JP7495816B2 - Tapered roller bearings - Google Patents

Tapered roller bearings Download PDF

Info

Publication number
JP7495816B2
JP7495816B2 JP2020096727A JP2020096727A JP7495816B2 JP 7495816 B2 JP7495816 B2 JP 7495816B2 JP 2020096727 A JP2020096727 A JP 2020096727A JP 2020096727 A JP2020096727 A JP 2020096727A JP 7495816 B2 JP7495816 B2 JP 7495816B2
Authority
JP
Japan
Prior art keywords
outer ring
rib
inner ring
raceway surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020096727A
Other languages
Japanese (ja)
Other versions
JP2021188719A (en
Inventor
康由 林
佐保子 萬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2020096727A priority Critical patent/JP7495816B2/en
Priority to PCT/JP2021/019489 priority patent/WO2021246209A1/en
Priority to CN202180039276.9A priority patent/CN115667739A/en
Publication of JP2021188719A publication Critical patent/JP2021188719A/en
Application granted granted Critical
Publication of JP7495816B2 publication Critical patent/JP7495816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

この発明は、ロボットや建設機械の減速機で使用される円すいころ軸受、特に、外輪の外輪軌道面の小径側端部と大径側端部、および内輪の内輪軌道面の小径側端部と大径側端部の4つの端部のうち、外輪の外輪軌道面の大径側端部に半径方向内方に突出する鍔部を形成した、外輪鍔形式の円すいころ軸受に関するものである。 This invention relates to tapered roller bearings used in the reducers of robots and construction machinery, and in particular to tapered roller bearings of the outer ring flange type, in which a flange protruding radially inward is formed on the large diameter end of the outer ring raceway surface of the outer ring, out of the four ends: the small diameter end and large diameter end of the outer ring raceway surface of the outer ring, and the small diameter end and large diameter end of the inner ring raceway surface of the inner ring.

内輪の内輪軌道面の大径側端部に鍔部を形成しないで、外輪の外輪軌道面の大径側端部にのみ半径方向内方に突出する鍔部を形成した外輪鍔形式の円すいころ軸受は、特許文献1または特許文献2に開示はされているものの、製品として実用化されているものはほとんど見かけない。 An outer ring rib type tapered roller bearing in which a rib is not formed on the large diameter end of the inner ring raceway of the inner ring, and a rib protruding radially inward is formed only on the large diameter end of the outer ring raceway of the outer ring is disclosed in Patent Document 1 and Patent Document 2, but there are hardly any products in practical use.

実開平1-85521号公報Japanese Utility Model Application Publication No. 1-85521 特開2016-196944号公報JP 2016-196944 A

その理由としては、内輪の内輪軌道面の大径側端部に鍔部を形成した内輪鍔形式の円すいころ軸受に比べ、外輪の外輪軌道面の大径側端部に鍔部を形成した外輪鍔形式の円すいころ軸受は、純アキシャル荷重の負荷能力が極端に下がるということが一番に挙げられる。
ところで、一般的に円すいころ軸受において、モーメント剛性と軸受寿命を向上させるには、ころサイズ(ころ径)を大きくすることが有効である。
The primary reason for this is that, compared to an inner ring rib type tapered roller bearing in which a rib is formed on the large diameter end of the inner ring raceway surface of the inner ring, an outer ring rib type tapered roller bearing in which a rib is formed on the large diameter end of the outer ring raceway surface of the outer ring has an extremely reduced load capacity for pure axial loads.
Generally, in order to improve the moment rigidity and bearing life of a tapered roller bearing, it is effective to increase the roller size (roller diameter).

ところが、外輪鍔形式の円すいころ軸受の場合、軸受断面高さと軸受PCDを同じにしてころサイズを大きくすると、外輪鍔部の肉厚が薄くなるため、外輪鍔部の強度低下が懸念され、実用化することが困難となる。 However, in the case of tapered roller bearings with outer ring ribs, if the bearing cross-sectional height and bearing PCD are kept the same and the roller size is increased, the thickness of the outer ring rib becomes thinner, which raises concerns about a decrease in the strength of the outer ring rib, making it difficult to put into practical use.

そこで、この発明は、内輪鍔形式の円すいころ軸受に比べ純アキシャル荷重の負荷能力を極端に低くすることなく、十分なモーメント荷重と軸受寿命を有し、しかも外輪鍔部の強度低下の懸念もない、実用化可能な外輪鍔形式の円すいころ軸受の設計基準を見出すことを課題とするものである。 The objective of this invention is to find design criteria for a practical outer ring rib type tapered roller bearing that has sufficient moment load and bearing life without drastically reducing the load capacity of pure axial load compared to an inner ring rib type tapered roller bearing, and that does not involve concerns about reduced strength of the outer ring rib.

前記の課題を解決するために、この発明は、ころ径と外輪鍔部の肉厚との関係に着目し、ころ径と外輪鍔部の肉厚の関係を所定の数値範囲にすることによって、内輪鍔形式の円すいころ軸受と比べても純アキシャル荷重の負荷能力が極端に低くなく、そして十分なモーメント荷重と軸受寿命を有し、しかも外輪鍔部の強度低下の懸念もない、実用化可能な外輪鍔形式の円すいころ軸受を得ることができるといことを見出したのである。 In order to solve the above problems, this invention focuses on the relationship between the roller diameter and the thickness of the outer ring rib, and has discovered that by setting the relationship between the roller diameter and the thickness of the outer ring rib within a specified numerical range, it is possible to obtain a practical outer ring rib type tapered roller bearing that has a load capacity for pure axial loads that is not extremely low compared to inner ring rib type tapered roller bearings, has sufficient moment loads and bearing life, and is free of concerns about a decrease in the strength of the outer ring rib.

すなわち、この発明は、内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動自在に配置される複数の円すいころと、この複数の円すいころを所定の間隔で収容保持する複数のポケットを有する保持器とを備え、前記外輪の外輪軌道面の小径側端部と大径側端部、および内輪の内輪軌道面の小径側端部と大径側端部の4つの端部のうち、外輪の外輪軌道面の大径側端部に半径方向内方に突出する鍔部を形成した円すいころ軸受において、接触角を40°~50°とし、外輪鍔の肉厚Eところ大径側径Dwとの関係を、0.19<E/Dw<0.44を満足させるというものである。 That is, this invention relates to a tapered roller bearing comprising an outer ring having an outer ring raceway surface on its inner peripheral surface, an inner ring having an inner ring raceway surface on its outer peripheral surface, a number of tapered rollers arranged to roll freely between the outer ring raceway surface and the inner ring raceway surface, and a cage having a number of pockets that house and hold the tapered rollers at predetermined intervals, and in which a rib protruding radially inward is formed at the large diameter end of the outer ring raceway surface of the outer ring out of four ends: the small diameter end and large diameter end of the outer ring raceway surface of the outer ring, and the small diameter end and large diameter end of the inner ring raceway surface of the inner ring, the contact angle is 40° to 50°, and the relationship between the thickness E of the outer ring rib and the roller large diameter side diameter Dw satisfies 0.19 < E/Dw < 0.44.

なお、この発明において、接触角とは、軸受中心軸と外輪軌道面のなす角度、外輪鍔部の肉厚Eとは外輪軌道面と外輪鍔面の接点から軸受外径面までの距離、ころ大径側径Dwとは円すいころの大径側端面の直径をいうものとする。 In this invention, the contact angle is the angle between the bearing center axis and the outer ring raceway surface, the thickness E of the outer ring rib is the distance from the contact point between the outer ring raceway surface and the outer ring rib surface to the outer diameter surface of the bearing, and the large diameter side diameter Dw of the roller is the diameter of the large diameter side end face of the tapered roller.

円すいころ軸受の径方向サイズを一定、すなわち、軸受断面高さHと軸受外径Dを一定にして、ころサイズ(ころ径)を大きくすると、負荷容量Crが大きくなり、軸受寿命とモーメント剛性を高くすることができても、ころサイズを大きくすることにより、外輪鍔の肉厚Eが薄くなって、鍔部の強度が低下し、過大荷重を受けることで鍔部の割れが発生する懸念があるが、この発明で規定する数値規定を満足するように外輪鍔形式の円すいころ軸受の設計を行うことにより、すなわち、接触角を40°~50°とし、外輪鍔の肉厚Eところ大径側径Dwとの関係を、0.19<E/Dw<0.44を満足させれば、内輪鍔形式の円すいころ軸受と比べても純アキシャル荷重の負荷能力が極端に低くなく、十分なモーメント荷重と軸受寿命を有し、しかも外輪鍔部の強度低下の懸念もない、外輪鍔部の円すいころ軸受が得られる。 If the radial size of a tapered roller bearing is constant, that is, if the bearing cross-sectional height H and bearing outer diameter D are constant, and the roller size (roller diameter) is increased, the load capacity Cr increases, and the bearing life and moment rigidity can be increased. However, by increasing the roller size, the thickness E of the outer ring rib becomes thinner, reducing the strength of the rib and raising the concern that the rib may crack due to excessive load. However, by designing an outer ring rib type tapered roller bearing to satisfy the numerical specifications stipulated in this invention, that is, by setting the contact angle to 40° to 50° and satisfying the relationship between the outer ring rib thickness E and the roller large diameter side diameter Dw of 0.19 < E/Dw < 0.44, a tapered roller bearing with an outer ring rib that has a pure axial load capacity that is not extremely low compared to an inner ring rib type tapered roller bearing, has sufficient moment load and bearing life, and is free of concerns about reduced strength of the outer ring rib.

外輪の外輪軌道面の大径側端部に鍔部を形成した外輪鍔形式の円すいころ軸受に純アキシャル荷重を負荷した際における外輪側転動体荷重と内輪側転動体荷重と鍔側転動体荷重の分力を模式的に示した説明図である。FIG. 1 is an explanatory diagram showing a schematic representation of the component forces of the outer ring side rolling element load, the inner ring side rolling element load, and the rib side rolling element load when a pure axial load is applied to an outer ring rib type tapered roller bearing in which a rib portion is formed on the large diameter end of the outer ring raceway surface of the outer ring. 内輪の内輪軌道面の大径側端部に鍔部を形成した内輪鍔形式の円すいころ軸受に純アキシャル荷重を負荷した際における外輪側転動体荷重と内輪側転動体荷重と鍔側転動体荷重の分力を模式的に示した説明図である。FIG. 1 is an explanatory diagram showing a schematic representation of the component forces of the outer ring side rolling element load, the inner ring side rolling element load, and the rib side rolling element load when a pure axial load is applied to an inner ring rib type tapered roller bearing in which a rib portion is formed at the large diameter end of the inner ring raceway surface of the inner ring. この発明の実施形態に係る外輪鍔形式の円すいころ軸受を保持器の柱部で切断した拡大部分断面図である。1 is an enlarged partial cross-sectional view of an outer ring flange type tapered roller bearing according to an embodiment of the present invention, taken along a pillar portion of a cage. この発明の実施形態に係る外輪鍔形式の円すいころ軸受に使用する円すいころの側面図である。FIG. 2 is a side view of a tapered roller used in an outer ring flange type tapered roller bearing according to an embodiment of the present invention. 図3の外輪鍔形式の円すいころ軸受をハウジングに組み付けた状態を示す拡大部分断面図である。FIG. 4 is an enlarged partial cross-sectional view showing the outer ring flange type tapered roller bearing of FIG. 3 mounted in a housing. 図3の外輪鍔形式円すいころ軸受の外輪側の大鍔部と円すいころの接触面積を概念的に示した概略図である。FIG. 4 is a schematic diagram conceptually showing the contact area between a large rib portion on the outer ring side and a tapered roller of the outer ring rib type tapered roller bearing of FIG. 3 . 図3の外輪鍔形式の円すいころ軸受における保持器のころ案内面に円すいころを押し当てた状態を示す拡大図である。4 is an enlarged view showing a state in which tapered rollers are pressed against a roller guide surface of a cage in the outer ring flange type tapered roller bearing of FIG. 3 . FIG. 図3の外輪鍔形式の円すいころ軸受における保持器の爪に円すいころを押し当てた状態を示す拡大図である。4 is an enlarged view showing a state in which tapered rollers are pressed against the claws of the cage in the outer ring flange type tapered roller bearing of FIG. 3 . FIG. (a)(b)(c)は、ころ-保持器アッシーを外輪に挿入する手順を示す拡大部分断面図である。5(a), (b), and (c) are enlarged partial cross-sectional views showing a procedure for inserting the roller-retainer assembly into the outer ring. 接触角を各種変化させた例のモーメント剛性比を示すグラフである。13 is a graph showing moment stiffness ratios for examples in which the contact angle is changed in various ways. 接触角を各種変化させた例の寿命比を示すグラフである。1 is a graph showing life ratios for examples in which the contact angle is changed in various ways. 内輪鍔形式の円すいころ軸受を保持器の柱部で切断した拡大断面図である。FIG. 2 is an enlarged cross-sectional view of an inner ring flange type tapered roller bearing taken along a pillar portion of a cage. 図12の内輪鍔形式の円すいころ軸受をハウジングに組み付けた状態を示す拡大部分断面図である。13 is an enlarged partial cross-sectional view showing the state in which the inner ring flange type tapered roller bearing of FIG. 12 is assembled into a housing. FIG. 図12の内輪鍔形式の円すいころ軸受の内輪側の大鍔部と円すいころの接触面積を概念的に示した概略図である。FIG. 13 is a schematic diagram conceptually showing the contact area between a large rib portion on the inner ring side and a tapered roller of the inner ring rib type tapered roller bearing of FIG. 12 .

以下、この発明の実施の形態を添付図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the attached drawings.

この発明の実施形態に係る円すいころ軸受11は、図3に示すように、内周面に外輪軌道面12aを有する外輪12と、外周面に内輪軌道面13aを有する内輪13と、前記外輪軌道面12aと前記内輪軌道面13aとの間に転動自在に配置される複数の円すいころ14と、この複数の円すいころ14を所定の間隔で収容保持する複数のポケットを有する保持器15とを備え、前記外輪12の外輪軌道面12aの小径側端部と大径側端部、および内輪13の内輪軌道面13aの小径側端部と大径側端部の4つの端部のうち、外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成した、外輪鍔形式のものである。 As shown in FIG. 3, the tapered roller bearing 11 according to the embodiment of the present invention comprises an outer ring 12 having an outer ring raceway surface 12a on its inner peripheral surface, an inner ring 13 having an inner ring raceway surface 13a on its outer peripheral surface, a number of tapered rollers 14 arranged to roll freely between the outer ring raceway surface 12a and the inner ring raceway surface 13a, and a cage 15 having a number of pockets that accommodate and hold the tapered rollers 14 at a predetermined interval. Of the four ends, namely the small diameter end and large diameter end of the outer ring raceway surface 12a of the outer ring 12, and the small diameter end and large diameter end of the inner ring raceway surface 13a of the inner ring 13, a flange portion 12b that protrudes radially inward is formed on the large diameter end of the outer ring raceway surface 12a of the outer ring 12, and is of an outer ring flange type.

この発明に係る円すいころ軸受11は、内輪13の小径側端部の小鍔をなくし、小鍔の分だけころ長さを長くして高負荷容量化を図ると共に、外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成し、内輪13の内輪軌道面13aの大径側端部の鍔部をなくしている。 The tapered roller bearing 11 of this invention eliminates the small flange at the small diameter end of the inner ring 13 and increases the roller length by the length of the small flange to achieve a high load capacity, while forming a flange 12b that protrudes radially inward at the large diameter end of the outer ring raceway surface 12a of the outer ring 12, eliminating the flange at the large diameter end of the inner ring raceway surface 13a of the inner ring 13.

この発明の円すいころ軸受11は、接触角αを40°~50°の急こう配に設定して高モーメント剛性化を図っており、図3の実施形態に係る円すいころ軸受11は、接触角αを45°に設定している。 The tapered roller bearing 11 of this invention has a contact angle α set at a steep gradient of 40° to 50° to achieve high moment rigidity, and the tapered roller bearing 11 of the embodiment shown in Figure 3 has a contact angle α set at 45°.

接触角が40°~50°の急こう配の円すいころ軸受11は、外輪12の外輪軌道面12aの大径側端部と内輪13の大径側の端面との間に軸方向に大きなスペースが空くので、このスペースを利用してこの発明では半径方向内方に突出する鍔部12bを形成している。 In a tapered roller bearing 11 with a steep contact angle of 40° to 50°, a large space is created in the axial direction between the large-diameter end of the outer ring raceway surface 12a of the outer ring 12 and the large-diameter end face of the inner ring 13, and this space is utilized to form a flange portion 12b that protrudes radially inward in this invention.

外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成し、内輪13の内輪軌道面13aの大径側端部の鍔部をなくすことにより、軸方向のコンパクト化を図ることができる。 By forming a flange 12b that protrudes radially inward at the large-diameter end of the outer ring raceway surface 12a of the outer ring 12 and eliminating the flange at the large-diameter end of the inner ring raceway surface 13a of the inner ring 13, it is possible to achieve a more compact axial size.

即ち、図3に2点鎖線で示すように、内輪13の内輪軌道面13aの大径側端部に鍔部12bを形成した場合の軸方向幅をT’とすると、内輪13の内輪軌道面13aの大径側端部の鍔部をなくすことによって、内輪13の軸方向幅を薄くすることができ、外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成した場合の軸方向幅がTであるから、T’-Tの分だけ軸方向幅をコンパクトにすることができる。 In other words, as shown by the two-dot chain line in Figure 3, if the axial width when a flange 12b is formed on the large diameter end of the inner ring raceway surface 13a of the inner ring 13 is T', the axial width of the inner ring 13 can be made thinner by eliminating the flange on the large diameter end of the inner ring raceway surface 13a of the inner ring 13, and since the axial width when a flange 12b that protrudes radially inward is formed on the large diameter end of the outer ring raceway surface 12a of the outer ring 12 is T, the axial width can be made more compact by the amount of T'-T.

この発明のように、外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成することにより、内輪13の内輪軌道面13aの大径側端部に鍔部を形成する図11に示す内輪鍔形式の円すいころ軸受1に比し、鍔部を高剛性化できる。 As in this invention, by forming a flange 12b that protrudes radially inward on the large-diameter end of the outer ring raceway 12a of the outer ring 12, the flange can be made more rigid than in the tapered roller bearing 1 with an inner ring flange as shown in FIG. 11, in which the flange is formed on the large-diameter end of the inner ring raceway 13a of the inner ring 13.

即ち、図3に示すように、外輪12の外輪軌道面12aの大径側端部に半径方向内方に突出する鍔部12bを形成する場合と、図12に示すように、内輪3の内輪軌道面3aの大径側端部に鍔部3bを形成する場合とを比較すると、鍔部の高さC(軌道面と鍔面の交点と鍔部頂点からなる径方向の距離)が同じだとしても、図6に示すころ端面と外輪鍔面との接触面積は、図14に示す内輪鍔形式の円すいころ軸受におけるころ端面と内輪鍔面との接触面積よりも約7%大きくなり、ころに発生する誘起スラスト力を受ける面積が外輪鍔形式の方が大きくなるので、接触部の応力が低くなり、ころ端面と鍔面の接触ひずみが小さくなる。 In other words, when comparing the case where a flange 12b protruding radially inward is formed on the large-diameter end of the outer ring raceway 12a of the outer ring 12 as shown in FIG. 3 with the case where a flange 3b is formed on the large-diameter end of the inner ring raceway 3a of the inner ring 3 as shown in FIG. 12, even if the height C of the flange (the radial distance between the intersection of the raceway surface and the flange surface and the flange apex) is the same, the contact area between the roller end face and the outer ring flange surface shown in FIG. 6 is approximately 7% larger than the contact area between the roller end face and the inner ring flange surface in the inner ring flange type tapered roller bearing shown in FIG. 14, and the area receiving the induced thrust force generated in the roller is larger in the outer ring flange type, so the stress in the contact area is lower and the contact strain between the roller end face and the flange surface is smaller.

また、図12に示す内輪鍔形式の円すいころ軸受のように、内輪3の大径側端部に鍔部3bを設けると、円すいころ4に発生する誘起スラスト力は、図13に白抜き矢印で示すように、鍔部3bで受けることになり、鍔部3bに掛かる曲げ応力によって鍔部3bにひずみが生じる可能性があるが、外輪鍔形式の円すいころ軸受は、図5に白抜き矢印で示すように、円すいころ14に発生する誘起スラスト力は、外輪12の鍔部12bに掛かる曲げ応力をハウジング6で受けることができるため、鍔部12bの剛性が高くなる。図12の内輪鍔形式の円すいころ軸受において、符号2は外輪、2aは外輪軌道面、5は保持器を示している。 In addition, as in the inner ring flange type tapered roller bearing shown in FIG. 12, when a flange portion 3b is provided at the large diameter end of the inner ring 3, the induced thrust force generated in the tapered roller 4 is received by the flange portion 3b as shown by the white arrow in FIG. 13, and the bending stress applied to the flange portion 3b may cause distortion in the flange portion 3b. However, in the outer ring flange type tapered roller bearing, as shown by the white arrow in FIG. 5, the induced thrust force generated in the tapered roller 14 is received by the housing 6 as the bending stress applied to the flange portion 12b of the outer ring 12, so the rigidity of the flange portion 12b is increased. In the inner ring flange type tapered roller bearing in FIG. 12, the symbol 2 indicates the outer ring, 2a indicates the outer ring raceway surface, and 5 indicates the cage.

この発明は、接触角を40°~50°とし、外輪鍔の肉厚Eところ大径側径Dwとの関係を、0.19<E/Dw<0.44を満足するように設定することにより、内輪の内輪軌道面の大径側端部に鍔部を形成したものと比べて純アキシャル荷重の負荷能力を極端に低くすることなく、十分なモーメント荷重と軸受寿命を有し、しかも外輪鍔部の強度低下の懸念もない、外輪鍔形式の円すいころ軸受を得るようにしたものである。 This invention achieves an outer ring rib type tapered roller bearing that has a contact angle of 40° to 50° and a relationship between the outer ring rib thickness E and the roller large diameter Dw that satisfies 0.19 < E/Dw < 0.44, thereby providing sufficient moment load and bearing life without drastically reducing the load capacity of pure axial load compared to a bearing with a rib formed on the large diameter end of the inner ring raceway surface of the inner ring, and without the risk of a decrease in the strength of the outer ring rib.

ここで、ころ径(ころ大径側径Dw)と外輪鍔の肉厚Eの関係はE/Dwで表しており、この値が大きいほど外輪鍔の肉厚Eが厚く、ころ大径側径Dwが小さいことを表している。 The relationship between the roller diameter (large-diameter roller diameter Dw) and the thickness E of the outer ring rib is expressed as E/Dw, and the larger this value is, the thicker the thickness E of the outer ring rib is and the smaller the large-diameter roller diameter Dw is.

この発明の円すいころ軸受11は、接触角が40°~50°であるが、外部荷重を一定とし、また軸受のPCDところのサイズと個数は一定で接触角のみを変化させたときのモーメント剛性は図10のグラフのとおりであり、また、寿命比は図11に示すグラフのとおりである。この図10と図11のグラフから各接触角に対する総合評価を行うと表1に示すとおりとなり、接触角を40~50°にすることにより、軸受のモーメント剛性と寿命を両立させることができるということが確認できた。
Tapered roller bearing 11 of this invention has a contact angle of 40° to 50°, and when the external load is kept constant, and the PCD and roller size and number of the bearing are constant, and only the contact angle is changed, the moment stiffness is as shown in the graph in Figure 10, and the life ratio is as shown in the graph in Figure 11. When a comprehensive evaluation of each contact angle is made from the graphs in Figures 10 and 11, the results are as shown in Table 1, and it was confirmed that by setting the contact angle to 40° to 50°, it is possible to achieve both moment stiffness and life of the bearing.

Figure 0007495816000001
Figure 0007495816000001

この発明において、外輪鍔の肉厚Eところ大径側径Dwとの関係を、0.19<E/Dw<0.44にするという数値規定は、軸受の径方向サイズ一定、すなわち、軸受断面高さH、軸受外径Dを一定として、接触角αを変えながら、モーメント荷重、軸受寿命及び鍔強度の比較を行った表2~表4の結果より求めたものである。 In this invention, the numerical specification that the relationship between the outer ring flange thickness E and the roller large diameter Dw is 0.19 < E/Dw < 0.44 was obtained from the results in Tables 2 to 4, in which the radial size of the bearing was kept constant, i.e., the bearing cross-sectional height H and the bearing outer diameter D were kept constant, and the contact angle α was changed to compare the moment load, bearing life, and flange strength.

なお、表2~表4において、寿命とモーメント剛性の〇は、実用可能(寿命が長い、モーメント剛性が高い)な領域を表し、×は〇に対して軸受機能への信頼性が低い(寿命が短い、モーメント剛性が低い)領域を示している。
また、鍔強度に於いては、〇は安全率1.2以上を示し信頼性が高く、×は安全率1.2未満を示し、信頼性が低い領域を示している。
In Tables 2 to 4, ◯ for life and moment stiffness indicates a practical range (long life, high moment stiffness), while × indicates a range where the bearing function is less reliable (shorter life, low moment stiffness) compared to ◯.
In addition, in terms of flange strength, ◯ indicates a safety factor of 1.2 or more, which means high reliability, while × indicates a safety factor of less than 1.2, which means a region of low reliability.

なお、鍔強度の安全率の定義は以下通りである。
鍔強度の安全率=軸受の静定格ラジアル荷重C0r相当を軸受に負荷したときの鍔部に発生する
最大応力/一般軸受鋼の疲労限許容応力
を示すものである。
この安全率1.2の基準は、「日本機械学会_疲労強度の設計資料」にも記載されているとおり、疲労強度の安全率基準として鉄道車両や自動車など幅広い分野で使用されている汎用的なものである。
The safety factor of the flange strength is defined as follows:
Safety factor of flange strength = Maximum stress generated in the flange when the bearing is loaded with a static rated radial load C0r / Allowable fatigue stress for general bearing steel.
This safety factor of 1.2 standard, as stated in the "Japan Society of Mechanical Engineers - Fatigue Strength Design Materials," is a general-purpose safety factor standard for fatigue strength that is used in a wide range of fields, including railway vehicles and automobiles.

表2~表4において、軸受寿命、モーメント剛性及び鍔強度が〇であるE/Dwの範囲は、2重線で囲む、接触角40°で0.19~0.46、接触角45°で0.19~0.45、接触角50°で0.18~0.44である。
この表2~表4において2重線で囲む範囲が、すなわち、接触角40~50°における0.19<E/Dw<0.44の範囲内が、寿命かつモーメント剛性の性能が高く、鍔強度及び安全率が高い領域となる。
In Tables 2 to 4, the ranges of E/Dw where the bearing life, moment rigidity and flange strength are ◯ are surrounded by double lines and are 0.19 to 0.46 at a contact angle of 40°, 0.19 to 0.45 at a contact angle of 45°, and 0.18 to 0.44 at a contact angle of 50°.
The range enclosed by the double line in Tables 2 to 4, that is, the range of 0.19<E/Dw<0.44 for a contact angle of 40 to 50°, is the region in which the life and moment rigidity performance are high, and the flange strength and safety factor are high.

Figure 0007495816000002
Figure 0007495816000002

Figure 0007495816000003
Figure 0007495816000003

Figure 0007495816000004
Figure 0007495816000004

円すいころ軸受の場合、ころサイズ、ころ本数、接触角、ころ角度、鍔部に対するころの接点位置と鍔側軌道面との角度xが同じ諸元の場合、内輪の内輪軌道面の大径側端部に鍔部を形成した図2に示すもの(以下、「内輪鍔軸受」という。)と、外輪の外輪軌道面の大径側端部に鍔部を形成した図1に示すもの(以下、「外輪鍔軸受」という。)を比較すると、純アキシャル(Fa)負荷時に、外輪鍔軸受の方が、内輪鍔軸受よりも転動体荷重(外輪側転動体荷重Fo、内輪側転動体荷重Fi)及び転動体と軌道輪との接触面圧が増加するが、この発明のように、接触角を40°~50°とし、且つ、ころ角度を3.5°以下にした場合、純アキシャル(Fa)負荷時の転動体荷重(外輪側転動体荷重Fo、内輪側転動体荷重Fi)及び軌道輪との接触面圧の増加を抑制し、純ラジアル(Fr)負荷時の転動体荷重及び軌道輪との接触面圧も抑制することができる。 In the case of tapered roller bearings, when the roller size, number of rollers, contact angle, roller angle, and angle x between the contact point of the roller with the rib and the rib side raceway surface are the same, a comparison is made between a bearing as shown in Figure 2 in which a rib is formed on the large diameter end of the inner ring raceway surface of the inner ring (hereafter referred to as an "inner ring rib bearing") and a bearing as shown in Figure 1 in which a rib is formed on the large diameter end of the outer ring raceway surface of the outer ring (hereafter referred to as an "outer ring rib bearing"), and the results show that under pure axial (Fa) load, the outer ring rib bearing is stronger than the inner ring rib bearing. The rolling element load (outer ring side rolling element load Fo, inner ring side rolling element load Fi) and the contact surface pressure between the rolling element and the raceway increase, but if the contact angle is set to 40°-50° and the roller angle is set to 3.5° or less, as in this invention, the increase in the rolling element load (outer ring side rolling element load Fo, inner ring side rolling element load Fi) and the contact surface pressure with the raceway during a pure axial (Fa) load can be suppressed, and the rolling element load and the contact surface pressure with the raceway during a pure radial (Fr) load can also be suppressed.

図1に示す外輪鍔軸受と図2に示す内輪鍔軸受における純アキシャル負荷時の転動体荷重の算出式は、
Fio:外輪側の転動体荷重(内輪鍔軸受)
Foo:外輪側の転動体荷重(外輪鍔軸受)
Fii:内輪側の転動体荷重(内輪鍔軸受)
Foi:内輪側の転動体荷重(外輪鍔軸受)
Fir:鍔側の転動体荷重(内輪鍔軸受)
For:鍔側の転動体荷重(外輪鍔軸受)
α:軸受中心軸と外輪軌道面のなす角度
θ:軸受中心軸と内輪軌道面のなす角度
β:ころ角度
x:鍔部に対するころの接点位置と鍔側軌道面との角度
Y:ころ大端面と内輪鍔部との接点角度(θ+x)
δ:ころ大端面と外輪鍔部との接点角度(α-x)
とした場合に、次のようになる。
Fio=Fa/sinα
Foo=Foi(sinθ・sinδ+cosθ・cosδ)/(cosα・cosδ+sinα・sinδ)
Fii=Fio(sinα・sinY+cosα・cosY)/(cosθ・cosY+sinθ・sinY)
Foi=Fa/sinθ
Fir=(Fiicosθ-Fiocosα)/sinY
For=(Foicosθ-Foocosα)/sinδ
The formula for calculating the rolling element load when a pure axial load is applied to the outer ring flange bearing shown in FIG. 1 and the inner ring flange bearing shown in FIG. 2 is as follows:
Fio: Rolling element load on the outer ring side (inner ring flange bearing)
Foo: Rolling element load on the outer ring side (outer ring flange bearing)
Fii: Rolling element load on the inner ring side (inner ring flange bearing)
Foi: Rolling element load on the inner ring side (outer ring flange bearing)
Fir: Rolling element load on flange side (inner ring flange bearing)
For: Rolling element load on flange side (outer ring flange bearing)
α: Angle between the bearing center axis and the outer ring raceway surface θ: Angle between the bearing center axis and the inner ring raceway surface β: Roller angle x: Angle between the contact point of the roller with the rib and the rib side raceway surface
Y: Contact angle between the roller large end face and the inner ring rib (θ + x)
δ: Contact angle between roller large end face and outer ring rib (α-x)
In this case, the result is as follows:
Fio = Fa / sin α
Foo = Foi (sinθ sinδ + cosθ cosδ) / (cosα cosδ + sinα sinδ)
Fii = Fio (sinα sinY + cosα cosY) / (cosθ cosY + sinθ sinY)
Foi = Fa / sin θ
Fir = (Ficosθ - Ficosα) / sinY
For = (Focosθ - Focosα) / sinδ

上記の計算式により、純アキシャル荷重Faを負荷して、接触角が40°~50°で、ころ角度を3.5°以下にした各例と、接触角が40°以下で、ころ角度が3.5°以上にした各例について、最大転動体荷重と最大接触面圧を求めると、表5~表11のとおりとなる。 Using the above formula, the maximum rolling element load and maximum contact surface pressure are calculated for each example where a pure axial load Fa is applied, the contact angle is between 40° and 50°, and the roller angle is 3.5° or less, and for each example where the contact angle is 40° or less and the roller angle is 3.5° or more, and the results are shown in Tables 5 to 11.

Figure 0007495816000005
Figure 0007495816000005

Figure 0007495816000006
Figure 0007495816000006

Figure 0007495816000007
Figure 0007495816000007

Figure 0007495816000008
Figure 0007495816000008

Figure 0007495816000009
Figure 0007495816000009

Figure 0007495816000010
Figure 0007495816000010

Figure 0007495816000011
Figure 0007495816000011

前記表5~表11の結果から、軸受寸法が同一の外輪鍔軸受と内輪鍔軸受とについて、内輪鍔軸受の最大転動体荷重及び最大接触面圧を100%にして比較すると、この発明で規定される外輪鍔軸受は、最大転動体荷重及び最大接触面圧を共に、内輪鍔軸受の10%以内の増加率に抑制できるのに対し、この発明の規定外の外輪鍔軸受は、最大転動体荷重及び最大接触面圧の少なくとも一方が、内輪鍔軸受よりも増加率が10%を超えるということが確認された。 From the results of Tables 5 to 11, it was confirmed that when comparing outer ring rib bearings and inner ring rib bearings with the same bearing dimensions, with the maximum rolling element load and maximum contact surface pressure of the inner ring rib bearing set at 100%, the outer ring rib bearings specified in this invention can suppress the increase rate of both the maximum rolling element load and the maximum contact surface pressure to within 10% of the inner ring rib bearing, whereas the outer ring rib bearings not specified in this invention have an increase rate of more than 10% in at least one of the maximum rolling element load and maximum contact surface pressure compared to the inner ring rib bearing.

この発明において、保持器15としては、樹脂製のものを使用することができる。 In this invention, the retainer 15 can be made of resin.

保持器15は、図7および図8に示すように、大径側に大径リング部15aと、小径側に小径リング部15bを有し、外径部に円すいころ14を案内するころ案内面15cを有し、内径面に円すいころ14を保持する爪15dを有する。円すいころ14を案内するころ案内面15cと円すいころ14を保持する爪15dは逆でもよい。また、保持器15の大径リング部15aの外周面に、外輪12の鍔部12bとの干渉を避ける切欠き部15eを設けている。 As shown in Figures 7 and 8, the retainer 15 has a large diameter ring portion 15a on the large diameter side and a small diameter ring portion 15b on the small diameter side, a roller guide surface 15c that guides the tapered rollers 14 on the outer diameter portion, and claws 15d that hold the tapered rollers 14 on the inner diameter surface. The roller guide surface 15c that guides the tapered rollers 14 and the claws 15d that hold the tapered rollers 14 may be reversed. In addition, a notch 15e is provided on the outer peripheral surface of the large diameter ring portion 15a of the retainer 15 to avoid interference with the flange portion 12b of the outer ring 12.

図7に示すように、円すいころ14を保持器15の外径側にあるころ案内面15cに押し当てたときのころ外接円径をPとし、図7に示すように、保持器15の内径側の爪15dに円すいころ14を押し当てたときのころ外接円径をP’とした場合、図9(a)(b)(c)に示す手順で、ころ-保持器アッシーを外輪12に挿入する際に、鍔部12bの鍔高さCが同一で、接触角αと、鍔外径角度γ、|P-P’|を各種変更し、ころ-保持器アッシーの外輪12への挿入のし易さを判定した結果を表13~表17に示す。
表12~表16の結果から、接触角が40~50°のものは、|P-P’|≧C、且つ、鍔外径角度γが35°~50°の場合において、ころ-保持器アッシーの外輪12への挿入性が良好であるということが確認できた。
As shown in Figure 7, if the roller circumscribing circle diameter when the tapered roller 14 is pressed against roller guide surface 15c on the outer diameter side of the cage 15 is P, and the roller circumscribing circle diameter when the tapered roller 14 is pressed against claw 15d on the inner diameter side of the cage 15 is P' as shown in Figure 7, when the roller-retainer assembly is inserted into the outer ring 12 in the procedure shown in Figures 9(a), (b), and (c), the rib height C of rib portion 12b is the same, but the contact angle α, rib outer diameter angle γ, and |P-P'| are variously changed, and the ease of insertion of the roller-retainer assembly into the outer ring 12 is evaluated. These results are shown in Tables 13 to 17.
From the results in Tables 12 to 16, it was confirmed that when the contact angle is 40 to 50°, |P-P'|≧C, and the flange outer diameter angle γ is 35° to 50°, the roller-retainer assembly has good insertability into the outer ring 12.

Figure 0007495816000012
Figure 0007495816000012

Figure 0007495816000013
Figure 0007495816000013

Figure 0007495816000014
Figure 0007495816000014

Figure 0007495816000015
Figure 0007495816000015

Figure 0007495816000016
Figure 0007495816000016

この発明は前述した実施形態に何ら限定されるものではなく、この発明の要旨を逸脱しない範囲において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内の全ての変更を含む。 This invention is not limited to the above-described embodiment, and can of course be embodied in various other forms without departing from the spirit of the invention. The scope of the invention is indicated by the claims, and further includes the equivalent meanings set forth in the claims, and all modifications within the scope of the claims.

11 :軸受
12 :外輪
12a :外輪軌道面
12b :鍔部
13 :内輪
13a :内輪軌道面
15 :保持器
15a :大径リング部
15b :小径リング部
15c :案内面
15d :爪
15e :切欠き部
11: Bearing 12: Outer ring 12a: Outer ring raceway surface 12b: Flange portion 13: Inner ring 13a: Inner ring raceway surface 15: Cage 15a: Large diameter ring portion 15b: Small diameter ring portion 15c: Guide surface 15d: Claw 15e: Notch portion

Claims (1)

内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動自在に配置される複数の円すいころと、この複数の円すいころを所定の間隔で収容保持する複数のポケットを有する保持器とを備え、前記外輪の外輪軌道面の小径側端部と大径側端部、および内輪の内輪軌道面の小径側端部と大径側端部の4つの端部のうち、外輪の外輪軌道面の大径側端部に半径方向内方に突出する鍔部を形成した円すいころ軸受において、接触角を40°~50°とし、外輪鍔の肉厚Eところ大径側径DWとの関係が、0.19<E/Dw<0.44を満足し、前記保持器の外径側もしくは内径側に円すいころの案内面を有し、且つ保持器の案内面と逆側に円すいころの脱落を防止する爪を1つ以上有し、さらに保持器の大径リング部外周面に、当該リング部の肉厚が保持器案内面を有する柱部の肉厚よりも薄くなる切欠部を形成し、前記保持器の案内面にころを当てたときの、ころ外接円径Pと、保持器の爪にころを当てたときのころ外接円径P’が、軌道面からの外輪鍔高さCに対して|P-P’|≧Cの関係を満たし、且つ、鍔外径角度γが35°~50°であることを特徴とする円すいころ軸受。 A tapered roller bearing comprising an outer ring having an outer ring raceway surface on its inner peripheral surface, an inner ring having an inner ring raceway surface on its outer peripheral surface, a plurality of tapered rollers arranged to roll freely between the outer ring raceway surface and the inner ring raceway surface, and a cage having a plurality of pockets which house and hold the plurality of tapered rollers at specified intervals, wherein a rib portion is formed on the large diameter end of the outer ring raceway surface of the outer ring out of four ends, namely, the small diameter end and the large diameter end of the outer ring raceway surface of the outer ring, and the small diameter end and the large diameter end of the inner ring raceway surface of the inner ring, wherein the contact angle is 40° to 50°, and the relationship between the thickness E of the outer ring rib and the large diameter side diameter DW of the rollers is 0.19<E a notch is formed in the outer peripheral surface of a large diameter ring portion of the retainer so that the thickness of the ring portion is thinner than the thickness of a column portion having the retainer guide surface, and a roller circumscribing circle diameter P when the rollers abut against the guide surface of the retainer and a roller circumscribing circle diameter P' when the rollers abut against the claws of the retainer satisfy the relationship |P-P'|≧C with respect to the outer ring rib height C from the raceway surface, and a rib outer diameter angle γ is 35° to 50°.
JP2020096727A 2020-06-03 2020-06-03 Tapered roller bearings Active JP7495816B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020096727A JP7495816B2 (en) 2020-06-03 2020-06-03 Tapered roller bearings
PCT/JP2021/019489 WO2021246209A1 (en) 2020-06-03 2021-05-24 Tapered roller bearing
CN202180039276.9A CN115667739A (en) 2020-06-03 2021-05-24 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020096727A JP7495816B2 (en) 2020-06-03 2020-06-03 Tapered roller bearings

Publications (2)

Publication Number Publication Date
JP2021188719A JP2021188719A (en) 2021-12-13
JP7495816B2 true JP7495816B2 (en) 2024-06-05

Family

ID=78831046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020096727A Active JP7495816B2 (en) 2020-06-03 2020-06-03 Tapered roller bearings

Country Status (3)

Country Link
JP (1) JP7495816B2 (en)
CN (1) CN115667739A (en)
WO (1) WO2021246209A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187308A (en) 2005-12-16 2007-07-26 Ntn Corp Bearing device for wheel
JP2008309270A (en) 2007-06-15 2008-12-25 Ntn Corp Tapered roller bearing
JP2016200227A (en) 2015-04-10 2016-12-01 Ntn株式会社 Conical roller bearing
JP2019173841A (en) 2018-03-28 2019-10-10 Ntn株式会社 Conical roller bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4733433U (en) * 1971-05-08 1972-12-14
JP6388191B2 (en) * 2012-12-25 2018-09-12 日本精工株式会社 Tapered roller bearings
US11460071B2 (en) * 2018-12-07 2022-10-04 Ntn Corporation Tapered roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187308A (en) 2005-12-16 2007-07-26 Ntn Corp Bearing device for wheel
JP2008309270A (en) 2007-06-15 2008-12-25 Ntn Corp Tapered roller bearing
JP2016200227A (en) 2015-04-10 2016-12-01 Ntn株式会社 Conical roller bearing
JP2019173841A (en) 2018-03-28 2019-10-10 Ntn株式会社 Conical roller bearing

Also Published As

Publication number Publication date
WO2021246209A1 (en) 2021-12-09
JP2021188719A (en) 2021-12-13
CN115667739A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US10302131B2 (en) Tapered roller bearing
US8911155B2 (en) Cage for thrust roller bearing
US8337111B2 (en) Axial retention assembly
JPWO2006137468A1 (en) Thrust roller bearing
JP7328936B2 (en) tapered roller bearing
JP6329198B2 (en) Tapered roller bearing
JP2007198518A (en) Roller and roller bearing
JP7495816B2 (en) Tapered roller bearings
US8740466B2 (en) Rolling bearing for a shaft
JP6472671B2 (en) Tapered roller bearing
CN113167320B (en) Tapered roller bearing
JP2019148275A (en) Fixing structure of rolling bearing
JP2006300130A (en) Bearing structure
JP7472544B2 (en) Cylindrical roller bearing with outer ring
JP5900485B2 (en) Rolling bearing
WO2016194981A1 (en) Tapered roller bearing
JP2007333024A (en) Deep groove ball bearing for transmission
JP2005061508A (en) Angular contact ball bearing
JP2008014414A (en) Thrust roller bearing
WO2023149163A1 (en) Shell roller bearing and fixing structure for shell roller bearing
JP2017082948A (en) Double row six-point contact ball bearing and pulley structure
JP2009121513A (en) Tapered roller bearing
JP2024031207A (en) Shaft-integrated angular contact ball bearing
JP4715702B2 (en) Thrust roller bearing
JP2017187123A (en) Double-row cylindrical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240524

R150 Certificate of patent or registration of utility model

Ref document number: 7495816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150