JP7492700B2 - How to prevent mold growth on fruits and vegetables - Google Patents

How to prevent mold growth on fruits and vegetables Download PDF

Info

Publication number
JP7492700B2
JP7492700B2 JP2019225440A JP2019225440A JP7492700B2 JP 7492700 B2 JP7492700 B2 JP 7492700B2 JP 2019225440 A JP2019225440 A JP 2019225440A JP 2019225440 A JP2019225440 A JP 2019225440A JP 7492700 B2 JP7492700 B2 JP 7492700B2
Authority
JP
Japan
Prior art keywords
mold growth
ultraviolet light
peak wavelength
mold
fruits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019225440A
Other languages
Japanese (ja)
Other versions
JP2021093917A (en
Inventor
佑哉 望月
友二郎 高野
和泉 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Ibaraki University NUC
Original Assignee
Orc Manufacturing Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd, Ibaraki University NUC filed Critical Orc Manufacturing Co Ltd
Priority to JP2019225440A priority Critical patent/JP7492700B2/en
Publication of JP2021093917A publication Critical patent/JP2021093917A/en
Application granted granted Critical
Publication of JP7492700B2 publication Critical patent/JP7492700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

特許法第30条第2項適用 平成31年3月23日、園芸学研究 第18巻 別冊1-2019-(園芸学会平成31年度春季大会研究発表)、一般社団法人園芸学会 平成31年度春季大会、一般社団法人園芸学会 令和元年9月11日、2019年度(第52回)照明学会全国大会講演論文集、一般社団法人照明学会2019年度(第52回)照明学会全国大会、一般社団法人照明学会 令和元年9月15日、園芸学研究 第18巻 別冊2-2019-(園芸学会令和元年度秋季大会研究発表およびシンポジウム講演要旨)、一般社団法人園芸学会 令和元年度秋季大会、一般社団法人園芸学会Application of Article 30, Paragraph 2 of the Patent Act March 23, 2019, Horticultural Research Vol. 18, Supplement 1-2019- (Research presentation at the 2019 Spring Meeting of the Horticultural Society of Japan), The Horticultural Society of Japan Spring Meeting of the Horticultural Society of Japan September 11, 2019, Proceedings of the 52nd National Meeting of the Illuminating Engineering Society of Japan 2019 (52nd) National Meeting of the Illuminating Engineering Society of Japan, The Illuminating Engineering Society of Japan September 15, 2019, Horticultural Research Vol. 18, Supplement 2-2019- (Research presentation at the 2019 Autumn Meeting of the Horticultural Society of Japan and Symposium Lectures), The Horticultural Society of Japan Autumn Meeting of the Horticultural Society of Japan

本発明は、青果物のカビ発生の抑制方法に関する。本発明によれば、青果物におけるカビの発生を効率的に抑制することができる。 The present invention relates to a method for inhibiting mold growth on fruits and vegetables. According to the present invention, it is possible to efficiently inhibit mold growth on fruits and vegetables.

最近、日本から海外への青果物の輸出が急増している。青果物の輸出においては、鮮度保持の目的で、冷却装置及び鮮度保持フィルムなどの開発が進んでいる。鮮度保持技術の向上に伴って、高湿度で保存されることにより、カビの発生が新たな問題となっている。
例えば、イチゴのカビの発生を抑制するために、波長260~290nmの紫外線を照射すること(特許文献1)、又は電子線を照射すること(特許文献2)が開示されている。
Recently, the export of fruits and vegetables from Japan to overseas has been increasing rapidly. In order to maintain the freshness of the exported fruits and vegetables, the development of cooling equipment and freshness preservation films is progressing. However, with the improvement of freshness preservation technology, the growth of mold has become a new problem due to storage at high humidity.
For example, in order to suppress the growth of mold on strawberries, it has been disclosed that irradiation with ultraviolet light having a wavelength of 260 to 290 nm is performed (Patent Document 1), or irradiation with an electron beam is performed (Patent Document 2).

特開2017-153456号公報JP 2017-153456 A 特開2016-36257号公報JP 2016-36257 A

しかしながら、前記特許文献1及び2に記載の殺菌方法によるカビの発生の抑制は、充分ではなかった。
従って、本発明の目的は、青果物における効果的なカビの発生の抑制方法を提供することである。
However, the sterilization methods described in Patent Documents 1 and 2 were not sufficient in suppressing mold growth.
Therefore, an object of the present invention is to provide an effective method for inhibiting mold growth in fruits and vegetables.

本発明者は、青果物における効果的なカビの発生の抑制方法について、鋭意研究した結果、驚くべきことに、223~233nmにピーク波長を有する紫外線を青果物に照射することによって、効果的にカビの発生を抑制できることを見出した。
本発明は、こうした知見に基づくものである。
従って、本発明は、
[1]223nm~233nmに第一のピーク波長を有する紫外線を青果物に照射することを特徴とするカビ発生の抑制方法、
[2]前記紫外線が255nm~265nmに第二のピーク波長を有し、第二ピーク波長の相対強度が第一ピーク波長の相対強度より低い、[1]に記載のカビ発生の抑制方法、
[3]前記紫外線を放射する光源が発光管内面に蛍光体が塗布されたエキシマランプである、[1]又は[2]に記載のカビ発生の抑制方法、
[4]前記発光管の封入ガスがXeである、[3]に記載のカビ発生の抑制方法、
[5]前記青果物の先端側から紫外線を照射する、[1]~[4]のいずれかに記載のカビ発生の抑制方法、及び
[6]前記青果物がイチゴである、[1]~[5]のいずれかに記載のカビ発生の抑制方法、
に関する。
The present inventors conducted extensive research into effective methods for inhibiting the growth of mold in fruits and vegetables, and surprisingly discovered that the growth of mold can be effectively inhibited by irradiating the fruits and vegetables with ultraviolet light having a peak wavelength in the range of 223 to 233 nm.
The present invention is based on these findings.
Thus, the present invention provides
[1] A method for inhibiting mold growth, comprising irradiating fruits or vegetables with ultraviolet light having a first peak wavelength in the range of 223 nm to 233 nm;
[2] The method for suppressing mold growth according to [1], wherein the ultraviolet light has a second peak wavelength at 255 nm to 265 nm, and the relative intensity of the second peak wavelength is lower than the relative intensity of the first peak wavelength.
[3] The method for inhibiting mold growth according to [1] or [2], wherein the light source emitting ultraviolet rays is an excimer lamp having an inner surface of an arc tube coated with a phosphor.
[4] The method for inhibiting mold growth according to [3], wherein the gas filled in the arc tube is Xe.
[5] The method for suppressing mold growth according to any one of [1] to [4], in which ultraviolet light is irradiated from the tip side of the fruit or vegetable; and [6] The method for suppressing mold growth according to any one of [1] to [5], in which the fruit or vegetable is strawberry.
Regarding.

本発明の青果物のカビ発生の抑制方法によれば、効果的にイチゴなどの青果物のカビの発生を抑制することができる。本発明の方法によれば、青果物の収穫後の貯蔵期間を延長させることができる。更に、輸送時におけるカビの発生を抑えることで、青果物の商品価値の低下を防ぐことができる。本発明のカビ発生の抑制方法において、従来の260nm程度の波長を用いる殺菌法と比較して、少ない照射線量によってカビを効率的に死滅させることができる。
また、本発明のカビ発生の抑制方法においては、従来カビの殺菌に用いられていた水銀灯に代えて、エキシマランプを用いることができる。従って、水銀灯に含まれる水銀による環境汚染を防止することができる。
According to the method for inhibiting mold growth on fruits and vegetables of the present invention, it is possible to effectively inhibit mold growth on fruits and vegetables such as strawberries. According to the method of the present invention, it is possible to extend the post-harvest storage period of fruits and vegetables. Furthermore, by inhibiting mold growth during transportation, it is possible to prevent a decrease in the commercial value of fruits and vegetables. In the method for inhibiting mold growth of the present invention, it is possible to efficiently kill mold with a smaller irradiation dose than in conventional sterilization methods using wavelengths of about 260 nm.
Furthermore, in the method for inhibiting mold growth of the present invention, an excimer lamp can be used instead of a mercury lamp that has been used conventionally to kill mold, thereby preventing environmental pollution caused by the mercury contained in the mercury lamp.

蛍光ランプA、蛍光ランプB、及び蛍光ランプCの蛍光強度を示したグラフである。1 is a graph showing the fluorescence intensity of a fluorescent lamp A, a fluorescent lamp B, and a fluorescent lamp C. 蛍光ランプA、蛍光ランプB、及び蛍光ランプCの大腸菌に対する殺菌効果を示したグラフである。1 is a graph showing the bactericidal effects of fluorescent lamps A, B, and C against Escherichia coli. 蛍光ランプA、蛍光ランプB、及び蛍光ランプCの大腸菌に対するD値を示したグラフである。1 is a graph showing D values for Escherichia coli of fluorescent lamps A, B, and C. Aspergillus brasiliensis及びPenicillium sp.に対する蛍光ランプCの殺菌効果を示したグラフである。1 is a graph showing the bactericidal effect of fluorescent lamp C against Aspergillus brasiliensis and Penicillium sp. イチゴに紫外線を照射する場合の、イチゴの並べ方を示した写真であり、イチゴの果実の先端を上側にして、ヘタを下側にして並べたものである。This is a photograph showing how strawberries should be arranged when irradiating them with ultraviolet light. The strawberries are arranged with the tips of the fruit facing up and the stems facing down. イチゴのカビ発生位置を示した写真である。This is a photograph showing the location of mold growth on strawberries. イチゴに紫外線を照射した場合の、カビ発生個体数(A)及びイチゴに付着したカビのコロニー数(B)を計数したグラフである。1 is a graph showing the number of mold-infected individuals (A) and the number of mold colonies attached to strawberries (B) counted when strawberries were irradiated with ultraviolet light. イチゴのカビの発生部位を示した図(A)及びグラフ(B)である。1A is a diagram and B is a graph showing the locations of mold growth on strawberries.

本発明のカビ発生の抑制方法は、223~233nmに第一のピーク波長を有する紫外線を青果物に照射する。本発明のカビの発生の抑制方法は、限定されるものではないが、好ましくは前記紫外線が255~265nmに第二のピーク波長を有し、第二ピーク波長の相対強度が第一ピーク波長の相対強度がより低い。 The method for inhibiting mold growth of the present invention irradiates fruits and vegetables with ultraviolet light having a first peak wavelength of 223 to 233 nm. The method for inhibiting mold growth of the present invention is not limited, but preferably the ultraviolet light has a second peak wavelength of 255 to 265 nm, and the relative intensity of the second peak wavelength is lower than the relative intensity of the first peak wavelength.

《ピーク波長》
本発明のカビ発生の抑制方法に使用される紫外線は、223~233nmに第一ピーク波長を有する。第一ピーク波長は、好ましくは224~232nmであり、より好ましくは、225~231nmであり、更に好ましくは226~230nmであり、更に好ましくは227~229nmであり、最も好ましくは約228nmである。第一ピーク波長が前記範囲であることにより、効率的にカビの発生を抑制することができる。
本発明のカビ発生の抑制方法に使用される紫外線は、更に255~265nmに第二のピーク波長を有してもよい。第二ピーク波長は、好ましくは256~264nmであり、より好ましくは257~263nmであり、更に好ましくは258~262nmであり、更に好ましくは259~261nmであり、最も好ましくは約260nmである。用いる紫外線が、第一ピーク波長に加えて、更に前記範囲の第二ピーク波長を有することにより、更に効果的にカビの発生を抑制することができる。
Peak wavelength
The ultraviolet light used in the method for suppressing mold growth of the present invention has a first peak wavelength at 223 to 233 nm. The first peak wavelength is preferably 224 to 232 nm, more preferably 225 to 231 nm, even more preferably 226 to 230 nm, even more preferably 227 to 229 nm, and most preferably about 228 nm. By having the first peak wavelength in the above range, mold growth can be efficiently suppressed.
The ultraviolet light used in the method for suppressing mold growth of the present invention may further have a second peak wavelength at 255 to 265 nm. The second peak wavelength is preferably 256 to 264 nm, more preferably 257 to 263 nm, even more preferably 258 to 262 nm, even more preferably 259 to 261 nm, and most preferably about 260 nm. When the ultraviolet light used has a second peak wavelength in the above range in addition to the first peak wavelength, mold growth can be suppressed more effectively.

前記第二ピーク波長は、限定されるものではないが、好ましくは前記第一ピーク波長の相対強度よりも低い。限定されるものではないが、前記第二ピーク波長の相対強度は、第一ピーク波長の相対強度の好ましくは0.9以下であり、より好ましくは0.8以下であり、更に好ましくは0.7以下であり、最も好ましくは0.6以下である。なお、本明細書における相対強度は、紫外線の最も高いピーク波長の強度を1とした場合の各波長の強度の割合を示すものである。 The second peak wavelength is preferably, but not limited to, lower than the relative intensity of the first peak wavelength. Although not limited to, the relative intensity of the second peak wavelength is preferably 0.9 or less of the relative intensity of the first peak wavelength, more preferably 0.8 or less, even more preferably 0.7 or less, and most preferably 0.6 or less. Note that in this specification, the relative intensity indicates the ratio of the intensity of each wavelength when the intensity of the highest peak wavelength of ultraviolet light is set to 1.

《エキシマランプ》
本発明の紫外線の光源は、特に限定されるものではないが、エキシマランプが挙げられる。エキシマランプは、限定されるものではないが、放電ガスとしてXeガスが充填され、発光管内面に蛍光体が塗布されたエキシマランプが好ましい。
蛍光体を用いることにより、限定されるものではないが、エキシマランプは223~233nmに第一ピーク波長を有する紫外線を放射することができる。
<Excimer Lamp>
The ultraviolet light source of the present invention is not particularly limited, but may be an excimer lamp. The excimer lamp is preferably, but is not limited to, an excimer lamp filled with Xe gas as a discharge gas and having a phosphor coated on the inner surface of the arc tube.
By using phosphors, the excimer lamp can emit ultraviolet light having a first peak wavelength at, but not limited to, 223 to 233 nm.

エキシマランプに用いられる放電ガスは、前記蛍光体から蛍光を発するための励起光を放射する。従って、223~233nmの第一ピーク波長より低い波長を発生するエキシマ分子である限りにおいて、特に限定されるものではないが、例えばXe(172nm)、又はKrCl(222nm)が挙げられる。223~233nmより低い波長を励起光として用い、前記蛍光体に照射することにより、223~233nmの第一ピーク波長を発することができる。更に、255~265nmの第二のピーク波長を発生させることもできる。 The discharge gas used in an excimer lamp emits excitation light to cause the phosphor to emit fluorescence. Therefore, as long as the excimer molecule emits a wavelength lower than the first peak wavelength of 223 to 233 nm, it is not particularly limited, but examples include Xe (172 nm) and KrCl (222 nm). By using an excitation light with a wavelength lower than 223 to 233 nm and irradiating the phosphor with this light, it is possible to emit a first peak wavelength of 223 to 233 nm. Furthermore, it is also possible to generate a second peak wavelength of 255 to 265 nm.

本発明のカビ発生の抑制方法における照射線量(紫外線量)は、本発明の効果が得られる限りにおいて特に限定されるものではないが、好ましくは1~1000mJ/cmであり、より好ましくは10~800mJ/cmであり、更に好ましくは50~400mJ/cmであり、更に好ましくは100~200mJ/cmである。前記範囲であることより、様々な種類のカビの発生を抑制することができる。例えば、実施例に示すように、アスペルギルス属のカビの1種であるAspergillus brasiliensisに対する本発明の照射線量のD値は355mJ/cmであり、ミカン果実に発生したカビから単離されたPenicillium sp. に対する本発明の照射線量のD値は41mJ/cmである。従って、前記の範囲の照射線量によって、多くのカビの発生を抑制できると考えられる。なお、本明細書において「D値」とは、それぞれのカビ(微生物)の生存率が1/10となるのに要する照射線量を意味する。 The irradiation dose (ultraviolet ray dose) in the method for suppressing mold growth of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but is preferably 1 to 1000 mJ/cm 2 , more preferably 10 to 800 mJ/cm 2 , even more preferably 50 to 400 mJ/cm 2 , and even more preferably 100 to 200 mJ/cm 2. The above ranges can suppress the growth of various types of mold. For example, as shown in the examples, the D value of the irradiation dose of the present invention for Aspergillus brasiliensis, a type of mold of the Aspergillus genus, is 355 mJ/cm 2 , and the D value of the irradiation dose of the present invention for Penicillium sp. isolated from mold that grows on mandarin orange fruits is 41 mJ/cm 2. Therefore, it is considered that the growth of many molds can be suppressed by the irradiation dose in the above range. In this specification, the "D value" means the irradiation dose required for the survival rate of each mold (microorganism) to become 1/10.

本発明のカビ発生の抑制方法における照射時間は、紫外線の照度によって異なるため、特に限定されるものではない。具体的には、照度(mW/cm)が低い場合には、照射時間を長くすることにより、カビを十分に死滅させることのできる照射線量を得ることができる。また照度(mW/cm)が高い場合は、短い照射時間によりカビを十分に死滅させることのできる照射線量を得ることができる。しかしながら、効率的にカビを殺菌するためには、照射時間の下限は好ましくは1秒以上であり、より好ましくは10秒以上であり、更に好ましくは30条以上であり、最も好ましくは1分以上である。照射時間の上限も限定されるものではないが、好ましくは60分以下であり、より好ましくは30分以下であり、更に好ましくは10分以下であり、最も好ましくは5分以下である。前記照射時間の上限と下限とは、任意に組み合わせることができる。
また、本発明のカビ発生の抑制方法における紫外線の照度(mW/cm)も、本発明の効果が得られる限りにおいて、特に限定されるものではないが、照射時間を考慮すると、照度の下限は好ましくは0.01mW/cm以上であり、より好ましくは0.1mW/cm以上であり、更に好ましくは0.5mW/cm以上である。照度の上限も限定されるものではないが、好ましくは100mW/cm以下であり、より好ましくは50mW/cm以下であり、更に好ましくは10mW/cm以下である。前記照度の上限と下限とは、任意に組み合わせることができる。
なお、前記照射線量は、下記の式によって計算することができる。
[式1]
照射線量(mJ/cm)=照度(mW/cm)×時間(sec)
また、本発明のカビ発生の抑制方法における照射距離も、前記の照射線量が得られる限りにおいて、特に限定されるものではないが、例えば、10~100cmであり、好ましくは15~50cmであり、より好ましくは20~40cmである。
The irradiation time in the method for suppressing mold growth of the present invention is not particularly limited because it varies depending on the illuminance of ultraviolet light. Specifically, when the illuminance (mW/cm 2 ) is low, the irradiation time can be extended to obtain an irradiation dose that can sufficiently kill mold. When the illuminance (mW/cm 2 ) is high, a short irradiation time can obtain an irradiation dose that can sufficiently kill mold. However, in order to efficiently kill mold, the lower limit of the irradiation time is preferably 1 second or more, more preferably 10 seconds or more, even more preferably 30 lines or more, and most preferably 1 minute or more. The upper limit of the irradiation time is also not limited, but is preferably 60 minutes or less, more preferably 30 minutes or less, even more preferably 10 minutes or less, and most preferably 5 minutes or less. The upper and lower limits of the irradiation time can be combined arbitrarily.
Furthermore, the illuminance (mW/ cm2 ) of the ultraviolet light in the method for suppressing mold growth of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but taking into consideration the irradiation time, the lower limit of the illuminance is preferably 0.01 mW/ cm2 or more, more preferably 0.1 mW/ cm2 or more, and even more preferably 0.5 mW/ cm2 or more. The upper limit of the illuminance is also not limited, but is preferably 100 mW/ cm2 or less, more preferably 50 mW/ cm2 or less, and even more preferably 10 mW/ cm2 or less. The upper and lower limits of the illuminance can be combined in any manner.
The exposure dose can be calculated by the following formula:
[Formula 1]
Exposure dose (mJ/cm 2 )=Illuminance (mW/cm 2 )×Time (sec)
In addition, the irradiation distance in the method for suppressing mold growth of the present invention is not particularly limited as long as the above-mentioned irradiation dose is obtained, but is, for example, 10 to 100 cm, preferably 15 to 50 cm, and more preferably 20 to 40 cm.

《青果物》
カビ抑制の対象となる青果物は、カビが発生する可能性のある青果物であれば、特に限定されない。例えば、青果物としては、イチゴ、キウイ、ビワ、モモ、サクランボ、ブドウ、マンゴー、ブルーベリー、バナナ、リンゴ、クリ、柑橘類(例えば、レモン、ライム、シークワサー、スダチ、ユズ、ダイダイ、カボス、温州ミカン、イヨカン、キンカン、ポンカン、あま夏、ブンタン、八朔、又は日向夏)、梨、トマト、柿、ナス、キュウリ、ピーマン、シシトウ、タマネギ、長ネギが挙げられる。
Fruits and vegetables
Fruits and vegetables to be subjected to mold inhibition are not particularly limited as long as they are fruits and vegetables on which mold may occur. Examples of fruits and vegetables include strawberries, kiwis, loquats, peaches, cherries, grapes, mangoes, blueberries, bananas, apples, chestnuts, citrus fruits (e.g., lemons, limes, shikuwasa, sudachi, yuzu, bitter orange, kabosu, unshu mandarins, iyokan, kumquats, ponkan, amakana, pomelo, hassaku, or hyuganatsu), pears, tomatoes, persimmons, eggplants, cucumbers, bell peppers, shishito peppers, onions, and leeks.

《カビ》
本発明のカビ発生の抑制方法は、ほとんどのカビの発生を抑制できる。カビとしては灰色カビ病(ボトリティス・シネレア)、黒カビ病、糸状菌が挙げられる。
"Mold"
The method for inhibiting mold growth of the present invention can inhibit the growth of most molds, including gray mold (Botrytis cinerea), black mold, and filamentous fungi.

《照射部位》
本発明のカビ発生の抑制方法において、対象物が果実である場合、限定されるものではないが、好ましくは果実の先端側から紫外線を照射する。例えば、イチゴの場合、図5に示すように、果実の先端側を上方に向けて、上方の先端側から紫外線を照射することが好ましい。先端側から紫外線を照射することにより、果実のヘタ側から紫外線を照射した場合と比較して、効率的にカビ発生を抑制することができる。
本発明者らは、果実の先端側から紫外線を照射したほうが、効率的にカビの発生を抑制できたことの理由を解析するため、イチゴにおけるカビの発生部位を検討した。その結果、図8に示すように、カビの発生部位は、果実の先端部及び中央部に集中していた。前記の果実の先端側から紫外線を照射した場合に効率的にカビを抑制できたこと、及びカビの発生部位が果実の先端部及び中央部に集中していたことを考慮すると、果実のカビの発生しやすい部分から、紫外線を照射することによって、1回の紫外線の照射で、効果的にカビ発生を抑制できたと推定される。
なお、本明細書において「果実の先端側から紫外線を照射する」とは、紫外線の光源から少なくとも果実の先端部が見えるように照射されることを意味する。
<Irradiation area>
In the method for suppressing mold growth of the present invention, when the object is a fruit, the tip side of the fruit is preferably irradiated with ultraviolet light, although this is not limited thereto. For example, in the case of strawberries, it is preferable to orient the tip side of the fruit upward and irradiate ultraviolet light from the tip side above, as shown in Fig. 5. By irradiating ultraviolet light from the tip side, mold growth can be suppressed more efficiently than when ultraviolet light is irradiated from the stem side of the fruit.
The present inventors investigated the location of mold growth in strawberries to analyze the reason why the apical side of the fruit was more effective in suppressing mold growth. As a result, as shown in Figure 8, the locations of mold growth were concentrated in the apical and central parts of the fruit. Considering that the apical side of the fruit was irradiated with ultraviolet light and mold growth was concentrated in the apical and central parts of the fruit, it is presumed that the apical side of the fruit was irradiated with ultraviolet light and mold growth was effectively suppressed with a single ultraviolet light irradiation by irradiating the fruit with ultraviolet light from the part where mold is likely to grow.
In this specification, "irradiating the tip side of the fruit with ultraviolet light" means that the ultraviolet light is irradiated so that at least the tip of the fruit is visible from the ultraviolet light source.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 The present invention will be described in detail below with reference to examples, but these are not intended to limit the scope of the present invention.

《製造例1》
本製造例では、キセノンガス(Xe)及び3種の蛍光体を用いて、3種のエキシマランプを作製した。エキシマランプは、導入管が接続された有底筒状の外側管と、内部に内側電極を埋設した有底筒状の内側管とを同軸状に配設して一体に溶着させることにより発光管を形成し、導入管から蛍光体塗料を流入流出させることにより、蛍光体塗料を発光管の内表面に塗布して、蛍光体膜を設ける。導入管から発光管内を真空引きして不純物を除去して、導入管を通じて発光管の内部に放電ガス(キセノンガス)を封入して、導入管を加熱溶融により気密封止する。発光管の外表面に外側電極を配設することで作製できる。
Production Example 1
In this manufacturing example, three types of excimer lamps were manufactured using xenon gas (Xe) and three types of phosphors. The excimer lamp is manufactured by coaxially arranging a bottomed cylindrical outer tube connected to an inlet tube and a bottomed cylindrical inner tube with an inner electrode embedded inside and fusing them together to form an arc tube, and applying the phosphor paint to the inner surface of the arc tube by flowing in and out of the inlet tube to provide a phosphor film. The inside of the arc tube is evacuated from the inlet tube to remove impurities, and discharge gas (xenon gas) is sealed inside the arc tube through the inlet tube, and the inlet tube is heated and melted to hermetically seal it. The excimer lamp can be manufactured by arranging an outer electrode on the outer surface of the arc tube.

得られた蛍光ランプの波長を図1に示す。蛍光ランプAは273nmにピーク波長を有し、蛍光ランプBは263nmにピーク波長を有し、蛍光ランプCは228nmに第一のピーク波長を有し、260nmにそれより低い第二ピーク波長を有していた。 The wavelengths of the obtained fluorescent lamps are shown in Figure 1. Fluorescent lamp A had a peak wavelength at 273 nm, fluorescent lamp B had a peak wavelength at 263 nm, and fluorescent lamp C had a first peak wavelength at 228 nm and a lower second peak wavelength at 260 nm.

《実施例1》
本実施例では、大腸菌を用いて、蛍光ランプA、蛍光ランプB、及び蛍光ランプCのD値を測定した。D値とは生存率を10分の1とするために必要な紫外線量である。35℃、暗黒条件下で24時間培養した大腸菌(K-12株)を1白金耳掻き取り、10mLの滅菌水に添加し菌液を作成した(約10CUF/mL)。菌液は10~10倍に希釈し、シャーレ(直径9cm)内の寒天培地に0.1mL塗抹した。菌液を塗抹したシャーレにおいて、各種ランプによる紫外線照射を行った。照射距離は20または30cm、照射時間は3~90秒とした。照射後、シャーレにクロモカルトコリフォーム寒天培地を添加し、35℃、暗黒条件にて24時間培養した。培養後のコロニー数から生存率を測定した。紫外線量(照度と照射時間の積)ごとの生存率を基に、単回帰分析によりD値を推定した。
図2に示すように、すべてのランプにおいて紫外線量と生存率には負の相関があったものの、紫外線量当たりの生存率はランプごとに異なった。また、図3にこれらの結果から計算したD値を示すが、蛍光ランプCのD値が殺菌灯のそれよりも低く、最も少ない紫外線量で大腸菌を不活性化させることが分かった。
Example 1
In this example, the D values of fluorescent lamps A, B, and C were measured using Escherichia coli. The D value is the amount of ultraviolet light required to reduce the survival rate to one tenth. One platinum loop of Escherichia coli (K-12 strain) cultured for 24 hours at 35°C in the dark was scraped off and added to 10 mL of sterilized water to prepare a bacterial solution (approximately 10 7 CUF/mL). The bacterial solution was diluted 10 0 to 10 5 times and 0.1 mL was smeared on an agar medium in a petri dish (diameter 9 cm). The petri dish on which the bacterial solution was smeared was irradiated with ultraviolet light using various lamps. The irradiation distance was 20 or 30 cm, and the irradiation time was 3 to 90 seconds. After irradiation, Chromocult Coliform agar medium was added to the petri dish and cultured for 24 hours at 35°C in the dark. The survival rate was measured from the number of colonies after cultivation. The D value was estimated by simple regression analysis based on the survival rate for each amount of ultraviolet light (product of illuminance and irradiation time).
As shown in Figure 2, there was a negative correlation between the amount of UV light and the survival rate for all lamps, but the survival rate per amount of UV light varied for each lamp. Figure 3 shows the D value calculated from these results, and it was found that the D value of fluorescent lamp C was lower than that of the germicidal lamp, and that the smallest amount of UV light was required to inactivate E. coli.

《実施例2》
本実施例では、Aspergillus brasiliensis(NBRC9455)及びPenicillium sp.に対する蛍光ランプCのカビの不活化効果を測定した。Penicillium sp.は2018年12月17日にミカン果実に発生したカビより単離培養した。
25℃、暗黒条件下で7日間培養したAspergillus brasiliensis及びPenicillium sp.に10mLの0.01%モノオレイン酸ポリオキシエチレンソルビタン水溶液を添加し菌液を作成した(約10~10CUF/mL)。菌液は滅菌ガーゼを用いてろ過した後、10~10倍に希釈し、シャーレ(直径9cm)内のポテトデキストロース寒天培地に0.1mL塗抹した。菌液を塗抹したシャーレにおいて、エキシマ蛍光ランプによる紫外線照射を行った。発光長は9cm、照射距離は10cm、照射時間は0~15分とした。スペクトルラジオメーター(MCPD-3000)によって測定されたエキシマ蛍光ランプの波長スペクトルは2山型のピークを示し(図1)、照射距離10cmでの照度は1.03mW/cmであった。照射後、25℃、暗黒条件にて2日間培養した。培養後のコロニー数から生存率を測定した。紫外線量(照度と照射時間の積)ごとの生存率を基に、単回帰分析によりA. brasiliensisおよびPenicillium sp.のD値を推定した。
Example 2
In this example, the mold inactivation effect of fluorescent lamp C against Aspergillus brasiliensis (NBRC9455) and Penicillium sp. was measured. Penicillium sp. was isolated and cultured from mold that occurred on tangerine fruit on December 17, 2018.
10 mL of 0.01% polyoxyethylene sorbitan monooleate aqueous solution was added to Aspergillus brasiliensis and Penicillium sp. cultured for 7 days at 25°C in the dark to prepare a bacterial solution (approximately 10 5 -10 6 CUF/mL). The bacterial solution was filtered using sterile gauze, diluted 10 0 -10 5 times, and 0.1 mL was smeared on potato dextrose agar medium in a petri dish (diameter 9 cm). The petri dish on which the bacterial solution was smeared was irradiated with ultraviolet light using an excimer fluorescent lamp. The emission length was 9 cm, the irradiation distance was 10 cm, and the irradiation time was 0-15 minutes. The wavelength spectrum of the excimer fluorescent lamp measured by a spectroradiometer (MCPD-3000) showed a two-peaked peak (Figure 1), and the illuminance at an irradiation distance of 10 cm was 1.03 mW/cm 2. After irradiation, the samples were cultured for 2 days at 25°C in the dark. The survival rate was measured from the number of colonies after culture. Based on the survival rate for each dose of UV light (the product of illuminance and exposure time), the D values of A. brasiliensis and Penicillium sp. were estimated by simple regression analysis.

結果を図4に示す。Aspergillus brasiliensis及びPenicillium sp.ともに、紫外線量が大きくなるにつれて生存率は低くなったが、Penicillium sp.の方が紫外線に対する感受性は高かった。単回帰分析により、A. brasiliensis及びPenicilium sp.のD値を計算した。D値は、A. brasiliensisが355.0mJ/cmであり、Penicilium sp.は41.0mJ/cmであった(A. brasiliensis: y = -0.0028x, R2 = 0.93, p < 0.001; Penicilium sp.: y = -0.024x, R2 = 0.95, p < 0.001)。 The results are shown in Figure 4. For both Aspergillus brasiliensis and Penicillium sp., the survival rate decreased as the amount of UV light increased, but Penicillium sp. was more sensitive to UV light. The D values of A. brasiliensis and Penicillium sp. were calculated by simple regression analysis. The D value was 355.0 mJ/ cm2 for A. brasiliensis and 41.0 mJ/ cm2 for Penicillium sp. (A. brasiliensis: y = -0.0028x, R2 = 0.93, p <0.001; Penicillium sp.: y = -0.024x, R2 = 0.95, p < 0.001).

《実施例3及び比較例1》
本実施例では、イチゴに蛍光ランプCの紫外線を照射し、カビの発生を測定した。
市販のイチゴ(とちおとめ)を、ランダムに紫外線照射区(実施例3)及び無照射区(比較例1)に分けた。図5に示すように、イチゴを、ヘタを下側にして、プラスチックパックにならべた(9個/パック、実施例3及び比較例1ともに3パック作製した)。パック詰めしたイチゴに照射距離10cmで、紫外線照射した。照射時間は3分(185.6mJ/cm)とした。紫外線照射後、パックを一般防曇フィルム(8号規格)に包装し、冷蔵庫(5℃)にて7日間貯蔵した。比較例1は、紫外線を照射せずに3分間静置した後、同様の条件で貯蔵した。貯蔵後、目視にてすべてのイチゴを観察し、カビ発生個体数を計数した。結果を図7(A)に示す。比較例1では、7日後に22%(n=27)にカビが発生したのに対し、実施例3では全くカビが発生しなかった。
Example 3 and Comparative Example 1
In this example, strawberries were irradiated with ultraviolet light from fluorescent lamp C, and the occurrence of mold was measured.
Commercially available strawberries (Tochiotome) were randomly divided into an ultraviolet irradiation group (Example 3) and a non-irradiation group (Comparative Example 1). As shown in FIG. 5, the strawberries were arranged in a plastic pack with the stems facing down (9 strawberries/pack, 3 packs were prepared for both Example 3 and Comparative Example 1). The packed strawberries were irradiated with ultraviolet light at an irradiation distance of 10 cm. The irradiation time was 3 minutes (185.6 mJ/cm 2 ). After ultraviolet light irradiation, the packs were wrapped in a general anti-fog film (No. 8 standard) and stored in a refrigerator (5°C) for 7 days. Comparative Example 1 was left to stand for 3 minutes without ultraviolet light irradiation and then stored under the same conditions. After storage, all strawberries were visually observed and the number of mold-infested individuals was counted. The results are shown in FIG. 7(A). In Comparative Example 1, mold occurred in 22% (n=27) after 7 days, whereas no mold occurred at all in Example 3.

また、実施例3及び比較例1の貯蔵後のイチゴを6個/パック取り出し、ヘタの反対側(果托の先端)から1gの切片を作製した。試験管内でホモジナイズした切片に滅菌水を加えた混合液(合計10mL)を滅菌ガーゼでろ過した。ポテトデキストロース寒天培地の入ったシャーレに、ろ液0.1mLを塗抹し、25℃で2日間培養後のコロニー数を数えた。図7(B)に示すように、イチゴの付着菌数においても、実施例3の方が比較例1よりも明らかに少なかった(p < 0.05, t-test)。 After storage, six strawberries per pack were taken from Example 3 and Comparative Example 1, and 1 g pieces were prepared from the opposite side of the calyx (the tip of the stalk). Sterile water was added to the homogenized pieces in a test tube, and the mixture (total 10 mL) was filtered through sterile gauze. 0.1 mL of the filtrate was smeared on a petri dish containing potato dextrose agar medium, and the number of colonies was counted after culturing at 25°C for two days. As shown in Figure 7 (B), the number of bacteria attached to the strawberries in Example 3 was also clearly lower than in Comparative Example 1 (p < 0.05, t-test).

《参考例1》
本参考例では、イチゴのカビ発生位置を測定した。イチゴを冷蔵庫において7日間貯蔵した。貯蔵後、カビが発生したイチゴにおいて、カビ発生位置を測定した。ヘタと果托先端を結ぶ直線を3等分して、カビ発生位置を分類した。結果を図6及び図8に示す。測定したイチゴ30個のうち、9個(10か所)にカビが発生していた。カビの発生位置は中央部(50%)と先端部(40%)がほとんどであった。
Reference Example 1
In this reference example, the location of mold growth on strawberries was measured. The strawberries were stored in a refrigerator for 7 days. After storage, the location of mold growth on the strawberries on which mold had grown was measured. The straight line connecting the calyx and the tip of the receptacle was divided into thirds to classify the locations of mold growth. The results are shown in Figures 6 and 8. Of the 30 strawberries measured, mold had grown on 9 (10 locations). Most of the mold growth was in the center (50%) and tip (40%).

本発明のカビ発生の抑制方法は、青果物のカビの発生を抑制できることから、青果物の保存及び流通において、有用である。 The method for inhibiting mold growth of the present invention is useful in the preservation and distribution of fruits and vegetables because it can inhibit mold growth on fruits and vegetables.

Claims (5)

223nm~233nmに第一のピーク波長を有し、255nm~265nmに第二のピーク波長を有し、そして第二ピーク波長の相対強度が第一ピーク波長の相対強度より低い紫外線を青果物に照射することを特徴とするカビ発生の抑制方法。 A method for inhibiting mold growth, comprising irradiating fruits and vegetables with ultraviolet light having a first peak wavelength between 223 nm and 233 nm and a second peak wavelength between 255 nm and 265 nm, the relative intensity of which is lower than the relative intensity of the first peak wavelength. 前記紫外線を放射する光源が発光管内面に蛍光体が塗布されたエキシマランプである、請求項1に記載のカビ発生の抑制方法。 The method for suppressing mold growth according to claim 1, wherein the light source that emits ultraviolet light is an excimer lamp with a phosphor coated on the inner surface of the light-emitting tube. 前記発光管の封入ガスがXeである、請求項2に記載のカビ発生の抑制方法。 The method for suppressing mold growth according to claim 2, wherein the gas enclosed in the light-emitting tube is Xe. 223nm~233nmに第一のピーク波長を有する紫外線を、先端側を上方に向けたイチゴに、上方の先端側から照射する、カビ発生の抑制方法。 A method for inhibiting mold growth in which strawberries with their tips facing upwards are irradiated with ultraviolet light having a first peak wavelength between 223 nm and 233 nm from the tips. 223nm~233nmに第一のピーク波長を有する紫外線を、青果物の先端側から照射することを特徴とするカビ発生の抑制方法(但し、搬送コンベアで水平軸まわりに回転しながらの照射を除く)。 A method for inhibiting mold growth, characterized by irradiating the leading edge of fruit or vegetable with ultraviolet light having a first peak wavelength between 223 nm and 233 nm (excluding irradiation while rotating around a horizontal axis on a transport conveyor).
JP2019225440A 2019-12-13 2019-12-13 How to prevent mold growth on fruits and vegetables Active JP7492700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019225440A JP7492700B2 (en) 2019-12-13 2019-12-13 How to prevent mold growth on fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019225440A JP7492700B2 (en) 2019-12-13 2019-12-13 How to prevent mold growth on fruits and vegetables

Publications (2)

Publication Number Publication Date
JP2021093917A JP2021093917A (en) 2021-06-24
JP7492700B2 true JP7492700B2 (en) 2024-05-30

Family

ID=76429672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019225440A Active JP7492700B2 (en) 2019-12-13 2019-12-13 How to prevent mold growth on fruits and vegetables

Country Status (1)

Country Link
JP (1) JP7492700B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142593A (en) 2006-12-07 2008-06-26 Toshiba Corp Inactivation treatment method by ultraviolet light
JP2008283909A (en) 2007-05-18 2008-11-27 Eminetto:Kk Sterilizer of fruit and vegetable skin
JP2016036772A (en) 2014-08-07 2016-03-22 ウシオ電機株式会社 Ultraviolet irradiation type water purifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142593A (en) 2006-12-07 2008-06-26 Toshiba Corp Inactivation treatment method by ultraviolet light
JP2008283909A (en) 2007-05-18 2008-11-27 Eminetto:Kk Sterilizer of fruit and vegetable skin
JP2016036772A (en) 2014-08-07 2016-03-22 ウシオ電機株式会社 Ultraviolet irradiation type water purifier

Also Published As

Publication number Publication date
JP2021093917A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
Nassarawa et al. Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: A review
Shama Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses
KR20080111530A (en) Produce treatment method
JP6078109B2 (en) How to keep freshness
Sethi et al. UV treatment of fresh fruits and vegetables
AU2023200918A1 (en) Method For Preserving Leafy Vegetables By Combining Carrageenan Oligosaccharide Film-Coating With Led Composite Illumination In Cooperation With Modified Atmosphere
JP7492700B2 (en) How to prevent mold growth on fruits and vegetables
Perera et al. Review on effect of postharvest illumination by fluorescent and ultraviolet light waves on the quality of vegetables
JP2005232157A (en) Method for reversing ethylene inhibitor response in plant
US20210345629A1 (en) Method for extending shelf-life of agricultural produce
JP7445192B2 (en) Light irradiation device for agricultural products
Gayas et al. Ultraviolet light treatment of fresh fruits and vegetables
KR101698819B1 (en) Prevention method of plant soft rot disease utilizing irradiation
Mahawer et al. Response of passive storage duration and polymeric packaging films on postharvest life of Suvasini tuberose cut spikes
Mabusela et al. Trends in ethylene management strategies: towards mitigating postharvest losses along the South African value chain of fresh produce–a review
CN113973904A (en) Fresh strawberry fruit preservation method combining strong pulse light with hot air treatment
FR3107836A1 (en) Mobile device delivering light pulses and its use for the elimination of pathogens
CN115777861B (en) Sterilization method for edible roses
Hinds et al. Visible light
Mathur et al. Post-Harvest Management of Climacteric Fruits in India: The Promising Road Map for Future
KR20150025088A (en) Method of sterilization for control of plant pathogens and method of phytosanitary treatment processing using combined treatment with irradiation and nano Ag particles
Nikhanj et al. Fresh Cut Fruits and Vegetables Disinfection Pretreatment: A Novel Approach to Extend Fresh Cut’s Shelf Life
RU2741847C2 (en) Method of harvesting fruit crop, berries and fruits before placing them in storage
Kaur et al. Ozonation: Potential Applications in Oilseeds Storage
JP2022055038A (en) Device for treating food and method for treating food

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510

R150 Certificate of patent or registration of utility model

Ref document number: 7492700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150