JP7494106B2 - Molten salt electrolysis apparatus and method for producing metallic magnesium - Google Patents

Molten salt electrolysis apparatus and method for producing metallic magnesium Download PDF

Info

Publication number
JP7494106B2
JP7494106B2 JP2020216965A JP2020216965A JP7494106B2 JP 7494106 B2 JP7494106 B2 JP 7494106B2 JP 2020216965 A JP2020216965 A JP 2020216965A JP 2020216965 A JP2020216965 A JP 2020216965A JP 7494106 B2 JP7494106 B2 JP 7494106B2
Authority
JP
Japan
Prior art keywords
cathode
molten salt
movable
salt electrolysis
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020216965A
Other languages
Japanese (ja)
Other versions
JP2022102307A (en
Inventor
純也 小林
文二 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2020216965A priority Critical patent/JP7494106B2/en
Publication of JP2022102307A publication Critical patent/JP2022102307A/en
Application granted granted Critical
Publication of JP7494106B2 publication Critical patent/JP7494106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

この発明は、電解槽と陽極及び陰極を含む電極とを備え、陰極が陽極の周囲を取り囲む筒型部分を有する溶融塩電解装置及び、金属マグネシウムの製造方法に関するものである。 This invention relates to a molten salt electrolysis device that includes an electrolytic cell and electrodes including an anode and a cathode, in which the cathode has a cylindrical portion that surrounds the anode, and to a method for producing metallic magnesium.

溶融塩電解では一般に、電解槽の周壁及び底壁で囲まれた内部スペースに、所定の溶融塩を溜めて溶融塩浴を構成する。そして、溶融塩電解の実施に際しては、溶融塩浴に浸漬させた陽極と陰極との間に電圧を印加し、溶融塩の電気分解を行う。この種の溶融塩電解は、クロール法によるスポンジチタンの製造に際して副次的に生成される塩化マグネシウムから金属マグネシウムを生成させるための、塩化マグネシウムの電気分解等に用いられる。 In molten salt electrolysis, a molten salt bath is generally formed by storing a specific amount of molten salt in the internal space surrounded by the peripheral and bottom walls of an electrolytic cell. When carrying out molten salt electrolysis, a voltage is applied between an anode and a cathode immersed in the molten salt bath to electrolyze the molten salt. This type of molten salt electrolysis is used, for example, in the electrolysis of magnesium chloride to produce metallic magnesium from magnesium chloride, which is produced as a by-product in the production of titanium sponge by the Kroll process.

たとえば、電解槽の内部スペースが隔壁によって回収室と電解室とに区画された溶融塩電解装置を使用する塩化マグネシウムの電気分解では、溶融塩浴中の塩化マグネシウムを含む溶融塩が電解槽内の回収室から電解室へと流動し、該電解室内にて当該塩化マグネシウムが電気分解されて金属マグネシウム及び塩素が生成される。電解室で生成された金属マグネシウムは電解槽内で回収室へとさらに循環して、溶融塩との密度差によって溶融塩浴の浴面上に浮上した後に回収される。なお、塩素は電解槽に設けられ得るガス排出通路等を経て電解槽の外部に排出される。このようにして得られた金属マグネシウムは、クロール法によるスポンジチタンの製造に使用され得る。 For example, in the electrolysis of magnesium chloride using a molten salt electrolysis device in which the internal space of the electrolytic cell is divided into a recovery chamber and an electrolysis chamber by a partition, the molten salt containing magnesium chloride in the molten salt bath flows from the recovery chamber to the electrolysis chamber in the electrolysis cell, where the magnesium chloride is electrolyzed to produce metallic magnesium and chlorine. The metallic magnesium produced in the electrolysis chamber is further circulated to the recovery chamber in the electrolysis cell, where it floats to the surface of the molten salt bath due to the density difference with the molten salt, and is then collected. The chlorine is discharged to the outside of the electrolysis cell through a gas exhaust passage or the like that may be provided in the electrolysis cell. The metallic magnesium obtained in this way can be used to produce titanium sponge by the Kroll process.

かかる溶融塩電解装置には、電極が、たとえば特許文献1に記載されているように、板状ないし柱状の陽極と、その陽極の周囲を取り囲む筒型部分を有する陰極とを含むものがある。電極はさらに、陽極と陰極との間に配置される一個以上の筒型複極を含む場合もある。陰極は、筒型部分の他、該筒型部分の一部から延長されて周壁を貫通して電解槽の外部へ突き出る延長部分を有し、この延長部分にて電解槽の外部の電源に接続される。 In such a molten salt electrolysis device, the electrodes include a plate-shaped or columnar anode and a cathode having a cylindrical portion surrounding the anode, as described in Patent Document 1, for example. The electrodes may further include one or more cylindrical bipolar electrodes disposed between the anode and the cathode. In addition to the cylindrical portion, the cathode has an extension portion that extends from a part of the cylindrical portion, penetrates the peripheral wall, and protrudes to the outside of the electrolytic cell, and this extension portion is connected to a power source outside the electrolytic cell.

なお特許文献1には、より詳細には、「メタル回収室と電解室とを有し、前記電解室に2以上の電解セル単位を備えてなる溶融塩電解槽であって、前記電解セル単位は角柱形の空間を有する陰極、角柱形の陽極及び少なくとも1の角筒形の複極を含み、前記複極は前記陰極の内側空間、また前記陽極は前記複極の内側空間に、それぞれ配置され、前記複極のうち陰極に最も近い複極の角筒外側を形成する各平面は、それぞれ、少なくとも一部が陰極の角柱形の空間を形成する平面と対面し、前記複極のうち陽極に最も近い複極の角筒内側を形成する各平面は、それぞれ、少なくとも一部が陽極の角柱を形成する平面と対面し、前記陰極の少なくとも一面が他の電解セル単位の陰極の一面となることを特徴とする溶融塩電解槽」が開示されている。 In more detail, Patent Document 1 discloses a molten salt electrolytic cell having a metal recovery chamber and an electrolysis chamber, and two or more electrolysis cell units in the electrolysis chamber, the electrolysis cell unit including a cathode having a prismatic space, a prismatic anode, and at least one rectangular cylindrical bipolar electrode, the bipolar electrode being disposed in the inner space of the cathode, and the anode being disposed in the inner space of the bipolar electrode, each flat surface forming the outer side of the rectangular cylinder of the bipolar electrode closest to the cathode faces at least a portion of the flat surface forming the prismatic space of the cathode, each flat surface forming the inner side of the rectangular cylinder of the bipolar electrode closest to the anode faces at least a portion of the flat surface forming the rectangular cylinder of the anode, and at least one surface of the cathode becomes one surface of the cathode of another electrolysis cell unit.

国際公開第2017/018441号International Publication No. 2017/018441

ところで、上述したような溶融塩電解装置を用いて電気分解を継続して行うと、底壁の周囲に立てて設けた耐火煉瓦製等の周壁は熱膨張する他、溶融塩浴の成分が浸潤し、また当該煉瓦が変質する。それらの現象は特に、周壁のうち、電極の近傍に位置する後壁で顕著に生じる。これにより、後壁を含む周壁は、次第に陰極を上方側に向けるように膨張することがある。 However, when electrolysis is continued using the above-mentioned molten salt electrolysis device, the surrounding walls made of firebricks or the like that are erected around the bottom wall undergo thermal expansion, and the components of the molten salt bath penetrate into the walls, causing the bricks to deteriorate. These phenomena are particularly noticeable in the rear wall that is located near the electrode. As a result, the surrounding walls, including the rear wall, may gradually expand in a manner that points the cathode upward.

この場合、陰極は、後壁等の周壁を貫通して電解槽の外部で固定される延長部分に対し、筒型部分の後壁から離れて位置する箇所が当該後壁等の膨張によって上方側に持ち上げられる変位が生じ得る。陰極がこのように変位すると、筒型部分の、後壁等の周壁に隣接して位置する箇所が、特に電解槽の深さ方向の下端部側で、その内側に配置された複極又は陽極に接近する。それにより、陰極の筒型部分の当該箇所が複極又は陽極と接触し、陰極と複極又は陽極との間で短絡が生じるという問題があった。 In this case, the cathode may be displaced upwards due to the expansion of the rear wall, etc., at a portion of the cylindrical portion that is located away from the rear wall, relative to the extension portion that penetrates the peripheral wall of the electrolytic cell and is fixed outside the electrolytic cell. When the cathode is displaced in this way, the portion of the cylindrical portion that is adjacent to the peripheral wall of the rear wall, etc., approaches the bipolar or anode placed inside, particularly at the lower end side in the depth direction of the electrolytic cell. This causes the portion of the cylindrical portion of the cathode to come into contact with the bipolar or anode, causing a short circuit between the cathode and the bipolar or anode.

この発明の目的は、電極間での短絡の発生を抑制することができる溶融塩電解装置及び、金属マグネシウムの製造方法を提供することにある。 The object of this invention is to provide a molten salt electrolysis device and a method for producing metallic magnesium that can suppress the occurrence of short circuits between electrodes.

この発明の溶融塩電解装置は、内部スペースを区画する周壁及び底壁を有する電解槽と、電解槽の前記内部スペースに配置され、陽極及び陰極を含む電極とを備えるものであって、前記陰極が、前記陽極の周囲を取り囲む筒型部分、及び、前記筒型部分の一部から延長されて前記周壁を貫通して電解槽の外部へ突き出る延長部分を有し、前記筒型部分の、前記周壁に隣接して位置する箇所が、当該周壁に対する接近変位及び離隔変位の可能な周壁側の可動陰極部材で構成されたものである。 The molten salt electrolysis device of this invention comprises an electrolytic cell having a peripheral wall and a bottom wall that define an internal space, and electrodes including an anode and a cathode that are disposed in the internal space of the electrolytic cell, the cathode having a cylindrical portion that surrounds the anode and an extension portion that extends from a part of the cylindrical portion, penetrates the peripheral wall, and protrudes to the outside of the electrolytic cell, and the portion of the cylindrical portion that is adjacent to the peripheral wall is composed of a movable cathode member on the peripheral wall side that can be displaced toward and away from the peripheral wall.

この発明の溶融塩電解装置では、前記周壁が、電極に隣接する後壁を含み、前記周壁側の可動陰極部材が、前記筒型部分の、前記後壁に隣接して位置する箇所であって、当該後壁に対する接近変位及び離隔変位の可能な後壁側の可動陰極部材であることが好ましい。 In the molten salt electrolysis device of the present invention, it is preferable that the peripheral wall includes a rear wall adjacent to the electrode, and the movable negative electrode member on the peripheral wall side is a portion of the cylindrical portion located adjacent to the rear wall, and is a movable negative electrode member on the rear wall side that can move toward and away from the rear wall.

この発明の溶融塩電解装置では、電解槽が、前記内部スペースに、前記電極が配置される電解室を区画する隔壁を有し、前記陰極が鋼製であり、前記筒型部分の、前記隔壁に隣接して位置する箇所が、当該隔壁に対する接近変位及び離隔変位の可能な隔壁側の可動陰極部材で構成されることが好ましい。 In the molten salt electrolysis device of the present invention, it is preferable that the electrolytic cell has a partition wall in the internal space that defines an electrolytic chamber in which the electrodes are placed, the cathode is made of steel, and the portion of the cylindrical portion adjacent to the partition wall is composed of a movable cathode member on the partition wall side that can be displaced toward and away from the partition wall.

この発明の溶融塩電解装置では、前記筒型部分が、前記可動陰極部材に対して直交もしくは傾斜する方向にそれぞれ延びるとともに陽極を隔てて互いに対向して位置する対をなす固定陰極部材を含み、前記固定陰極部材の少なくとも一個が、前記延長部分に連続しており、前記可動陰極部材が、前記固定陰極部材のそれぞれと電気的に接続可能に配置されることが好ましい。 In the molten salt electrolysis device of the present invention, it is preferable that the cylindrical portion includes a pair of fixed cathode members each extending in a direction perpendicular or inclined to the movable cathode member and positioned opposite each other across the anode, at least one of the fixed cathode members is continuous with the extension portion, and the movable cathode member is arranged so as to be electrically connectable to each of the fixed cathode members.

この場合、前記固定陰極部材の前記可動陰極部材側の表面に、該表面から窪んで電解槽の深さ方向に延びる溝部が形成されており、前記溝部が、前記可動陰極部材の端部の幅よりも広い溝幅を有し、前記可動陰極部材が、当該端部を前記溝部内に入り込ませて配置され、前記溝部の溝幅方向に沿って前記接近変位及び離隔変位を可能に構成されることが好ましい。 In this case, it is preferable that a groove portion is formed on the surface of the fixed negative electrode member facing the movable negative electrode member, the groove portion having a groove width wider than the width of the end portion of the movable negative electrode member, the end portion of the movable negative electrode member being inserted into the groove portion, and the movable negative electrode member is configured to be able to move toward and away from the fixed negative electrode member along the groove width direction.

さらにこの場合、前記固定陰極部材の前記溝部の内側面と前記可動陰極部材の端部寄りの表面との間に、前記可動陰極部材を前記接近変位又は離隔変位がなされた位置で固定するストッパー部材が、取出し可能に配置されることが好適である。 In this case, it is also preferable that a stopper member that fixes the movable negative electrode member at the position where the approaching or separating displacement is made is removably disposed between the inner surface of the groove portion of the fixed negative electrode member and the surface near the end of the movable negative electrode member.

その上で、前記ストッパー部材と接触する前記可動陰極部材の端部寄りの表面の少なくとも一方には、当該ストッパー部材を通す溝状凹部が形成されることが好ましい。 In addition, it is preferable that a groove-shaped recess through which the stopper member passes is formed on at least one of the surfaces of the movable negative electrode member near the end that contacts the stopper member.

この発明の溶融塩電解装置では、前記電解槽の前記周壁又は前記陰極の前記筒型部分が、前記周壁側の可動陰極部材を下方側から支持する載置面を有することが好ましい。 In the molten salt electrolysis apparatus of the present invention, it is preferable that the peripheral wall of the electrolytic cell or the cylindrical portion of the cathode has a mounting surface that supports the movable cathode member on the peripheral wall side from below.

この発明の溶融塩電解装置では、前記電極が、陽極と陰極の前記筒型部分との間に配置された一個以上の筒型複極をさらに含むことがある。 In the molten salt electrolysis apparatus of the present invention, the electrodes may further include one or more cylindrical bipolar electrodes disposed between the anode and the cylindrical portion of the cathode.

この発明の金属マグネシウムの製造方法は、上記のいずれかの溶融塩電解装置を使用して、塩化マグネシウムから金属マグネシウムを製造するというものである。 The method for producing metallic magnesium of the present invention involves producing metallic magnesium from magnesium chloride using any of the above-mentioned molten salt electrolysis devices.

この発明の溶融塩電解装置によれば、電極間での短絡の発生を抑制することができる。 The molten salt electrolysis device of this invention can prevent short circuits from occurring between the electrodes.

この発明の一の実施形態の溶融塩電解装置を示す、電解槽の深さ方向に沿う断面図である。1 is a cross-sectional view taken along the depth direction of an electrolytic cell, showing a molten salt electrolysis apparatus according to one embodiment of the present invention. 図1のII-II線に沿う断面図である。2 is a cross-sectional view taken along line II-II in FIG. 後壁の上方側への膨張に伴う陰極の変位及び変形の態様を示す、図2のIII-III線に沿う断面図である。3 is a cross-sectional view taken along line III-III in FIG. 2, showing the manner in which the cathode is displaced and deformed as the rear wall expands upward. 図3の陰極の変位及び変形が生じた際の当該陰極と複極とのそれぞれの対向する箇所の位置関係を示す断面図である。4 is a cross-sectional view showing the positional relationship between the cathode and the bipolar electrode when the cathode in FIG. 3 is displaced and deformed. FIG. 図1の溶融塩電解装置が備える陰極の筒型部分の可動陰極部材の変位を示す、図1の部分拡大断面図である。1 , showing the displacement of a movable cathode member of a cylindrical portion of a cathode provided in the molten salt electrolysis apparatus of FIG. 1 . 図1の溶融塩電解装置が備える陰極の筒型部分の可動陰極部材と固定陰極部材との接続態様及び、その接続態様の他の例を示す、図2の部分拡大断面図である。3 is a partially enlarged cross-sectional view of FIG. 2 , showing a connection mode between a movable cathode member and a fixed cathode member of a cylindrical portion of a cathode provided in the molten salt electrolysis apparatus of FIG. 1 , and another example of the connection mode. 図6(a)のVI-VI線に沿う断面図である。6(a) is a cross-sectional view taken along line VI-VI in FIG. 他の実施形態の溶融塩電解装置が備える陰極及び後壁を示す、図3と同様の断面図である。FIG. 4 is a cross-sectional view similar to FIG. 3 , showing a cathode and a rear wall of a molten salt electrolysis apparatus according to another embodiment.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の溶融塩電解装置1は、図1に示すように、内部スペース2aを区画する周壁2b及び底壁2cを有する電解槽2と、電解槽2の内部スペース2aに配置され、陽極3a及び陰極3bを含む電極3とを備える。
Hereinafter, an embodiment of the present invention will be described in detail.
As shown in FIG. 1 , a molten salt electrolysis apparatus 1 according to one embodiment of the present invention includes an electrolytic cell 2 having a peripheral wall 2b and a bottom wall 2c which define an internal space 2a, and electrodes 3 which are disposed in the internal space 2a of the electrolytic cell 2 and include an anode 3a and a cathode 3b.

ここで、たとえば主としてAl23等の耐火煉瓦その他の適切な材料からなる電解槽2は、底壁2cの周囲に全周にわたって周壁2bを立てて設けたものである。この溶融塩電解装置1はさらに、電解槽2の上方側開口部を覆蓋するための蓋部材4を備える。電解槽2の内側には、底壁2c及び周壁2b並びに蓋部材4によって取り囲まれる内部スペース2aが区画されている。溶融塩電解を行うには、この内部スペース2aに溶融塩を貯留させて、溶融塩浴を構成する。 Here, the electrolytic cell 2, which is made of firebricks such as Al2O3 or other suitable material, has a bottom wall 2c and a peripheral wall 2b standing around the entire periphery of the bottom wall 2c. The molten salt electrolysis apparatus 1 further includes a lid member 4 for covering an upper opening of the electrolytic cell 2. Inside the electrolytic cell 2, an internal space 2a is defined which is surrounded by the bottom wall 2c, the peripheral wall 2b and the lid member 4. To perform molten salt electrolysis, molten salt is stored in the internal space 2a to form a molten salt bath.

この実施形態では、電解槽2は、内部スペース2aに後述の陰極3bの延長部分13bが貫通した周壁2bと平行に設けられた隔壁5を有し、この隔壁5により、内部スペース2aが図1の右側に位置して電気分解が行われる電解室2fと、電解室2fでの電気分解により生成された生成物である溶融金属が流れ込んで該溶融金属が溶融塩との密度差により上方側に溜まる回収室2eとに区画されている。隔壁5は、図示の例では、蓋部材4に近接させて配置されている。これにより、隔壁5と電解槽2の底壁2cとの間に、回収室2eから電解室2fへの溶融塩浴の移動を可能にする溶融塩循環路5aを形成する。また、隔壁5に設けた溶融金属流路5bにより、電解室2fから回収室2eへの溶融金属の流入が可能になる。隔壁5は、溶融塩循環路5a及び溶融金属流路5bを設けることができれば、その形状や個数等の構成が適宜変更され得る。 In this embodiment, the electrolytic cell 2 has a partition wall 5 provided in the internal space 2a parallel to the peripheral wall 2b through which the extension portion 13b of the cathode 3b described below penetrates, and the partition wall 5 divides the internal space 2a into an electrolysis chamber 2f located on the right side of FIG. 1 where electrolysis is performed, and a recovery chamber 2e into which the molten metal, which is the product of electrolysis in the electrolysis chamber 2f, flows and accumulates on the upper side due to the density difference with the molten salt. In the illustrated example, the partition wall 5 is disposed close to the lid member 4. As a result, a molten salt circulation path 5a that enables the movement of the molten salt bath from the recovery chamber 2e to the electrolysis chamber 2f is formed between the partition wall 5 and the bottom wall 2c of the electrolytic cell 2. In addition, the molten metal flow path 5b provided in the partition wall 5 enables the molten metal to flow from the electrolysis chamber 2f to the recovery chamber 2e. The partition wall 5 can be appropriately modified in terms of its shape, number, and other configurations as long as it is possible to provide the molten salt circulation path 5a and the molten metal flow path 5b.

なお、内部スペース2aの周囲の周壁2bのうち、電解室2fを隔てて隔壁5の反対側に位置して電極3に隣接する部分を後壁2dという。ここでは、周壁2bのなかでも、主に後壁2dに着目しており、後壁2dのことを周壁2bということもある。周壁2bには、電解室2f側で隔壁5と対向する上記の後壁2dの他、回収室2e側で隔壁5と対向する前壁2h(図1参照)や、後壁2dと隔壁5と前壁2hとをそれらの端部で連結するべく前後方向に延びる側壁2g(図2参照)が含まれ得る。なお、前後方向とは、後壁2d、隔壁5及び前壁2hが並ぶ方向(図1、2の左右方向)を意味し、回収室2e側を前方側とし、電解室2f側を後方側としている。 The portion of the peripheral wall 2b around the internal space 2a that is located on the opposite side of the partition wall 5 across the electrolytic chamber 2f and adjacent to the electrode 3 is referred to as the rear wall 2d. Here, the main focus is on the rear wall 2d among the peripheral walls 2b, and the rear wall 2d is sometimes referred to as the peripheral wall 2b. In addition to the rear wall 2d that faces the partition wall 5 on the electrolytic chamber 2f side, the peripheral wall 2b may also include a front wall 2h (see FIG. 1) that faces the partition wall 5 on the recovery chamber 2e side, and a side wall 2g (see FIG. 2) that extends in the front-rear direction to connect the rear wall 2d, the partition wall 5, and the front wall 2h at their ends. The front-rear direction refers to the direction in which the rear wall 2d, the partition wall 5, and the front wall 2h are lined up (the left-right direction in FIGS. 1 and 2), with the recovery chamber 2e side being the front side and the electrolytic chamber 2f side being the rear side.

またここで、電極3には、蓋部材4を貫通して電解槽2の内外に延びる板状もしくは柱状等の陽極3aと、図2に示す断面図から解かるように、陽極3aの周囲を取り囲んで陽極3aから間隔をおいて配置された筒型部分13aを有する陰極3bとが含まれる。陰極3bの筒型部分13aは、図示の例のような平面視の内外輪郭形状がともに長方形その他の四角形状になる四角筒型等の角筒型等とすることができる。陰極3bは、筒型部分13aの一部から外側に延長する延長部分13bをさらに有し、この延長部分13bが、周壁2bの一部である後壁2dを貫通して電解槽2の外部へ突き出るように配置されている。電極3は、陰極3bの延長部分13b及び陽極3aのそれぞれの、電解槽2の外部に位置する箇所で、図示しない電源に接続される。 Here, the electrode 3 includes a plate-like or column-like anode 3a that extends through the cover member 4 and into and out of the electrolytic cell 2, and a cathode 3b having a cylindrical portion 13a that surrounds the anode 3a and is spaced apart from the anode 3a, as can be seen from the cross-sectional view shown in FIG. 2. The cylindrical portion 13a of the cathode 3b can be a square cylindrical shape, such as a rectangular cylindrical shape, in which both the inner and outer contour shapes in a plan view are rectangular or other quadrangular shapes, as in the example shown in the figure. The cathode 3b further has an extension portion 13b that extends outward from a part of the cylindrical portion 13a, and this extension portion 13b is arranged so as to penetrate the rear wall 2d, which is a part of the peripheral wall 2b, and protrude to the outside of the electrolytic cell 2. The electrode 3 is connected to a power source (not shown) at the points of the extension portion 13b of the cathode 3b and the anode 3a that are located outside the electrolytic cell 2.

電極3は、少なくとも陽極3a及び陰極3bを有するものであれば、溶融塩浴中の溶融塩の電気分解を行うことができる。他方、電気分解による金属マグネシウムの生成効率向上等の観点からは、図1及び2に示すように、陽極3aと陰極3bの筒型部分13aとの間に、電源に接続されておらず陽極3a及び陰極3b間への電圧の印加によって分極する一個以上、たとえば二個の筒型複極3cをさらに有することが好ましい。但し、このような筒型複極3cは必須ではない。陽極3a及び陰極3b、場合によってはさらに筒型複極3cを含む電極3は一組とすることもできるが、図2に示すように複数組を並べて設けることができる。この場合、一個の固定陰極部材23bが、互いに隣り合う二個の陰極3bのそれぞれの筒型部分13aの構成要素として使用されることがある。筒型部分13a及び固定陰極部材23bの詳細については後述する。 The electrode 3 can perform electrolysis of the molten salt in the molten salt bath as long as it has at least an anode 3a and a cathode 3b. On the other hand, from the viewpoint of improving the efficiency of producing metallic magnesium by electrolysis, it is preferable to further have one or more, for example two, cylindrical bipolar electrodes 3c that are not connected to a power source and are polarized by applying a voltage between the anode 3a and the cathode 3b, as shown in Figures 1 and 2. However, such a cylindrical bipolar electrode 3c is not essential. The electrode 3 including the anode 3a and the cathode 3b, and in some cases the cylindrical bipolar electrode 3c, can be a single set, but multiple sets can be arranged side by side as shown in Figure 2. In this case, one fixed cathode member 23b may be used as a component of each of the cylindrical portions 13a of the two adjacent cathodes 3b. Details of the cylindrical portion 13a and the fixed cathode member 23b will be described later.

なお、溶融塩電解装置1はさらに、図示しないが、回収室2e等に配置されて、溶融塩浴の温度調整を行う熱交換器としての温度調整管等を備えることがある。 In addition, although not shown, the molten salt electrolysis device 1 may further include a temperature adjustment tube or the like arranged in the recovery chamber 2e or the like as a heat exchanger for adjusting the temperature of the molten salt bath.

このような溶融塩電解装置1では、陰極3bの筒型部分13a及び延長部分13bが、例えば周壁2bの後壁2dの内面付近を取り囲んで配置されていること等により、後壁2dが溶融塩浴中の回収室2e及び電解室2fを循環する溶融塩と接触しにくくなる。それにより、この種の溶融塩電解装置1は、いずれも板状の陽極及び陰極を並べて配置したものに比して、Al23等からなる後壁2dから当該溶融塩へのアルミニウムの溶出が抑えられて、アルミニウム含有量の少ない金属マグネシウムが得られる。アルミニウム含有量が少ない金属マグネシウムは、高純度のスポンジチタンの製造に有用である。 In such a molten salt electrolysis apparatus 1, the cylindrical portion 13a and the extension portion 13b of the cathode 3b are arranged to surround, for example, the inner surface of the rear wall 2d of the peripheral wall 2b, so that the rear wall 2d is less likely to come into contact with the molten salt circulating in the recovery chamber 2e and the electrolysis chamber 2f in the molten salt bath. As a result, in this type of molten salt electrolysis apparatus 1, compared with an apparatus in which both plate-shaped anodes and cathodes are arranged side by side, the elution of aluminum from the rear wall 2d made of Al2O3 or the like into the molten salt is suppressed, and metallic magnesium with a low aluminum content is obtained. Metallic magnesium with a low aluminum content is useful for producing high-purity sponge titanium.

他方、溶融塩電解の間は、電解槽2の高温に晒される周壁2bの特に後壁2dが、熱膨張等により、図3に白抜き矢印で示すように陰極3bを上方側に向けるように膨張する。それに伴い、延長部分13bが周壁2b、より具体的には後壁2dに挿入された陰極3bにおいては、延長部分13bは電解槽2の外部で電源に接続されて固定されている一方で、筒型部分13aは上方側への変位が規制されていないことから、上方側に膨張する後壁2dによって陰極3bの固定されていない箇所は上方側に持ち上げられる。このことから、陰極3bは、同図に破線で示すように、筒型部分13aの特に後壁2dから離れて位置する箇所(隔壁5に隣接して位置する箇所)が上方側に持ち上がって斜めに変位する。 On the other hand, during molten salt electrolysis, the peripheral wall 2b, particularly the rear wall 2d, exposed to the high temperature of the electrolytic cell 2, expands due to thermal expansion, etc., so as to orient the cathode 3b upward as shown by the outlined arrow in FIG. 3. Accordingly, in the cathode 3b in which the extension portion 13b is inserted into the peripheral wall 2b, more specifically the rear wall 2d, the extension portion 13b is connected to a power source and fixed outside the electrolytic cell 2, while the cylindrical portion 13a is not restricted from displacing upward, so that the unfixed portion of the cathode 3b is lifted upward by the rear wall 2d expanding upward. As a result, the cathode 3b is displaced obliquely, as shown by the dashed line in the figure, especially the portion of the cylindrical portion 13a located away from the rear wall 2d (the portion located adjacent to the partition wall 5) is lifted upward.

そして、陰極3bが上記のように変位すると、陰極3bの、後壁2dに隣接して位置する箇所が、電解槽2の深さ方向の下端部側で、図4に示すように、その内側の筒型複極3cに接近し、甚だしくは接触して、そこで短絡が生じる。なお、電極が筒型複極を含まない溶融塩電解装置では、陰極の上記の変位により、陰極の当該箇所が内側の陽極に接触し得る。短絡が生じたときは、溶融塩電解装置1の操業停止及び解体作業が必要になる場合がある。 When the cathode 3b is displaced as described above, the portion of the cathode 3b adjacent to the rear wall 2d approaches, or even comes into contact with, the inner cylindrical bipolar electrode 3c at the lower end of the electrolytic cell 2 in the depth direction, as shown in FIG. 4, causing a short circuit. In a molten salt electrolysis device in which the electrodes do not include a cylindrical bipolar electrode, the above displacement of the cathode may cause that portion of the cathode to come into contact with the inner anode. When a short circuit occurs, it may be necessary to stop operation of the molten salt electrolysis device 1 and dismantle it.

かかる問題に対処するため、この実施形態では、陰極3bの筒型部分13aの、周壁2bの後壁2dに隣接して位置する箇所を、図5に示すように、当該周壁2bの後壁2dに対して接近変位及び離隔変位が可能にした周壁2b側の板状等の可動陰極部材23a(「後壁2d側の可動陰極部材23a」ともいう。)で構成する。このことによれば、後壁2dの上方側への膨張によって陰極3bの筒型部分13aが上述したように斜めに持ち上げられた際に、筒型部分13aの可動陰極部材23aを動かして後壁2dに接近する方向(つまり筒型複極3cから離隔する方向)に変位させることで、陰極3bと筒型複極3cとの間での短絡の発生を抑制することができる。このような可動陰極部材23aの変位のみで短絡を回避できるので、溶融塩電解装置1の操業停止及び解体作業を実施する場合と比べ、作業負荷が著しく軽減される。また、溶融塩電解装置1の連続操業時間も長期化できる。 To address this problem, in this embodiment, the portion of the cylindrical portion 13a of the cathode 3b adjacent to the rear wall 2d of the peripheral wall 2b is configured with a movable cathode member 23a (also referred to as the "rear wall 2d side movable cathode member 23a") in the shape of a plate on the peripheral wall 2b side, which can be moved toward and away from the rear wall 2d of the peripheral wall 2b, as shown in FIG. 5. With this, when the cylindrical portion 13a of the cathode 3b is lifted obliquely as described above due to the upward expansion of the rear wall 2d, the movable cathode member 23a of the cylindrical portion 13a is moved to move toward the rear wall 2d (i.e., in the direction away from the cylindrical bipolar electrode 3c), thereby suppressing the occurrence of a short circuit between the cathode 3b and the cylindrical bipolar electrode 3c. Since a short circuit can be avoided only by the displacement of the movable cathode member 23a, the workload is significantly reduced compared to the case where the molten salt electrolysis device 1 is shut down and dismantled. In addition, the continuous operating time of the molten salt electrolysis device 1 can be extended.

溶融塩電解の開始初期等の、後壁2d側の可動陰極部材23aと筒型複極3cとが接触するおそれのない時期には、当該可動陰極部材23aを後壁2dから離れる方向に変位した位置で筒型複極3cに近づけて配置しておくことにより、それらの極間距離が短くなって電圧の上昇が抑えられ、電力コストの増大を抑制することができる。 When there is no risk of contact between the movable cathode member 23a on the rear wall 2d side and the cylindrical bipolar electrode 3c, such as at the beginning of molten salt electrolysis, the movable cathode member 23a is positioned close to the cylindrical bipolar electrode 3c in a position displaced away from the rear wall 2d, shortening the inter-electrode distance and suppressing the increase in voltage, thereby suppressing increases in electricity costs.

図示の実施形態では、陰極3bの筒型部分13aは、後壁2d側の可動陰極部材23aを両側から挟んで当該可動陰極部材23aに対して直交もしくは傾斜する方向にそれぞれ延びるとともに、陽極3aを隔てて互い対向して位置する対をなす板状等の固定陰極部材23bを含むものである。それらの固定陰極部材23bのうちの少なくとも一個、図示の例では一方の固定陰極部材23bだけが、後壁2dを貫通して電解槽2の外部へ突き出る延長部分13bに連続するように形成されている。延長部分13bの個数は溶融塩電解装置1の構成等に基づき適宜決定すればよい。よって、場合により、すべての固定陰極部材23bが延長部分13bに連続することもあり得る。 In the illustrated embodiment, the cylindrical portion 13a of the cathode 3b includes a pair of plate-like or other fixed cathode members 23b that sandwich the movable cathode member 23a on the rear wall 2d side, each extending perpendicularly or inclined to the movable cathode member 23a, and facing each other across the anode 3a. At least one of the fixed cathode members 23b, in the illustrated example, is formed so as to be continuous with the extension portion 13b that penetrates the rear wall 2d and protrudes to the outside of the electrolytic cell 2. The number of extension portions 13b may be determined appropriately based on the configuration of the molten salt electrolysis device 1. Therefore, depending on the situation, all of the fixed cathode members 23b may be continuous with the extension portion 13b.

また、陰極3bが炭素鋼又はステンレス鋼その他の鋼製である場合、陰極3bの筒型部分13aの、隔壁5に隣接して位置する箇所は、上述した周壁2bの後壁2dに隣接する箇所と同様に、図5に示すように、隔壁5に対する接近変位及び離隔変位の可能な隔壁5側の板状等の可動陰極部材23cで構成することが好ましい。溶融塩電解の継続に伴い、鋼製の陰極3bの筒型部分13aにおける固定陰極部材23bは、熱膨張により、図3に黒塗り矢印で示すように、その前後方向に伸長する変形が生じる。固定陰極部材23bのこの変形により、筒型部分13aの、隔壁5に隣接して位置する箇所は、図4に示すように、その内側の筒型複極3cから離れて位置するようになる。このことは、極間距離の増大により、電圧の上昇、ひいては電力コストの増加を招くことがある。これに対し、筒型部分13aの、隔壁5に隣接して位置する箇所を、隔壁5側の可動陰極部材23cで構成すれば、固定陰極部材23bが伸長したときに、当該可動陰極部材23cを隔壁5から離隔する方向(つまり筒型複極3cに接近する方向)に動かすことにより、極間距離の増大による電圧の上昇を抑制することができる。 In addition, when the cathode 3b is made of carbon steel, stainless steel, or other steel, the portion of the cylindrical portion 13a of the cathode 3b adjacent to the partition wall 5 is preferably configured with a movable cathode member 23c, such as a plate-like member, on the partition wall 5 side, which can be displaced toward and away from the partition wall 5, as shown in FIG. 5, similar to the portion adjacent to the rear wall 2d of the peripheral wall 2b described above. As the molten salt electrolysis continues, the fixed cathode member 23b in the cylindrical portion 13a of the steel cathode 3b is deformed by thermal expansion, expanding in the front-rear direction, as shown by the black arrow in FIG. 3. Due to this deformation of the fixed cathode member 23b, the portion of the cylindrical portion 13a adjacent to the partition wall 5 is located away from the cylindrical bipolar electrode 3c on the inside, as shown in FIG. 4. This may lead to an increase in the inter-electrode distance, which may result in an increase in voltage and therefore an increase in power costs. In contrast, if the portion of the cylindrical portion 13a adjacent to the partition wall 5 is configured with a movable negative electrode member 23c on the partition wall 5 side, when the fixed negative electrode member 23b expands, the movable negative electrode member 23c can be moved in a direction away from the partition wall 5 (i.e., in a direction approaching the cylindrical bipolar electrode 3c), thereby suppressing the increase in voltage due to the increase in the interelectrode distance.

上述した後壁2d側の可動陰極部材23aは、電解槽2の深さ方向の上端部が、図示のように、溶融塩浴の浴面付近で浴面よりもやや低い位置にあってもよいが、浴面よりも高い位置になるように配置することが好ましい。後壁2d側の可動陰極部材23aの可動操作が容易になるからである。可動陰極部材23aの上端部が浴面よりも低い位置であっても、溶融塩浴を一時的に抜き取れば操作可能である。一方、隔壁5側の可動陰極部材23aの上端部は、溶融金属流路5bを通る金属マグネシウムの流れを過度に阻害しないように、浴面よりもやや低い位置に配置することが好適である。 The upper end of the movable cathode member 23a on the rear wall 2d side in the depth direction of the electrolytic cell 2 may be located slightly lower than the bath surface of the molten salt bath as shown in the figure, but it is preferable to arrange it so that it is located higher than the bath surface. This is because it makes it easier to move the movable cathode member 23a on the rear wall 2d side. Even if the upper end of the movable cathode member 23a is located lower than the bath surface, it can be operated by temporarily removing the molten salt bath. On the other hand, it is preferable to arrange the upper end of the movable cathode member 23a on the partition wall 5 side at a position slightly lower than the bath surface so as not to excessively impede the flow of metallic magnesium through the molten metal flow path 5b.

後壁2d側及び隔壁5側の可動陰極部材23a及び23cはいずれも、固定陰極部材23bのそれぞれと電気的に接続可能であるように配置されることが好適である。 It is preferable that the movable negative electrode members 23a and 23c on the rear wall 2d side and the partition wall 5 side are both positioned so that they can be electrically connected to the fixed negative electrode member 23b, respectively.

より具体的には、たとえば、図6(a)に示すように、固定陰極部材23bの可動陰極部材23a側の表面に、その表面から窪んで電解槽2の深さ方向(図6の紙面表裏方向)に延びる溝部24を形成する。この溝部24は、その溝幅Wgが、可動陰極部材23aの端部の幅Wmよりも広いものとする。そして、可動陰極部材23aの端部を固定陰極部材23bの溝部24内に入り込ませて、可動陰極部材23aを配置する。これにより、可動陰極部材23aを、溝部24(図6の左右方向)に沿って、後壁2dに対して接近変位及び離隔変位させることが可能になる。
この場合、可動陰極部材23aの可動域は、溝部24内で後壁2dに対して最も接近変位した位置と最も離隔した位置との間の領域になる。この可動域で可動陰極部材23aと固定陰極部材23bとの接触が確保されると、可動陰極部材23aは当該可動域で固定陰極部材23bと電気的に接続されることになる。このことは、後述の図6(b)及び(c)の例でも同様である。なお電極3の表面には、意図的に絶縁被膜を設ける場合がある。仮に電極3の表面に絶縁被膜が設けられていても、絶縁被膜で被覆された電極3自体には通電される。このため、陰極3bの一部に絶縁被膜が設けられた場合であっても、可動陰極部材23aの可動域での固定陰極部材23bとの電気的接続は確保され得る。
More specifically, for example, as shown in Fig. 6(a), a groove 24 is formed on the surface of the fixed negative electrode member 23b facing the movable negative electrode member 23a, the groove 24 being recessed from the surface and extending in the depth direction of the electrolytic cell 2 (the front-to-back direction of the paper in Fig. 6). The groove 24 has a groove width Wg wider than the width Wm of the end of the movable negative electrode member 23a. The movable negative electrode member 23a is disposed with the end of the movable negative electrode member 23a inserted into the groove 24 of the fixed negative electrode member 23b. This makes it possible to displace the movable negative electrode member 23a toward or away from the rear wall 2d along the groove 24 (the left-to-right direction in Fig. 6).
In this case, the movable range of the movable negative electrode member 23a is a region between the position where it is closest to the rear wall 2d and the position where it is farthest from the rear wall 2d in the groove portion 24. When the contact between the movable negative electrode member 23a and the fixed negative electrode member 23b is ensured in this movable range, the movable negative electrode member 23a is electrically connected to the fixed negative electrode member 23b in the movable range. This is also true in the examples of Figs. 6(b) and 6(c) described later. Note that an insulating film may be intentionally provided on the surface of the electrode 3. Even if an insulating film is provided on the surface of the electrode 3, the electrode 3 itself covered with the insulating film is electrically conductive. Therefore, even if an insulating film is provided on a part of the cathode 3b, the electrical connection with the fixed negative electrode member 23b in the movable range of the movable negative electrode member 23a can be ensured.

ここでは、固定陰極部材23bの溝部24の内側面と可動陰極部材23aの端部寄りの表面との間に、図6(a)に示すように、ストッパー部材25を取出し可能に挟み込んで配置することができる。ストッパー部材25は、可動陰極部材23aを接近変位又は離隔変位がなされた位置で固定するものであり、棒状、板状又は、先端が先細りになるくさび状等の形状とすることができる。なお、このようなストッパー部材を設けない場合であっても、可動陰極部材の端部と溝部との間をある程度狭く設定することにより、操業中の陰極の熱膨張や磁場の働き等で可動陰極部材と固定陰極部材とを適切に接触させて接続することも可能である。 Here, as shown in FIG. 6(a), a stopper member 25 can be removably sandwiched between the inner surface of the groove 24 of the fixed negative electrode member 23b and the surface near the end of the movable negative electrode member 23a. The stopper member 25 fixes the movable negative electrode member 23a at the position where it is displaced toward or away from the fixed negative electrode member 23a, and can be rod-shaped, plate-shaped, or wedge-shaped with a tapered tip. Even if such a stopper member is not provided, it is possible to appropriately contact and connect the movable negative electrode member and the fixed negative electrode member by setting the gap between the end of the movable negative electrode member and the groove to a certain narrowness, due to the thermal expansion of the negative electrode during operation, the action of a magnetic field, etc.

ストッパー部材25の材質は、絶縁体とすることもできるが、導体としてもよい。導体のストッパー部材25は、電極3間への電圧の印加時に陰極3bとほぼ等電位になるように、固定陰極部材23bの溝部24の内側面と可動陰極部材23aの表面との間に可能な限り整合する形状とすることが好ましい。また、ストッパー部材25が導体からなる場合、図示の例のように、ストッパー部材25の全体が溝部24内に収まるようにすることにより、溝部24から出っ張ることによる電流の集中(エッジ効果)を抑制することができる。具体的には、ストッパー部材25は、陰極3bと同様の鋼等の金属製、炭素製又は、煉瓦を含むセラミック製とすることができる。 The material of the stopper member 25 may be an insulator, but may also be a conductor. The conductive stopper member 25 is preferably shaped to match as closely as possible between the inner surface of the groove 24 of the fixed cathode member 23b and the surface of the movable cathode member 23a, so that it is approximately equipotential with the cathode 3b when a voltage is applied between the electrodes 3. In addition, when the stopper member 25 is made of a conductor, as in the illustrated example, the entire stopper member 25 is made to fit within the groove 24, thereby suppressing current concentration (edge effect) caused by protruding from the groove 24. Specifically, the stopper member 25 can be made of a metal such as steel, similar to the cathode 3b, carbon, or ceramics including brick.

ストッパー部材25を、固定陰極部材23bの溝部24の内側面と可動陰極部材23aの表面との間に挿入し、そこに配置しやすくするため、ストッパー部材25と接触する可動陰極部材23aの端部寄りの表面には、ストッパー部材25を通す溝状凹部26を形成することが好ましい。図6(a)では、可動陰極部材23aの端部寄りの一方の表面だけに、溝状凹部26を形成している。 To facilitate inserting and positioning the stopper member 25 between the inner surface of the groove portion 24 of the fixed negative electrode member 23b and the surface of the movable negative electrode member 23a, it is preferable to form a groove-shaped recess 26 through which the stopper member 25 passes on the surface of the movable negative electrode member 23a near the end that comes into contact with the stopper member 25. In FIG. 6(a), the groove-shaped recess 26 is formed only on one surface near the end of the movable negative electrode member 23a.

一方、図6(b)では、可動陰極部材123aの端部寄りの、互いに反対側を向く一方及び他方の両表面のそれぞれに、溝状凹部126を形成している。可動陰極部材123aの各表面に溝状凹部126を形成したときは、可動陰極部材123aが周壁2bに対して接近変位した位置及び離隔変位した位置のそれぞれで固定する際のストッパー部材25の配置が容易になる。溝状凹部126以外の構造については、図6(a)に示すものとほぼ同様である。 In contrast, in FIG. 6(b), a groove-shaped recess 126 is formed on each of the opposite surfaces near the end of the movable negative electrode member 123a. When the groove-shaped recess 126 is formed on each surface of the movable negative electrode member 123a, it becomes easier to position the stopper member 25 when fixing the movable negative electrode member 123a at each of the positions where it is displaced toward and away from the peripheral wall 2b. The structure other than the groove-shaped recess 126 is almost the same as that shown in FIG. 6(a).

図6(c)に示すところでは、固定陰極部材223bに設けられた溝部224の開口部の内側面に、そこでの溝幅を狭める向きに内側面から突出する突起部227を有する。この場合、ストッパー部材225を、溝部224内の突起部227より奥まった位置に配置することで、ストッパー部材225が突起部227により保持される。その他、図6(c)は、図6(a)及び(b)に示す態様で形成していた可動陰極部材23a、123aの溝状凹部26、126を設けていないことを除いて、図6(a)及び(b)に示すものと実質的に同様である。 As shown in FIG. 6(c), the inner side of the opening of the groove 224 provided in the fixed negative electrode member 223b has a protrusion 227 that protrudes from the inner side in a direction that narrows the groove width at that point. In this case, the stopper member 225 is held by the protrusion 227 by arranging it in a position recessed from the protrusion 227 in the groove 224. Otherwise, FIG. 6(c) is substantially similar to that shown in FIG. 6(a) and (b), except that the groove-shaped recesses 26, 126 of the movable negative electrode members 23a, 123a formed in the manner shown in FIG. 6(a) and (b) are not provided.

図6では、周壁2b側の可動陰極部材23a、123a、223aの一方の端部しか示していないが、他方の端部及び、隔壁5側の可動陰極部材23cの各端部についても、上述した一方の端部と実質的に同様の構造とすることができる。 In FIG. 6, only one end of the movable negative electrode members 23a, 123a, and 223a on the peripheral wall 2b side is shown, but the other ends and each end of the movable negative electrode member 23c on the partition wall 5 side can also be structured substantially the same as the one end described above.

陰極3bの筒型部分13aにおける固定陰極部材23bの周壁2b側の可動陰極部材23a側の表面に設ける溝部24は、図7に示すように、その固定陰極部材23bの、電解槽2の深さ方向(図7の上下方向)の下端部側で終端させてもよい。この場合、溝部24の下端面を載置面28として、その載置面28上に可動陰極部材23aを置くことが可能になる。これはすなわち、陰極3bの筒型部分13aが、周壁2b側の可動陰極部材23aを下方側から支持する載置面28を有するということができる。なお、隔壁5側の可動陰極部材23cも同様にして、筒型部分13aの固定陰極部材23bに設けられ得る図示しない載置面上に置いてもよい。 The groove 24 provided on the surface of the movable cathode member 23a side of the fixed cathode member 23b on the peripheral wall 2b side of the cylindrical part 13a of the cathode 3b may terminate at the lower end side of the fixed cathode member 23b in the depth direction of the electrolytic cell 2 (up and down direction in FIG. 7) as shown in FIG. 7. In this case, the lower end surface of the groove 24 becomes the mounting surface 28, and the movable cathode member 23a can be placed on the mounting surface 28. In other words, it can be said that the cylindrical part 13a of the cathode 3b has a mounting surface 28 that supports the movable cathode member 23a on the peripheral wall 2b side from below. The movable cathode member 23c on the partition wall 5 side may also be placed on a mounting surface (not shown) that may be provided on the fixed cathode member 23b of the cylindrical part 13a.

あるいは、図8に示す他の実施形態のように、周壁302b側の可動陰極部材323aは、後壁302dの下端部を電解室302f側に突出させて設けた載置面328上に置くこともできる。この場合、電解槽の周壁302bが、周壁302b側の可動陰極部材323aを下方側から支持する載置面328を有する。 Alternatively, as in another embodiment shown in FIG. 8, the movable cathode member 323a on the peripheral wall 302b side can be placed on a mounting surface 328 provided by protruding the lower end of the rear wall 302d toward the electrolysis chamber 302f side. In this case, the peripheral wall 302b of the electrolysis cell has a mounting surface 328 that supports the movable cathode member 323a on the peripheral wall 302b side from below.

以上に述べたような溶融塩電解装置1を用いて、塩化マグネシウムを含む溶融塩浴で溶融塩電解を行う場合、溶融塩浴に含ませる塩化マグネシウムとしては、クロール法で副次的に生成されるものを使用可能である。また、溶融塩浴を構成する溶融塩には、塩化マグネシウム(MgCl2)の他、支持塩を含ませることがある。この支持塩は、塩化マグネシウムと混合した際に晶出温度を低下させ、かつ、粘度を低下させる電解質を意味する。支持塩は具体的には、塩化ナトリウム(NaCl)、塩化カルシウム(CaCl2)、塩化カリウム(KCl)、フッ化マグネシウム(MgF2)及びフッ化カルシウム(CaF2)からなる群から選択される少なくとも一種とすることができる。晶出温度とは、二種類以上の電解質からなる溶融塩を液体の状態から温度を下げたときに、ある一種類の電解質成分が固体として析出し始める晶出という現象が起きる温度をいう。仮に溶融塩が一種類だけである場合、液体の状態から温度を下げたときに、凝固点で全体が固体となるため、晶出温度は凝固点、すなわち融点に相当する。なお、電気分解で塩化マグネシウムを優先的に分解させるため、支持塩としては、塩化マグネシウムより分解電圧が高い電解質を用いることが一般的である。 When molten salt electrolysis is performed in a molten salt bath containing magnesium chloride using the molten salt electrolysis device 1 as described above, the magnesium chloride contained in the molten salt bath can be a by-product of the Kroll process. The molten salt constituting the molten salt bath may contain a supporting salt in addition to magnesium chloride (MgCl 2 ). The supporting salt means an electrolyte that lowers the crystallization temperature and reduces the viscosity when mixed with magnesium chloride. Specifically, the supporting salt may be at least one selected from the group consisting of sodium chloride (NaCl), calcium chloride (CaCl 2 ), potassium chloride (KCl), magnesium fluoride (MgF 2 ), and calcium fluoride (CaF 2 ). The crystallization temperature refers to the temperature at which a phenomenon called crystallization occurs, in which one electrolyte component begins to precipitate as a solid, when a molten salt consisting of two or more electrolytes is cooled from a liquid state. If there is only one type of molten salt, the entire salt becomes solid at the freezing point when the temperature is lowered from a liquid state, so the crystallization temperature corresponds to the freezing point, i.e., the melting point. In order to preferentially decompose magnesium chloride by electrolysis, it is common to use an electrolyte having a higher decomposition voltage than magnesium chloride as the supporting electrolyte.

この溶融塩電解では、電解室2fでの塩化マグネシウムの電気分解により、MgCl2→Mg+Cl2の反応に基づいて、陰極3bの筒型部分13aの表面で還元反応により溶融金属である金属マグネシウム(Mg)が生成されるとともに、陽極3aの表面で酸化反応により塩素(Cl2)ガスが発生する。 In this molten salt electrolysis, magnesium chloride is electrolyzed in the electrolytic chamber 2f, and based on the reaction MgCl2 →Mg + Cl2 , metallic magnesium (Mg) as molten metal is produced by a reduction reaction on the surface of the cylindrical portion 13a of the cathode 3b, while chlorine ( Cl2 ) gas is generated by an oxidation reaction on the surface of the anode 3a.

より詳細には、溶融塩浴の対流により、図1に示すように、溶融塩が回収室2eから底壁2c側の溶融塩循環路5aを経て電解室2fに流動する。電解室2fでは、溶融塩中の塩化マグネシウムが電気分解され、金属マグネシウムが生成される。そして、この金属マグネシウムは、隔壁5の浴面側の溶融金属流路5bを通って回収室2eに流入する。その後、溶融塩に対する比重の小さい金属マグネシウムは、回収室2eの浅い箇所に浮上してそこに溜まることになる。回収室2eで浮上した金属マグネシウムは、図示しないポンプ等により回収することができる。これにより、塩化マグネシウムから金属マグネシウムを製造することができ、また、それとともに塩素ガスが得られる。 More specifically, due to convection in the molten salt bath, as shown in FIG. 1, the molten salt flows from the recovery chamber 2e through the molten salt circulation path 5a on the bottom wall 2c side to the electrolysis chamber 2f. In the electrolysis chamber 2f, the magnesium chloride in the molten salt is electrolyzed to generate metallic magnesium. This metallic magnesium then flows into the recovery chamber 2e through the molten metal flow path 5b on the bath surface side of the partition wall 5. Thereafter, the metallic magnesium, which has a smaller specific gravity than the molten salt, floats to a shallow portion of the recovery chamber 2e and accumulates there. The metallic magnesium that floats in the recovery chamber 2e can be recovered by a pump or the like (not shown). This allows metallic magnesium to be produced from magnesium chloride, and chlorine gas is also obtained.

溶融塩電解で得られた金属マグネシウムは、金属チタンを製造するクロール法における四塩化チタンの還元に、また塩素ガスは、チタン鉱石の塩化にそれぞれ用いることができる。 The metallic magnesium obtained by molten salt electrolysis can be used to reduce titanium tetrachloride in the Kroll process for producing metallic titanium, and the chlorine gas can be used to chlorinate titanium ore.

次に、この発明の溶融塩電解装置を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, we have created a prototype of the molten salt electrolysis device of this invention and confirmed its effects, which will be described below. However, the description here is merely for illustrative purposes and is not intended to be limiting.

実施例1では、図1、2及び5に示すような陰極の筒型部分が周壁側及び隔壁側の可動陰極部材を有する溶融塩電解装置を用いて、溶融塩電解を行った。この溶融塩電解装置は、陽極、二個の筒型複極及び陰極からなる電極を5組有するものとした。
実施例2では、隔壁側の可動陰極部材を固定陰極部材に一体に取り付けて、隔壁側の可動陰極部材のみ可動できないようにしたことを除いて、実施例1と同様の構造を有する溶融塩電解装置を用いて溶融塩電解を行った。
いずれの実施例1及び2も、陰極の筒型部分及び複極は、平面視の内外輪郭形状がともに、後壁に隣接する位置及び隔壁側に隣接する位置にそれぞれ短辺を有する長方形状であるものとした。陰極の筒型部分は、当該長方形の短辺(可動陰極部材の長さ)が0.3m、長辺(固定陰極部材の長さ)が1.0mであり、電解槽の深さ方向に沿う高さが0.7mであった。
In Example 1, molten salt electrolysis was performed using a molten salt electrolysis apparatus having a cylindrical cathode portion with movable cathode members on the peripheral wall side and the partition wall side as shown in Figures 1, 2 and 5. This molten salt electrolysis apparatus had five sets of electrodes, each of which was an anode, two cylindrical bipolar electrodes and a cathode.
In Example 2, molten salt electrolysis was performed using a molten salt electrolysis apparatus having the same structure as in Example 1, except that the movable cathode member on the partition wall side was integrally attached to the fixed cathode member so that only the movable cathode member on the partition wall side could not be moved.
In both Examples 1 and 2, the cylindrical portion of the cathode and the bipolar electrode had inner and outer contour shapes in a plan view that were rectangular with short sides adjacent to the rear wall and the partition wall, respectively. The cylindrical portion of the cathode had a short side (length of the movable cathode member) of 0.3 m, a long side (length of the fixed cathode member) of 1.0 m, and a height of 0.7 m along the depth direction of the electrolytic cell.

比較例1では、いずれも並び順で、平板状の陰極、二枚の複極、陽極、二枚の複極、および平板状の陰極を一組とする電極を5組並べたものとしたことを除いて、実施例1と同様の溶融塩電解装置を用いて溶融塩電解を行った。比較例1の陰極の長さは1.0m、高さは0.7mとした。
比較例2では、周壁側及び隔壁側の可動陰極部材の両方を可動できないようにしたことを除いて、実施例1と同様の構造を有する溶融塩電解装置を用いて溶融塩電解を行った。
比較例3では、周壁側及び隔壁側の可動陰極部材の両方を可動できないようにしたこと、並びに、陰極の、後壁側に隣接して位置する箇所を、その内側の複極からさらに3cm離して配置したことを除いて、実施例1と同様の構造を有する溶融塩電解装置を用いて溶融塩電解を行った。
In Comparative Example 1, molten salt electrolysis was performed using the same molten salt electrolysis apparatus as in Example 1, except that five sets of electrodes, each of which was a set of a flat cathode, two bipolar electrodes, an anode, two bipolar electrodes, and a flat cathode, were arranged in this order. The length and height of the cathode in Comparative Example 1 were 1.0 m and 0.7 m, respectively.
In Comparative Example 2, molten salt electrolysis was performed using a molten salt electrolysis apparatus having the same structure as in Example 1, except that both the movable cathode members on the peripheral wall side and the partition wall side were made immovable.
In Comparative Example 3, molten salt electrolysis was performed using a molten salt electrolysis apparatus having the same structure as in Example 1, except that both the movable cathode members on the peripheral wall side and the partition wall side were made immovable and the portion of the cathode adjacent to the rear wall side was disposed 3 cm away from the bipolar electrode on the inner side.

実施例1及び2は、溶融塩電解の開始時の陰極-複極間、複極-複極間及び複極-陽極間の距離を1cmとした。その後、溶融塩電解の途中で可動陰極部材の少なくとも一方を変位させたので、その箇所での陰極-複極間の距離が変化した。なお、この距離は、平面視の長方形状の陰極の筒型部分ないし複極における各辺の中央部で、その辺に直交する方向に沿って測定した距離とした。
比較例1及び2は、陰極-複極間、複極-複極間及び複極-陽極間の距離を1cmとした。
比較例3は、後壁側に隣接して位置する陰極箇所を複極からさらに3cm離して位置させたので、その箇所での陰極-複極間の距離は4cmであった。陰極の他の箇所における陰極-複極間の距離並びに、複極-複極間及び複極-陽極間の距離は、比較例1及び2と同様とした。
In Examples 1 and 2, the distances between the cathode and bipolar electrode, between the bipolar electrode and the bipolar electrode, and between the bipolar electrode and the anode at the start of molten salt electrolysis were set to 1 cm. Thereafter, at least one of the movable cathode members was displaced during the molten salt electrolysis, so that the distance between the cathode and the bipolar electrode at that point changed. Note that this distance was measured in a direction perpendicular to the sides at the center of each side of the cylindrical part of the cathode or the bipolar electrode that is rectangular in plan view.
In Comparative Examples 1 and 2, the distances between the cathode and bipolar electrode, between the bipolar electrodes, and between the bipolar electrode and the anode were set to 1 cm.
In Comparative Example 3, the cathode adjacent to the rear wall was positioned 3 cm away from the bipolar electrode, so the distance between the cathode and the bipolar electrode at that location was 4 cm. The distances between the cathode and the bipolar electrode at other locations on the cathode, as well as the distances between the bipolar electrodes and between the bipolar electrodes and the anode, were the same as in Comparative Examples 1 and 2.

いずれの溶融塩電解装置も、電解槽の周壁、底壁及び隔壁がAl23の含有率が95%以上の煉瓦からなり、電解室が2m3、回収室が1m3であった。溶融塩浴の浴組成については、MgCl2、CaCl2、NaCl、MgF2がそれぞれ質量比で20%、30%、49%、1%からなる溶融塩とし、電流密度0.48A/cm2で通電し、1年間の期間にわたって操業を行った。 In all of the molten salt electrolysis devices, the peripheral wall, bottom wall and partition of the electrolytic cell were made of bricks with an Al2O3 content of 95% or more, the electrolysis chamber was 2 m3 and the recovery chamber was 1 m3 . The molten salt bath had a composition of 20%, 30%, 49% and 1% by mass of MgCl2 , CaCl2 , NaCl and MgF2 , respectively, and was operated for a period of one year by passing a current at a current density of 0.48 A/ cm2 .

実施例1及び2並びに比較例1~3のそれぞれについて、溶融塩電解の間における短絡の発生の有無、電流効率、並びに、溶融塩電解で生成された金属マグネシウム中のアルミニウム含有量を確認した。その結果を表1に示す。 For each of Examples 1 and 2 and Comparative Examples 1 to 3, the occurrence of short circuits during molten salt electrolysis, the current efficiency, and the aluminum content in the metallic magnesium produced by molten salt electrolysis were confirmed. The results are shown in Table 1.

なお、表1中、電流効率は、下記の式により算出したものであり、比較例1の電流効率を100とし、実施例1及び2並びに比較例2及び3を比較例1の電流効率に対する相対値で示したものである。
電流効率=電解槽から回収した金属マグネシウム質量/理論金属マグネシウム生産量
理論金属マグネシウム生産量は、ファラデーの法則から求める金属の理論生成量であり、以下の式により算出する。
理論金属マグネシウム生産量=((電流(A)×通電時間(秒))/(マグネシウムイオンの電荷数n×ファラデー定数F))×(電気分解回数N)×マグネシウムの原子量
In Table 1, the current efficiency was calculated by the following formula, and the current efficiency of Comparative Example 1 was set to 100, and the current efficiency of Examples 1 and 2 and Comparative Examples 2 and 3 were shown as relative values to the current efficiency of Comparative Example 1.
Current efficiency=mass of metallic magnesium recovered from electrolytic cell/theoretical metallic magnesium production amount The theoretical metallic magnesium production amount is the theoretical production amount of metal obtained from Faraday's law, and is calculated by the following formula.
Theoretical metallic magnesium production amount=((current (A)×current application time (sec))/(number of charges on magnesium ion n×Faraday constant F))×(number of electrolysis times N)×atomic weight of magnesium

表1より、比較例2では短絡が発生したのに対し、実施例1及び2では、周壁側の可動陰極部材を変位させたので短絡が発生しなかったことが解かる。
比較例2では短絡が発生したことから、短絡発生時から溶融塩電解装置が使用できなくなり寿命が短かった。一方、実施例1及び2では、隔壁側の可動陰極部材を動かしたことによって短絡が発生しなかったので、溶融塩電解装置の寿命が比較例2のものに対して2倍ほど長かった。
It can be seen from Table 1 that a short circuit occurred in Comparative Example 2, whereas in Examples 1 and 2, the movable negative electrode member on the peripheral wall side was displaced, so that a short circuit did not occur.
In Comparative Example 2, a short circuit occurred, and therefore the molten salt electrolysis apparatus could not be used from the time of the short circuit occurrence, and the lifespan was short. On the other hand, in Examples 1 and 2, a short circuit did not occur due to the movement of the movable cathode member on the partition wall side, and therefore the lifespan of the molten salt electrolysis apparatus was about twice as long as that of Comparative Example 2.

また、表1から解かるように、筒型を含む陰極及び複極を用いた場合は、板状の陰極及び複極を用いた比較例1に比して、電流効率が向上するとともに、溶融塩電解で得られる金属マグネシウム中のアルミニウム含有量が少なくなった。なお、比較例3は、実施例1及び2と比較すると、陰極の、後壁側に隣接して位置する箇所が常に、その内側の複極から離れて位置していたことにより、実施例1及び2ほどの高い電流効率が得られなかった。


As can be seen from Table 1, when a cylindrical cathode and bipolar electrode were used, the current efficiency was improved and the aluminum content in the metallic magnesium obtained by molten salt electrolysis was reduced, compared with Comparative Example 1, in which a plate-shaped cathode and bipolar electrode were used. In Comparative Example 3, the portion of the cathode adjacent to the rear wall side was always located away from the bipolar electrode on the inside, and therefore, a current efficiency as high as that of Examples 1 and 2 was not obtained, as compared with Examples 1 and 2.


1 溶融塩電解装置
2 電解槽
2a 内部スペース
2b、302b 周壁
2c 底壁
2d、302d 後壁
2e 回収室
2f 電解室
3 電極
3a 陽極
3b、303b 陰極
3c 筒型複極
4 蓋部材
5 隔壁
5a 溶融塩循環路
5b 溶融金属流路
13a、313a 陰極の筒型部分
13b、313b 陰極の延長部分
23a、123a、223a、323a 周壁側の可動陰極部材
23b、123b、223b、323b 固定陰極部材
23c、323c 隔壁側の可動陰極部材
24、124、224 溝部
25、125、225 ストッパー部材
26、126 溝状凹部
227 突起部
28、328 載置面
Wg 溝部の溝幅
Wm 可動陰極部材の端部の幅
REFERENCE SIGNS LIST 1 Molten salt electrolysis device 2 Electrolytic cell 2a Internal space 2b, 302b Peripheral wall 2c Bottom wall 2d, 302d Rear wall 2e Recovery chamber 2f Electrolysis chamber 3 Electrode 3a Anode 3b, 303b Cathode 3c Cylindrical bipolar electrode 4 Lid member 5 Partition wall 5a Molten salt circulation path 5b Molten metal flow path 13a, 313a Cylindrical portion of cathode 13b, 313b Extension portion of cathode 23a, 123a, 223a, 323a Movable cathode member on peripheral wall side 23b, 123b, 223b, 323b Fixed cathode member 23c, 323c Movable cathode member on partition wall side 24, 124, 224 Groove portion 25, 125, 225 Stopper member 26, 126 Groove-shaped recess 227 Protrusion 28, 328 Mounting surface Wg Groove width of groove Wm Width of end of movable negative electrode member

Claims (10)

内部スペースを区画する周壁及び底壁を有する電解槽と、電解槽の前記内部スペースに配置され、陽極及び陰極を含む電極とを備える溶融塩電解装置であって、
前記陰極が、前記陽極の周囲を取り囲む筒型部分、及び、前記筒型部分の一部から延長されて前記周壁を貫通して電解槽の外部へ突き出る延長部分を有し、
前記筒型部分の、前記周壁に隣接して位置する箇所が、当該周壁に対する接近変位及び離隔変位の可能な周壁側の可動陰極部材で構成された溶融塩電解装置。
A molten salt electrolysis apparatus comprising: an electrolytic cell having a peripheral wall and a bottom wall that define an internal space; and electrodes including an anode and a cathode that are disposed in the internal space of the electrolytic cell,
the cathode has a cylindrical portion surrounding the anode and an extension portion extending from a part of the cylindrical portion, penetrating the peripheral wall, and protruding to the outside of the electrolytic cell;
The molten salt electrolysis apparatus comprises a movable cathode member on the side of the cylindrical portion, the portion of the cylindrical portion being adjacent to the peripheral wall and capable of moving toward and away from the peripheral wall.
前記周壁が、電極に隣接する後壁を含み、
前記周壁側の可動陰極部材が、前記筒型部分の、前記後壁に隣接して位置する箇所であって、当該後壁に対する接近変位及び離隔変位の可能な後壁側の可動陰極部材である請求項1に記載の溶融塩電解装置。
the peripheral wall includes a rear wall adjacent the electrode;
2. The molten salt electrolysis apparatus according to claim 1, wherein the movable cathode member on the peripheral wall side is a portion of the cylindrical portion located adjacent to the rear wall, and is a movable cathode member on the rear wall side that is movable toward and away from the rear wall.
電解槽が、前記内部スペースに、前記電極が配置される電解室を区画する隔壁を有し、
前記陰極が鋼製であり、
前記筒型部分の、前記隔壁に隣接して位置する箇所が、当該隔壁に対する接近変位及び離隔変位の可能な隔壁側の可動陰極部材で構成された請求項1又は2に記載の溶融塩電解装置。
the electrolytic cell has a partition wall defining an electrolytic chamber in which the electrodes are disposed in the internal space;
the cathode is made of steel;
3. The molten salt electrolysis apparatus according to claim 1, wherein a portion of the cylindrical portion adjacent to the partition wall is constituted by a movable cathode member on the partition wall side which is movable toward and away from the partition wall.
前記筒型部分が、前記可動陰極部材に対して直交もしくは傾斜する方向にそれぞれ延びるとともに陽極を隔てて互いに対向して位置する対をなす固定陰極部材を含み、
前記固定陰極部材の少なくとも一個が、前記延長部分に連続しており、
前記可動陰極部材が、前記固定陰極部材のそれぞれと電気的に接続可能に配置された請求項1~3のいずれか一項に記載の溶融塩電解装置。
the cylindrical portion includes a pair of stationary cathode members each extending in a direction perpendicular or inclined to the movable cathode member and positioned opposite each other across the anode,
At least one of the stationary cathode members is continuous with the extension portion;
4. The molten salt electrolysis apparatus according to claim 1, wherein the movable cathode member is arranged so as to be electrically connectable to each of the fixed cathode members.
前記固定陰極部材の前記可動陰極部材側の表面に、該表面から窪んで電解槽の深さ方向に延びる溝部が形成されており、
前記溝部が、前記可動陰極部材の端部の幅よりも広い溝幅を有し、
前記可動陰極部材が、当該端部を前記溝部内に入り込ませて配置され、前記溝部の溝幅方向に沿って前記接近変位及び離隔変位を可能に構成された請求項4に記載の溶融塩電解装置。
a groove portion is formed in a surface of the fixed negative electrode member facing the movable negative electrode member, the groove portion being recessed from the surface and extending in a depth direction of the electrolytic cell,
the groove portion has a groove width greater than a width of an end portion of the movable negative electrode member,
5. The molten salt electrolysis apparatus according to claim 4, wherein the movable cathode member is arranged with its end inserted into the groove and configured to be capable of moving toward and away from the groove in a groove width direction.
前記固定陰極部材の前記溝部の内側面と前記可動陰極部材の端部寄りの表面との間に、前記可動陰極部材を前記接近変位又は離隔変位がなされた位置で固定するストッパー部材が、取出し可能に配置される請求項5に記載の溶融塩電解装置。 The molten salt electrolysis device according to claim 5, wherein a stopper member that fixes the movable cathode member at the position where the approaching or separating displacement is made is removably disposed between the inner surface of the groove of the fixed cathode member and the surface near the end of the movable cathode member. 前記ストッパー部材と接触する前記可動陰極部材の端部寄りの表面の少なくとも一方に、当該ストッパー部材を通す溝状凹部が形成された請求項6に記載の溶融塩電解装置。 The molten salt electrolysis device according to claim 6, wherein a groove-shaped recess for passing the stopper member is formed on at least one of the surfaces of the movable cathode member near the end portion that contacts the stopper member. 前記電解槽の前記周壁又は前記陰極の前記筒型部分が、前記周壁側の可動陰極部材を下方側から支持する載置面を有する請求項1~7のいずれか一項に記載の溶融塩電解装置。 The molten salt electrolysis device according to any one of claims 1 to 7, wherein the peripheral wall of the electrolytic cell or the cylindrical portion of the cathode has a mounting surface that supports the movable cathode member on the peripheral wall side from below. 前記電極が、陽極と陰極の前記筒型部分との間に配置された一個以上の筒型複極をさらに含む請求項1~8のいずれか一項に記載の溶融塩電解装置。 The molten salt electrolysis apparatus according to any one of claims 1 to 8, wherein the electrodes further include one or more cylindrical bipolar electrodes arranged between the anode and the cylindrical portion of the cathode. 請求項1~9のいずれか一項に記載の溶融塩電解装置を使用して、塩化マグネシウムから金属マグネシウムを製造する、金属マグネシウムの製造方法。 A method for producing metallic magnesium, which produces metallic magnesium from magnesium chloride using the molten salt electrolysis apparatus according to any one of claims 1 to 9.
JP2020216965A 2020-12-25 2020-12-25 Molten salt electrolysis apparatus and method for producing metallic magnesium Active JP7494106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020216965A JP7494106B2 (en) 2020-12-25 2020-12-25 Molten salt electrolysis apparatus and method for producing metallic magnesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020216965A JP7494106B2 (en) 2020-12-25 2020-12-25 Molten salt electrolysis apparatus and method for producing metallic magnesium

Publications (2)

Publication Number Publication Date
JP2022102307A JP2022102307A (en) 2022-07-07
JP7494106B2 true JP7494106B2 (en) 2024-06-03

Family

ID=82273413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020216965A Active JP7494106B2 (en) 2020-12-25 2020-12-25 Molten salt electrolysis apparatus and method for producing metallic magnesium

Country Status (1)

Country Link
JP (1) JP7494106B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226685A (en) 1999-02-08 2000-08-15 Sumitomo Sitix Amagasaki:Kk Device for controlling bath temperature and bath surface level of fused salt bath
JP2001040493A (en) 1999-07-30 2001-02-13 Toho Titanium Co Ltd Production of titanium and production apparatus therefor
JP2013170290A (en) 2012-02-20 2013-09-02 Toshiba Corp Molten salt electrolysis apparatus and molten salt electrolysis method
JP2015516514A (en) 2012-05-16 2015-06-11 ライナス サービシズ プロプライエトリィ リミテッド Electrolytic cell for the production of rare earth metals
WO2017018441A1 (en) 2015-07-28 2017-02-02 東邦チタニウム株式会社 Molten salt electrolytic cell, metallic magnesium production method using same, and sponge titanium production method
JP2019218595A (en) 2018-06-19 2019-12-26 東邦チタニウム株式会社 Manufacturing method of molten metal and molten salt electrolysis tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226685A (en) 1999-02-08 2000-08-15 Sumitomo Sitix Amagasaki:Kk Device for controlling bath temperature and bath surface level of fused salt bath
JP2001040493A (en) 1999-07-30 2001-02-13 Toho Titanium Co Ltd Production of titanium and production apparatus therefor
JP2013170290A (en) 2012-02-20 2013-09-02 Toshiba Corp Molten salt electrolysis apparatus and molten salt electrolysis method
JP2015516514A (en) 2012-05-16 2015-06-11 ライナス サービシズ プロプライエトリィ リミテッド Electrolytic cell for the production of rare earth metals
WO2017018441A1 (en) 2015-07-28 2017-02-02 東邦チタニウム株式会社 Molten salt electrolytic cell, metallic magnesium production method using same, and sponge titanium production method
JP2019218595A (en) 2018-06-19 2019-12-26 東邦チタニウム株式会社 Manufacturing method of molten metal and molten salt electrolysis tank

Also Published As

Publication number Publication date
JP2022102307A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP6501886B2 (en) Molten salt electrolytic cell, method of producing metallic magnesium using the same, and method of producing titanium sponge
Polyakov et al. Conception of “Dream Cell” in aluminium electrolysis
JP7494106B2 (en) Molten salt electrolysis apparatus and method for producing metallic magnesium
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP2005536637A (en) Utilization and design of oxygen generating anode for whole ell cell
JP2019214773A (en) Molten salt electrolysis method, and method for producing metal magnesium
EP3872235A1 (en) Fluorine gas production device
RU2274680C2 (en) Method of production of metals by electrolysis of the molten salts
DK202370308A1 (en) Controlling electrode current density of an electrolytic cell
JP7264759B2 (en) Anode connection structure, molten salt electrolysis device, molten salt electrolysis method, and method for producing metallic magnesium
RU2415973C2 (en) Procedure for production of aluminium by electrolysis of melt
JP7515368B2 (en) Manufacturing method of metallic magnesium
JP2020002403A (en) Moisture reduction method for molten salt, molten salt electrolysis method, and production method of molten metal
JP2022183913A (en) Method for producing metal
JP2019116671A (en) Fused salt electrolysis method, manufacturing method of fused metal, and fused salt electrolytic cell
JP6945398B2 (en) Molten salt electrolytic cell
JP6933936B2 (en) Molten salt electrolytic cell
JP2016520720A (en) Cathode block with grooves of various depths and filled intermediate spaces
JP7333223B2 (en) Molten salt electrolytic cell, method for forming molten salt solidified layer, method for manufacturing metal
RU2710490C1 (en) Electrolysis cell for producing metals from metal oxides in molten electrolytes
RU2234559C1 (en) Electrolyzer for producing alkali-earth metal alloys
JP2019052335A (en) Member for collecting molten metal, and method of producing magnesium metal
RU2687617C1 (en) Electrolysis cell for aluminum production
JP2022183910A (en) Anode, molten salt electrolysis device and method for producing metal
JP2024005002A (en) Method for manufacturing bipolar electrode, and method for manufacturing magnesium metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522

R150 Certificate of patent or registration of utility model

Ref document number: 7494106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150