとすることができる。 The PAS resin composition of the present invention produced by the above-mentioned production method has a morphology in which the essential component epoxy resin (B), components derived therefrom, and optional components added as necessary are dispersed in the matrix of PAS resin. As a result, the PAS resin molded product has excellent epoxy resin adhesion, mechanical strength, and flame retardancy, and also has excellent fluidity by reducing the amount of gas generated when the PAS resin composition is melted and by suppressing thickening during melt molding.

本発明のPAS樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度がPAS樹脂の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20~融点+50℃の温度範囲で前記PAS樹脂組成物を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)~300℃、好ましくは120~180℃に設定すればよい。 The PAS resin composition of the present invention can be subjected to various molding processes such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding, but is particularly suitable for injection molding applications due to its excellent releasability. When molding by injection molding, various molding conditions are not particularly limited, and molding can be performed by a normal general method. For example, in an injection molding machine, the PAS resin composition is melted at a resin temperature in a temperature range of the melting point of the PAS resin or higher, preferably in a temperature range of the melting point + 10°C or higher, more preferably in a temperature range of the melting point + 10°C to the melting point + 100°C, and even more preferably in a temperature range of the melting point + 20 to the melting point + 50°C, and then the resin is injected into a mold from a resin outlet and molded. At that time, the mold temperature may also be set to a known temperature range, for example, room temperature (23°C) to 300°C, preferably 120 to 180°C.

本発明のPAS樹脂組成物を成形してなる成形品は、エポキシ樹脂との接着性に優れるだけでなく、機械的強度、特に射出成型時の樹脂の特にTD方向の曲げ強さに優れる。 Molded articles made from the PAS resin composition of the present invention not only have excellent adhesion to epoxy resins, but also have excellent mechanical strength, particularly the bending strength of the resin in the TD direction during injection molding.

本発明のPAS樹脂成形品は、エポキシ樹脂を含む硬化性樹脂組成物との接着性に優れる。ここで言うエポキシ樹脂を含む硬化性樹脂組成物とは、エポキシ樹脂と硬化剤とを混合して得られる組成物であることが好ましい。 The PAS resin molded article of the present invention has excellent adhesion to a curable resin composition containing an epoxy resin. The curable resin composition containing an epoxy resin is preferably a composition obtained by mixing an epoxy resin with a curing agent.

本発明において用いる前記エポキシ樹脂としては、本発明の効果を損ねなければ特に限定されず、たとえば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフチルエーテル型エポキシ樹脂や前記エポキシ樹脂(B)などが挙げられ、このうち、接着性に優れることからビスフェノール型エポキシ樹脂が好ましいものとして挙げられる。 The epoxy resin used in the present invention is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof include bisphenol-type epoxy resins, novolac-type epoxy resins, naphthyl ether-type epoxy resins, and the epoxy resin (B), among which bisphenol-type epoxy resins are preferred due to their excellent adhesive properties.

前記ビスフェノール型エポキシ樹脂のエポキシ樹脂の種類としては、ビスフェノール類のグリシジルエーテルが挙げられ、具体的にはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、またはテトラブロモビスフェノールA型エポキシ樹脂などが挙げられる。 The type of epoxy resin in the bisphenol type epoxy resin includes glycidyl ethers of bisphenols, specifically bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin.

また、前記ノボラック型エポキシ樹脂の種類としてはフェノール類とアルデヒドとの縮合反応により得られたノボラック型フェノール樹脂をエピハロヒドリンと反応させて得られるノボラック型エポキシ樹脂が挙げられ、具体例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂が挙げられる。 In addition, the novolac type epoxy resin may be obtained by reacting a novolac type phenolic resin obtained by a condensation reaction between a phenol and an aldehyde with an epihalohydrin. Specific examples include phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, and brominated phenol novolac type epoxy resin.

これらのエポキシ樹脂は、硬化剤により硬化反応させ使用されることが好ましい。 These epoxy resins are preferably used by undergoing a curing reaction with a curing agent.

本発明においてエポキシ樹脂を硬化させるための硬化剤としては、一般にエポキシ樹脂の硬化剤として用いられるものであれば特に制限されるものではないが、例えば、アミン型硬化剤、フェノール樹脂型硬化剤、酸無水物型硬化剤、潜在性硬化剤等が挙げられる。 In the present invention, the curing agent for curing the epoxy resin is not particularly limited as long as it is generally used as a curing agent for epoxy resins, but examples thereof include amine-type curing agents, phenolic resin-type curing agents, acid anhydride-type curing agents, latent curing agents, etc.

アミン型硬化剤としては、公知のものを用いることができ、脂肪族ポリアミン、芳香族ポリアミン、複素環式ポリアミン等やそれらのエポキシ付加物、マンニッヒ変性化物、ポリアミドの変性物を用いることができる。具体的には、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルへキサメチレンジアミン、2-メチルペンタメチレンジアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート等が挙げられる。このうち、硬化性に優れることから、m-キシレンジアミン、1,3-ビスアミノメチルシクロヘキサンが特に好ましいものとして挙げられる。 As the amine-type curing agent, known ones can be used, such as aliphatic polyamines, aromatic polyamines, heterocyclic polyamines, and the like, as well as their epoxy adducts, Mannich modified products, and modified products of polyamides. Specific examples include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis(4-aminobenzoate), polytetramethyleneoxide-di-p-aminobenzoate, and the like. Of these, m-xylenediamine and 1,3-bisaminomethylcyclohexane are particularly preferred because of their excellent curing properties.

フェノール樹脂型硬化剤としては、公知のものを用いることができ、例えば、ビスフェノールA、ビスフェノールF、ビフェノール等のビスフェノール類、トリ(ヒドロキシフェニル)メタン、1,1,1-トリ(ヒドロキシフェニル)エタン等の3官能フェノール化合物、フェノールノボラック、又はクレゾールノボラック等が挙げられる。 Phenol resin-type hardeners that can be used include known hardeners, such as bisphenols such as bisphenol A, bisphenol F, and biphenol, trifunctional phenolic compounds such as tri(hydroxyphenyl)methane and 1,1,1-tri(hydroxyphenyl)ethane, phenol novolac, and cresol novolac.

酸無水物型硬化剤としては、公知のものを用いることができ、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 As the acid anhydride type curing agent, known ones can be used, such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc.

潜在性硬化剤としては、ジシアンジアミド、イミダゾール、BF3-アミン錯体、グアニジン誘導体等が挙げられる。 Examples of latent hardeners include dicyandiamide, imidazole, BF3-amine complexes, and guanidine derivatives.

これらの硬化剤は、単独で用いることも2種以上併用することもできる。また、本発明の効果を損なわない範囲において、硬化促進剤を適宜併用して用いることも可能である。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。 These curing agents can be used alone or in combination of two or more. In addition, it is also possible to use them in combination with a curing accelerator as appropriate, as long as the effects of the present invention are not impaired. Various types of curing accelerators can be used, including, for example, phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.

本発明に用いるエポキシ樹脂を含む硬化性樹脂組成物は、無溶媒下で硬化反応をさせても良いが、ベンゼン、トルエン、キシレン、酢酸エチル、アセトン、メチルエチルケトン、ジエチルエーテル、テトラヒドロフラン、酢酸メチル、アセトニトリル、クロロホルム、塩化メチレン、四塩化炭素、1,2-ジクロロエタン、1,1,2-トリクロロエタン、テトラクロロエチレン、N-メチルピロリドン、イソプロピルアルコールやイソブタノール、t-ブチルアルコール等の溶媒下で硬化反応をさせてもよい。 The curable resin composition containing the epoxy resin used in the present invention may undergo a curing reaction without a solvent, but may also undergo a curing reaction in a solvent such as benzene, toluene, xylene, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, methyl acetate, acetonitrile, chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane, tetrachloroethylene, N-methylpyrrolidone, isopropyl alcohol, isobutanol, or t-butyl alcohol.

本発明に用いる硬化性樹脂組成物において、エポキシ樹脂と硬化剤との使用割合は、本発明の効果を損なわない範囲において公知の割合であれば特に限定されるものではないが、硬化性に優れ、硬化物の耐熱性や耐薬品性に優れる硬化物が得られることから、エポキシ樹脂成分中のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.7~1.5当量になる量が好ましい。 In the curable resin composition used in the present invention, the ratio of the epoxy resin to the curing agent is not particularly limited as long as it is a known ratio within a range that does not impair the effects of the present invention, but since it provides a cured product with excellent curing properties and excellent heat resistance and chemical resistance, it is preferable to use an amount in which the active groups in the curing agent are 0.7 to 1.5 equivalents per total equivalent of epoxy groups in the epoxy resin component.

本発明のPAS樹脂組成物を成形してなる成形品は、エポキシ樹脂との接着性に優れることから、PAS樹脂とエポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着した複合成形品として好適に用いることができる。
その製造方法としては、本発明の効果を損なわない範囲において公知の方法でよいが、PAS樹脂組成物を成形してなる成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させ、該硬化性樹脂組成物を硬化させる方法が挙げられる。
The molded article obtained by molding the PAS resin composition of the present invention has excellent adhesion to epoxy resins, and can therefore be suitably used as a composite molded article in which a PAS resin and a cured product of a curable resin composition containing an epoxy resin are bonded together.
The manufacturing method may be any known method as long as it does not impair the effects of the present invention, but may include a method in which a molded article obtained by molding a PAS resin composition is contacted with a curable resin composition containing an epoxy resin and the curable resin composition is cured.

前記複合成形体の主な用途例としては、各種家電製品、携帯電話、及びPC(Personal Computer)等の電子機器の筐体、箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディヤ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品、その他各種用途にも適用可能である。 Major applications of the composite moldings include housings for various home appliances, mobile phones, and electronic devices such as PCs (Personal Computers), protective and supporting materials for box-shaped integrated modules of electric and electronic components, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts, and other representative electric and electronic parts; VTR parts, television parts, irons, hair dryers, Home and office electrical appliance parts such as rice cooker parts, microwave oven parts, audio parts, audio/visual equipment parts such as audio/laser discs, compact discs, DVD discs, and Blu-ray discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, and water-related equipment parts such as water heaters, bath water volume and temperature sensors; office computer related parts, telephone related parts, facsimile related parts, copier related parts, cleaning jigs, motor parts, lighters, typewriters, and other machine related parts; optical equipment and precision machinery related parts such as microscopes, binoculars, cameras, and watches; alternator terminals, alternator connectors, brush holders slip rings, IC regulators, potentiometer bases for light dimmers, relay blocks, inhibitor switches, various valves such as exhaust gas valves, various pipes for fuel, exhaust systems and intake systems, air intake nozzle snorkels, intake manifolds, fuel pumps, engine coolant joints, carburetor main bodies, carburetor spacers, exhaust gas sensors, coolant sensors, oil temperature sensors, brake pad wear sensors, throttle position sensors, crankshaft position sensors, air flow meters, brake pad wear sensors, thermostat bases for air conditioners, hot air flow control valves for heating, brushless hoses for radiator motors It can also be used for automobile and vehicle related parts such as rotors, water pump impellers, turbine vanes, wiper motor related parts, distributors, starter switches, ignition coils and their bobbins, motor insulators, motor rotors, motor cores, starter relays, transmission wire harnesses, windshield washer nozzles, air conditioner panel switch boards, coils for fuel-related electromagnetic valves, fuse connectors, horn terminals, electrical component insulating plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition device cases, and a variety of other applications.

以下に具体的な例を挙げて、本発明をさらに詳しく説明する。なお、製造例にて製造した樹脂の分析はそれぞれ以下の条件で行った。 The present invention will be described in more detail below with reference to specific examples. The analysis of the resins produced in the production examples was carried out under the following conditions.

(測定例1)ポリフェニレンスルフィド樹脂の溶融粘度の測定
参考例で製造したポリフェニレンスルフィド樹脂を島津製作所製フローテスター、CFT-500Dを用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した。
Measurement Example 1 Measurement of Melt Viscosity of Polyphenylene Sulfide Resin The polyphenylene sulfide resin produced in the Reference Example was measured using a Shimadzu Corporation flow tester, CFT-500D, at 300°C, load: 1.96 x 106 Pa, L/D = 10 (mm)/1 (mm) after holding for 6 minutes.

(製造例1) ポリフェニレンスルフィド樹脂(A-1)の製造
圧力計、温度計、コンデンサ、デカンター、精留塔を連結した撹拌翼付き150リットルオートクレーブにp-ジクロロベンゼン(以下、「p-DCB」と略記する。)33.222kg(226モル)、NMP2.280kg(23モル)、47.23質量%NaSH水溶液27.300kg(NaSHとして230モル)、及び49.21質量%NaOH水溶液18.533g(NaOHとして228モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、オートクレーブを密閉した。脱水時に共沸により留出したp-DCBはデカンターで分離して、随時オートクレーブ内に戻した。脱水終了後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がp-DCB中に分散した状態であった。この組成物中のNMP含有量は0.069kg(0.7モル)であったことから、仕込んだNMPの97モル%(22.3モル)がNMPの開環体(4-(メチルアミノ)酪酸)のナトリウム塩(以下、「SMAB」と略記する。)に加水分解されていることが示された。オートクレーブ内のSMAB量は、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。仕込んだNaSHとNaOHが全量、無水NaSに変わる場合の理論脱水量は27.921gであることから、オートクレーブ内の残水量621g(34.5モル)の内、401g(22.3モル)はNMPとNaOHとの加水分解反応に消費されて、水としてオートクレーブ内に存在せず、残りの220g(12.2モル)は水、あるいは結晶水の形でオートクレーブ内に残留していることを示していた。オートクレーブ内の水分量はオートクレーブ中に存在する硫黄原子1モル当たり0.053モルであった。
(Production Example 1) Production of polyphenylene sulfide resin (A-1) 33.222 kg (226 moles) of p-dichlorobenzene (hereinafter abbreviated as "p-DCB"), 2.280 kg (23 moles) of NMP, 27.300 kg of 47.23 mass% NaSH aqueous solution (230 moles as NaSH), and 18.533 g of 49.21 mass% NaOH aqueous solution (228 moles as NaOH) were charged into a 150-liter autoclave equipped with an agitator connected to a pressure gauge, a thermometer, a condenser, a decanter, and a rectification column, and the mixture was heated to 173°C over 5 hours under a nitrogen atmosphere while stirring, and 27.300 kg of water was distilled off, after which the autoclave was sealed. The p-DCB distilled by azeotropy during dehydration was separated in a decanter and returned to the autoclave as needed. After completion of dehydration, the autoclave was in a state in which the fine particle-like anhydrous sodium sulfide composition was dispersed in the p-DCB. The NMP content in this composition was 0.069 kg (0.7 mol), which indicated that 97 mol% (22.3 mol) of the charged NMP was hydrolyzed to a ring-opened form of NMP (4-(methylamino)butyric acid) sodium salt (hereinafter abbreviated as "SMAB"). The amount of SMAB in the autoclave was 0.097 mol per mol of sulfur atom present in the autoclave. Since the theoretical amount of dehydration when the charged NaSH and NaOH are all converted to anhydrous Na 2 S is 27.921 g, it was shown that, of the remaining water amount of 621 g (34.5 mol) in the autoclave, 401 g (22.3 mol) was consumed in the hydrolysis reaction of NMP and NaOH and was not present in the autoclave as water, and the remaining 220 g (12.2 mol) remained in the autoclave in the form of water or crystal water. The amount of water in the autoclave was 0.053 mol per mol of sulfur atom present in the autoclave.

上記脱水工程終了後に、内温を160℃に冷却し、NMP47.492kg(479モル)に含む溶液を仕込み、185℃まで昇温した。オートクレーブ内の水分量は、工程2で仕込んだNMP1モル当たり0.025モルであった。ゲージ圧が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したp-DCBと水の混合蒸気はコンデンサで凝縮し、デカンターで分離して、p-DCBはオートクレーブへ戻した。留出水量は179g(9.9モル)で、オートクレーブ内水分量は41g(2.3モル)で、脱水後に仕込んだNMP1モル当たり0.005モルで、オートクレーブ中に存在する硫黄原子1モル当たり0.010モルであった。オートクレーブ内のSMAB量は脱水時と同じく、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。 After the above dehydration process was completed, the inside temperature was cooled to 160°C, a solution containing 47.492 kg (479 moles) of NMP was charged, and the temperature was raised to 185°C. The amount of water in the autoclave was 0.025 moles per mole of NMP charged in step 2. When the gauge pressure reached 0.00 MPa, the valve connected to the distillation tower was opened, and the inside temperature was raised to 200°C over one hour. At this time, cooling and valve opening were controlled so that the outlet temperature of the distillation tower was 110°C or less. The mixed vapor of p-DCB and water distilled was condensed in a condenser and separated in a decanter, and p-DCB was returned to the autoclave. The amount of distilled water was 179 g (9.9 moles), and the amount of water in the autoclave was 41 g (2.3 moles), which was 0.005 moles per mole of NMP charged after dehydration and 0.010 moles per mole of sulfur atoms present in the autoclave. The amount of SMAB in the autoclave was the same as during dehydration, 0.097 moles per mole of sulfur atom present in the autoclave.

次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。内温200℃時点のゲージ圧は0.03MPaで、最終ゲージ圧は0.30MPaであった。冷却後、得られたスラリーの内、6.5kgを30リットルの80℃温水に注いで1時間撹拌した後、濾過した。このケーキを再び30リットルの温水で1時間撹拌し、洗浄した後、濾過した。次に、得られたケーキに30リットルの水を加え、酢酸でpHを4.5に調整し、常温で1時間撹拌したのち、濾過した。さらに得られたケーキに30リットルの温水を加え、1時間撹拌したのち、ろ過する操作を2回繰返して、熱風循環乾燥機を用い120℃で一晩乾燥して白色粉末上のカルボキシ基含有PPS樹脂(以下、A-1)を得た。得られたポリマーの溶融粘度は98Pa・sであった。 Then, the internal temperature was raised from 200°C to 230°C over 3 hours, stirred at 230°C for 1 hour, and then heated to 250°C and stirred for 1 hour. The gauge pressure at the internal temperature of 200°C was 0.03 MPa, and the final gauge pressure was 0.30 MPa. After cooling, 6.5 kg of the obtained slurry was poured into 30 liters of 80°C hot water and stirred for 1 hour, then filtered. The cake was stirred again with 30 liters of hot water for 1 hour, washed, and then filtered. Next, 30 liters of water was added to the obtained cake, the pH was adjusted to 4.5 with acetic acid, stirred at room temperature for 1 hour, and then filtered. The operation of adding 30 liters of hot water to the obtained cake, stirring for 1 hour, and filtering was repeated twice, and the mixture was dried overnight at 120°C using a hot air circulation dryer to obtain a carboxyl group-containing PPS resin (hereinafter, A-1) in the form of white powder. The melt viscosity of the obtained polymer was 98 Pa·s.

(実施例1、2及び比較例1~4)PPS樹脂組成物の製造
表1、2に記載する組成成分および配合量(全て質量部)にしたがい、各材料をタンブラーで均一に混合した。その後、東芝機械株式会社製ベント付き2軸押出機「TEM-35B」に前記配合材料を投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.1(kg/hr・rpm)、設定樹脂温度330℃で溶融混練して樹脂組成物のペレットを得た。このペレットを用いて以下の各種評価試験を行った。試験及び評価の結果は、表1、2に示す。
(Examples 1 and 2 and Comparative Examples 1 to 4) Production of PPS resin composition According to the composition components and compounding amounts (all parts by mass) shown in Tables 1 and 2, each material was uniformly mixed in a tumbler. Thereafter, the compounded materials were charged into a vented twin-screw extruder "TEM-35B" manufactured by Toshiba Machine Co., Ltd., and melt-kneaded at a resin component discharge rate of 25 kg/hr, a screw rotation speed of 250 rpm, a ratio of the resin component discharge rate (kg/hr) to the screw rotation speed (rpm) (discharge rate/screw rotation speed) = 0.1 (kg/hr rpm), and a set resin temperature of 330°C to obtain pellets of the resin composition. The following various evaluation tests were carried out using these pellets. The test and evaluation results are shown in Tables 1 and 2.

(測定例3)PPS樹脂成形品のエポキシ樹脂との接着強度と接着面の状態観察
得られたペレットをシリンダー温度320℃に設定した住友-ネスタール社製射出成形機(SG75-HIPRO・MIII)に供給し、金型温度130℃に温調したASTM1号ダンベル片成形用金型を用いて射出成形を行い、ASTM1号ダンベル片を得た。得られたASTM1号ダンベル片を中央から2等分し、エポキシ樹脂を含む硬化性樹脂組成物との接触面積が50mmとなるように作成したスペーサー(厚さ:1.8~2.2mm、開口部:13mm×25mm)を2等分したASTM1号ダンベル片2枚の間に挟み、クリップを用い固定した後、開口部にエポキシ樹脂を含む硬化性樹脂組成物(ナガセケムテックス株式会社製2液型エポキシ樹脂、主剤:XNR5002、硬化剤:XNH5002、配合比は主剤:硬化剤=100:90)を注入し、135℃に設定した熱風乾燥機中で3時間加熱し硬化・接着させた。23℃下で1日冷却後スペーサーを外し、得られた試験片を用いて引張速度5mm/sec、支点間距離80mm、23℃下で島津社製引張試験機「AG-Xシリーズ」を用い引張破断強さを測定し、接着面積で除した値をエポキシ接着強度とした。また、破断の際、接着していた面の状態を観察した。なお、「凝集破壊」は、接着層自体が破壊されることを意味し、「母材破壊」は基材(ここでは上述のASTM1号ダンベル片)が破壊されることを意味し、「界面剥離」は接着層と基材とが界面ではがれていることを意味する。
(Measurement Example 3) Observation of adhesive strength between PPS resin molded product and epoxy resin and state of adhesive surface
The obtained pellets were fed to an injection molding machine (SG75-HIPRO-MIII) manufactured by Sumitomo-Nestal Co., Ltd., with a cylinder temperature set at 320°C, and injection molding was performed using a mold for molding ASTM No. 1 dumbbell pieces, with the mold temperature adjusted to 130°C, to obtain ASTM No. 1 dumbbell pieces. The obtained ASTM No. 1 dumbbell pieces were divided into two equal parts from the center, and a spacer (thickness: 1.8 to 2.2 mm, opening: 13 mm x 25 mm) prepared so that the contact area with the curable resin composition containing epoxy resin was 50 mm2 was sandwiched between the two ASTM No. 1 dumbbell pieces, and fixed using a clip. Then, a curable resin composition containing epoxy resin (two-liquid epoxy resin manufactured by Nagase ChemteX Corporation, base agent: XNR5002, curing agent: XNH5002, blending ratio of base agent: curing agent = 100: 90) was injected into the opening, and the mixture was heated in a hot air dryer set at 135°C for 3 hours to cure and adhere. After cooling for one day at 23°C, the spacer was removed, and the resulting test piece was used to measure the tensile breaking strength at 23°C with a tensile speed of 5 mm/sec, a support distance of 80 mm, and a Shimadzu tensile tester "AG-X Series." The value obtained by dividing the strength by the adhesive area was taken as the epoxy adhesive strength. In addition, the condition of the bonded surfaces was observed at the time of fracture. Note that "cohesive failure" means that the adhesive layer itself is broken, "base material failure" means that the substrate (here, the above-mentioned ASTM No. 1 dumbbell specimen) is broken, and "interface peeling" means that the adhesive layer and substrate are peeled off at the interface.

(測定例4)PPS樹脂組成物の溶融時の重量減少量(ガス発生量)
実施例1、2および比較例1~5で得られたPPS樹脂組成物のペレットを、窒素流通下、150℃で1時間乾燥させた。次に、ペレットを10g計り取り、325℃で1時間加熱を行い、加熱前後の重量減少率を測定した。なお、この重量減少率は加熱時にペレットから発生するガス発生量に相当する。この重量減少率(ガス発生量)は、金型メンテナンス性、表面外観性、機械的物性、成形性の観点からも少ないほど優れている
(Measurement Example 4) Weight Loss (Amount of Gas Generated) of PPS Resin Composition Upon Melting
The pellets of the PPS resin composition obtained in Examples 1 and 2 and Comparative Examples 1 to 5 were dried at 150°C for 1 hour under nitrogen flow. Next, 10 g of the pellets were weighed out and heated at 325°C for 1 hour, and the weight loss rate before and after heating was measured. This weight loss rate corresponds to the amount of gas generated from the pellets during heating. The smaller the weight loss rate (amount of gas generated), the better from the standpoints of mold maintainability, surface appearance, mechanical properties, and moldability.

Figure 0007497568000007
Figure 0007497568000007

Figure 0007497568000008
Figure 0007497568000008

Figure 0007497568000009
Figure 0007497568000009

なお、表1、2中の配合樹脂、材料の配合比率は質量部を表し、下記のものを用いた。
エポキシ樹脂
B-1:DIC株式会社製「EPICLON HP-7200H」(エポキシ基当量274g/当量、軟化点83℃)
B-2:「EPICLON HP-7200HHH」(エポキシ基当量285g/当量、軟化点103℃)
b-3:ビスフェノールA型エポキシ樹脂 DIC株式会社製「EPICLON(登録商標)1050」(エポキシ当量450g/当量)
b-4:クレゾールノボラック型エポキシ樹脂 DIC株式会社製「EPICLON(登録商標)N680」(エポキシ当量210g/当量)
ガラス繊維
b-5:ナフチルエーテル型エポキシ樹脂は、下記の製造方法で製造したものを用いた。
In Tables 1 and 2, the blending ratios of the blended resins and materials are expressed in parts by mass, and the following were used.
Epoxy resin B-1: "EPICLON HP-7200H" manufactured by DIC Corporation (epoxy group equivalent: 274 g/equivalent, softening point: 83°C)
B-2: "EPICLON HP-7200HHH" (epoxy group equivalent: 285 g/equivalent, softening point: 103°C)
b-3: Bisphenol A type epoxy resin "EPICLON (registered trademark) 1050" manufactured by DIC Corporation (epoxy equivalent weight 450 g/equivalent)
b-4: Cresol novolac epoxy resin "EPICLON (registered trademark) N680" (epoxy equivalent: 210 g/equivalent) manufactured by DIC Corporation
Glass fiber b-5: The naphthyl ether type epoxy resin used was produced by the following production method.

(製造例2) エポキシ樹脂(b-5)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレンを160質量部、ベンジルアルコール25質量部、キシレン160質量部、パラトルエンスルホン酸・1水和物2質量部を仕込み、室温下、窒素を吹き込みながら撹拌した。140℃に昇温し、生成する水を系外に留去し、かつ、水と共に留出したキシレンは反応系内に戻しながら4時間攪拌した。次いで150℃に昇温し、生成する水とキシレンとを系外に留去しながら3時間攪拌した。反応終了後、20%水酸化ナトリウム水溶液2質量部を添加して中和した後、減圧条件下で乾燥させてポリアリーレンエーテル樹脂中間体(b-5-1)を178質量部得た。前記中間体(b-5-1)の水酸基当量は169g/当量、軟化点は130℃であった。
(Production Example 2) Production of epoxy resin (b-5) 160 parts by mass of 2,7-dihydroxynaphthalene, 25 parts by mass of benzyl alcohol, 160 parts by mass of xylene, and 2 parts by mass of paratoluenesulfonic acid monohydrate were charged into a flask equipped with a thermometer, a dropping funnel, a cooling tube, a fractionating tube, and a stirrer, and stirred at room temperature while blowing in nitrogen. The temperature was raised to 140°C, the water produced was distilled out of the system, and the xylene distilled together with the water was returned to the reaction system while stirring for 4 hours. The temperature was then raised to 150°C, and the water and xylene produced were distilled out of the system while stirring for 3 hours. After the reaction was completed, 2 parts by mass of a 20% aqueous sodium hydroxide solution was added to neutralize the mixture, and the mixture was dried under reduced pressure to obtain 178 parts by mass of a polyarylene ether resin intermediate (b-5-1). The hydroxyl equivalent of the intermediate (b-5-1) was 169 g/equivalent, and the softening point was 130°C.

前記ポリアリーレンエーテル樹脂中間体(b-5-1)のFD-MS(日本電子株式会社製 二重収束型質量分析装置 AX505H(FD505H))、前記ポリアリーレンエーテル樹脂中間体(b-5-1)のトリメチルシリル化体のFD-MSを測定し、下記化合物の生成を確認した。
1.2,7-ジヒドロキシナフタレンにベンジル基が1つ付加したもの(M=250)
2.2,7-ジヒドロキシナフタレンにベンジル基が2つ付加したもの(M=340)
3.下記構造式(a)においてnが1である化合物(M=446)
4.下記構造式(a)においてnが2である化合物(M=588)
5.下記構造式(a)においてnが1である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=660)
6.下記構造式(a)においてnが3である化合物(M=730)
7.下記構造式(a)においてnが2である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=802)
8.下記構造式(a)においてnが4である化合物(M=873)
9.下記構造式(a)においてnが3である化合物にトリメチルシリルオキシナフチル基が1つ付加した化合物(M=944)
10.下記構造式(a)においてnが2である化合物にトリメチルシリルオキシナフチル基が2つ付加した化合物(M=1016)
11.前記3~10の各化合物にベンジル基が1つ又は2つ付加した化合物
The polyarylene ether resin intermediate (b-5-1) was subjected to FD-MS (double focusing mass spectrometer AX505H (FD505H) manufactured by JEOL Ltd.) and FD-MS of a trimethylsilylated product of the polyarylene ether resin intermediate (b-5-1) were measured, and the production of the following compound was confirmed.
1. 2,7-dihydroxynaphthalene with one benzyl group added (M + = 250)
2. 2,7-dihydroxynaphthalene with two benzyl groups (M + = 340)
3. A compound represented by the following structural formula (a) in which n is 1 (M + =446)
4. A compound represented by the following structural formula (a) in which n is 2 (M + =588)
5. A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 1 in the following structural formula (a) (M + =660).
6. A compound represented by the following structural formula (a) in which n is 3 (M + =730)
7. A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 2 in the following structural formula (a) (M + = 802).
8. A compound represented by the following structural formula (a) in which n is 4 (M + =873)
9. A compound in which one trimethylsilyloxynaphthyl group is added to a compound in which n is 3 in the following structural formula (a) (M + = 944)
10. A compound in which two trimethylsilyloxynaphthyl groups are added to a compound in which n is 2 in the following structural formula (a) (M + =1016).
11. Compounds in which one or two benzyl groups have been added to any of the compounds 3 to 10 above

Figure 0007497568000010
(式中nは0又は1以上の整数、TMSはトリメチルシリル基である。)
Figure 0007497568000010
(In the formula, n is an integer of 0 or 1 or more, and TMS is a trimethylsilyl group.)

温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら先で得たポリアリーレンエーテル樹脂中間体(b-5-1)169質量部、エピクロルヒドリン463質量部、n-ブタノール139質量部、テトラエチルベンジルアンモニウムクロライド2質量部を仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90質量部を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離して、水層は除去し、有機層は反応系内に戻しながら反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。得られた粗エポキシ樹脂にメチルイソブチルケトン432質量部とn-ブタノール130質量部とを加えて溶解した。更に10%水酸化ナトリウム水溶液10質量部を添加して80℃で2時間反応させた。ついで、洗浄水のpHが中性になるまで水150質量部を用いて水洗した。共沸させて系内を脱水し、精密濾過を経た後に、減圧条件下で乾燥させて、エポキシ樹脂(b-5)230質量部を得た。エポキシ樹脂(b-5)の軟化点は100℃、エポキシ当量は277g/当量であった。 In a flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer, 169 parts by mass of the polyarylene ether resin intermediate (b-5-1) obtained above, 463 parts by mass of epichlorohydrin, 139 parts by mass of n-butanol, and 2 parts by mass of tetraethylbenzylammonium chloride were charged and dissolved while purging with nitrogen gas. After heating to 65°C, the pressure was reduced to the pressure at which azeotropy occurred, and 90 parts by mass of 49% aqueous sodium hydroxide solution was dropped over 5 hours. Stirring was then continued for 0.5 hours under the same conditions. During this time, the distillate that had been distilled by azeotropy was separated using a Dean-Stark trap, the aqueous layer was removed, and the organic layer was returned to the reaction system while the reaction was carried out. After that, unreacted epichlorohydrin was distilled off by reduced pressure distillation. 432 parts by mass of methyl isobutyl ketone and 130 parts by mass of n-butanol were added to the obtained crude epoxy resin and dissolved. Further, 10 parts by mass of a 10% aqueous sodium hydroxide solution was added and reacted at 80°C for 2 hours. Then, the mixture was washed with 150 parts by mass of water until the pH of the washing water became neutral. The system was dehydrated by azeotropy, and after passing through precision filtration, it was dried under reduced pressure conditions to obtain 230 parts by mass of epoxy resin (b-5). The softening point of epoxy resin (b-5) was 100°C, and the epoxy equivalent was 277 g/equivalent.

C-1:チョップドストランド(Eガラス、平均繊維長200μm、平均直径10μm、エポキシ系集束剤による表面処理品) C-1: Chopped strand (E-glass, average fiber length 200 μm, average diameter 10 μm, surface treated with epoxy binder)

Claims (12)

ポリアリーレンスルフィド樹脂(A)と、繰り返し単位中に、脂環式構造(α)と芳香族構造(β)とを有するエポキシ樹脂(B)とを必須成分として配合してなること、
ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記エポキシ樹脂(B)が0.01~50質量部の範囲であること、
前記エポキシ樹脂(B)が、下記の一般式(1)
Figure 0007497568000011
(式中、nは0~10の範囲である)で表されるものを含み、かつ、軟化点が83~150℃の範囲であること、を特徴とするポリアリーレンスルフィド樹脂組成物。
a polyarylene sulfide resin (A) and an epoxy resin (B) having an alicyclic structure (α) and an aromatic structure (β) in a repeating unit thereof as essential components;
The epoxy resin (B) is in the range of 0.01 to 50 parts by mass per 100 parts by mass of the polyarylene sulfide resin (A);
The epoxy resin (B) is represented by the following general formula (1):
Figure 0007497568000011
(wherein n is in the range of 0 to 10) and has a softening point in the range of 83 to 150°C.
前記エポキシ樹脂(B)のエポキシ当量が100~500g/当量の範囲である、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the epoxy equivalent of the epoxy resin (B) is in the range of 100 to 500 g/equivalent. 前記ポリアリーレンスルフィド樹脂(A)の非ニュートン指数が0.90以上から、2.00以下の範囲である請求項1又は2記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the non-Newtonian index of the polyarylene sulfide resin (A) is in the range of 0.90 or more and 2.00 or less. 溶融混練物である請求項1~3の何れか一項に記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to any one of claims 1 to 3, which is a melt-kneaded product. 前記請求項1~4の何れか一項に記載のポリアリーレンスルフィド樹脂組成物を成形してなる成形品。 A molded article obtained by molding the polyarylene sulfide resin composition according to any one of claims 1 to 4. 前記請求項5に記載の成形品と、エポキシ樹脂を含む硬化性樹脂組成物の硬化物とが接着してなる複合成形品。 A composite molded product formed by bonding the molded product according to claim 5 to a cured product of a curable resin composition containing an epoxy resin. ポリアリーレンスルフィド樹脂(A)と、脂環式構造(α)を有するエポキシ樹脂(B)とを必須成分として配合し、ポリアリーレンスルフィド樹脂(A)の融点以上で溶融混練すること、
ポリアリーレンスルフィド樹脂(A)100質量部に対して、前記エポキシ樹脂(B)が0.01~50質量部の範囲であること、
前記エポキシ樹脂(B)が、下記の一般式(1)
Figure 0007497568000012
(式中、nは0~10の範囲である)で表されるものを含み、かつ、軟化点が83~150℃の範囲であること、を特徴とするポリアリーレンスルフィド樹脂組成物の製造方法。
blending a polyarylene sulfide resin (A) and an epoxy resin (B) having an alicyclic structure (α) as essential components, and melt-kneading the mixture at a temperature equal to or higher than the melting point of the polyarylene sulfide resin (A);
The epoxy resin (B) is in the range of 0.01 to 50 parts by mass per 100 parts by mass of the polyarylene sulfide resin (A);
The epoxy resin (B) is represented by the following general formula (1):
Figure 0007497568000012
(wherein n is in the range of 0 to 10) and having a softening point in the range of 83 to 150°C.
前記エポキシ樹脂(B)のエポキシ当量が100~500g/当量の範囲である、請求項7記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 7, wherein the epoxy equivalent of the epoxy resin (B) is in the range of 100 to 500 g/equivalent. 前記ポリアリーレンスルフィド樹脂(A)の非ニュートン指数が0.90以上から、2.00以下の範囲である請求項7又は8記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 7 or 8, wherein the non-Newtonian index of the polyarylene sulfide resin (A) is in the range of 0.90 or more and 2.00 or less. 請求項7~9の何れか一項記載の製造方法で製造されたポリアリーレンスルフィド樹脂組成物を溶融成形する工程を有する成形品の製造方法。 A method for producing a molded product, comprising a step of melt molding a polyarylene sulfide resin composition produced by the method according to any one of claims 7 to 9. 請求項5に記載の成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させた後、該硬化性樹脂組成物を硬化させることを特徴とする複合成形品の製造方法。 A method for producing a composite molded product, comprising contacting the molded product according to claim 5 with a curable resin composition containing an epoxy resin, and then curing the curable resin composition. 請求項10に記載の製造方法で製造された成形品と、エポキシ樹脂を含む硬化性樹脂組成物とを接触させた後、該硬化性樹脂組成物を硬化させることを特徴とする複合成形品の製造方法。 A method for producing a composite molded product, comprising contacting a molded product produced by the method according to claim 10 with a curable resin composition containing an epoxy resin, and then curing the curable resin composition.
JP2019208706A 2019-11-19 Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same Active JP7497568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208706A JP7497568B2 (en) 2019-11-19 Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208706A JP7497568B2 (en) 2019-11-19 Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same

Publications (2)

Publication Number Publication Date
JP2021080363A JP2021080363A (en) 2021-05-27
JP7497568B2 true JP7497568B2 (en) 2024-06-11

Family

ID=

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011335A1 (en) 2007-07-18 2009-01-22 Nipponkayaku Kabushikikaisha Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009179757A (en) 2008-01-31 2009-08-13 Toray Ind Inc Polyphenylene sulfide resin composition, injection molded product and box-shaped molded component
JP2016147959A (en) 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same, and electric automobile part
JP2016147960A (en) 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same, and electric automobile part
JP2017043772A (en) 2015-08-28 2017-03-02 東レ株式会社 Modified polyphenylene sulfide resin and resin composition
JP2018104534A (en) 2016-12-26 2018-07-05 Dic株式会社 Polyarylene sulfide resin composition, molded article and production method
JP2020002208A (en) 2018-06-26 2020-01-09 帝人株式会社 Resin composition
JP2020041019A (en) 2018-09-07 2020-03-19 帝人株式会社 Resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011335A1 (en) 2007-07-18 2009-01-22 Nipponkayaku Kabushikikaisha Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009179757A (en) 2008-01-31 2009-08-13 Toray Ind Inc Polyphenylene sulfide resin composition, injection molded product and box-shaped molded component
JP2016147959A (en) 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same, and electric automobile part
JP2016147960A (en) 2015-02-12 2016-08-18 Dic株式会社 Polyarylene sulfide resin composition and molded article of the same, and electric automobile part
JP2017043772A (en) 2015-08-28 2017-03-02 東レ株式会社 Modified polyphenylene sulfide resin and resin composition
JP2018104534A (en) 2016-12-26 2018-07-05 Dic株式会社 Polyarylene sulfide resin composition, molded article and production method
JP2020002208A (en) 2018-06-26 2020-01-09 帝人株式会社 Resin composition
JP2020041019A (en) 2018-09-07 2020-03-19 帝人株式会社 Resin composition

Similar Documents

Publication Publication Date Title
JP5618025B2 (en) Polyarylene sulfide resin composition and molded article
WO2019208377A1 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and method for producing foregoing
JP6624204B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
EP3489304A1 (en) Polyarylene sulfide resin composition, molded article, and production methods
JP7497568B2 (en) Polyarylene sulfide resin composition, molded article, composite molded article, and methods for producing the same
JP2017066344A (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6886584B2 (en) Composite molded product and its manufacturing method
JP6753470B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
KR20230028762A (en) Polyarylene sulfide resin composition, molded article and manufacturing method thereof
JP2021080363A (en) Polyarylene sulfide resin composition, molding, composite molding and method for producing them
JP5935957B2 (en) Polyarylene sulfide resin composition and molded article thereof
JP6886583B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6769582B2 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
JP6315255B2 (en) Polyarylene sulfide resin composition and molded article thereof
KR102331612B1 (en) Polyarylene sulfide resin composition and molded article thereof
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP2017125215A (en) Polyarylene sulfide resin composition and molded body thereof
US20240150577A1 (en) Polyarylene sulfide resin composition, polyarylene sulfide resin composition manufacturing method, molded article, and molded article manufacturing method
WO2024080093A1 (en) Poly(arylene sulfide) resin composition, molded article, and production methods therefor
WO2022215395A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
WO2022044482A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing these
JP2001261831A (en) Production method for polyarylene sulfide resin, and polyarylene sulfide resin composition
KR20230161420A (en) Polyphenylene sulfide resin composition and molded products made therefrom
JPH06200156A (en) Polyphenylene sulfide resin composition