JP7492142B2 - Light-emitting devices, lamps and lighting equipment - Google Patents

Light-emitting devices, lamps and lighting equipment Download PDF

Info

Publication number
JP7492142B2
JP7492142B2 JP2021110054A JP2021110054A JP7492142B2 JP 7492142 B2 JP7492142 B2 JP 7492142B2 JP 2021110054 A JP2021110054 A JP 2021110054A JP 2021110054 A JP2021110054 A JP 2021110054A JP 7492142 B2 JP7492142 B2 JP 7492142B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
light emitting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021110054A
Other languages
Japanese (ja)
Other versions
JP2023007059A (en
Inventor
美佳 松本
美幸 倉田
多茂 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2021110054A priority Critical patent/JP7492142B2/en
Priority to PCT/JP2022/007080 priority patent/WO2023276259A1/en
Priority to EP22832426.5A priority patent/EP4349936A1/en
Priority to CN202280046350.4A priority patent/CN117597789A/en
Priority to US18/575,859 priority patent/US20240279541A1/en
Publication of JP2023007059A publication Critical patent/JP2023007059A/en
Priority to JP2024074607A priority patent/JP2024109628A/en
Application granted granted Critical
Publication of JP7492142B2 publication Critical patent/JP7492142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0827Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • F21S8/088Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device mounted on top of the standard, e.g. for pedestrian zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/101Outdoor lighting of tunnels or the like, e.g. under bridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光装置、灯具及び照明器具に関する。 The present invention relates to a light-emitting device, a lamp, and a lighting fixture.

発光ダイオード(LED)のような発光素子を用いる発光装置として、青色発光の発光素子と黄色発光等の蛍光体とを用いる白色系の発光装置が知られている。このような発光装置は、一般照明、車載照明、ディスプレイ、液晶用バックライト等の幅広い分野で使用されている。LED照明の普及とともにLED照明が人体に与える影響に関心が集まっている。例えば特許文献1には、LED照明がヒトのサーカディアンリズム(概日リズム;生体リズム)に影響を及ぼし得ることが記載されている。 A white light-emitting device that uses a blue-emitting light-emitting element and a yellow-emitting phosphor is known as a light-emitting device that uses a light-emitting element such as a light-emitting diode (LED). Such light-emitting devices are used in a wide range of fields, including general lighting, vehicle lighting, displays, and LCD backlights. As LED lighting becomes more widespread, interest is growing in the effects that LED lighting has on the human body. For example, Patent Document 1 describes that LED lighting can affect human circadian rhythms (biorhythms).

哺乳類の網膜上には、内因性光感受性網膜神経節細胞intrinsically photosensitive Retinal Ganglion Cell(以下、「ipRGC」という。)という、杆体や錐体とは別の新たな光受容体が存在する。ipRGCは、メラノプシンという視物質を有しており、サーカディアンリズムの光同調や瞳孔反射のような非視覚的な機能に関与することが明らかにされている。ipRGCの内因性光応答のコントロールはサーカディアンリズムを形成する上で非常に重要である。 In mammalian retinas, there exist new photoreceptors called intrinsically photosensitive retinal ganglion cells (hereinafter referred to as "ipRGCs") that are separate from rods and cones. ipRGCs contain a visual pigment called melanopsin, and have been shown to be involved in non-visual functions such as photoentrainment of circadian rhythms and pupillary reflex. Control of the intrinsic light response of ipRGCs is extremely important in forming circadian rhythms.

メラノプシンは、睡眠促進ホルモンであるメラトニンの分泌又は抑制にも関与し、例えばipRGCへの刺激量が増えることによってメラトニンの分泌が抑制されると考えられている。ヒトのサーカディアンリズムの形成をサポートするために、活動時間帯に応じた光を浴びることが適切である。例えばリビングや寝室等に用いられる照明には、暖かみのある、落ち着いた雰囲気を感じさせ、メラトニンの分泌が促進されやすい、光が照射されることが好ましい。 Melanopsin is also involved in the secretion or suppression of melatonin, a sleep-promoting hormone; for example, it is believed that increasing the amount of stimulation to ipRGC suppresses the secretion of melatonin. In order to support the formation of human circadian rhythms, it is appropriate to expose oneself to light that corresponds to the time of one's activity. For example, lighting used in living rooms and bedrooms is preferably one that irradiates a warm, calming atmosphere and that is likely to promote the secretion of melatonin.

国際公開第2012/144087号International Publication No. 2012/144087

本発明の一態様は、メラトニンの分泌が促進されやすい光を発する発光装置、灯具及び照明器具を提供することを目的とする。 One aspect of the present invention aims to provide a light-emitting device, a lamp, and a lighting fixture that emits light that is likely to promote the secretion of melatonin.

第1態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、前記発光装置は、相関色温度が1950K以下であり、平均演色評価数Raが40以上であり、前記発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、下記式(1)から導き出されるメラノピック比MRが0.233以下である光を発する、発光装置である。 The first aspect is a light-emitting device comprising a light-emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm, the light-emitting device emitting light having a correlated color temperature of 1950 K or less, an average color rendering index Ra of 40 or more, a full width at half maximum of an emission spectrum showing the maximum emission intensity in the emission spectrum of the light-emitting device of 110 nm or less, and a melanopic ratio MR derived from the following formula (1) of 0.233 or less.

(式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、R(λ)はCIE(国際照明委員会)で規定された哺乳類の内因性光感受性網膜神経節細胞(ipRGC)の感度曲線である。) (In formula (1), S(λ) is the spectral radiance of the light emitted by the light emitting device, V(λ) is the standard relative luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de l'Eclairage), and R m (λ) is the sensitivity curve of mammalian intrinsically photosensitive retinal ganglion cells (ipRGC) defined by the CIE (Commission Internationale de l'Eclairage).)

第2態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、前記第1蛍光体が、下記式(1A)で表される組成を有する第1窒化物蛍光体を含み、前記発光装置は、相関色温度が1950K以下であり、前記発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、前記式(1)から導き出されるメラノピック比MRが0.233以下である光を発する、発光装置である。
Si:Eu (1A)
(式(1A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
A second aspect is a light emitting device including a light emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, and a first phosphor having an emission peak wavelength in the range of 570 nm or more and 680 nm or less, wherein the first phosphor includes a first nitride phosphor having a composition represented by the following formula (1A), and the light emitting device emits light having a correlated color temperature of 1950 K or less, an emission spectrum showing the maximum emission intensity in the emission spectrum of the light emitting device having a full width at half maximum of 110 nm or less, and a melanopic ratio MR derived from formula (1) of 0.233 or less.
M12Si5N8 : Eu ( 1A )
(In formula ( 1A ), M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.)

第3態様は、前記発光装置を備えた灯具である。 The third aspect is a lamp equipped with the light-emitting device.

第4態様は、前記発光装置を備えた照明器具である。 The fourth aspect is a lighting fixture equipped with the light-emitting device.

本発明の一態様によれば、メラトニンの分泌が促進されやすい光を発する発光装置、灯具及び照明器具を提供することができる。 According to one aspect of the present invention, it is possible to provide a light-emitting device, a lamp, and a lighting fixture that emits light that is likely to promote the secretion of melatonin.

図1は、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 1 is a diagram showing the sensitivity curve R m (λ) of the ipRGC and the standard luminous efficiency curve V(λ) of human photopic vision. 図2は、CIE1931色度図を示し、CIE1931色度図上のスペクトル軌跡及び純紫軌跡内の黒体放射軌跡と、黒体放射軌跡からの色偏差を示す図である。FIG. 2 shows the CIE 1931 chromaticity diagram, the spectrum locus on the CIE 1931 chromaticity diagram, the blackbody radiation locus within the pure violet locus, and color deviations from the blackbody radiation locus. 図3は、図2の一部拡大図を示し、CIE1931色度図における色度座標のx値が0.300以上0.600以下であり、y値が0.250以上0.500以下である範囲内での黒体放射軌跡と、各相関色温度における黒体放射軌跡からの色偏差の各軌跡を示す図である。FIG. 3 is an enlarged view of a portion of FIG. 2, showing the blackbody radiation locus within a range in which the x value of the chromaticity coordinates in the CIE 1931 chromaticity diagram is 0.300 or more and 0.600 or less and the y value is 0.250 or more and 0.500 or less, and showing each locus of color deviation from the blackbody radiation locus at each correlated color temperature. 図4は、第1構成例の発光装置の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a light emitting device according to the first configuration example. 図5は、第1構成例の発光装置の一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a light emitting device according to the first configuration example. 図6は、第2構成例の発光装置の一例を示す概略斜視図である。FIG. 6 is a schematic perspective view showing an example of a light emitting device according to the second configuration example. 図7は、第2構成例の発光装置の一例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing an example of a light emitting device according to the second configuration example. 図8は、第2構成例の発光装置の他の例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing another example of the light emitting device according to the second configuration example. 図9は、街路灯の一例を示す図である。FIG. 9 is a diagram showing an example of a street light. 図10は、街路灯の一例である低位置照明装置の設置例を示す図である。FIG. 10 is a diagram showing an example of installation of a low-position lighting device, which is an example of a street light. 図11は、誘電体多層膜-1(DBR-1)、誘電体多層膜-2(DBR-2)、及び誘電体多層膜-3(DBR-3)の入射角度0度における反射スペクトルを示す図である。FIG. 11 is a diagram showing the reflection spectra of dielectric multilayer film-1 (DBR-1), dielectric multilayer film-2 (DBR-2), and dielectric multilayer film-3 (DBR-3) at an incident angle of 0 degrees. 図12は、第1構成例の発光装置にバンドパスフィルタ層を配置した一例を示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing an example in which a band-pass filter layer is disposed in the light-emitting device of the first configuration example. 図13は、実施例1の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 13 is a diagram showing the spectral radiance of the light emitting device of Example 1 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図14は、実施例2の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 14 is a diagram showing the spectral radiance of the light emitting device of Example 2 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図15は、実施例3の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 15 is a diagram showing the spectral radiance of the light emitting device of Example 3 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図16は、実施例4の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 16 is a diagram showing the spectral radiance of the light emitting device of Example 4 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図17は、比較例1の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 17 is a diagram showing the spectral radiance of the light emitting device of Comparative Example 1 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図18は、比較例2の発光装置、比較例3の発光装置の分光放射輝度と、ipRGCの感度曲線R(λ)と、ヒトの明所視標準比視感度曲線V(λ)を示す図である。FIG. 18 is a diagram showing the spectral radiance of the light emitting device of Comparative Example 2 and the light emitting device of Comparative Example 3, the sensitivity curve R m (λ) of ipRGC, and the standard relative luminous efficiency curve V(λ) of human photopic vision. 図19は、実施例1の発光装置の発光スペクトルと、実施例5の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、実施例6の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、を示す図である。Figure 19 shows the emission spectrum of the light emitting device of Example 1, the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 5, and the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 6. 図20は、実施例2の発光装置の発光スペクトルと、実施例7の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、実施例8の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、を示す図である。Figure 20 shows the emission spectrum of the light emitting device of Example 2, the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 7, and the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 8. 図21は、実施例3の発光装置の発光スペクトルと、実施例9の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、実施例10の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、を示す図である。Figure 21 shows the emission spectrum of the light emitting device of Example 3, the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 9, and the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 10. 図22は、実施例4の発光装置の発光スペクトルと、実施例11の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、実施例12の発光装置のバンドパスフィルタ層を透過後の発光スペクトルと、を示す図である。Figure 22 shows the emission spectrum of the light emitting device of Example 4, the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 11, and the emission spectrum after transmission through the bandpass filter layer of the light emitting device of Example 12.

以下、本発明に係る発光装置、灯具及び照明器具の一実施形態に基づいて説明する。但し、以下に示す実施の形態は、本発明の技術思想を具現化するための、発光装置、灯具及び街路灯を例示するものであって、本発明は、以下の発光装置及びそれを備えた灯具及び街路灯に限定されない。
なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。また、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
Hereinafter, a light-emitting device, a lamp, and a lighting fixture according to an embodiment of the present invention will be described. However, the embodiment shown below is an example of a light-emitting device, a lamp, and a street lamp for realizing the technical concept of the present invention, and the present invention is not limited to the light-emitting device and the lamp and street lamp equipped therewith.
The relationship between color names and chromaticity coordinates, the relationship between light wavelength ranges and color names of monochromatic light, etc., are in accordance with JIS Z8110. Furthermore, when a composition contains multiple substances corresponding to each component, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified.

第1実施形態の発光装置は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、発光装置は、相関色温度が1950K以下であり、平均演色評価数Raが40以上であり、前記発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、下記式(1)から導き出されるメラノピック比(Melanopic Ratio)MRが0.233以下である光を発する。 The light emitting device of the first embodiment is a light emitting device including a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm, and the light emitting device emits light having a correlated color temperature of 1950 K or less, an average color rendering index Ra of 40 or more, a full width at half maximum of an emission spectrum showing the maximum emission intensity in the emission spectrum of the light emitting device of 110 nm or less, and a melanopic ratio MR derived from the following formula (1) of 0.233 or less.

前記式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、R(λ)はCIE(国際照明委員会)で規定された哺乳類の内因性光感受性網膜神経節細胞(ipRGC)の感度曲線である。 In the above formula (1), S(λ) is the spectral radiance of the light emitted by the light-emitting device, V(λ) is the standard relative luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de l'Eclairage), and R m (λ) is the sensitivity curve of mammalian intrinsically photosensitive retinal ganglion cells (ipRGCs) defined by the CIE (Commission Internationale de l'Eclairage).

第2実施形態の発光装置は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、第1蛍光体が後述する式(1A)で表される組成を有する第1窒化物蛍光体を含み、発光装置は、相関色温度が1950K以下であり、発光装置の発光スペクトルにおいて最大の発光強度である発光ピーク波長を有する発光スペクトルの半値全幅が110nm以下であり、前記式(1)から導き出されるメラノピック比MRが0.233以下である光を発する。 The light emitting device of the second embodiment is a light emitting device including a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm and a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm, the first phosphor including a first nitride phosphor having a composition represented by formula (1A) described below, the light emitting device emits light having a correlated color temperature of 1950 K or less, an emission spectrum having an emission peak wavelength that is the maximum emission intensity in the emission spectrum of the light emitting device with a full width at half maximum of 110 nm or less, and a melanopic ratio MR derived from formula (1) of 0.233 or less.

ヒューマンセントリックライティング(Human Centric Lighting(HCL)、人を中心とした照明)の思想が広く普及し始めている。例えば働く人の健康に焦点を当てた新ビル認証であるWELL認証は、サーカディアンリズムに配慮した照明とすることが認証の必須項目に挙げられている。サーカディアンリズムに影響する明るさの定量的単位として、等価メラノピック(Melanopic)照度が用いられている。等価メラノピック照度の算出には、光源の分光分布から求めるメラノピック比MR(Melanopic Ratio)が必要である。メラノピック比MRは前記式(1)から求められ、等価メラノピック照度は下記式(2)から求められる。 The idea of Human Centric Lighting (HCL) is becoming more widespread. For example, WELL certification, a new building certification that focuses on the health of workers, lists circadian rhythm-friendly lighting as a required item of the certification. Equivalent melanopic illuminance is used as a quantitative unit of brightness that affects circadian rhythm. To calculate equivalent melanopic illuminance, the melanopic ratio MR (Melanopic Ratio) is required, which is calculated from the spectral distribution of the light source. The melanopic ratio MR can be calculated from the above formula (1), and the equivalent melanopic illuminance can be calculated from the following formula (2).

ipRGCは、メラノプシンという視物質を有しており、サーカディアンリズムの光同調や瞳孔反射のような非視覚的な機能に関与することが明らかにされている。ipRGCは、視交叉上核に直接投与することで、光信号を与える細胞である。視交叉上核とは、脳の視床下部にある非常に小さい領域で哺乳類のサーカディアンリズムを統率する体内時計の役割を担っており、約20000個の神経細胞によって、睡眠、覚醒、血圧、体温、ホルモン分泌等の様々な生理機能のサーカディアンリズムを作りだしている。 ipRGCs contain a visual pigment called melanopsin, and have been shown to be involved in non-visual functions such as light entrainment of circadian rhythms and pupillary reflexes. ipRGCs are cells that send light signals when directly administered to the suprachiasmatic nucleus. The suprachiasmatic nucleus is a very small area in the hypothalamus of the brain that acts as an internal clock that controls the circadian rhythms of mammals, and its approximately 20,000 neurons create circadian rhythms for various physiological functions such as sleep, wakefulness, blood pressure, body temperature, and hormone secretion.

ipRGCが有するメラノプシンは、網膜神経節細胞のうち約1%から2%程度にあたる細胞で光受容タンパク質を発現している。その他の大多数の網膜神経節細胞は光感受性を持たない。その光受容物質は細胞によって吸収特性が異なることが知られており、メラノプシンであれば480nmから490nm付近に最大の感度(感度ピーク波長)がある。図1は、CIEによって規定されているipRGCの感度曲線R(λ)と、CIEによって規定されているヒトの明所視標準比視感度曲線V(λ)を示す図である。ヒトの明所視標準比視感度曲線の最大の感度(感度ピーク波長)は、555nmである。 Melanopsin, which ipRGC possesses, is a photoreceptor protein that is expressed in approximately 1% to 2% of retinal ganglion cells. The majority of other retinal ganglion cells are not photosensitive. It is known that the absorption characteristics of the photoreceptor material differ depending on the cell, and in the case of melanopsin, the maximum sensitivity (peak sensitivity wavelength) is around 480 nm to 490 nm. Figure 1 shows the sensitivity curve R m (λ) of ipRGC defined by the CIE and the standard relative luminous efficiency curve V (λ) of human photopic vision defined by the CIE. The maximum sensitivity (peak sensitivity wavelength) of the standard relative luminous efficiency curve of human photopic vision is 555 nm.

メラノピック比MRの算出には、ipRGCのメラノプシン応答の感度曲線R(λ)が、サーカディアン作用曲線として用いられる。前記式(1)から導き出されるメラノピック比MRが0.233以下の光が発光装置から発せられると、ipRGCへの刺激が少なく、メラトニンの分泌が促進され、自然に睡眠に誘導する光を照射することができる。例えば落ち着いた雰囲気が求められるリビングや寝室等のプライベートな空間に使用する屋内用照明の光源又は車載用照明の光源として発光装置を用いることができる。ipRGCへの刺激を抑制するために、発光装置は、メラノピック比MRが0.233以下の光を発し、メラノピック比MRが0.232以下の光を発してもよく、メラノピック比MRが0.231以下の光を発してもよく、メラノピック比MRが0.002以上の光を発してもよく、メラノピック比MRが0.010以上の光を発してもよく、メラノピック比MRが0.020以上の光を発してもよく、メラノピック比が0.100以上の光を発してもよい。 To calculate the melanopic ratio MR, the sensitivity curve R m (λ) of the melanopsin response of ipRGC is used as the circadian action curve. When the light emitting device emits light with a melanopic ratio MR of 0.233 or less derived from the above formula (1), it is possible to irradiate light that stimulates ipRGC less, promotes melatonin secretion, and naturally induces sleep. For example, the light emitting device can be used as a light source for indoor lighting used in private spaces such as living rooms and bedrooms where a calm atmosphere is required, or as a light source for vehicle lighting. In order to suppress stimulation of the ipRGCs, the light-emitting device may emit light having a melanopic ratio MR of 0.233 or less, may emit light having a melanopic ratio MR of 0.232 or less, may emit light having a melanopic ratio MR of 0.231 or less, may emit light having a melanopic ratio MR of 0.002 or more, may emit light having a melanopic ratio MR of 0.010 or more, may emit light having a melanopic ratio MR of 0.020 or more, or may emit light having a melanopic ratio of 0.100 or more.

白色光源の発光色を表す客観的な尺度として、色温度がある。黒体を外部から熱して温度を高めていくと、黒色から暗赤色、赤色、黄色、オレンジ色、白色、青白色と変化する。黒体の温度はケルビン(K)で表され、JIS Z8725に準拠して相関色温度(Tcp;K)及び黒体放射軌跡からの色偏差duvを測定することができ、JIS Z8726に準拠して平均演色評価数Raを測定することができる。一般的に、焚火は800K程度、ろうそくの炎は1900K程度、白熱電球の照明は2900K程度、蛍光ランプの照明は4200K程度の色温度で表される。 Color temperature is an objective measure of the color emitted by a white light source. When a black body is heated from the outside and the temperature is increased, the color changes from black to dark red, red, yellow, orange, white, and bluish-white. The temperature of a black body is expressed in Kelvin (K), and the correlated color temperature (Tcp; K) and color deviation duv from the black body radiation locus can be measured in accordance with JIS Z8725, and the average color rendering index Ra can be measured in accordance with JIS Z8726. Generally, a bonfire has a color temperature of about 800 K, a candle flame has a color temperature of about 1900 K, incandescent light bulb lighting has a color temperature of about 2900 K, and fluorescent light bulb lighting has a color temperature of about 4200 K.

発光装置は、相関色温度が1950K以下の光を発し、暖かみがあり、落ち着いた雰囲気を感じさせる光を発する。発光装置から発せられる光の相関色温度は、1920K以下であってもよく、1900K以下であってもよい。発光装置から発せられる光の相関色温度は、800K以上であることが好ましく、1000K以上であることが好ましく、1200K以上でもよく、1500K以上でもよく、1700K以上でもよい。 The light emitting device emits light with a correlated color temperature of 1950K or less, and emits light that is warm and gives a sense of a calming atmosphere. The correlated color temperature of the light emitted from the light emitting device may be 1920K or less, or may be 1900K or less. The correlated color temperature of the light emitted from the light emitting device is preferably 800K or more, preferably 1000K or more, may be 1200K or more, 1500K or more, or may be 1700K or more.

演色性は、同じ相関色温度における照射物の見え方の程度を表す。発光装置の発光について、R1からR8の数値を平均した値である平均演色評価数Raは、JIS Z8726の光源の演色性評価方法に準拠して測定することができる。発光装置の発光の平均演色評価数Raは、5以上であればよく、10以上でもよく、20以上でもよく、30以上でもよく、40以上でもよく、51以上であることが好ましく、52以上であることがより好ましい。発光装置の発光の平均演色評価数Raの値が100に近づくほど、同じ相関色温度における基準光源に近似した演色性となる。街路灯、道路の照明灯等の屋外又は屋内であっても屋外に近い場所に設置される灯具は、平均演色評価数Raが5以上である光を発すればよい。発光装置の発光の平均演色評価数Raが40以上であれば、荷物の仕分け程度の作業を行う場所において必要な程度の演色性を有し、リビングや寝室等のプライベートな空間においても、軽い作業を行う場合に十分な演色性を有する。発光装置の発光の平均演色評価数Raは、53以上であってもよく、99以下であってもよく、95以下であってもよく、89以下であってもよい。 Color rendering indicates the degree of visibility of an illuminated object at the same correlated color temperature. The average color rendering index Ra, which is the average value of R1 to R8 for the light emitted by a light emitting device, can be measured in accordance with the JIS Z8726 method for evaluating the color rendering of light sources. The average color rendering index Ra of the light emitted by the light emitting device may be 5 or more, 10 or more, 20 or more, 30 or more, 40 or more, preferably 51 or more, and more preferably 52 or more. The closer the average color rendering index Ra of the light emitted by the light emitting device is to 100, the closer the color rendering is to the reference light source at the same correlated color temperature. Lighting fixtures installed outdoors or indoors near the outdoors, such as street lights and road lighting, only need to emit light with an average color rendering index Ra of 5 or more. If the average color rendering index Ra of the light emitted by the light emitting device is 40 or more, it has the necessary level of color rendering in a place where work such as sorting luggage is performed, and has sufficient color rendering when performing light work in private spaces such as living rooms and bedrooms. The general color rendering index Ra of the light emitted by the light emitting device may be 53 or more, 99 or less, 95 or less, or 89 or less.

発光装置の発光の特殊演色評価数R9は、赤色を評価する指標である。発光装置の発光の特殊演色評価数R9は、マイナスの数値であってもよい。発光装置の発光の特殊演色評価数R9は、マイナス(-)150以上プラス(+)99以下の範囲内でもよく、-140以上+98以下の範囲内でもよく、-135以上95以下の範囲内でもよい。 The special color rendering index R9 of the light emitted by the light emitting device is an index for evaluating the color red. The special color rendering index R9 of the light emitted by the light emitting device may be a negative numerical value. The special color rendering index R9 of the light emitted by the light emitting device may be in the range of minus (-) 150 or more and plus (+) 99 or less, in the range of -140 or more and +98 or less, or in the range of -135 or more and 95 or less.

発光装置は、発光装置の発光スペクトルにおいて、最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、100nm以下でもよく、95nm以下でもよく、90nm以下でもよく、3nm以上でもよく、40nm以上でもよく、60nm以上でもよく、70nm以上でもよい。発光装置の発光スペクトルにおいて、最大の発光強度を示す発光スペクトルの半値全幅が大きいと、ヒトが感知し難い長波長側の光の成分が大きくなる、もしくはipRGCを刺激しやすい短波長側の光の成分が大きくなる。長波長側の光の成分が多くなると、発光装置から発せられる光の輝度が低下する傾向がある。短波長側の光の成分が多くなると、メラトニンの分泌を阻害しやすくなる傾向がある。また、発光装置の発光スペクトルにおいて、最大の発光強度を示す発光スペクトルの半値全幅が小さいと、特定の波長範囲の光の成分が多くなる傾向がある。発光装置の発光スペクトルにおいて、最大の発光強度を有する発光ピーク波長が長波長側にあり、ヒトが感知し難い長波長側の光の成分が大きくなると、輝度の低下を抑制することが難しくなる。また、発光装置の発光スペクトルにおいて、最大の発光強度を有する発光ピークが短波長側にあり、ipRGCを刺激しやすい短波長側の光の成分が大きくなると、メラトニンの分泌が阻害され易くなる。輝度を低下させることなくメラトニンの分泌が促進されやすい光を発する発光装置を提供するために、発光装置は、発光スペクトルにおける最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であることが好ましい。本明細書において、半値全幅は、発光スペクトルにおいて、最大の発光強度を示す発光ピーク波長における発光強度に対して発光強度が50%となる波長幅をいう。 In the light emitting device, the full width at half maximum of the emission spectrum showing the maximum emission intensity in the emission spectrum of the light emitting device is 110 nm or less, may be 100 nm or less, 95 nm or less, 90 nm or less, 3 nm or more, 40 nm or more, 60 nm or more, or 70 nm or more. In the emission spectrum of the light emitting device, if the full width at half maximum of the emission spectrum showing the maximum emission intensity is large, the components of light on the long wavelength side that are difficult for humans to detect will be large, or the components of light on the short wavelength side that are easy to stimulate ipRGC will be large. If the components of light on the long wavelength side are increased, the luminance of the light emitted from the light emitting device tends to decrease. If the components of light on the short wavelength side are increased, the secretion of melatonin tends to be inhibited. In addition, in the emission spectrum of the light emitting device, if the full width at half maximum of the emission spectrum showing the maximum emission intensity is small, the components of light in a specific wavelength range tend to increase. In the emission spectrum of the light emitting device, if the emission peak wavelength having the maximum emission intensity is on the long wavelength side and the components of light on the long wavelength side that are difficult for humans to detect are increased, it becomes difficult to suppress the decrease in luminance. In addition, in the emission spectrum of the light-emitting device, the emission peak with the maximum emission intensity is on the short wavelength side, and when the component of light on the short wavelength side that is likely to stimulate ipRGC becomes large, the secretion of melatonin is easily inhibited. In order to provide a light-emitting device that emits light that is likely to promote the secretion of melatonin without reducing the brightness, it is preferable that the full width at half maximum of the emission spectrum showing the maximum emission intensity in the emission spectrum is 110 nm or less. In this specification, the full width at half maximum refers to the wavelength width in the emission spectrum where the emission intensity is 50% of the emission intensity at the emission peak wavelength showing the maximum emission intensity.

発光装置の発光スペクトルにおいて、最大の発光強度を示す発光スペクトルの半値全幅は、発光装置に含まれる第1蛍光体の発光ピーク波長を有する発光スペクトルの半値全幅又は後述する第2蛍光体の発光ピーク波長を有する発光スペクトルの半値全幅よりも狭くなる場合がある。例えば、それぞれ異なる波長範囲に発光ピーク波長を有する第1蛍光体と第2蛍光体を含む場合、第1蛍光体の発光スペクトルと第2蛍光体の発光スペクトルが重なる部分の発光強度が変化し、その結果、発光装置から発せられる混色光の発光スペクトルは、第1蛍光体の発光スペクトル又は第2蛍光体の発光スペクトルとは異なり、第1蛍光体の発光ピーク波長を有する発光スペクトルの半値全幅又は第2蛍光体の発光ピーク波長を有する発光スペクトルの半値全幅よりも、狭くなる場合がある。 In the emission spectrum of the light emitting device, the full width at half maximum of the emission spectrum showing the maximum emission intensity may be narrower than the full width at half maximum of the emission spectrum having the emission peak wavelength of the first phosphor contained in the light emitting device or the full width at half maximum of the emission spectrum having the emission peak wavelength of the second phosphor described below. For example, when a first phosphor and a second phosphor having emission peak wavelengths in different wavelength ranges are included, the emission intensity of the portion where the emission spectrum of the first phosphor and the emission spectrum of the second phosphor overlap changes, and as a result, the emission spectrum of the mixed color light emitted from the light emitting device may be different from the emission spectrum of the first phosphor or the emission spectrum of the second phosphor, and may be narrower than the full width at half maximum of the emission spectrum having the emission peak wavelength of the first phosphor or the full width at half maximum of the emission spectrum having the emission peak wavelength of the second phosphor.

発光装置は、発光装置の発光スペクトルにおいて、最大の発光強度を有する発光ピーク波長が570nm以上680nm以下の範囲内にあることが好ましく、575nm以上680nm以下の範囲内でもよく、575nm以上670nm以下の範囲内でもよい。発光装置の発光スペクトルにおける最大の発光強度を有する発光ピーク波長の範囲は、第1蛍光体の発光ピーク波長の範囲と重複していてもよい。発光装置の発光スペクトルにおいて、最大の発光強度を有する発光ピーク波長は、第1蛍光体の発光に起因するものであってもよい。 In the emission spectrum of the light emitting device, the emission peak wavelength having the maximum emission intensity is preferably in the range of 570 nm to 680 nm, and may be in the range of 575 nm to 680 nm, or may be in the range of 575 nm to 670 nm. The range of the emission peak wavelength having the maximum emission intensity in the emission spectrum of the light emitting device may overlap with the range of the emission peak wavelength of the first phosphor. In the emission spectrum of the light emitting device, the emission peak wavelength having the maximum emission intensity may be due to the emission of the first phosphor.

発光素子
発光素子は、400nm以上490nm以下の範囲内に発光ピーク波長を有する。発光素子の発光ピーク波長は、420nm以上480nm以下の範囲内にあることが好ましく、さらに440nm以上460nm以下の範囲内にあってもよい。発光装置は、発光素子の発光と、第1蛍光体及び必要に応じて第2蛍光体の発光との混色光により、相関色温度が1950K以下であり、暖かみがあり、落ち着いた雰囲気を感じさせる光を発する。発光素子の発光の少なくとも一部が第1蛍光体の励起光として利用され、第2蛍光体を含む場合は、第2蛍光体の励起光として利用される。また、発光素子の発光の一部が発光装置から発せられる光として利用される。発光素子の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅は、好ましくは30nm以下、より好ましくは25nm以下、さらに好ましくは20nm以下である。発光素子は、例えば、窒化物系半導体を用いた半導体発光素子を用いることが好ましい。これにより、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
Light-emitting element The light-emitting element has an emission peak wavelength in the range of 400 nm to 490 nm. The emission peak wavelength of the light-emitting element is preferably in the range of 420 nm to 480 nm, and may be in the range of 440 nm to 460 nm. The light-emitting device emits light with a correlated color temperature of 1950 K or less, which is warm and gives a sense of a calm atmosphere, by mixing the emission of the light-emitting element with the emission of the first phosphor and, if necessary, the emission of the second phosphor. At least a part of the emission of the light-emitting element is used as excitation light for the first phosphor, and in the case where the second phosphor is included, it is used as excitation light for the second phosphor. In addition, a part of the emission of the light-emitting element is used as light emitted from the light-emitting device. In the emission spectrum of the light-emitting element, the full width at half maximum of the emission spectrum having the emission peak wavelength is preferably 30 nm or less, more preferably 25 nm or less, and even more preferably 20 nm or less. For example, it is preferable to use a semiconductor light-emitting element using a nitride-based semiconductor as the light-emitting element. This makes it possible to obtain a stable light-emitting device that is highly efficient, has high linearity of output relative to input, and is resistant to mechanical shock.

第1蛍光体
発光装置は、570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体を備える。第1蛍光体は、400nm以上490nm以下の範囲に発光ピーク波長を有する発光素子の発光によって励起され、570nm以上680nm以下の範囲内に発光ピーク波長を有する光を発する。第1蛍光体は、575nm以上670nm以下の範囲内に発光ピーク波長を有していてもよく、580nm以上660nm以下の範囲内に発光ピーク波長を有していてもよい。第1蛍光体は、第1蛍光体の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅が、3nm以上120nm以下の範囲内であることが好ましい。第1蛍光体の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅は、3nm以上15nm以下の範囲内であるか、60nm以上120nm以下の範囲内であることが好ましい。暖かみを感じさせる相関色温度を有し、落ち着いた雰囲気の光を発光装置から発するために、第1蛍光体の発光ピーク波長を有する発光スペクトルの半値全幅は前記範囲内であることが好ましい。
First phosphor The light emitting device includes a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm. The first phosphor is excited by the emission of a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and emits light having an emission peak wavelength in the range of 570 nm to 680 nm. The first phosphor may have an emission peak wavelength in the range of 575 nm to 670 nm, or may have an emission peak wavelength in the range of 580 nm to 660 nm. In the emission spectrum of the first phosphor, the full width at half maximum of the emission spectrum having the emission peak wavelength is preferably in the range of 3 nm to 120 nm. In the emission spectrum of the first phosphor, the full width at half maximum of the emission spectrum having the emission peak wavelength is preferably in the range of 3 nm to 15 nm, or in the range of 60 nm to 120 nm. In order to emit light having a correlated color temperature that gives a sense of warmth and a calm atmosphere from the light emitting device, the full width at half maximum of the emission spectrum having the emission peak wavelength of the first phosphor is preferably within the above range.

第1蛍光体は、下記式(1A)で表される組成を有する第1窒化物蛍光体、下記式(1B)で表される組成を有する第2窒化物蛍光体、下記式(1C)で表される第1フッ化物蛍光体、及び下記式(1C)とは組成が異なる下記式(1C’)で表される組成を有する第2フッ化物蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。第1蛍光体は、下記式(1A)で表される組成を有する第1窒化物蛍光体を必須として含むことが好ましい。発光装置は、第1蛍光体を含むことにより、1950K以下の相関色温度であり、発光装置の発光スペクトルにおける最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、メラノピック比MRが0.233以下である光を発することができる。
Si:Eu (1A)
(式(1A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
SrCaAlSi:Eu (1B)
(式(1B)中、q、s、t、u、vは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
[M 1-bMn4+ ] (1C)
(式(1C)中、Aは、K、Li、Na、Rb、Cs及びNH から成る群から選択される少なくとも1種を含み、その中でもKが好ましい。Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Geが好ましい。bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
A’c’[M1-b’Mn4+ b’d’] (1C’)
(式(1C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、その中でもKが好ましい。M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Alが好ましい。b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
本明細書において、蛍光体の組成を表す式中、コロン(:)の前は母体結晶及び蛍光体の組成1モル中の各元素のモル比を表し、コロン(:)の後は賦活元素を表す。
The first phosphor preferably includes at least one selected from the group consisting of a first nitride phosphor having a composition represented by the following formula (1A), a second nitride phosphor having a composition represented by the following formula (1B), a first fluoride phosphor represented by the following formula (1C), and a second fluoride phosphor having a composition represented by the following formula (1C') which is different in composition from the following formula (1C). The first phosphor preferably includes a first nitride phosphor having a composition represented by the following formula (1A) as an essential component. By including the first phosphor, the light emitting device can emit light having a correlated color temperature of 1950K or less, an emission spectrum showing the maximum emission intensity in the emission spectrum of the light emitting device having a full width at half maximum of 110 nm or less, and a melanopic ratio MR of 0.233 or less.
M12Si5N8 : Eu ( 1A )
(In formula (1A), M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.)
SrqCasAltSiuNv : Eu ( 1B )
(In formula (1B), q, s, t, u, and v respectively satisfy 0≦q<1, 0<s≦1, q+s≦1, 0.9≦t≦1.1, 0.9≦u≦1.1, and 2.5≦v≦3.5.)
A c [M 2 1-b Mn 4+ b F d ] (1C)
(In formula (1C), A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , among which K + is preferred. M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements, among which Si and Ge are preferred. b satisfies 0<b<0.2, c is the absolute value of the charge of the [M 2 1-b Mn 4+ b F d ] ion, and d satisfies 5<d<7.)
A'c' [M 2 '1-b' Mn 4 + b' F d' ] (1C')
(In formula (1C'), A' includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , among which K + is preferred. M 2 ' includes at least one element selected from the group consisting of Group 4 elements, Group 13 elements and Group 14 elements, among which Si and Al are preferred. b' satisfies 0<b'<0.2, c' is the absolute value of the charge of the [M 2 '1-b' Mn 4+ b' F d' ] ion, and d' satisfies 5<d'<7.)
In this specification, in the formula expressing the composition of a phosphor, the part before the colon (:) expresses the molar ratio of each element in 1 mole of the host crystal and phosphor composition, and the part after the colon (:) expresses an activator element.

第1蛍光体は、前記式(1A)で表される組成を有する第1窒化物蛍光体、前記式(1B)で表される組成を有する第2窒化物蛍光体、前記式(1C)で表される第1フッ化物蛍光体、及び前記式(1C)とは組成が異なる前記式(1C’)で表される組成を有する第2フッ化物蛍光体、後述するように、式(D)で表される組成を有するフルオロジャーマネート蛍光体、式(1E)で表される組成を有する第4窒化物蛍光体、及び式(1F)で表される組成を有する第1硫化物蛍光体、からなる群から選択される少なくとも1種を含むことが好ましい。第1蛍光体は、1種の蛍光体を単独で含んでいてもよく、2種以上の蛍光体を含んでいてもよい。 The first phosphor preferably includes at least one selected from the group consisting of a first nitride phosphor having a composition represented by the formula (1A), a second nitride phosphor having a composition represented by the formula (1B), a first fluoride phosphor represented by the formula (1C), and a second fluoride phosphor having a composition represented by the formula (1C') which is different from the formula (1C), a fluorogermanate phosphor having a composition represented by the formula (D), a fourth nitride phosphor having a composition represented by the formula (1E), and a first sulfide phosphor having a composition represented by the formula (1F), as described below. The first phosphor may include one type of phosphor alone, or may include two or more types of phosphors.

第2実施形態の発光装置は、第1蛍光体として、前記式(1A)で表される組成を有する第1窒化物蛍光体を含む。第1蛍光体が、前記式(1A)で表される組成を有する第1窒化物蛍光体を含むことにより、1950K以下の相関色温度であり、発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、前記式(1)から導き出されるメラノピック比MRが0.233以下である光を発することができる。第2実施形態の発光装置は、第1蛍光体として、前記式(1B)で表される組成を有する第2窒化物蛍光体及び前記式(1C)で表される組成を有するフッ化物蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。 The light emitting device of the second embodiment includes a first nitride phosphor having a composition represented by the formula (1A) as the first phosphor. By including the first nitride phosphor having a composition represented by the formula (1A) as the first phosphor, it is possible to emit light having a correlated color temperature of 1950K or less, a full width at half maximum of an emission spectrum showing the maximum emission intensity in the emission spectrum of the light emitting device being 110 nm or less, and a melanopic ratio MR derived from the formula (1) being 0.233 or less. The light emitting device of the second embodiment preferably includes at least one type selected from the group consisting of a second nitride phosphor having a composition represented by the formula (1B) and a fluoride phosphor having a composition represented by the formula (1C) as the first phosphor.

第1蛍光体は、フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第1硫化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。フルオロジャーマネート蛍光体は、例えば、下記式(1D)で表される組成を有する。第4窒化物蛍光体は、例えば、下記式(1E)で表される組成を有する。第1硫化物蛍光体は、例えば、下記式(1F)で表される組成を有する。
(i-j)MgO・(j/2)Sc・kMgF・mCaF・(1-n)GeO・(n/2)M :Mn (1D)
(式(1D)中、MはAl、Ga及Inからなる群から選択される少なくとも1種である。i、j、k、m、n及びzはそれぞれ、2≦i≦4、0≦j<0.5、0<k<1.5、0≦m<1.5、0≦n<0.5を満たす。)
v2 w2Al3-y2Siy2z2:M (1E)
(式(1E)中、Mは、Ca、Sr、Ba及びMgからなる群より選択される少なくとも1種の元素であり、Mは、Li、Na及びKからなる群より選択される少なくとも1種の元素であり、Mは、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v2、w2、y2及びz2は、それぞれ0.80≦v2≦1.05、0.80≦w2≦1.05、0≦y2≦0.5、3.0≦z2≦5.0を満たす。)
(Ca,Sr)S:Eu (1F)
本明細書において、蛍光体の組成を示す式中、カンマ(,)で区切られて記載されている複数の元素は、これら複数の元素のうち少なくとも1種の元素を組成中に含むことを意味し、複数の元素から2種以上を組み合わせて含んでいてもよい。
The first phosphor may include at least one phosphor selected from the group consisting of a fluorogermanate phosphor, a fourth nitride phosphor, and a first sulfide phosphor. The fluorogermanate phosphor has a composition represented by the following formula (1D), for example. The fourth nitride phosphor has a composition represented by the following formula (1E), for example. The first sulfide phosphor has a composition represented by the following formula (1F), for example.
(i-j) MgO. (j/2) Sc2O3 . kmGgF2 . mCaF2 . (1-n) GeO2 . (n/ 2 ) M32O3 : Mn (1D)
(In formula (1D), M3 is at least one selected from the group consisting of Al, Ga, and In. i, j, k, m, n, and z each satisfy 2≦i≦4, 0≦j<0.5, 0<k<1.5, 0≦m<1.5, and 0≦n<0.5.)
M4v2M5w2Al3 - y2Siy2Nz2 : M6 ( 1E )
(In formula (1E), M4 is at least one element selected from the group consisting of Ca, Sr, Ba, and Mg, M5 is at least one element selected from the group consisting of Li, Na, and K, M6 is at least one element selected from the group consisting of Eu, Ce, Tb, and Mn, and v2, w2, y2, and z2 satisfy 0.80≦v2≦1.05, 0.80≦w2≦1.05, 0≦y2≦0.5, and 3.0≦z2≦5.0, respectively.)
(Ca,Sr)S:Eu (1F)
In this specification, in a formula showing the composition of a phosphor, a plurality of elements separated by a comma (,) means that at least one of these plurality of elements is contained in the composition, and a combination of two or more of the plurality of elements may be contained.

式(1D)で表される組成を有するフルオロジャーマネート蛍光体は、下記式(1d)で表される組成を有していてもよい。
3.5MgO・0.5MgF・GeO:Mn (1d)
The fluorogermanate phosphor having the composition represented by formula (1D) may have a composition represented by the following formula (1d):
3.5MgO.0.5MgF2.GeO2 : Mn (1d)

式(1E)で表される組成を有する第4窒化物蛍光体は、下記式(1e)で表される組成を有していてもよい。
v2 w2 x2Al3-y2Siy2z2 (1e)
(式(1e)中、M、M及びMは、それぞれ式(1E)のM、M及びMと同義であり、v2、w2、y2及びz2は、それぞれ式(1E)のv2、w2、y2及びz2と同義であり、x2は、0.001<x2≦0.1を満たす。)
The fourth nitride phosphor having the composition represented by formula (1E) may have a composition represented by the following formula (1e):
M 4 v2 M 5 w2 M 6 x2 Al 3-y2 Si y2 N z2 (1e)
(In formula (1e), M4 , M5 and M6 are respectively defined as M4 , M5 and M6 in formula (1E), v2, w2, y2 and z2 are respectively defined as v2, w2, y2 and z2 in formula (1E), and x2 satisfies 0.001<x2≦0.1.)

フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第1硫化物蛍光体は、570nm以上680nm以下の範囲内に発光ピーク波長を有し、好ましくは600nm以上630nm以下の範囲内に発光ピーク波長を有する。フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第1硫化物蛍光体は、第1蛍光体の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅が、例えば5nm以上100nm以下であり、好ましくは6nm以上90nm以下である。 The fluorogermanate phosphor, the fourth nitride phosphor, and the first sulfide phosphor have an emission peak wavelength in the range of 570 nm to 680 nm, and preferably have an emission peak wavelength in the range of 600 nm to 630 nm. In the emission spectrum of the first phosphor, the fluorogermanate phosphor, the fourth nitride phosphor, and the first sulfide phosphor have a full width at half maximum of an emission spectrum having an emission peak wavelength of, for example, 5 nm to 100 nm, and preferably 6 nm to 90 nm.

第1実施形態の発光装置及び第2実施形態の発光装置は、1種の第1蛍光体を単独で含んでいてもよく、2種以上の第1蛍光体を含んでいてもよい。発光装置は、第1蛍光体を含むことにより、暖かみを感じさせる相関色温度を有し、落ち着いた雰囲気の光が発せられる。 The light emitting device of the first embodiment and the light emitting device of the second embodiment may contain one type of first phosphor alone, or may contain two or more types of first phosphors. By containing the first phosphor, the light emitting device has a correlated color temperature that gives a feeling of warmth, and emits light with a calm atmosphere.

第1蛍光体として、式(1A)で表される組成を有する第1窒化物蛍光体を必須として含む場合、第1蛍光体の全てが第1窒化物蛍光体であってもよい。第1蛍光体として、式(1A)で表される組成を有する第1窒化物蛍光体を必須として含み、式(1A)で表される組成を有する第1窒化物蛍光体以外の第1蛍光体を含む場合には、第1蛍光体中の第1窒化物蛍光体と、第1窒化物蛍光体以外の第1蛍光体の配合の質量比率(第1窒化物蛍光体/第1窒化物蛍光体以外の第1蛍光体)が99/1から1/99の範囲でもよく、98/2から10/90の範囲でもよく、95/5から30/70の範囲でもよい。式(1A)で表される組成を有する第1窒化物蛍光体以外の第1蛍光体は、式(1B)で表される組成を有する第2窒化物蛍光体、式(1C)で表される第1フッ化物蛍光体、式(1C’)で表される第2フッ化物蛍光体、式(1D)で表される組成を有するフルオロジャーマネート蛍光体、式(1E)で表される組成を有する第4窒化物蛍光体、及び式(1F)で表される第1硫化物蛍光体からなる群から選択される少なくとも1種の蛍光体をいう。 When the first phosphor essentially contains a first nitride phosphor having a composition represented by formula (1A), all of the first phosphors may be the first nitride phosphor. When the first phosphor essentially contains a first nitride phosphor having a composition represented by formula (1A) and contains a first phosphor other than the first nitride phosphor having a composition represented by formula (1A), the mass ratio of the first nitride phosphor in the first phosphor to the first phosphor other than the first nitride phosphor (first nitride phosphor/first phosphor other than the first nitride phosphor) may be in the range of 99/1 to 1/99, 98/2 to 10/90, or 95/5 to 30/70. The first phosphor other than the first nitride phosphor having a composition represented by formula (1A) refers to at least one phosphor selected from the group consisting of a second nitride phosphor having a composition represented by formula (1B), a first fluoride phosphor represented by formula (1C), a second fluoride phosphor represented by formula (1C'), a fluorogermanate phosphor having a composition represented by formula (1D), a fourth nitride phosphor having a composition represented by formula (1E), and a first sulfide phosphor represented by formula (1F).

第1実施形態の発光装置又は第2実施形態の発光装置は、第1蛍光体として、式(1D)で表される組成を有するフルオロジャーマネート蛍光体、式(1E)で表される組成を有する第4窒化物蛍光体、式(1F)で表される組成を有する第1硫化物蛍光体からなる群から選択される少なくとも1種を含んでいてもよい。第1蛍光体は、1種の蛍光体を単独で含んでいてもよく、2種以上の蛍光体を含んでいてもよい。 The light emitting device of the first embodiment or the light emitting device of the second embodiment may contain, as a first phosphor, at least one selected from the group consisting of a fluorogermanate phosphor having a composition represented by formula (1D), a fourth nitride phosphor having a composition represented by formula (1E), and a first sulfide phosphor having a composition represented by formula (1F). The first phosphor may contain one type of phosphor alone, or may contain two or more types of phosphors.

発光装置に含まれる第1蛍光体は、発光装置の形態等によって含有量が変化する。第1蛍光体が、発光装置の波長変換部材に含まれる場合、波長変換部材は、蛍光体と透光性材料を含むことが好ましい。波長変換部材は、蛍光体と透光性材料を含む波長変換体を備えていてもよい。波長変換部材に含まれる蛍光体は、透光性材料100質量部に対して、蛍光体の総量が10質量部以上でもよく、15質量部以上でもよく、20質量部以上でもよく、30質量部以上でもよく、40質量部以上でもよく、50質量部以上でもよい。また、900質量部以下でもよく、800質量部以下でもよく、700質量部以下でもよく、600質量部以下でもよく、500質量部以下でもよく、400質量部以下でもよい。蛍光体の総量は、発光装置に第1蛍光体のみが含まれ、第1蛍光体以外の他の蛍光体を含まない場合には、第1蛍光体の合計量をいう。蛍光体の総量は、発光装置に第1蛍光体及び第2蛍光体が含まれる場合は、第1蛍光体及び第2蛍光体の合計量をいう。 The content of the first phosphor contained in the light emitting device varies depending on the form of the light emitting device. When the first phosphor is contained in the wavelength conversion member of the light emitting device, it is preferable that the wavelength conversion member contains a phosphor and a translucent material. The wavelength conversion member may be provided with a wavelength conversion body containing a phosphor and a translucent material. The phosphor contained in the wavelength conversion member may have a total amount of phosphor of 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, 40 parts by mass or more, or 50 parts by mass or more, per 100 parts by mass of the translucent material. It may also be 900 parts by mass or less, 800 parts by mass or less, 700 parts by mass or less, 600 parts by mass or less, 500 parts by mass or less, or 400 parts by mass or less. The total amount of phosphor refers to the total amount of the first phosphor when the light emitting device contains only the first phosphor and does not contain any other phosphor other than the first phosphor. The total amount of phosphor refers to the combined amount of the first phosphor and the second phosphor when the light emitting device contains a first phosphor and a second phosphor.

発光装置が後述する第2蛍光体を備える場合には、発光装置に含まれる第1蛍光体の含有量は、第1蛍光体及び第2蛍光体の総量に対して、5質量%以上95質量%以下の範囲内であることが好ましい。発光装置に含まれる第1蛍光体の含有量が、第1蛍光体及び第2蛍光体の総量に対して5質量%以上95質量%以下の範囲内であれば、発光装置は、相関色温度が1950K以下であり、発光装置の発光スペクトルにおいて、最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、メラノピック比MRが0.233以下である、暖かみを感じさせる相関色温度を有し、落ち着いた雰囲気の光が発せられる。発光装置に含まれる第1蛍光体の含有量は、第1蛍光体及び第2蛍光体の総量に対して、8質量%以上80質量%以下の範囲内でもよく、10質量%以上70質量%以下の範囲内でもよく、11質量%以上60質量%以下の範囲内でもよい。 When the light emitting device includes a second phosphor described later, the content of the first phosphor contained in the light emitting device is preferably in the range of 5% by mass to 95% by mass with respect to the total amount of the first phosphor and the second phosphor. If the content of the first phosphor contained in the light emitting device is in the range of 5% by mass to 95% by mass with respect to the total amount of the first phosphor and the second phosphor, the light emitting device has a correlated color temperature of 1950K or less, a full width at half maximum of the emission spectrum showing the maximum emission intensity is 110 nm or less in the emission spectrum of the light emitting device, and a melanopic ratio MR is 0.233 or less, which gives a sense of warmth, and emits light with a calm atmosphere. The content of the first phosphor contained in the light emitting device may be in the range of 8% by mass to 80% by mass with respect to the total amount of the first phosphor and the second phosphor, or may be in the range of 10% by mass to 70% by mass with respect to the total amount of the first phosphor and the second phosphor, or may be in the range of 11% by mass to 60% by mass with respect to the total amount of the first phosphor and the second phosphor.

第2蛍光体
発光装置は、480nm以上570nm未満の範囲内に発光ピーク波長を有する第2蛍光体を備えることが好ましい。第2蛍光体は、480nm以上569nm以下の範囲内に発光ピーク波長を有することが好ましい。第2蛍光体は、400nm以上490nm以下の範囲に発光ピーク波長を有する発光素子の発光によって励起され、480nm以上570nm未満の範囲内に発光ピーク波長を有する光を発する。第2蛍光体は、発光素子によって励起され、490nm以上565nm以下の範囲内に発光ピーク波長を有していてもよく、495nm以上560nm以下の範囲内に発光ピーク波長を有していてもよい。第2蛍光体は、第2蛍光体の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅が、20nm以上125nm以下の範囲内であることが好ましく、25nm以上124nm以下の範囲内でもよく、30nm以上123nm以下の範囲内でもよい。暖かみを感じさせる相関色温度を有し、落ち着いた雰囲気の光を発するために、第2蛍光体の発光スペクトルにおける発光ピーク波長を有する発光スペクトルの半値全幅は20nm以上125nm以下の範囲内であることが好ましい。
Second phosphor The light emitting device preferably includes a second phosphor having an emission peak wavelength in the range of 480 nm to less than 570 nm. The second phosphor preferably has an emission peak wavelength in the range of 480 nm to 569 nm. The second phosphor is excited by the emission of a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and emits light having an emission peak wavelength in the range of 480 nm to less than 570 nm. The second phosphor is excited by the light emitting element and may have an emission peak wavelength in the range of 490 nm to 565 nm, or may have an emission peak wavelength in the range of 495 nm to 560 nm. The second phosphor is preferably such that the full width at half maximum of the emission spectrum having an emission peak wavelength in the emission spectrum of the second phosphor is in the range of 20 nm to 125 nm, may be in the range of 25 nm to 124 nm, or may be in the range of 30 nm to 123 nm. In order to emit light having a correlated color temperature that gives a feeling of warmth and creating a calm atmosphere, the full width at half maximum of the emission spectrum having an emission peak wavelength in the emission spectrum of the second phosphor is preferably within the range of 20 nm to 125 nm.

第2蛍光体は、下記式(2A)で表される組成を有する希土類アルミン酸塩蛍光体、及び下記式(2B)で表される組成を有する第3窒化物蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。
Ln (Al1-aGa12:Ce (2A)
(式(2A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
LaLn Si:Ce (2B)
(式(2B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モルに含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12.0、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
式(2A)で表される組成を有する希土類アルミン酸塩蛍光体及び式(2B)で表される組成を有する第3窒化物蛍光体は、蛍光体の発光スペクトルにおける発光ピーク波長を有する発光ピークの半値全幅が、例えば90nm以上、好ましくは100nm以上、より好ましくは110nm以上であり、また例えば125nm以下、好ましくは124nm以下、より好ましくは123nm以下である。
It is preferable that the second phosphor contains at least one selected from the group consisting of a rare earth aluminate phosphor having a composition represented by the following formula (2A) and a third nitride phosphor having a composition represented by the following formula (2B):
Ln13 ( Al1 -aGaa ) 5O12 : Ce(2A)
(In formula (2A), Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and a satisfies 0≦a≦0.5.)
LawLn2xSi6Ny : Cez ( 2B )
(In formula (2B), Ln2 essentially contains at least one selected from the group consisting of Y and Gd, and may contain at least one selected from the group consisting of Sc and Lu, and when the Ln2 element contained in 1 mole of the composition is 100 mol%, the total of Y and Gd contained in Ln2 is 90 mol% or more, and w, x, y, and z satisfy 1.2≦w≦2.2, 0.5≦x≦1.2, 10≦y≦12.0, 0.5≦z≦1.2, 1.80<w+x<2.40, and 2.9≦w+x+z≦3.1.)
The rare earth aluminate phosphor having a composition represented by formula (2A) and the third nitride phosphor having a composition represented by formula (2B) have an emission peak having an emission peak wavelength in the emission spectrum of the phosphor, and a full width at half maximum of the emission peak is, for example, 90 nm or more, preferably 100 nm or more, and more preferably 110 nm or more, and for example, 125 nm or less, preferably 124 nm or less, and more preferably 123 nm or less.

第2蛍光体は、アルカリ土類金属アルミン酸塩蛍光体及びアルカリ土類金属ハロシリケート蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。アルカリ土類金属アルミン酸塩蛍光体は、例えば、ストロンチウムを少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(2C)で表される組成を有する。またアルカリ土類金属ハロシリケート蛍光体は、例えば、カルシウムと塩素を少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(2D)で表される組成を有する。
SrAl1425:Eu (2C)
(Ca,Sr,Ba)MgSi16(F,Cl,Br):Eu (2D)
式(2C)中、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。
式(2C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(2D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体は、480nm以上520nm未満の範囲内に発光ピーク波長を有し、好ましくは485nm以上515nm以下の範囲内に発光ピーク波長を有する。
式(2C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(2D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体は、蛍光体の発光スペクトルにおける発光ピーク波長を有する発光ピークの半値全幅が、例えば30nm以上、好ましくは40nm以上、より好ましくは50nm以上であり、また例えば80nm以下、好ましくは70nm以下である。
The second phosphor may include at least one phosphor selected from the group consisting of alkaline earth metal aluminate phosphors and alkaline earth metal halosilicate phosphors. The alkaline earth metal aluminate phosphor is, for example, a phosphor that contains at least strontium and is activated with europium, and has, for example, a composition represented by the following formula (2C). The alkaline earth metal halosilicate phosphor is, for example, a phosphor that contains at least calcium and chlorine, and is activated with europium, and has, for example, a composition represented by the following formula (2D).
Sr4Al14O25 : Eu ( 2C )
(Ca,Sr,Ba) 8MgSi4O16 (F,Cl , Br) 2 :Eu ( 2D )
In formula (2C), a part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn.
The alkaline earth metal aluminate phosphor having a composition represented by formula (2C) and the alkaline earth metal halosilicate phosphor having a composition represented by formula (2D) have an emission peak wavelength in the range of 480 nm or more and less than 520 nm, and preferably have an emission peak wavelength in the range of 485 nm or more and 515 nm or less.
In the alkaline earth metal aluminate phosphor having a composition represented by formula (2C) and the alkaline earth metal halosilicate phosphor having a composition represented by formula (2D), the full width at half maximum of an emission peak having an emission peak wavelength in the emission spectrum of the phosphor is, for example, 30 nm or more, preferably 40 nm or more, more preferably 50 nm or more, and for example, 80 nm or less, preferably 70 nm or less.

第2蛍光体は、βサイアロン蛍光体、第2硫化物蛍光体、スカンジウム系蛍光体、及びアルカリ土類金属シリケート系蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。βサイアロン蛍光体は、例えば、下記式(2E)で表される組成を有する。第2硫化物蛍光体は、例えば、下記式(2F)で表される組成を有する。スカンジウム系蛍光体は、例えば、下記式(2G)で表される組成を有する。アルカリ土類金属シリケート系蛍光体は、例えば、下記式(2H)で表される組成又は下記式(2I)で表される組成を有する。
Si6-gAl8-g:Eu(0<g≦4.2) (2E)
(Sr,M)Ga:Eu (2F)
(式(2F)中、Mは、Be、Mg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素である。)
(Ca,Sr)Sc:Ce (2G)
(Ca,Sr)(Sc,Mg)Si12:Ce (2H)
(Ca,Sr,Ba)SiO:Eu (2I)
The second phosphor may include at least one phosphor selected from the group consisting of a β-sialon phosphor, a second sulfide phosphor, a scandium-based phosphor, and an alkaline earth metal silicate-based phosphor. The β-sialon phosphor has a composition represented by the following formula (2E), for example. The second sulfide phosphor has a composition represented by the following formula (2F), for example. The scandium-based phosphor has a composition represented by the following formula (2G), for example. The alkaline earth metal silicate-based phosphor has a composition represented by the following formula (2H) or a composition represented by the following formula (2I).
Si6- gAlgOgN8 -g : Eu(0<g≦4.2) (2E)
(Sr, M7 ) Ga2S4 : Eu(2F)
(In formula (2F), M7 is at least one element selected from the group consisting of Be, Mg, Ca, Ba, and Zn.)
(Ca,Sr) Sc2O4 : Ce (2G)
(Ca,Sr) 3 (Sc,Mg) 2Si3O12 : Ce( 2H )
(Ca,Sr,Ba) 2SiO4 :Eu( 2I )

βサイアロン蛍光体、第2硫化物蛍光体、スカンジウム系蛍光体、及びアルカリ土類金属シリケート系蛍光体は、520nm以上580nm未満の範囲内に発光ピーク波長を有し、好ましくは525nm以上565nm以下の範囲内に発光ピーク波長を有する。βサイアロン蛍光体、第2硫化物蛍光体、スカンジウム系蛍光体、及びアルカリ土類金属シリケート系蛍光体は、第2蛍光体の発光スペクトルにおいて、発光ピーク波長を有する発光スペクトルの半値全幅が、例えば20nm以上、好ましくは30nm以上であり、また例えば120nm以下、好ましくは115nm以下である。 The β-sialon phosphor, the second sulfide phosphor, the scandium-based phosphor, and the alkaline earth metal silicate-based phosphor have an emission peak wavelength in the range of 520 nm or more and less than 580 nm, and preferably have an emission peak wavelength in the range of 525 nm or more and 565 nm or less. In the emission spectrum of the β-sialon phosphor, the second sulfide phosphor, the scandium-based phosphor, and the alkaline earth metal silicate-based phosphor, the full width at half maximum of the emission spectrum having an emission peak wavelength in the emission spectrum of the second phosphor is, for example, 20 nm or more, preferably 30 nm or more, and, for example, 120 nm or less, preferably 115 nm or less.

第2蛍光体は、式(2A)で表される組成を有する希土類アルミン酸塩蛍光体、式(2B)で表される組成を有する第3窒化物蛍光体、式(2C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体、式(2D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体、式(2E)で表される組成を有するβサイアロン蛍光体、式(2F)で表される組成を有する第2硫化物蛍光体、式(2G)で表される組成を有するスカンジウム系蛍光体、式(2H)で表される組成を有するアルカリ土類金属シリケート系蛍光体、及び式(2I)で表される組成を有するアルカリ土類金属シリケート系蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。第2蛍光体は、1種の蛍光体を単独で含んでいてもよく、2種以上を含んでいてもよい。 The second phosphor may include at least one phosphor selected from the group consisting of a rare earth aluminate phosphor having a composition represented by formula (2A), a third nitride phosphor having a composition represented by formula (2B), an alkaline earth metal aluminate phosphor having a composition represented by formula (2C), an alkaline earth metal halosilicate phosphor having a composition represented by formula (2D), a β-sialon phosphor having a composition represented by formula (2E), a second sulfide phosphor having a composition represented by formula (2F), a scandium-based phosphor having a composition represented by formula (2G), an alkaline earth metal silicate-based phosphor having a composition represented by formula (2H), and an alkaline earth metal silicate-based phosphor having a composition represented by formula (2I). The second phosphor may include one type of phosphor alone or two or more types.

発光装置は、黒体放射軌跡からの偏差である色偏差Duvがマイナス(-)0.008以上プラス(+)0.008以下の光を発することが好ましい。色偏差Duvは、発光装置から発せられる光の黒体放射軌跡からの偏差であり、JIS Z8725に準拠して測定される。相関色温度が1950K以下の相関色温度が比較的低い場合であっても、CIE1931色度図上において黒体放射軌跡(Duvが0.000)からの色偏差Duvが-0.008以上+0.008以下の範囲内であると、照射物の色味が自然であり、ヒトに違和感を抱かせることが少ない光が、発光装置から発せられる。発光装置は、1950K以下の黒体放射軌跡からの偏差である色偏差Duvが-0.008以上+0.008以下の範囲内の光を発することが好ましく、Duvが-0.006以上+0.006以下の範囲内の光を発することがより好ましく、Duvが-0.003以上+0.003以下の範囲内である光を発することが更に好ましい。1950K以下の黒体放射軌跡からの偏差である色偏差Duvが0.008を上回る光が発せられると、照射物が自然の色味から外れ、ヒトが違和感を覚える場合がある。 It is preferable that the light emitting device emits light with a color deviation Duv, which is the deviation from the black body radiation locus, of minus (-) 0.008 or more and plus (+) 0.008 or less. The color deviation Duv is the deviation of the light emitted from the light emitting device from the black body radiation locus, and is measured in accordance with JIS Z8725. Even if the correlated color temperature is relatively low, such as 1950K or less, if the color deviation Duv from the black body radiation locus (Duv is 0.000) on the CIE1931 chromaticity diagram is within the range of -0.008 to +0.008, the color of the irradiated object is natural, and light that is unlikely to cause discomfort to humans is emitted from the light emitting device. The light emitting device preferably emits light with a color deviation Duv, which is the deviation from the blackbody radiation locus at 1950K or less, in the range of -0.008 to +0.008, more preferably emits light with a Duv in the range of -0.006 to +0.006, and even more preferably emits light with a Duv in the range of -0.003 to +0.003. If light is emitted with a color deviation Duv, which is the deviation from the blackbody radiation locus at 1950K or less, that exceeds 0.008, the irradiated object may deviate from its natural color, causing people to feel uncomfortable.

図2は、CIE1931色度図上のスペクトル軌跡及び純紫軌跡内の黒体(Black Body)放射軌跡(Duvが0.000)と、黒体放射軌跡からの色偏差を示す図である。図3は、図2の一部拡大図を示し、CIE1931色度図における色度座標のx値が0.300以上0.600以下であり、y値が0.250以上0.500以下である範囲内での黒体放射軌跡と、各相関色温度における黒体放射軌跡からの色偏差である、Duvが-0.020、Duvが-0.010、Duvが-0.008、Duvが+0.008、Duvが+0.010、Duvが+0.020の軌跡を示す図である。図2及び図3において、黒体放射軌跡(Duvが0.000)に交差する直線は、各相関色温度(CCTが1700K、1950K、2000K、2700K、3000K、4000K、5000K、6500K)における等色温度線である。発光装置から発せられる混色光の色偏差であるDuvが0の場合は、黒体放射軌跡からの偏差がなく、黒体放射軌跡に近似する。 Figure 2 shows the spectrum locus on the CIE 1931 chromaticity diagram, the black body radiation locus (Duv is 0.000) in the pure violet locus, and the color deviation from the black body radiation locus. Figure 3 shows an enlarged view of a part of Figure 2, and shows the black body radiation locus in the range of chromaticity coordinate x value from 0.300 to 0.600 and y value from 0.250 to 0.500 in the CIE 1931 chromaticity diagram, and the locus of Duv -0.020, Duv -0.010, Duv -0.008, Duv +0.008, Duv +0.010, and Duv +0.020, which are color deviations from the black body radiation locus at each correlated color temperature. In Figures 2 and 3, the straight lines that intersect with the blackbody radiation locus (Duv is 0.000) are iso-color temperature lines at each correlated color temperature (CCT is 1700K, 1950K, 2000K, 2700K, 3000K, 4000K, 5000K, 6500K). When Duv, which is the color deviation of the mixed color light emitted from the light-emitting device, is 0, there is no deviation from the blackbody radiation locus and it approximates the blackbody radiation locus.

発光装置は、400nm以上750nm以下の範囲の第1放射輝度100%に対して、650nm以上750nm以下の範囲の第2放射輝度が50%以下である光を発することが好ましい。発光装置の発光において、400nm以上750nm以下の範囲の第1放射輝度100%に対する650nm以上750nm以下の範囲の第2放射輝度の割合をLpともいう。発光装置の発光の第1放射輝度に対する第2放射輝度の割合Lpが50%以下であると、発光装置から発せられる混色光の中でも、ヒトが感知し難い長波長側の赤色成分の光が比較的少ないため、輝度を低下させることなく、暖かみがあり、落ち着いた雰囲気を感じさせる光が、発光装置から発せられる。発光装置の発光の第1放射輝度に対する第2放射輝度の割合Lpは、45%以下でもよく、40%以下でもよく、35%以下でもよく、30%以下でもよい。発光装置の発光の第1放射輝度に対する第2放射輝度の割合Lpは、良好な演色性を有する光を発するために、5%以上でもよく、8%以上でもよい。 It is preferable that the light emitting device emits light in which the second radiance in the range of 650 nm to 750 nm is 50% or less relative to the first radiance of 100% in the range of 400 nm to 750 nm. In the light emission of the light emitting device, the ratio of the second radiance in the range of 650 nm to 750 nm to the first radiance of 100% in the range of 400 nm to 750 nm is also called Lp. When the ratio Lp of the second radiance to the first radiance of the light emitted from the light emitting device is 50% or less, the light of the long-wavelength red component that is difficult for humans to sense is relatively small among the mixed light emitted from the light emitting device, so that the light emitted from the light emitting device has a warmth and gives a sense of a calm atmosphere without reducing the luminance. The ratio Lp of the second radiance to the first radiance of the light emitted from the light emitting device may be 45% or less, 40% or less, 35% or less, or 30% or less. The ratio Lp of the second radiance to the first radiance of the light emitted by the light emitting device may be 5% or more, or 8% or more, in order to emit light with good color rendering properties.

発光装置の発光の第1放射輝度に対する第2放射輝度の割合Lpは、下記式(3)によって導き出される。発光装置の発光の400nm以上750nm以下の範囲の第1放射輝度100%に対する、650nm以上750nm以下の範囲の第2放射輝度の割合Lpは、発光装置から発せられる混色光のうち、長波長の赤色成分の光の割合を示す。 The ratio Lp of the second radiance to the first radiance of the light emitted by the light emitting device is calculated by the following formula (3). The ratio Lp of the second radiance in the range of 650 nm to 750 nm to the first radiance of 100% in the range of 400 nm to 750 nm of the light emitted by the light emitting device indicates the ratio of light of the long wavelength red component in the mixed color light emitted from the light emitting device.

発光装置は、相対メラノピック比MR/MRが99%以下である光を発することが好ましい。相対メラノピック比MR/MRは、相関色温度が1950Kを超える光を発する発光装置の基準メラノピック比MRを100%としたときの、相関色温度が1950K以下である光を発する発光装置の前記式(1)から導き出されるメラノピック比MRの比率をいう。基準メラノピック比MRは、相関色温度が1950Kを超える光を発する測定対象となる発光装置の中で最も低い数値のメラノピック比を、基準メラノピック比MRとすることができる。相対メラノピック比MR/MRが99%以下と小さいと、メラトニンの分泌を促進し、自然に睡眠に誘導する光を発光装置から出射することができる。相対メラノピック比MR/MRが10%未満の光が発光装置から発せられると、例えば相対メラノピック比MR/MRが9%以下の光が発光装置から発せられると、相関色温度が1950Kを超える光を発する発光装置よりも、メラトニンを分泌する効果は大きくなるが、光の色バランスが崩れ、演色性が低下する。例えばリビングや寝室等のプライベートな空間に使用する照明であっても、発光装置に要求される演色性を満たすとともに、暖かみのある、落ち着いた雰囲気を感じさせる光を照射するために、発光装置は、相対メラノピック比MR/MRが10%以上99%以下の範囲内である光を発することが好ましい。相関色温度が1950K以下である光を発する発光装置は、相対メラノピック比MR/MRが10%以上99%以下の範囲内でもよく、30%以上98%以下の範囲内でもよく、40%以上96%以下の範囲内でもよい。 The light emitting device preferably emits light having a relative melanopic ratio MR/MR 0 of 99% or less. The relative melanopic ratio MR/MR 0 refers to the ratio of the melanopic ratio MR derived from the above formula (1) of a light emitting device emitting light having a correlated color temperature of 1950K or less, when the reference melanopic ratio MR 0 of a light emitting device emitting light having a correlated color temperature of more than 1950K is taken as 100%. The reference melanopic ratio MR 0 can be the lowest melanopic ratio among the light emitting devices to be measured that emit light having a correlated color temperature of more than 1950K. When the relative melanopic ratio MR/MR 0 is as small as 99% or less, light that promotes melatonin secretion and naturally induces sleep can be emitted from the light emitting device. When light having a relative melanopic ratio MR/MR 0 of less than 10% is emitted from the light-emitting device, for example, when a light-emitting device has a relative melanopic ratio MR/MR 0 of 9% or less, the effect of secreting melatonin is greater than that of a light-emitting device that emits light with a correlated color temperature of more than 1950K, but the color balance of the light is disrupted and color rendering is reduced. For example, even for lighting used in private spaces such as living rooms and bedrooms, in order to irradiate light that satisfies the color rendering required of the light-emitting device and gives a warm and calm atmosphere, it is preferable that the light-emitting device emits light having a relative melanopic ratio MR/MR 0 in the range of 10% to 99%. A light-emitting device that emits light with a correlated color temperature of 1950K or less may have a relative melanopic ratio MR/MR 0 in the range of 10% to 99%, or in the range of 30% to 98%, or in the range of 40% to 96%.

相関色温度が1950Kを超える光を発する発光装置の基準メラノピック比MRは、下記式(4)によって導き出すことができる。 The reference melanopic ratio MR 0 of a light emitting device that emits light with a correlated color temperature exceeding 1950 K can be derived by the following formula (4).

(式(4)中、MRは、相関色温度が1950Kを超える発光装置のメラノピック比であり、S(λ)は相関色温度が1950Kを超える発光装置の発光の分光放射輝度であり、V(λ)及びR(λ)は式(1)と同義である。) (In formula (4), MR 0 is the melanopic ratio of a light-emitting device having a correlated color temperature of more than 1950 K, S 0 (λ) is the spectral radiance of light emitted from a light-emitting device having a correlated color temperature of more than 1950 K, and V(λ) and R m (λ) are defined as in formula (1).)

相対メラノピック比MR/MR(%)は、下記式(5)によって導き出すことができる。 The relative melanopic ratio MR/MR 0 (%) can be calculated by the following formula (5).

発光装置の一例を図面に基づいて説明する。図4及び図5は、第1構成例の発光装置を示す概略断面図である。 An example of a light-emitting device will be described with reference to the drawings. Figures 4 and 5 are schematic cross-sectional views showing a light-emitting device of a first configuration example.

発光装置100は、図4に示されるように、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子10と、発光素子からの光により励起されて発光する第1蛍光体71と、を備える。 As shown in FIG. 4, the light emitting device 100 includes a light emitting element 10 having an emission peak wavelength in the range of 400 nm to 490 nm, and a first phosphor 71 that emits light when excited by light from the light emitting element.

発光装置100は、成形体41と、発光素子10と、波長変換部材21とを備える。成形体40は、第1リード2及び第2リード3と、熱可塑性樹脂又は熱硬化性樹脂を含む樹脂部42とが一体的に成形されてなるものである。成形体41は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1リード2及び第2リード3とそれぞれワイヤ60を介して電気的に接続されている。発光素子10は波長変換部材21により被覆されている。波長変換部材21は、例えば、発光素子10からの光を波長変換する蛍光体70と透光性材料を含む。波長変換部材21は、成形体40の凹部において、発光素子10と蛍光体70を覆う封止部材としての機能も有する。蛍光体70は、発光素子からの光により励起されて570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体71を含む。発光素子10の正負一対の電極に接続された第1リード2及び第2リード3は、発光装置100を構成するパッケージの外方に向けて、第1リード2及び第2リード3の一部が露出されている。これらの第1リード2及び第2リード3を介して、外部から電力の供給を受けて発光装置100を発光させることができる。 The light emitting device 100 includes a molded body 41, a light emitting element 10, and a wavelength conversion member 21. The molded body 40 is formed by integrally molding a first lead 2, a second lead 3, and a resin part 42 containing a thermoplastic resin or a thermosetting resin. The molded body 41 forms a recess having a bottom surface and a side surface, and the light emitting element 10 is placed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 2 and the second lead 3 via wires 60, respectively. The light emitting element 10 is covered with a wavelength conversion member 21. The wavelength conversion member 21 includes, for example, a phosphor 70 that converts the wavelength of light from the light emitting element 10 and a translucent material. The wavelength conversion member 21 also functions as a sealing member that covers the light emitting element 10 and the phosphor 70 in the recess of the molded body 40. The phosphor 70 includes a first phosphor 71 that is excited by light from the light emitting element and has an emission peak wavelength in the range of 570 nm to 680 nm. The first lead 2 and the second lead 3 connected to a pair of positive and negative electrodes of the light emitting element 10 have portions exposed toward the outside of the package that constitutes the light emitting device 100. Power can be supplied from the outside via the first lead 2 and the second lead 3 to cause the light emitting device 100 to emit light.

発光装置200は、図5に示されるように、蛍光体70が、480nm以上570nm以下の範囲内に発光ピーク波長を有する第2蛍光体72を含むこと以外は、図4に示される発光装置100と同じであり、同一の部材には同一の符号を付した。 As shown in FIG. 5, the light emitting device 200 is the same as the light emitting device 100 shown in FIG. 4, except that the phosphor 70 includes a second phosphor 72 having an emission peak wavelength in the range of 480 nm to 570 nm, and the same components are denoted by the same reference numerals.

第1構成例の発光装置における波長変換部材は、蛍光体と透光性材料とを含み、透光性材料が樹脂であることが好ましい。波長変換部材に用いる透光性材料は、樹脂、ガラス及び無機物からなる群から選択される少なくとも一種が挙げられる。樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される少なくとも一種であることが好ましい。無機物は、酸化アルミニウム及び窒化アルミニウムからなる群から選択される少なくとも一種が挙げられる。波長変換部材には、蛍光体と透光性材料の他に、必要に応じてフィラー、着色剤、光拡散材を含んでいてもよい。フィラーとしては、例えば二酸化ケイ素、チタン酸バリウム、酸化チタン、酸化アルミニウム等が挙げられる。波長変換部材に含まれる蛍光体及び透光性材料以外のその他の成分の含有量は、その他の成分の合計の含有量で、透光性材料100質量部に対して、0.01質量部以上50質量部以下の範囲内とすることができ、0.1質量部以上45質量部以下の範囲内でもよく、0.5質量部以上40質量部以下の範囲内でもよい。 The wavelength conversion member in the light emitting device of the first configuration example includes a phosphor and a light-transmitting material, and the light-transmitting material is preferably a resin. The light-transmitting material used in the wavelength conversion member is at least one selected from the group consisting of resin, glass, and inorganic material. The resin is preferably at least one selected from the group consisting of epoxy resin, silicone resin, phenolic resin, and polyimide resin. The inorganic material is at least one selected from the group consisting of aluminum oxide and aluminum nitride. In addition to the phosphor and the light-transmitting material, the wavelength conversion member may contain a filler, a colorant, and a light diffusing material as necessary. Examples of the filler include silicon dioxide, barium titanate, titanium oxide, and aluminum oxide. The content of other components other than the phosphor and the light-transmitting material contained in the wavelength conversion member can be in the range of 0.01 parts by mass to 50 parts by mass, or in the range of 0.1 parts by mass to 45 parts by mass, or in the range of 0.5 parts by mass to 40 parts by mass, based on 100 parts by mass of the light-transmitting material, in terms of the total content of the other components.

第1構成例の発光装置の製造方法
第1構成例の発光装置の製造方法を説明する。なお、詳細は、例えば特開2010-62272号公報の開示を参照することもできる。発光装置の製造方法は、成形体の準備工程と、発光素子の配置工程と、波長変換部材用組成物の配置工程と、樹脂パッケージ形成工程とを含むことが好ましい。成形体として、複数の凹部を有する集合成形体を用いる場合には、樹脂パッケージ形成工程後に、各単位領域の樹脂パッケージごとに分離する個片化工程を含んでいてもよい。
A method for manufacturing a light emitting device according to a first configuration example will be described. For details, the disclosure of JP 2010-62272 A can be referred to. The method for manufacturing a light emitting device preferably includes a molded body preparation step, a light emitting element arrangement step, a wavelength conversion member composition arrangement step, and a resin package formation step. When an aggregate molded body having a plurality of recesses is used as the molded body, a singulation step of separating the molded body into resin packages of each unit area may be included after the resin package formation step.

成形体の準備工程において、複数のリードを熱硬化性樹脂又は熱可塑性樹脂を用いて一体成形し、側面と底面とを有する凹部を有する成形体を準備する。成形体は、複数の凹部を含む集合基体からなる成形体であってもよい。
発光素子の配置工程において、成形体の凹部の底面に発光素子が配置され、発光素子の正負の電極が第1リード及び第2リードにワイヤにより接続される。
波長変換部材用組成物の配置工程において、成形体の凹部に波長変換部材用組成物が配置される。
樹脂パッケージ成形工程において、成形体の凹部に配置された波長変換部材用組成物を硬化させて、樹脂パッケージが形成され、発光装置が製造される。複数の凹部を含む集合体基体からなる成形体を用いた場合は、樹脂パッケージの形成工程後に、個片化工程において、複数の凹部を有する集合基体の各単位領域の樹脂パッケージごとに分離され、個々の発光装置が製造される。以上のようにして、図4又は図5に示す第1構成例の発光装置を製造することができる。
In the step of preparing a molded body, a plurality of leads are integrally molded using a thermosetting resin or a thermoplastic resin to prepare a molded body having a recess having a side surface and a bottom surface. The molded body may be a molded body made of an aggregate base including a plurality of recesses.
In the step of arranging the light-emitting element, the light-emitting element is arranged on the bottom surface of the recess of the molded body, and the positive and negative electrodes of the light-emitting element are connected to the first lead and the second lead by wires.
In the step of placing the composition for a wavelength conversion member, the composition for a wavelength conversion member is placed in the recess of the molded body.
In the resin package molding step, the composition for wavelength conversion material arranged in the recess of the molded body is cured to form a resin package, and a light emitting device is manufactured. When a molded body made of an aggregate base having a plurality of recesses is used, after the resin package forming step, the aggregate base having a plurality of recesses is separated into each resin package of each unit area in the singulation step, and individual light emitting devices are manufactured. In this manner, the light emitting device of the first configuration example shown in FIG. 4 or FIG. 5 can be manufactured.

図6は、第2構成例の発光装置を示す概略斜視図である。図7は、第2構成例の発光装置を示す概略断面図である。 Figure 6 is a schematic perspective view showing a light-emitting device of the second configuration example. Figure 7 is a schematic cross-sectional view showing a light-emitting device of the second configuration example.

発光装置300は、図6及び図7に示されるように、支持体1と、この支持体1上に配置される発光素子10と、この発光素子10の上面に配置される蛍光体70を含む波長変換部材22と、波長変換部材22及び発光素子10の側方であって支持体1に配置された光反射部材43を備える。波長変換部材22の上面には、封止部材50を備える。封止部材50は、平面視が円形状で断面視が半円球状であるレンズ部51と、このレンズ部51の外周側に延出する鍔部52とを有する。レンズ部51は、平面視を円形状とし、断面視を半円球状としている。またレンズ部51の外周側には鍔部52を延出させている。 As shown in Figs. 6 and 7, the light emitting device 300 comprises a support 1, a light emitting element 10 arranged on the support 1, a wavelength conversion member 22 including a phosphor 70 arranged on the upper surface of the light emitting element 10, and a light reflecting member 43 arranged on the support 1 to the side of the wavelength conversion member 22 and the light emitting element 10. A sealing member 50 is provided on the upper surface of the wavelength conversion member 22. The sealing member 50 has a lens portion 51 that is circular in a plan view and semispherical in a cross section, and a flange portion 52 that extends to the outer periphery of the lens portion 51. The lens portion 51 is circular in a plan view and semispherical in a cross section. The flange portion 52 also extends to the outer periphery of the lens portion 51.

波長変換部材22は、平面視において発光素子10よりも大きく形成されている。また、発光素子10の側面と光反射部材43の間に、発光素子10の側面及び波長変換部材22の一部に接する第1透光性部材30を設けている。第1透光性部材30は、発光素子10と波長変換部材22との間に設けられた、透光性接合部材32を含む。透光性接合部材32は、発光素子10と波長変換部材22を接合する接着材とすることができる。この透光性接合部材32は、その一部を、発光素子10の側面と波長変換部材22の発光素子10側の主面とで形成される隅部に、延在させてもよい。また、図7に示すように、延在された透光性接合部材32の断面形状は、光反射部材43の方向に広がる逆三角形とすることもできる。第1透光性部材30及び接合部材32は、透光性を有する樹脂が利用できる。支持体1は、上面に発光素子10や封止部材50等を実装するための部材である。支持体1は絶縁性の母材と、母材の表面に発光素子を実装する配線パターン等の導電部材4を備えている。光反射部材43は、第1透光性部材30、接合部材32及び波長変換部材22を被覆するための部材である。なお、第2構成例の発光装置及び後述する第2構成例の発光装置の製造方法の詳細は、例えば特開2020―57756号公報の開示を参照することもできる。
いる。
The wavelength conversion member 22 is formed larger than the light emitting element 10 in a plan view. In addition, a first light-transmitting member 30 is provided between the side surface of the light emitting element 10 and the light reflecting member 43, the first light-transmitting member 30 being in contact with the side surface of the light emitting element 10 and a part of the wavelength conversion member 22. The first light-transmitting member 30 includes a light-transmitting joining member 32 provided between the light emitting element 10 and the wavelength conversion member 22. The light-transmitting joining member 32 can be an adhesive material that joins the light emitting element 10 and the wavelength conversion member 22. A part of the light-transmitting joining member 32 may be extended to a corner formed by the side surface of the light emitting element 10 and the main surface of the wavelength conversion member 22 on the light emitting element 10 side. In addition, as shown in FIG. 7, the cross-sectional shape of the extended light-transmitting joining member 32 can be an inverted triangle that spreads in the direction of the light reflecting member 43. The first light-transmitting member 30 and the joining member 32 can be made of a resin having light transmittance. The support 1 is a member for mounting the light emitting element 10, the sealing member 50, etc. on the upper surface. The support 1 includes an insulating base material and a conductive member 4 such as a wiring pattern for mounting a light-emitting element on the surface of the base material. The light reflecting member 43 is a member for covering the first light-transmitting member 30, the bonding member 32, and the wavelength conversion member 22. For details of the light-emitting device of the second configuration example and the manufacturing method of the light-emitting device of the second configuration example described later, the disclosure of JP 2020-57756 A can be referred to, for example.
There are.

第2構成例の発光装置の波長変換部材は、第1構成例の発光装置の波長変換部材と同様に、蛍光体と透光性材料とを含む単一の蛍光体層であってもよい。蛍光体は、発光素子からの光により励起されて570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体を含む。蛍光体は、発光素子からの光により励起されて480nm以上570nm以下の範囲内に発光ピーク波長を有する第2蛍光体を含んでいてもよい。透光性材料は、第1構成例の発光装置の波長変換部材に用いた透光性材料と同様の透光性材料を用いることができる。また、第2構成例の発光装置の波長変換部材は、蛍光体と透光性材料の他に、第1構成例の発光装置の波長変換部材と同様に、必要に応じてフィラー、着色剤、光拡散材を含んでいてもよい。波長変換部材が、蛍光体と透光性材料を含む単一の蛍光体層からなる場合は、蛍光体と透光性材料を含む蛍光体層用組成物を硬化させて予め板状、シート状又は層状に形成し、発光素子上に配置可能な大きさに個片化して、板状、シート状又は層状の波長変換部材を形成することができる。 The wavelength conversion member of the light emitting device of the second configuration example may be a single phosphor layer including a phosphor and a light-transmitting material, similar to the wavelength conversion member of the light emitting device of the first configuration example. The phosphor includes a first phosphor excited by light from the light emitting element and having an emission peak wavelength in the range of 570 nm to 680 nm. The phosphor may include a second phosphor excited by light from the light emitting element and having an emission peak wavelength in the range of 480 nm to 570 nm. The light-transmitting material may be the same light-transmitting material as the light-transmitting material used for the wavelength conversion member of the light emitting device of the first configuration example. In addition to the phosphor and the light-transmitting material, the wavelength conversion member of the light emitting device of the second configuration example may include a filler, a colorant, and a light diffusing material as necessary, similar to the wavelength conversion member of the light emitting device of the first configuration example. When the wavelength conversion member is composed of a single phosphor layer containing a phosphor and a light-transmitting material, a phosphor layer composition containing a phosphor and a light-transmitting material can be cured to form a plate-, sheet- or layer-like shape in advance, and then diced into pieces of a size that can be arranged on the light-emitting element to form a plate-, sheet- or layer-like wavelength conversion member.

図8は、第2構成例の他の例の発光装置を示す概略断面図、及び、蛍光体層とバンドパスフィルタ層と第2透光性部材の概略断面図の一部拡大図である。図8の発光装置は、波長変換部材が、蛍光体を含む蛍光体層と、バンドパスフィルタ層と、第2透光性部材と、を含む波長変換部材を用いている点で、図7に示す発光装置と異なり、発光装置の他の部材は、図7に示す発光装置と同様である。 Figure 8 is a schematic cross-sectional view showing another example of a light-emitting device according to the second configuration example, and a partially enlarged view of the schematic cross-sectional view of the phosphor layer, the bandpass filter layer, and the second translucent member. The light-emitting device in Figure 8 differs from the light-emitting device shown in Figure 7 in that the wavelength conversion member uses a phosphor layer containing phosphor, a bandpass filter layer, and a second translucent member, but the other members of the light-emitting device are similar to those of the light-emitting device shown in Figure 7.

発光装置は、発光素子の光の出射側に、第1蛍光体を含む蛍光体層と、蛍光体層の光の出射側に配置されたバンドパスフィルタ層と、を含む波長変換部材を備え、バンドパスフィルタ層は、入射角度が0度以上30度以下の範囲内の光に対して、380nm以上495nm未満の波長範囲内の光、例えば380nm以上494nm以下の波長範囲の光の平均反射率が80%以上であり、580nmを超えて780nm以下の波長範囲内の光、例えば581nm以上780nm以下の波長範囲内の光の平均反射率が20%以下であることが好ましい。発光装置は、前述のバンドパスフィルタ層を含む波長変換部材を備えることによって、メラトニンの分泌を阻害しやすい短波長側の光の成分を抑制し、メラノピック比MRを低くすることができる。バンドパスフィルタ層は、入射角度が0度以上30度以下の範囲内の光に対して、380nm以上495nm未満の波長範囲内の光の平均反射率が80%以上であり、525nmを超えて780nm以下の波長範囲内の光の平均反射率が20%以下であることがより好ましい。バンドパスフィルタ層は、入射角度が0度以上30度以下の範囲内の光に対して、380nm以上495nm未満の波長範囲内の光の平均反射率が80%以上であり、500nmを超えて780nm以下の波長範囲内の光の平均反射率が20%以下であることがさらに好ましい。 The light emitting device is provided with a wavelength conversion member including a phosphor layer containing a first phosphor on the light output side of the light emitting element, and a bandpass filter layer arranged on the light output side of the phosphor layer, and the bandpass filter layer has an average reflectance of 80% or more for light in a wavelength range of 380 nm to 495 nm, for example, a wavelength range of 380 nm to 494 nm, for light with an incident angle of 0 degrees to 30 degrees, and an average reflectance of 20% or less for light with a wavelength range of more than 580 nm to 780 nm, for example, a wavelength range of 581 nm to 780 nm. By providing a wavelength conversion member including the aforementioned bandpass filter layer, the light emitting device can suppress the components of light on the short wavelength side that tend to inhibit the secretion of melatonin, and can lower the melanopic ratio MR. It is more preferable that the bandpass filter layer has an average reflectance of 80% or more for light in a wavelength range of 380 nm to 495 nm, for light with an incident angle of 0 degrees to 30 degrees, and an average reflectance of 20% or less for light with a wavelength range of more than 525 nm to 780 nm. It is more preferable that the bandpass filter layer has an average reflectance of 80% or more for light in the wavelength range of 380 nm or more and less than 495 nm for light with an incident angle in the range of 0 degrees or more and 30 degrees or less, and an average reflectance of 20% or less for light in the wavelength range of more than 500 nm and less than 780 nm.

バンドパスフィルタ層である誘電体多層膜を配置する前の発光装置の特定の波長範囲の分光放射輝度S(λ)を100%とし、バンドパスフィルタ層である誘電体多層膜を配置した後の発光装置の特定の波長範囲の発光の分光放射輝度S(λ)の割合を、バンドパスフィルタ層を備えた発光装置のスペクトル成分の維持率として測定することができる。特定の波長範囲としては、例えば300nm以上800nm以下の範囲が挙げられる。バンドパスフィルタ層を備えた発光装置の300nm以上800nm以下の範囲内のスペクトル成分の維持率は、下記式(6)によって算出することができる。バンドパスフィルタ層を備えた発光装置の300nm以上800nm以下の範囲内のスペクトル成分の維持率は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、70%以上がよりさらに好ましく、80%以上が特に好ましい。バンドパスフィルタ層を備えた発光装置のスペクトル成分の維持率が40%未満であると、例えばバンドパスフィルタ層を備えた発光装置のスペクトル成分の維持率が39%以下であると、発光装置から出射される発光色の発光スペクトルの一部の光が弱くなり、ヒトが違和感を覚える発光色となる可能性がある。また、バンドパスフィルタ層を備えた発光装置のスペクトル成分の維持率が40%未満であると、バンドパスフィルタ層で反射される光が多くなり、蛍光体で波長変換される光の成分が低減し、輝度が低下する可能性がある。バンドパスフィルタ層を備えた発光装置のスペクトル成分の維持率は、100%以下でもよく、95%以下でもよく、92%以下でもよく、91%以下でもよい。 The spectral radiance S b (λ) of the light emitting device in a specific wavelength range before the dielectric multilayer film as the bandpass filter layer is disposed is taken as 100%, and the ratio of the spectral radiance S a (λ) of the light emitted in a specific wavelength range of the light emitting device after the dielectric multilayer film as the bandpass filter layer is disposed can be measured as the maintenance rate of the spectral components of the light emitting device equipped with the bandpass filter layer. The specific wavelength range can be, for example, a range of 300 nm to 800 nm. The maintenance rate of the spectral components in the range of 300 nm to 800 nm of the light emitting device equipped with the bandpass filter layer can be calculated by the following formula (6). The maintenance rate of the spectral components in the range of 300 nm to 800 nm of the light emitting device equipped with the bandpass filter layer is preferably 40% or more, more preferably 50% or more, even more preferably 60% or more, even more preferably 70% or more, and particularly preferably 80% or more. If the spectral component maintenance rate of the light emitting device with a bandpass filter layer is less than 40%, for example, if the spectral component maintenance rate of the light emitting device with a bandpass filter layer is 39% or less, some light of the emission spectrum of the emission color emitted from the light emitting device may be weak, resulting in an emission color that feels strange to humans. Also, if the spectral component maintenance rate of the light emitting device with a bandpass filter layer is less than 40%, the light reflected by the bandpass filter layer increases, and the components of the light that are wavelength converted by the phosphor decrease, which may result in a decrease in brightness. The spectral component maintenance rate of the light emitting device with a bandpass filter layer may be 100% or less, 95% or less, 92% or less, or 91% or less.

発光装置400は、蛍光体70を含む蛍光体層23と、バンドパスフィルタ層24と、を含む波長変換部材26を備える。波長変換部材26は、第2透光性部材25を備えてもよく、発光素子の光の出射側から蛍光体層23、バンドパスフィルタ層24、第2透光性部材25が順に積層された積層体であってもよい。蛍光体層23に含まれる蛍光体70は、第1蛍光体を含み、第2蛍光体を含んでいてもよい。蛍光体層23、バンドパスフィルタ層24及び第2透光性部材25は、平面視で発光素子10よりも大きく形成された板状、シート状又は層状であってもよく、発光素子10の側から蛍光体層23、バンドパスフィルタ層24、第2透光性部材25の順に積層され、波長変換部材26が形成される。 The light emitting device 400 includes a wavelength conversion member 26 including a phosphor layer 23 containing phosphor 70 and a bandpass filter layer 24. The wavelength conversion member 26 may include a second translucent member 25, or may be a laminate in which the phosphor layer 23, the bandpass filter layer 24, and the second translucent member 25 are laminated in this order from the light emission side of the light emitting element. The phosphor 70 included in the phosphor layer 23 may include a first phosphor and may include a second phosphor. The phosphor layer 23, the bandpass filter layer 24, and the second translucent member 25 may be in the form of a plate, sheet, or layer formed larger than the light emitting element 10 in a plan view, and the phosphor layer 23, the bandpass filter layer 24, and the second translucent member 25 are laminated in this order from the light emitting element 10 side to form the wavelength conversion member 26.

バンドパスフィルタ層24は、誘電体多層膜からなることが好ましい。誘電体多層膜は、例えば、互いに屈折率が異なる第1誘電体層24aと第2誘電体層24bとが交互に積層された多層膜により構成することができる。バンドパスフィルタ層24は、発光素子10が発する光の発光スペクトル(中心波長及び波長に対する強度分布)、第1誘電体層24aの第1屈折率及び第2誘電体層24bの第2屈折率に基づいて第1誘電体層24aの膜厚及び第2誘電体層24bの膜厚を設定することにより、入射角度0度以上30度以下の範囲内の光に対して、380nm以上495nm未満の波長範囲の光を反射し、蛍光体層23に含まれる蛍光体が発する570nm以上680nm以下の範囲内に発光ピーク波長を有する光を透過するように構成することができる。誘電体多層膜からなるバンドパスフィルタ層24は、屈折率の異なる2つの第1誘電体層24aと第2誘電体層24bとを、それぞれλ/4の膜厚で交互に周期的に形成してなる。λは、反射させたい波長領域のピーク波長であり、各誘電体材料における媒質内波長である。バンドパスフィルタ層24は、屈折率の低い誘電体材料からなる第1誘電体層24aと屈折率の高い誘電体材料からなる第2誘電体層24bの各屈折率及び屈折率差、交互に形成する周期数は、所望の波長範囲で所望の平均反射率が安定して得られるように、適宜設定される。 The bandpass filter layer 24 is preferably made of a dielectric multilayer film. The dielectric multilayer film can be, for example, a multilayer film in which a first dielectric layer 24a and a second dielectric layer 24b having different refractive indices are alternately stacked. The bandpass filter layer 24 can be configured to reflect light in a wavelength range of 380 nm to less than 495 nm for light with an incident angle of 0 degrees to 30 degrees and transmit light having an emission peak wavelength in a range of 570 nm to 680 nm emitted by the phosphor contained in the phosphor layer 23 by setting the film thickness of the first dielectric layer 24a and the film thickness of the second dielectric layer 24b based on the emission spectrum (center wavelength and intensity distribution for wavelength) of the light emitted by the light emitting element 10, and the first refractive index of the first dielectric layer 24a and the second refractive index of the second dielectric layer 24b. The bandpass filter layer 24 made of a dielectric multilayer film is formed by alternately and periodically forming two first dielectric layers 24a and second dielectric layers 24b having different refractive indices, each with a film thickness of λ/4. λ is the peak wavelength in the wavelength range to be reflected, and is the in-medium wavelength for each dielectric material. In the bandpass filter layer 24, the refractive indexes and refractive index difference of the first dielectric layer 24a made of a dielectric material with a low refractive index and the second dielectric layer 24b made of a dielectric material with a high refractive index, as well as the number of alternating periods, are appropriately set so that the desired average reflectance can be stably obtained in the desired wavelength range.

屈折率の低い第1誘電体層の屈折率(第1屈折率)は、例えば1.0以上1.8以下の範囲内に設定することができ、好ましくは1.2以上1.6以下の範囲内に設定することができる。第1誘電体層は、例えばSiO(屈折率が例えば1.5)で形成することができる。屈折率の高い第2誘電体層の屈折率(第2屈折率)は、例えば1.5以上3.0以下の範囲内に設定することができ、好ましくは2.0以上2.6以下の範囲内に設定することができる。第2誘電体層は、例えばNb(屈折率が例えば2.4)で形成することができる。第1誘電体層と第2誘電体層とを交互に形成する周期数は、例えば1以上30以下の範囲内に設定することができ、好ましくは、1以上25以下の範囲内に設定することができる。 The refractive index (first refractive index) of the first dielectric layer having a low refractive index can be set, for example, in the range of 1.0 to 1.8, preferably in the range of 1.2 to 1.6. The first dielectric layer can be formed, for example, of SiO 2 (refractive index, for example, 1.5). The refractive index (second refractive index) of the second dielectric layer having a high refractive index can be set, for example, in the range of 1.5 to 3.0, preferably in the range of 2.0 to 2.6. The second dielectric layer can be formed, for example, of Nb 2 O 5 (refractive index, for example, 2.4). The number of periods in which the first dielectric layer and the second dielectric layer are alternately formed can be set, for example, in the range of 1 to 30, preferably in the range of 1 to 25.

第1誘電体層を構成する誘電体材料は、例えば、SiO、Al及びSiONから選択することができる。第2誘電体層を構成する誘電体材料は、例えば、TiO、Nb、Ta及びZrから選択された材料により構成することができる。 The dielectric material constituting the first dielectric layer can be selected from, for example, SiO2 , Al2O3 , and SiON . The dielectric material constituting the second dielectric layer can be selected from, for example, TiO2 , Nb2O3 , Ta2O5 , and Zr2O5 .

蛍光体層は、単一の蛍光体層からなる波長変換部材と、同様の蛍光体層を用いることができる。透光性部材は、ガラスや樹脂からなるものを用いることができる。ガラスとして、例えば、ホウ珪酸ガラスや石英ガラスから選択することができる。また、樹脂として、例えば、シリコーン樹脂やエポキシ樹脂から選択することができる。 The phosphor layer may be a wavelength conversion member made of a single phosphor layer, and may be a similar phosphor layer. The light-transmitting member may be made of glass or resin. The glass may be selected from borosilicate glass or quartz glass, for example. The resin may be selected from silicone resin or epoxy resin, for example.

蛍光体層と、バンドパスフィルタ層と、第2透光性部材とを含む波長変換部材は、例えば、次のように形成することができる。
まず、板状の第2透光性部材を準備する。次に、互いに屈折率が異なる第1誘電体層と、第2誘電体層とを、交互に積層して誘電体多層膜からなるバンドパスフィルタ層を形成する。誘電体多層膜は、原子層堆積法(ALD:Atomic Layer Deposition)、スパッタ、蒸着法等により第1誘電体層と第2誘電体層とを交互に成膜することにより形成することができる。次に、バンドパスフィルタ層上に蛍光体層を形成する。蛍光体層は、例えば、バンドパスフィルタ層上に印刷法を用いて形成することができる。印刷法では、蛍光体、バインダー、及び必要に応じて溶剤を含む蛍光体層用組成物を調製し、その蛍光体層用組成物を誘電体多層膜からなるバンドパスフィルタ層の表面に塗布し、乾燥することにより蛍光体層を形成することができる。バインダーとしては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂等の有機バインダーや、ガラス等の無機バインダーを用いることができる。蛍光体層は、印刷法に代えて、圧縮成形法、蛍光体電着法、蛍光体シート法等により形成することができる。
The wavelength conversion member including the phosphor layer, the bandpass filter layer, and the second light-transmissive member can be formed, for example, as follows.
First, a plate-shaped second light-transmitting member is prepared. Next, a first dielectric layer and a second dielectric layer having different refractive indices are alternately laminated to form a bandpass filter layer made of a dielectric multilayer film. The dielectric multilayer film can be formed by alternately depositing the first dielectric layer and the second dielectric layer by atomic layer deposition (ALD), sputtering, vapor deposition, or the like. Next, a phosphor layer is formed on the bandpass filter layer. The phosphor layer can be formed, for example, on the bandpass filter layer by using a printing method. In the printing method, a phosphor layer composition containing a phosphor, a binder, and, if necessary, a solvent is prepared, and the phosphor layer composition is applied to the surface of the bandpass filter layer made of a dielectric multilayer film and dried to form a phosphor layer. As the binder, an organic binder such as an epoxy resin, a silicone resin, a phenol resin, and a polyimide resin, or an inorganic binder such as glass can be used. The phosphor layer can be formed by a compression molding method, a phosphor electrodeposition method, a phosphor sheet method, or the like instead of the printing method.

第2構成例の発光装置の製造方法
第2構成例の発光装置の製造方法の一例を説明する。第2構成例の発光装置の製造方法は、発光素子の配置工程と、波長変換部材の準備工程と、透光性部材及び接合部材の形成工程と、光反射部材の配置工程と、封止部材の配置工程と、を含み、各単位領域に分離する個片化工程を含んでいてもよい。
A method for manufacturing the light emitting device of the second configuration example will be described. The method for manufacturing the light emitting device of the second configuration example includes a step of arranging the light emitting element, a step of preparing the wavelength conversion member, a step of forming the translucent member and the joining member, a step of arranging the light reflecting member, and a step of arranging the sealing member, and may also include a step of singulating into each unit area.

発光素子の配置工程は、予め用意された支持体に発光素子をフリップチップ実装する。波長変換部材の準備工程は、上述した方法によって、予め板状、シート状又は層状に形成した波長変換部材を、発光素子上に配置可能な大きさに個片化して、板状、シート状又は層状の波長変換部材を準備する。第1透光性部材及び接合部材の形成工程は、発光素子の上面に透光性の接着材を塗布し、発光素子の上面に波長変換部材を接合させる。発光素子と波長変換部材の界面からはみ出た接着材が発光素子の側面から波長変換部材の周辺にかけて延在されて付着し、フィレット状をなして硬化され、第1透光性部材及び接合部材が形成される。光反射部材の配置工程は、支持体の上面において、波長変換部材及び透光性部材の側面を覆うように、白色の樹脂を配置して硬化させ、光反射部材を配置する。最後に、波長変換部材及び光反射部材の上面に封止部材を配置する。これによって第2構成例の発光装置を製造することができる。 In the process of arranging the light-emitting element, the light-emitting element is flip-chip mounted on a support prepared in advance. In the process of preparing the wavelength conversion member, the wavelength conversion member formed in advance in a plate, sheet or layer shape by the above-mentioned method is divided into individual pieces in a size that can be arranged on the light-emitting element, to prepare a plate-shaped, sheet-shaped or layer-shaped wavelength conversion member. In the process of forming the first translucent member and the joining member, a translucent adhesive is applied to the upper surface of the light-emitting element, and the wavelength conversion member is joined to the upper surface of the light-emitting element. The adhesive that protrudes from the interface between the light-emitting element and the wavelength conversion member extends from the side of the light-emitting element to the periphery of the wavelength conversion member, and is hardened in a fillet shape to form the first translucent member and the joining member. In the process of arranging the light reflecting member, a white resin is arranged and hardened on the upper surface of the support so as to cover the side surfaces of the wavelength conversion member and the translucent member, and the light reflecting member is arranged. Finally, a sealing member is arranged on the upper surfaces of the wavelength conversion member and the light reflecting member. This allows the light-emitting device of the second configuration example to be manufactured.

灯具又は照明器具
灯具又は照明器具は、上述した発光装置の少なくとも1種を備えていればよい。灯具又は照明器具は、上述した発光装置を備えて構成され、反射部材、保護部材、発光装置に電力を供給するための付属装置等をさらに備えていてもよい。灯具又は照明器具は、複数の発光装置を備えていてもよい。灯具又は照明器具が複数の発光装置を備える場合、同一の発光装置を複数備えていてもよく、形態の異なる発光装置を複数備えていてもよい。また、複数の発光装置を個別に駆動して、個々の発光装置の明るさ等の調節が可能な駆動装置を備えていてもよい。灯具又は照明器具の使用形態としては、直付型、埋め込み型、吊り下げ型等のいずれであってもよい。灯具は、街路灯、港湾やトンネル等の屋外の設置を想定した灯具であってもよく、ヘッドライト、懐中電灯、又はLEDを使用した携帯用ランタンのような屋外での使用が想定される灯具であってもよく、屋内であっても窓際等の屋外に近い場所に設置される灯具であってもよい。照明器具は、上述の発光装置から暖かみを感じさせる発光色を有し、落ち着いた雰囲気を感じさせ、メラトニンの分泌を促進し、自然に睡眠に誘導する光を照射することが可能であり、例えば屋内のリビングや寝室等のプライベートな空間に使用する屋内用の一般照明、間接照明、車載用照明として用いてもよい。
1. Lighting fixture or lighting fixture The lighting fixture or lighting fixture may include at least one of the above-mentioned light-emitting devices. The lighting fixture or lighting fixture is configured with the above-mentioned light-emitting device, and may further include a reflecting member, a protective member, an accessory device for supplying power to the light-emitting device, and the like. The lighting fixture or lighting fixture may include a plurality of light-emitting devices. When the lighting fixture or lighting fixture includes a plurality of light-emitting devices, the lighting fixture or lighting fixture may include a plurality of identical light-emitting devices, or may include a plurality of light-emitting devices of different forms. In addition, the lighting fixture or lighting fixture may include a driving device that can individually drive the plurality of light-emitting devices to adjust the brightness of each light-emitting device. The lighting fixture or lighting fixture may be used in any of a direct-mount type, an embedded type, a hanging type, and the like. The lighting fixture may be a lighting fixture intended for outdoor installation such as a street light, a port, or a tunnel, or may be a lighting fixture intended for outdoor use such as a headlight, a flashlight, or a portable lantern using an LED, or may be a lighting fixture installed indoors or near the outdoors such as a window. The lighting fixture has an emission color that gives a feeling of warmth from the above-mentioned light-emitting device, is capable of emitting light that gives a feeling of calm, promotes the secretion of melatonin, and naturally induces sleep, and may be used as general indoor lighting, indirect lighting, or vehicle lighting in private spaces such as indoor living rooms and bedrooms.

街路灯は、上述した発光装置の少なくとも1種を備えていればよい。図9は、街路灯1000の一例を示す図である。街路灯1000は、歩道W又は車道C1に設置されるポールPと、発光装置Leの支持部Sとを備え、支持部Sには、発光装置Leの周囲を覆い、アクリル、ポリカーボネート、又はガラス等の発光装置Leが発した光の少なくとも一部を透過する光透過部Tを備えている。街路灯1000は、ポールPと一体となった支持部Sに設置された発光装置Leによって高所から低所を照らすことができる。街路灯は、支持部の高さを任意に設定できるポールを備えたポール型の街路灯のみならず、ポールの代わりにブラケットで支持部を支持するブラケット型の街路灯であってもよく、下方から上方を照らす投光型の街路灯であってもよく、支柱やブロック等の景観材に組み込まれる景観材組み込み型の街路灯であってもよい。 The street light may be equipped with at least one of the above-mentioned light emitting devices. FIG. 9 is a diagram showing an example of a street light 1000. The street light 1000 includes a pole P installed on the sidewalk W or roadway C1 and a support part S for the light emitting device Le. The support part S includes a light transmitting part T that covers the periphery of the light emitting device Le and transmits at least a part of the light emitted by the light emitting device Le, such as acrylic, polycarbonate, or glass. The street light 1000 can illuminate low places from high places by the light emitting device Le installed on the support part S integrated with the pole P. The street light may be not only a pole-type street light equipped with a pole whose support part can be set to any height, but also a bracket-type street light in which the support part is supported by a bracket instead of a pole, a floodlight-type street light that illuminates from below to above, or a landscape material-embedded type street light that is incorporated into a landscape material such as a pillar or block.

街路灯は、低位置から路面を照らす低位置照明用装置であってもよい。低位置照明装置は、上述した発光装置の少なくとも1種を備えていればよい。低位置照明装置に上述した発光装置を用いると、落ち着いた暖かみのある光を照射することができる。図10は、低位置照明装置1001の一例を示す図である。低位置照明装置1001は、例えば道路C2の側部に設けられた設置台B上に設置されてもよい。低位置照明装置は、例えば車道を走行する車両の運転手の目線の高さよりも低い位置に設置することができる。低位置照明装置は、例えば、車道の路面から1mから1.2m程度の高さに設定してもよい。低位置照明装置は、道路の側部に設置するだけではなく、花壇や公園の歩道の側部等に設置してもよい。 The street light may be a low-position lighting device that illuminates the road surface from a low position. The low-position lighting device may be equipped with at least one of the above-mentioned light-emitting devices. When the above-mentioned light-emitting device is used in the low-position lighting device, a calm and warm light can be emitted. FIG. 10 is a diagram showing an example of a low-position lighting device 1001. The low-position lighting device 1001 may be installed on a mounting stand B provided on the side of the road C2, for example. The low-position lighting device can be installed at a position lower than the eye level of the driver of a vehicle traveling on the road, for example. The low-position lighting device may be set at a height of about 1 m to 1.2 m from the road surface, for example. The low-position lighting device may be installed not only on the side of the road, but also on the side of a flower bed or a park sidewalk.

以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples. The present invention is not limited to these examples.

各実施例及び比較例の発光装置には、以下の第1蛍光体及び/又は第2蛍光体を用いた。 The light emitting devices of each of the examples and comparative examples used the following first phosphor and/or second phosphor.

第1蛍光体
第1蛍光体として、式(1A)で表される組成に含まれる第1窒化物蛍光体である、BSESN-2、BSESN-3と、式(1B)で表される組成に含まれる第2窒化物蛍光体である、SCASN-1、SCASN-2、SCASN-3、SCASN-4、SCASN-6、式(1C)で表される組成に含まれるフッ化物蛍光体KSFを準備した。これらの蛍光体は、式(1A)あるいは式(1B)で表される組成に含まれる第1窒化物蛍光体あるいは第2窒化物蛍光体であるが、それぞれ組成に含まれる各元素のモル比が異なり、表1に示すように、それぞれ異なる発光ピーク波長及び半値全幅を有する。
First phosphor As the first phosphor, first nitride phosphors BSESN-2 and BSESN-3 contained in the composition represented by formula (1A), second nitride phosphors SCASN-1, SCASN-2, SCASN-3, SCASN-4, and SCASN-6 contained in the composition represented by formula (1B), and fluoride phosphor KSF contained in the composition represented by formula (1C) were prepared. These phosphors are the first nitride phosphor or the second nitride phosphor contained in the composition represented by formula (1A) or formula (1B), but the molar ratios of each element contained in each composition are different, and as shown in Table 1, they have different emission peak wavelengths and full widths at half maximum.

第2蛍光体
第2蛍光体として、式(2A)で表される組成に含まれ、組成がY(Al,Ga)12:Ce(aは、0<a≦0.5を満たす)である希土類アルミン酸塩蛍光体である、G-YAG1及びG-YAG4と、式(2A)で表される組成に含まれ、組成がYAl12:Ceである希土類アルミン酸塩蛍光体である、YAG1及びYAG3を準備した。これらの蛍光体は、式(2A)で表される組成に含まれる希土類アルミン酸塩蛍光体であるが、それぞれ組成に含まれる各元素のモル比が異なり、表2に示すように、それぞれ異なる発光ピーク波長及び半値全幅を有する。
Second phosphor As the second phosphor, G-YAG1 and G-YAG4, which are rare earth aluminate phosphors contained in the composition represented by formula (2A) and having a composition of Y 3 (Al, Ga) 5 O 12 :Ce (a satisfies 0<a≦0.5), and YAG1 and YAG3, which are rare earth aluminate phosphors contained in the composition represented by formula (2A) and having a composition of Y 3 Al 5 O 12 :Ce, were prepared. These phosphors are rare earth aluminate phosphors contained in the composition represented by formula (2A), but the molar ratios of the elements contained in each composition are different, and as shown in Table 2, they have different emission peak wavelengths and full widths at half maximum.

蛍光体の発光スペクトルの測定
各蛍光体は、量子効率測定装置(QE-2000、大塚電子株式会社製)を用いて、励起波長450nmの光を各蛍光体に照射し、室温(約25℃)における発光スペクトルを測定し、各発光スペクトルから発光ピーク波長及び半値全幅を測定した。結果を表1及び表2に示す。
Measurement of emission spectrum of phosphor Each phosphor was irradiated with light having an excitation wavelength of 450 nm using a quantum efficiency measurement device (QE-2000, manufactured by Otsuka Electronics Co., Ltd.), and the emission spectrum at room temperature (about 25° C.) was measured, and the emission peak wavelength and full width at half maximum were measured from each emission spectrum. The results are shown in Tables 1 and 2.

Figure 0007492142000008
Figure 0007492142000008

Figure 0007492142000009
Figure 0007492142000009

バンドパスフィルタ層
実施例に用いた誘電体多層膜-1(DBR-1)、誘電体多層膜-2(DBR-2)及び誘電体多層膜-3(DBR-3)からなるバンドパスフィルタ層を用いることができる。
Bandpass Filter Layer The bandpass filter layers made of the dielectric multilayer film-1 (DBR-1), dielectric multilayer film-2 (DBR-2) and dielectric multilayer film-3 (DBR-3) used in the examples can be used.

誘電体多層膜の反射スペクトルの測定
各誘電体多層膜について、誘電体多層膜の法線方向(入射角度0度)から励起光源の光を照射し、分光光度計(V-670、日本分光株式会社製)を用いて、室温(25℃±5℃)で300nm以上800nm以下の波長範囲内の反射スペクトルを測定した。誘電体多層膜-1(DBR-1)、誘電体多層膜-2(DBR-2)及び誘電体多層膜-3(DBR-3)の反射スペクトルを測定した。誘電体多層膜-1(DBR-1)、誘電体多層膜-2(DBR-2)及び誘電体多層膜-3(DBR-3)の反射スペクトルを図11に示す。入射角度0度の各誘電体層の反射スペクトルにおいて波長が380nm以上780nm以下の範囲内における最大の反射強度を100%とした。入射角度が0度の光に対して、380nm以上495nm未満の波長範囲内の光の平均反射率と、580nmを超えて780nm以下の波長範囲内の光の平均反射率と、525nm以上780nm以下の波長範囲内の平均反射率と、500nm以上780nm以下の波長範囲内の光の平均反射率を表3に記載した。
Measurement of the reflection spectrum of the dielectric multilayer film For each dielectric multilayer film, the light of the excitation light source was irradiated from the normal direction (incident angle 0 degrees) of the dielectric multilayer film, and the reflection spectrum in the wavelength range of 300 nm to 800 nm was measured at room temperature (25 ° C. ± 5 ° C.) using a spectrophotometer (V-670, manufactured by JASCO Corporation). The reflection spectra of the dielectric multilayer film-1 (DBR-1), the dielectric multilayer film-2 (DBR-2), and the dielectric multilayer film-3 (DBR-3) were measured. The reflection spectra of the dielectric multilayer film-1 (DBR-1), the dielectric multilayer film-2 (DBR-2), and the dielectric multilayer film-3 (DBR-3) are shown in FIG. 11. In the reflection spectrum of each dielectric layer at an incident angle of 0 degrees, the maximum reflection intensity in the wavelength range of 380 nm to 780 nm was taken as 100%. Table 3 shows the average reflectance of light in the wavelength range of 380 nm or more and less than 495 nm, the average reflectance of light in the wavelength range of more than 580 nm and less than 780 nm, the average reflectance of light in the wavelength range of 525 nm or more and less than 780 nm, and the average reflectance of light in the wavelength range of 500 nm or more and less than 780 nm, for light with an incident angle of 0 degrees.

Figure 0007492142000010
Figure 0007492142000010

誘電体多層膜-1(DBR-1)は、380nm以上495nm未満の波長範囲の光の平均反射率が80%以上であり、580nmを超えて780nm以下の波長範囲内の光の平均反射率が20%以下であった。誘電体多層膜-1(DBR-1)、誘電体多層膜-2(DBR-2)及び誘電体多層膜-3(DBR-3)において、380nm以上495未満の波長範囲の光は、例えば、380nm以上494nm以下の波長範囲の光である。また、580nmを超えて780nm以下の波長範囲内の光は、例えば、581nm以上780nm以下の波長範囲内の光である。
誘電体多層膜-2(DBR-2)は、380nm以上495nm未満の波長範囲の光の平均反射率が80%以上であり、525nm以上780nm以下の波長範囲内の光の平均反射率が20%以下であった。
誘電体多層膜-3(DBR-3)は、380nm以上495nm未満の波長範囲の光の平均反射率が80%以上であり、500nm以上780nm以下の波長範囲内の光の平均反射率が20%以下であった。
Dielectric multilayer film-1 (DBR-1) had an average reflectance of 80% or more for light in the wavelength range of 380 nm or more and less than 495 nm, and an average reflectance of 20% or less for light in the wavelength range of more than 580 nm and less than 780 nm. In dielectric multilayer film-1 (DBR-1), dielectric multilayer film-2 (DBR-2), and dielectric multilayer film-3 (DBR-3), light in the wavelength range of 380 nm or more and less than 495 nm is, for example, light in the wavelength range of 380 nm or more and less than 494 nm. Moreover, light in the wavelength range of more than 580 nm and less than 780 nm is, for example, light in the wavelength range of 581 nm or more and less than 780 nm.
Dielectric multilayer film-2 (DBR-2) had an average reflectance of 80% or more for light in the wavelength range of 380 nm or more and less than 495 nm, and an average reflectance of 20% or less for light in the wavelength range of 525 nm or more and 780 nm or less.
Dielectric multilayer film-3 (DBR-3) had an average reflectance of 80% or more for light in the wavelength range of 380 nm or more and less than 495 nm, and an average reflectance of 20% or less for light in the wavelength range of 500 nm or more and 780 nm or less.

実施例1、2
第1構成例の発光装置を製造した。第1構成例の発光装置は、図5を参照することができる。
発光素子10は、発光ピーク波長が450nmである窒化物系半導体層が積層された発光素子10を用いた。発光素子10の大きさは、平面形状が約700mm四方の略正方形であり、厚さが約200mmである。
第1リード2及び第2リード3として、リードフレームを用い、第1リード2及び第2リード3を、エポキシ樹脂を用いて一体成形し、側面と底面とを有する凹部を有する成形体41を準備した。
成形体41の凹部の底面に発光素子10を配置し、発光素子10の正負の電極と、第1リード2及び第2リード3と、をAu製のワイヤ60により接続した。
波長変換部材21を構成する透光性材料としてシリコーン樹脂を用いた。波長変換部材用組成物は、発光素子10からの光と、第1蛍光体71及び第2蛍光体72を含む蛍光体70の光との混色光の相関色温度が1950K以下の1800Kから1850K付近になるように第1蛍光体71及び第2蛍光体を配合した。ここで、透光性材料100質量部に対する蛍光体70の総量と、第1蛍光体71と第2蛍光体72の配合比率は、表4に示す通りである。波長変換部材用組成物は、シリコーン樹脂100質量部に対してフィラーとして酸化アルミニウムを2質量部も配合した。次いで、準備した波長変換部材用組成物を成形体41の凹部に充填した。
成形体41の凹部内に充填した波長変換部材用組成物を、150℃で3時間加熱して硬化させ、第1蛍光体71及び第2蛍光体72を含む波長変換部材21を備えた樹脂パッケージを形成し、相関色温度が1950K以下になる光を発する、第1構成例の発光装置200を製造した。
Examples 1 and 2
A light emitting device of the first configuration example was manufactured. For the light emitting device of the first configuration example, refer to FIG.
The light emitting element 10 used was a light emitting element 10 having a nitride-based semiconductor layer laminated thereon and having an emission peak wavelength of 450 nm. The size of the light emitting element 10 was a roughly square shape with a planar shape of approximately 700 mm on each side, and a thickness of approximately 200 mm.
A lead frame was used as the first lead 2 and the second lead 3, and the first lead 2 and the second lead 3 were integrally molded using epoxy resin to prepare a molded body 41 having a recess with side and bottom surfaces.
The light emitting element 10 was placed on the bottom surface of the recess of the molded body 41 , and the positive and negative electrodes of the light emitting element 10 were connected to the first lead 2 and the second lead 3 by wires 60 made of Au.
Silicone resin was used as the light-transmitting material constituting the wavelength conversion member 21. The composition for wavelength conversion member was blended with the first phosphor 71 and the second phosphor 72 so that the correlated color temperature of the mixed light of the light from the light-emitting element 10 and the light of the phosphor 70 including the first phosphor 71 and the second phosphor 72 was about 1800K to 1850K, which is 1950K or less. Here, the total amount of the phosphor 70 relative to 100 parts by mass of the light-transmitting material and the blending ratio of the first phosphor 71 and the second phosphor 72 are as shown in Table 4. The composition for wavelength conversion member was blended with 2 parts by mass of aluminum oxide as a filler relative to 100 parts by mass of silicone resin. Next, the prepared composition for wavelength conversion member was filled into the recess of the molded body 41.
The composition for the wavelength conversion member filled in the recess of the molded body 41 was heated at 150°C for 3 hours to harden it, forming a resin package equipped with a wavelength conversion member 21 including a first phosphor 71 and a second phosphor 72, thereby producing a first configuration example light emitting device 200 that emits light with a correlated color temperature of 1950K or less.

実施例3
第1構成例の発光装置を製造した。第1構成例の発光装置は、第1蛍光体のみを含み、第2蛍光体を含まない、図4を参照することができる。
波長変換部材用組成物として、表4の各実施例に示す第1蛍光体71を用い、蛍光体70の総量(第1蛍光体71の合計量)と、第1蛍光体71と第2蛍光体の合計量に対して、第1蛍光体71が100質量%となるようにしたこと以外は、実施例1と同様にして樹脂パッケージを形成し、相関色温度が1950K以下になる光を発する、第1構成例の発光装置100を製造した。表4に示すように、第1蛍光体として、式(1A)で表される組成を有する第1窒化物蛍光体であって、組成の異なる2種の第1窒化物蛍光体BSESN2と、BSESN3を用い、BSESN2とBSESN3の質量比率(BSESN2/BSESN3)を30/70とした。
Example 3
A light emitting device of a first configuration example was manufactured. The light emitting device of the first configuration example includes only the first phosphor and does not include the second phosphor. See FIG.
As a composition for a wavelength conversion member, the first phosphor 71 shown in each example in Table 4 was used, and the first phosphor 71 was 100 mass% relative to the total amount of phosphor 70 (total amount of first phosphor 71) and the total amount of the first phosphor 71 and the second phosphor. A resin package was formed in the same manner as in Example 1, except that the first phosphor 71 was 100 mass%, and a light emitting device 100 of a first configuration example was manufactured, which emits light with a correlated color temperature of 1950 K or less. As shown in Table 4, as the first phosphor, a first nitride phosphor having a composition represented by formula (1A), two types of first nitride phosphors BSESN2 and BSESN3 having different compositions were used, and the mass ratio of BSESN2 to BSESN3 (BSESN2/BSESN3) was 30/70.

実施例4
第1構成例の発光装置200を製造した。第1構成例の発光装置200は、第1蛍光体71及び第2蛍光体72を含む図5を参照することができる。
波長変換部材21を構成する透光性材料としてフェニルシリコーン樹脂を用いた。第1蛍光体71及び第2蛍光体72として表4に示す蛍光体を用いた。
波長変換部材用組成物は、透光性材料100質量部に対して、発光素子10からの光と、第1蛍光体71を含む蛍光体70の光との混色光の相関色温度が1950K以下の1800Kから1850K付近になるように、表4に示すように第1蛍光体71及び第2蛍光体72を配合した。波長変換部材用組成物は、フェニルシリコーン樹脂100質量部に対してフィラーとして二酸化ケイ素15質量部を配合した。次いで、準備した波長変換部材用組成物を成形体41の凹部に充填した。
成形体41の凹部内に充填した波長変換部材用組成物を150℃で4時間加熱して硬化させ、第1蛍光体71及び第2蛍光体72を含む波長変換部材21を備えた樹脂パッケージを形成し、相関色温度が1950K以下になる光を発する、第1構成例の発光装置200を製造した。
Example 4
The light emitting device 200 of the first configuration example was manufactured. The light emitting device 200 of the first configuration example includes a first phosphor 71 and a second phosphor 72. See FIG.
Phenyl silicone resin was used as the light-transmitting material constituting the wavelength conversion member 21. The phosphors shown in Table 4 were used as the first phosphor 71 and the second phosphor 72.
The composition for wavelength conversion members was prepared by blending first phosphor 71 and second phosphor 72 as shown in Table 4 with 100 parts by mass of the light-transmitting material so that the correlated color temperature of mixed light of light from light-emitting element 10 and light of phosphor 70 containing first phosphor 71 was approximately 1800 K to 1850 K, which is 1950 K or lower. The composition for wavelength conversion members was prepared by blending 15 parts by mass of silicon dioxide as a filler with 100 parts by mass of phenyl silicone resin. Next, the prepared composition for wavelength conversion members was filled into the recesses of molded body 41.
The composition for the wavelength conversion member filled in the recess of the molded body 41 was heated at 150°C for 4 hours to harden it, forming a resin package equipped with a wavelength conversion member 21 including a first phosphor 71 and a second phosphor 72, thereby producing a light emitting device 200 of a first configuration example that emits light having a correlated color temperature of 1950K or less.

実施例5及び6
実施例1と同様に第1構成例の発光装置を製造し、図12に示すように、発光装置100の波長変換部材21の光の出射側にバンドパスフィルタ層24として誘電体多層膜を配置した。実施例5は、実施例1と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜2(DBR-2)を配置した。実施例6は、実施例1と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜3(DBR-3)を配置した。
Examples 5 and 6
A light emitting device of the first configuration example was manufactured in the same manner as in Example 1, and a dielectric multilayer film was arranged as a bandpass filter layer 24 on the light emission side of the wavelength conversion member 21 of the light emitting device 100 as shown in Fig. 12. In Example 5, a dielectric multilayer film 2 (DBR-2) was arranged on the light emission side of the wavelength conversion member of the light emitting device similar to Example 1. In Example 6, a dielectric multilayer film 3 (DBR-3) was arranged on the light emission side of the wavelength conversion member of the light emitting device similar to Example 1.

実施例7及び8
実施例7は、実施例2と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜2(DBR-2)を配置した。実施例8は、実施例2と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜3(DBR-3)を配置した。
Examples 7 and 8
In Example 7, a dielectric multilayer film 2 (DBR-2) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 2. In Example 8, a dielectric multilayer film 3 (DBR-3) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 2.

実施例9及び10
実施例9は、実施例3と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜2(DBR-2)を配置した。実施例10は、実施例3と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜3(DBR-3)を配置した。
Examples 9 and 10
In Example 9, a dielectric multilayer film 2 (DBR-2) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 3. In Example 10, a dielectric multilayer film 3 (DBR-3) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 3.

実施例11及び12
実施例11は、実施例4と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜2(DBR-2)を配置した。実施例12は、実施例4と同様の発光装置の波長変換部材の光の出射側に誘電体多層膜3(DBR-3)を配置した。
Examples 11 and 12
In Example 11, a dielectric multilayer film 2 (DBR-2) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 4. In Example 12, a dielectric multilayer film 3 (DBR-3) was disposed on the light emission side of the wavelength conversion member of the light emitting device similar to Example 4.

比較例1
第2構成例の発光装置を製造した。第2構成例の発光装置は、図6及び図7を参照することができる。
Comparative Example 1
A light emitting device according to the second configuration example was manufactured. For the light emitting device according to the second configuration example, see Figs. 6 and 7.

発光素子の配置工程
支持体1は、窒化アルミニウムを材料とするセラミックス基板を用いた。発光素子10は、発光ピーク波長が450nmである窒化物系半導体層が積層された発光素子10を用いた。発光素子10の大きさは、平面形状が約1.0mm四方の略正方形であり、厚さが約0.11mmである。発光素子は、光出射面が封止部材側になるように配置し、Auからなる導電部材4を用いたバンプによってフリップチップ実装した。
Arrangement process of light-emitting element The support 1 was a ceramic substrate made of aluminum nitride. The light-emitting element 10 was a light-emitting element 10 in which a nitride-based semiconductor layer having an emission peak wavelength of 450 nm was laminated. The size of the light-emitting element 10 was a roughly square shape of about 1.0 mm square in plan view, and the thickness was about 0.11 mm. The light-emitting element was arranged so that the light-emitting surface was on the sealing member side, and flip-chip mounted by bumps using a conductive member 4 made of Au.

波長変換部材の準備工程
波長変換部材22を構成する透光性材料としてシリコーン樹脂を用いた。波長変換部材用組成物は、透光性材料100質量部に対して、発光素子10からの光と、第1蛍光体及び第2蛍光体を含む蛍光体70の光との混色光の相関色温度がナトリウムランプの色温度に近い2230K付近となるように第1蛍光体及び第2蛍光体を配合した。ここで、透光性材料100質量部に対する蛍光体70の総量と、第1蛍光体と第2蛍光体の配合比率は、表4に示す通りである。波長変換部材用組成物は、シリコーン樹脂100質量部に対してフィラーとして酸化アルミニウム2質量部を配合した。次いで、準備した波長変換部材用組成物を180℃で2時間加熱してシート状に硬化させて、発光素子10の平面形状よりも縦横に約0.1mm大きい、平面形状が約1.6mm四方の略正方形であり、厚さが約150μmの個片化したシート状の波長変換部材22を準備した。
Wavelength conversion member preparation process Silicone resin was used as the light-transmitting material constituting the wavelength conversion member 22. The wavelength conversion member composition was mixed with the first phosphor and the second phosphor so that the correlated color temperature of the mixed light of the light from the light-emitting element 10 and the light of the phosphor 70 containing the first phosphor and the second phosphor was around 2230 K, which is close to the color temperature of a sodium lamp, relative to 100 parts by mass of the light-transmitting material. Here, the total amount of the phosphor 70 relative to 100 parts by mass of the light-transmitting material and the mixing ratio of the first phosphor and the second phosphor are as shown in Table 4. The wavelength conversion member composition was mixed with 2 parts by mass of aluminum oxide as a filler relative to 100 parts by mass of silicone resin. Next, the prepared wavelength conversion member composition was heated at 180° C. for 2 hours to harden it into a sheet shape, and a sheet-like wavelength conversion member 22 was prepared that was approximately 0.1 mm larger in length and width than the planar shape of the light-emitting element 10, had a planar shape of approximately 1.6 mm square, and had a thickness of approximately 150 μm.

透光性部材及び接合部材の形成工程
透光性の接着材である、フェニルシリコーン樹脂を発光素子10の上面に塗布し、波長変換部材22を接合させて、さらに発光素子10と波長変換部材22の界面に透光性の接着材を塗布し、150℃、4時間硬化させて、発光素子10の側面から波長変換部材22の周辺かけて延在するように、フィレット状をなして硬化された第1透光性部材30及び接合部材32を形成した。
Step of forming light-transmitting member and joining member A light-transmitting adhesive, phenyl silicone resin, was applied to the upper surface of the light-emitting element 10, and the wavelength conversion member 22 was joined thereto. Further, a light-transmitting adhesive was applied to the interface between the light-emitting element 10 and the wavelength conversion member 22 and cured at 150° C. for 4 hours to form a first light-transmitting member 30 and joining member 32 that were hardened in a fillet shape so as to extend from the side surface of the light-emitting element 10 to the periphery of the wavelength conversion member 22.

光反射部材の配置工程
光反射部材用組成物として、ジメチルシリコーン樹脂と平均粒径(カタログ値)が0.28μmの酸化チタン粒子とを含み、ジメチルシリコーン樹脂100質量部に対して酸化チタン粒子を60質量部含む光反射部材用組成物を準備した。支持体1の上面において、波長変換部材22及び透光性部材30の側面を覆うように、白色の樹脂である光反射部材用組成物に配置して、硬化させ、光反射部材43を形成した。
A composition for a light reflecting member was prepared, which contained dimethyl silicone resin and titanium oxide particles having an average particle size (catalog value) of 0.28 μm, and contained 60 parts by mass of titanium oxide particles per 100 parts by mass of dimethyl silicone resin. The composition for a light reflecting member, which is a white resin, was placed on the upper surface of the support 1 so as to cover the side surfaces of the wavelength conversion member 22 and the light-transmitting member 30, and was cured to form the light reflecting member 43.

封止部材の配置工程
最後に、フェニルシリコーン樹脂を硬化して形成された平面視で円形状であり、断面視で半円球状であるレンズ部51と、レンズ部51の外周側に延出する鍔部52と、を備えた封止部材50を配置し、相関色温度が1950Kを超える光を発する、第2構成例の発光装置300を製造した。
Sealing member placement process Finally, a sealing member 50 was placed, which had a lens portion 51 that was formed by curing a phenyl silicone resin and was circular in a plan view and semispherical in a cross-sectional view, and a flange portion 52 that extended outward from the outer periphery of the lens portion 51, and the light-emitting device 300 of the second configuration example was manufactured. The light-emitting device 300 emits light with a correlated color temperature exceeding 1950 K.

比較例2及び3
第1構成例の発光装置を製造した。第1構成例の発光装置は、第1蛍光体及び第2蛍光体を含む。
波長変換部材用組成物として、透光性材料として、フェニルシリコーン樹脂100質量部に対して、発光素子10からの光と、第1蛍光体71及び第2蛍光体72を含む蛍光体70の光との混色光の相関色温度がナトリウムランプの色温度に近い2000K付近となるように第1蛍光体71及び第2蛍光体72を含有する波長変換部材用組成物を準備した。この波長変換部材用組成物において、透光性材料100質量部に対する蛍光体70の総量と、第1蛍光体71と第2蛍光体72の配合比率は、表4に示す通りである。
波長変換部材用組成物を成形体41の凹部の発光素子10上に注入して、前記凹部に充填し、さらに150℃で4時間加熱し、蛍光部材用組成物を硬化させ、蛍光部材21を形成し、のようにして、相関色温度が1950Kを超えて2000K以下になる光を発する、第1構成例の発光装置200を製造した。
Comparative Examples 2 and 3
A light emitting device of a first configuration example was manufactured. The light emitting device of the first configuration example includes a first phosphor and a second phosphor.
A wavelength conversion member composition was prepared containing a first phosphor 71 and a second phosphor 72 per 100 parts by mass of a phenyl silicone resin as a translucent material such that the correlated color temperature of mixed light of light from the light emitting element 10 and light of a phosphor 70 containing a first phosphor 71 and a second phosphor 72 was approximately 2000 K, which is close to the color temperature of a sodium lamp. In this wavelength conversion member composition, the total amount of phosphor 70 relative to 100 parts by mass of the translucent material and the blending ratio of the first phosphor 71 and the second phosphor 72 are as shown in Table 4.
The composition for the wavelength conversion member was injected onto the light emitting element 10 in the recess of the molded body 41 to fill the recess, and then heated at 150° C. for 4 hours to harden the composition for the fluorescent member and form the fluorescent member 21. In this manner, the light emitting device 200 of the first configuration example was manufactured, which emits light having a correlated color temperature exceeding 1950 K and not exceeding 2000 K.

各発光装置について、以下の測定を行った。結果を表4から7に示す。 The following measurements were performed on each light-emitting device. The results are shown in Tables 4 to 7.

発光装置の発光スペクトル
各発光装置について、分光測光装置(PMA-12、浜松ホトニクス株式会社製)と積分球を組み合わせた光計測システムを用いて、発光スペクトルを測定した。各発光装置の発光スペクトルの測定は、室温(20℃から30℃)で行った。図13から図18は、各発光装置の前記式(1)における分母から導き出される輝度を同等の数値とした場合の各発光装置の発光スペクトル(分光放射輝度)S(λ)、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)、及びCIEで規定されたipRGCの感度曲線R(λ)を記載した。図19から図22は、バンドパスフィルタ層を配置していない発光装置と、各バンドパスフィルタ層を配置した発光装置の発光スペクトルを記載した。
Emission spectrum of the light-emitting device The emission spectrum of each light-emitting device was measured using a light measurement system combining a spectrophotometer (PMA-12, manufactured by Hamamatsu Photonics Co., Ltd.) and an integrating sphere. The emission spectrum of each light-emitting device was measured at room temperature (20°C to 30°C). Figures 13 to 18 show the emission spectrum (spectral radiance) S(λ) of each light-emitting device when the luminance derived from the denominator in the above formula (1) of each light-emitting device is set to an equivalent value, the CIE-defined human photopic standard luminous efficiency curve V(λ), and the CIE-defined ipRGC sensitivity curve R m (λ). Figures 19 to 22 show the emission spectra of a light-emitting device without a bandpass filter layer and a light-emitting device with each bandpass filter layer.

色度座標(x、y)、相関色温度(K)、色偏差Duv、平均演色評価数Ra、特殊演色評価数R9、半値全幅
各発光装置の発光スペクトルから、CIE1931のCIE色度図上の色度座標(x値、y値)と、JIS Z8725に準拠して相関色温度(CCT:K)及び色偏差Duvと、JIS Z8726に準拠して平均演色評価数Ra、特殊演色評価数R9、及び半値全幅を測定した。
Chromaticity coordinates (x, y), correlated color temperature (K), color deviation Duv, general color rendering index Ra, special color rendering index R9, and full width at half maximum From the emission spectrum of each light-emitting device, the chromaticity coordinates (x value, y value) on the CIE chromaticity diagram of CIE1931, the correlated color temperature (CCT: K) and color deviation Duv in accordance with JIS Z8725, and the general color rendering index Ra, special color rendering index R9, and full width at half maximum in accordance with JIS Z8726 were measured.

第1放射輝度に対する第2放射輝度の割合Lp
各発光装置の発光スペクトル(分光放射輝度)S(λ)から、前記式(3)に基づき、400nm以上750nm以下の範囲の第1放射輝度を100%としたときの、650nm以上750nm以下の範囲の第2放射輝度の割合Lp(%)を算出した。
Ratio of second radiance to first radiance Lp
From the emission spectrum (spectral radiance) S(λ) of each light-emitting device, the proportion Lp (%) of the second radiance in the range of 650 nm or more and 750 nm or less was calculated based on the above formula (3) when the first radiance in the range of 400 nm or more and 750 nm or less was set to 100%.

メラノピック比MR
各発光装置について測定した各発光スペクトル(分光放射輝度)S(λ)、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)、CIEで規定されたipRGCの感度曲線R(λ)を、前記式(1)に算入し、前記式(1)に基づき、各発光装置のメラノピック比MRを測定した。ヒトの明所視標準比視感度曲線V(λ)は、最大の感度(感度ピーク波長)を1とした作用曲線を用いた。CIEで規定されたipRGCの感度曲線R(λ)は、最大の感度(感度ピーク波長)を1とした作用曲線を用いた。
Melanopic ratio MR
The emission spectrum (spectral radiance) S(λ) measured for each light-emitting device, the standard relative luminous efficiency curve V(λ) for human photopic vision defined by the CIE, and the sensitivity curve R m (λ) for ipRGC defined by the CIE were inserted into the above formula (1), and the melanopic ratio MR for each light-emitting device was measured based on the above formula (1). For the standard relative luminous efficiency curve V(λ) for human photopic vision, an action curve was used in which the maximum sensitivity (peak sensitivity wavelength) was set to 1. For the sensitivity curve R m (λ) for ipRGC defined by the CIE, an action curve was used in which the maximum sensitivity (peak sensitivity wavelength) was set to 1.

相対メラノピック比MR/MR
相関色温度が1950Kを超える光を発する比較例1から3の発光装置のうち、メラノピック比MRが最も低い数値である、比較例3の発光装置のメラノピック比を、前記式(4)に基づき、基準メラノピック比MRとした。基準メラノピック比MRに対する各発光装置のメラノピック比MRの比である相対メラノピック比MR/MRを、前記式(5)に基づき算出した。
Relative melanopic ratio MR/MR 0
Among the light emitting devices of Comparative Examples 1 to 3 that emit light with a correlated color temperature exceeding 1950 K, the melanopic ratio of the light emitting device of Comparative Example 3, which has the lowest melanopic ratio MR, was set as the reference melanopic ratio MR 0 based on the above formula (4). The relative melanopic ratio MR/MR 0 , which is the ratio of the melanopic ratio MR of each light emitting device to the reference melanopic ratio MR 0 , was calculated based on the above formula (5).

バンドパスフィルタ層を備えた場合のスペクトル成分の維持率
バンドパスフィルタ層である誘電体多層膜を配置する前の発光装置の300nm以上800nm以下の範囲の発光の分光放射輝度S(λ)を100%としたときの、バンドパスフィルタ層である誘電体多層膜を配置した後の発光装置の300nm以上800nm以下の範囲の発光の分光放射輝度S(λ)の割合を、前記式(6)に基づき、バンドパスフィルタ層を備えた場合のスペクトル成分の維持率(%)として算出した。
Maintenance rate of spectral components when a bandpass filter layer is provided The maintenance rate (%) of spectral components when a bandpass filter layer is provided was calculated based on the above formula (6) as the ratio of the spectral radiance S a (λ) of emission in the range of 300 nm or more and 800 nm or less of the light emitting device after the dielectric multilayer film serving as a bandpass filter layer is provided to the spectral radiance S b (λ) of emission in the range of 300 nm or more and 800 nm or less of the light emitting device before the dielectric multilayer film serving as a bandpass filter layer is provided, which is taken as 100%.

Figure 0007492142000011
Figure 0007492142000011

Figure 0007492142000012
Figure 0007492142000012

Figure 0007492142000013
Figure 0007492142000013

Figure 0007492142000014
Figure 0007492142000014

表4又は表6に示すように、実施例1から12に係る発光装置は、相関色温度が1950K以下であり、ろうそくや焚火の炎に近い暖かみを感じさせる発光色を示した。また、高圧ナトリウムランプの代替として発光装置を用いた場合も、照射物の色味が自然であり、ヒトに違和感を抱かせることが少ない光が発せられる。また、実施例1から12に係る発光装置は、最大の発光強度を示す発光スペクトルの半値全幅が3nm以上110nm以下の範囲内であった。また、発光装置の発光スペクトルにおける発光ピーク波長は、570nm以上680nm以下の範囲内であった。発光装置は、発光装置の発光スペクトルにおける最大の発光強度を有する発光ピークの半値全幅が3nm以上110nm以下であるため、ヒトが感知し難い長波長側の光の成分を抑制することができた。また、実施例1から12に係る発光装置は、前記式(1)から導き出されるメラノピック比MRが0.233以下である光を発し、ヒトのipRGCを強く刺激せずにメラトニンの分泌が促進され、自然に睡眠に誘導する光を照射することができ、落ち着いた雰囲気を感じさせることができると考えられる。 As shown in Table 4 or Table 6, the light emitting devices according to Examples 1 to 12 had a correlated color temperature of 1950K or less, and emitted light with a warmth similar to that of a candle or a campfire flame. In addition, even when the light emitting devices are used as a replacement for high-pressure sodium lamps, the color of the irradiated object is natural, and light that is less likely to cause discomfort to humans is emitted. In addition, the light emitting devices according to Examples 1 to 12 had a full width at half maximum of the emission spectrum showing the maximum emission intensity in the range of 3 nm to 110 nm. In addition, the emission peak wavelength in the emission spectrum of the light emitting device was in the range of 570 nm to 680 nm. Since the full width at half maximum of the emission peak having the maximum emission intensity in the emission spectrum of the light emitting device was 3 nm to 110 nm, the light emitting device was able to suppress light components on the long wavelength side that are difficult for humans to sense. In addition, the light emitting devices according to Examples 1 to 12 emit light with a melanopic ratio MR of 0.233 or less, as calculated from the formula (1), and are believed to be able to irradiate light that promotes melatonin secretion without strongly stimulating human ipRGC, naturally induces sleep, and provide a sense of calm.

実施例1から4に係る発光装置は、黒体放射軌跡からの偏差である色偏差Duvが0.000である光を発し、相関色温度が1950K以下の光を発する場合においても、照射物の色味が自然であり、ヒトに違和感を抱かせることが少ない光が、発光装置から発せられた。
実施例5から12に係る発光装置は、バンドパスフィルタ層として、誘電体多層膜を備える場合であっても、黒体放射軌跡からの偏差である色偏差Duvがマイナス(-)0.008以上プラス(+)0.008以下の光を発し、照射物の色味が自然であり、ヒトに違和感を抱かせることが少ない光が、発光装置から発せられた。
The light emitting devices according to Examples 1 to 4 emitted light with a color deviation Duv, which is the deviation from the blackbody radiation locus, of 0.000, and even when emitting light with a correlated color temperature of 1950 K or less, the color of the irradiated object was natural, and light that was unlikely to cause discomfort to humans was emitted from the light emitting devices.
The light emitting devices according to Examples 5 to 12, even when equipped with a dielectric multilayer film as a bandpass filter layer, emitted light with a color deviation Duv, which is the deviation from the blackbody radiation locus, of minus (-) 0.008 or more and plus (+) 0.008 or less, and the color of the irradiated object was natural, so that the light emitted from the light emitting device was unlikely to cause discomfort to humans.

表5又は表7に示すように、実施例1から12に係る発光装置は、400nm以上750nm以下の範囲の第1放射輝度100%に対する、650nm以上750nm以下の範囲の第2放射輝度が割合Lpが30%以下である光を発した。実施例1から12に係る発光装置は、発光装置から発せられる混色光の中でも、ヒトが感知し難い長波長側の赤色成分の光が比較的少ないため、輝度を低下させることなく、暖かみがあり落ち着いた雰囲気を感じさせる光が、発光装置から発せられる。 As shown in Table 5 or Table 7, the light emitting devices according to Examples 1 to 12 emitted light in which the ratio Lp of the second radiance in the range of 650 nm to 750 nm to the first radiance of 100% in the range of 400 nm to 750 nm was 30% or less. The light emitting devices according to Examples 1 to 12 emitted mixed light from the light emitting devices with a relatively small amount of red light component on the long wavelength side, which is difficult for humans to detect, and therefore emitted light that gives a sense of a warm and calm atmosphere without reducing brightness.

実施例1から12に係る発光装置は、相対メラノピック比MR/MRが40%以上99%以下であり、発光色の色バランスを崩すことなく、メラトニンの分泌を促進し、自然に睡眠に誘導する光を発光装置から出射することができると考えられた。 The light-emitting devices according to Examples 1 to 12 had a relative melanopic ratio MR/MR 0 of 40% or more and 99% or less, and were considered to be capable of emitting light from the light-emitting device that promotes melatonin secretion and naturally induces sleep without disrupting the color balance of the emitted color.

実施例1、2、4、5、6、7、8、11及び12に係る発光装置は、平均演色評価数Raが40以上であり、例えばリビングや寝室等のプライベートな空間に用いた場合においても、違和感なく軽度の作業を行うことができる演色性を有する光を発した。 The light-emitting devices according to Examples 1, 2, 4, 5, 6, 7, 8, 11, and 12 had an average color rendering index Ra of 40 or more, and emitted light with color rendering that allowed light work to be performed without discomfort even when used in private spaces such as a living room or bedroom.

実施例3、9及び10に係る発光装置は、平均演色評価数Raが28以上40以下であり、道路等の屋外において、十分な演色性を有し、メラノピック比MRが0.233以下と低く、ipRGCを強く刺激することなく、落ち着いた雰囲気の光を発した。 The light-emitting devices according to Examples 3, 9, and 10 have an average color rendering index Ra of 28 or more and 40 or less, and therefore have sufficient color rendering properties for use outdoors such as on roads, and emit light with a calming atmosphere without strongly stimulating the ipRGC, with a low melanopic ratio MR of 0.233 or less.

実施例5から12に係る発光装置は、バンドパスフィルタ層として、誘電体多層膜を備えた場合であっても、バンドパスフィルタ層を備えていない発光装置の発光スペクトルの88%以上を維持し、ipRGCを刺激しやすい短波長側の光を低減しつつ、ヒトが照射物を見やすい光を発した。 Even when the light emitting devices according to Examples 5 to 12 were provided with a dielectric multilayer film as a bandpass filter layer, they maintained 88% or more of the emission spectrum of a light emitting device that did not have a bandpass filter layer, and emitted light that made it easy for humans to see the irradiated object while reducing the short-wavelength light that tends to stimulate the ipRGC.

比較例1から3に係る発光装置は、ろうそくや高圧ナトリウムランプが発する光よりもやや高い相関色温度の光を発し、メラノピック比MRも0.233を超えており、ipRGCを刺激しやすく、メラトニンの分泌を抑制しやすい光を発すると考えられた。 The light emitting devices according to Comparative Examples 1 to 3 emit light with a correlated color temperature slightly higher than that emitted by a candle or a high-pressure sodium lamp, and the melanopic ratio MR exceeds 0.233. It is believed that the light emitted is likely to stimulate ipRGC and suppress the secretion of melatonin.

図13から図16に示すように、実施例1から4に係る発光装置は、メラノピック比MRが0.233以下であり、ipRGCを刺激しやすい短波長側の光の成分が小さく、一方、ヒトが感知しやすい550nm以上650nm以下の波長範囲では、比較例3よりも発光強度が高くなり、ヒトが照射物を見やすい光を発した。 As shown in Figures 13 to 16, the light emitting devices according to Examples 1 to 4 had a melanopic ratio MR of 0.233 or less, and emitted light with small short wavelength components that easily stimulate ipRGCs, while having a higher emission intensity than Comparative Example 3 in the wavelength range of 550 nm to 650 nm that is easily detected by humans, making it easier for humans to see the irradiated object.

図17及び18に示すように、比較例1から3に係る発光装置は、メラノピック比MRが0.233を超えており、比較例1及び2は、メラノピック比MRが比較例の中で最も低い比較例3よりも、ipRGCを刺激しやすい短波長側の発光強度が高くなっており、メラトニンの分泌を阻害し易くなる傾向があった。 As shown in Figures 17 and 18, the light-emitting devices according to Comparative Examples 1 to 3 had a melanopic ratio MR exceeding 0.233. Comparative Examples 1 and 2 had higher emission intensities on the short wavelength side, which is more likely to stimulate ipRGCs, than Comparative Example 3, which had the lowest melanopic ratio MR among the comparative examples, and tended to be more likely to inhibit melatonin secretion.

図19から図22に示すように、実施例5から12に係る発光装置は、バンドパスフィルタ層を備え、短波長側の光の出射を抑制した場合であっても、バンドパスフィルタ層を備えていない発光装置とほぼ同等に近い高い発光強度を有しており、ヒトが照射物を見やすい光を発した。 As shown in Figures 19 to 22, the light emitting devices according to Examples 5 to 12, even when equipped with a bandpass filter layer and suppressed emission of light on the short wavelength side, had high light emission intensity almost equivalent to that of a light emitting device not equipped with a bandpass filter layer, and emitted light that allowed humans to easily see the irradiated object.

本発明の一態様の発光装置は、リビングや寝室等のプライベートな空間に使用する屋内用の一般照明、間接照明、車載用照明として用いることができる。街路灯、港湾やトンネル等の屋外に設置する灯具、ヘッドライト、懐中電灯、又はLEDを使用した携帯用ランタンのような屋外での使用が想定される灯具の光源としても利用することができる。 The light-emitting device according to one embodiment of the present invention can be used as indoor general lighting, indirect lighting, and vehicle lighting for use in private spaces such as living rooms and bedrooms. It can also be used as a light source for lighting equipment intended for outdoor use, such as street lights, lighting equipment installed outdoors in ports and tunnels, headlights, flashlights, and portable lanterns using LEDs.

1:支持体、2:第1リード、3:第2リード、4:導電部材、10:発光素子、21、22、26:波長変換部材、23:蛍光体層、24:バンドパスフィルタ層、24a:第1誘電体層、24b:第2誘電体層、25:第2透光性部材、30:第1透光性部材、32:透光性接合部材、41:成形体、42:樹脂部、43:光反射部材、50:封止部材、51:レンズ部、52:鍔部、60:ワイヤ、70:蛍光体、71:第1蛍光体、72:第2蛍光体、100、200、300、400:発光装置、1000:街路灯、1001:低位置照明装置、B:設置台、C1、C2:車道、Le:光源、P:ポール、S:支持部、T:光透過部、W:歩道。
1: Support, 2: First lead, 3: Second lead, 4: Conductive member, 10: Light-emitting element, 21, 22, 26: Wavelength conversion member, 23: Phosphor layer, 24: Bandpass filter layer, 24a: First dielectric layer, 24b: Second dielectric layer, 25: Second light-transmitting member, 30: First light-transmitting member, 32: Light-transmitting joining member, 41: Molded body, 42: Resin part, 43: Light-reflecting member, 50: Sealing member, 51: Lens part, 52: Flange part, 60: Wire, 70: Phosphor, 71: First phosphor, 72: Second phosphor, 100, 200, 300, 400: Light-emitting device, 1000: Street light, 1001: Low-position lighting device, B: Installation stand, C1, C2: Roadway, Le: Light source, P: Pole, S: Support part, T: Light-transmitting part, W: Sidewalk.

Claims (15)

400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、
前記発光装置は、相関色温度が1950K以下であり、平均演色評価数Raが67以上であり、前記発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、
下記式(1)から導き出されるメラノピック比MRが0.233以下である光を発する、発光装置。
(式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、R(λ)はCIE(国際照明委員会)で規定された哺乳類の内因性光感受性網膜神経節細胞(ipRGC)の感度曲線である。)
A light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm;
a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm,
The light emitting device has a correlated color temperature of 1950K or less, a general color rendering index Ra of 67 or more, and a full width at half maximum of an emission spectrum showing a maximum emission intensity in an emission spectrum of the light emitting device of 110 nm or less;
A light emitting device that emits light having a melanopic ratio MR of 0.233 or less, as derived from the following formula (1):
(In formula (1), S(λ) is the spectral radiance of the light emitted by the light emitting device, V(λ) is the standard relative luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de l'Eclairage), and R m (λ) is the sensitivity curve of mammalian intrinsically photosensitive retinal ganglion cells (ipRGC) defined by the CIE (Commission Internationale de l'Eclairage).)
400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
570nm以上680nm以下の範囲内に発光ピーク波長を有する第1蛍光体と、を備えた発光装置であり、
前記第1蛍光体が、下記式(1A)で表される組成を有する第1窒化物蛍光体を含み、
前記発光装置は、相関色温度が1950K以下であり、平均演色評価数Raが5以上30以下であり、前記発光装置の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が110nm以下であり、
下記式(1)から導き出されるメラノピック比MRが0.233以下である光を発する、発光装置。
Si:Eu (1A)
(式(1A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
(式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、R(λ)はCIE(国際照明委員会)で規定された哺乳類の内因性光感受性網膜神経節細胞(ipRGC)の感度曲線である。)
A light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm;
a first phosphor having an emission peak wavelength in the range of 570 nm to 680 nm,
The first phosphor includes a first nitride phosphor having a composition represented by the following formula (1A):
The light emitting device has a correlated color temperature of 1950K or less, an average color rendering index Ra of 5 to 30, and a full width at half maximum of an emission spectrum showing a maximum emission intensity in an emission spectrum of the light emitting device of 110 nm or less;
A light emitting device that emits light having a melanopic ratio MR of 0.233 or less, as derived from the following formula (1):
M12Si5N8 : Eu ( 1A )
(In formula ( 1A ), M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.)
(In formula (1), S(λ) is the spectral radiance of the light emitted by the light emitting device, V(λ) is the standard relative luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de l'Eclairage), and R m (λ) is the sensitivity curve of mammalian intrinsically photosensitive retinal ganglion cells (ipRGC) defined by the CIE (Commission Internationale de l'Eclairage).)
前記第1蛍光体が、下記式(1A)で表される組成を有する第1窒化物蛍光体、下記式(1B)で表される組成を有する第2窒化物蛍光体、下記式(1C)で表される組成を有する第1フッ化物蛍光体、及び下記式(1C)とは組成が異なる下記式(1C’)で表される組成を有する第2フッ化物蛍光体からなる群から選択される少なくとも1種を含む、請求項1に記載の発光装置。
Si:Eu (1A)
(式(1A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
SrCaAlSi:Eu (1B)
(式(1B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
[M 1-bMn4+ ] (1C)
(式(1C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
A’c’[M1-b’Mn4+ b’d’] (1C’)
(式(1C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M2’ 1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
The light emitting device according to claim 1, wherein the first phosphor comprises at least one selected from the group consisting of a first nitride phosphor having a composition represented by the following formula (1A), a second nitride phosphor having a composition represented by the following formula (1B), a first fluoride phosphor having a composition represented by the following formula (1C), and a second fluoride phosphor having a composition represented by the following formula (1C') which has a different composition from that of formula (1C).
M12Si5N8 : Eu ( 1A )
(In formula (1A), M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.)
SrqCasAltSiuNv : Eu ( 1B )
(In formula (1B), q, s, t, u, and v respectively satisfy 0≦q<1, 0<s≦1, q+s≦1, 0.9≦t≦1.1, 0.9≦u≦1.1, and 2.5≦v≦3.5.)
A c [M 2 1-b Mn 4+ b F d ] (1C)
(In formula (1C), A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + ; M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements; b satisfies 0<b<0.2; c is the absolute value of the charge of the [M 2 1-b Mn 4+ b F d ] ion; and d satisfies 5<d<7.)
A'c' [M 2 '1-b' Mn 4 + b' F d' ] (1C')
(In formula (1C'), A' includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + ; M 2 ' includes at least one element selected from the group consisting of Group 4 elements, Group 13 elements and Group 14 elements; b' satisfies 0<b'<0.2;c' is the absolute value of the charge of the [M 2 ' 1-b' Mn 4+ b' F d' ] ion, and d' satisfies 5<d'<7.)
前記第1蛍光体が、さらに下記式(1B)で表される組成を有する第2窒化物蛍光体、下記式(1C)で表される組成を有する第1フッ化物蛍光体、及び下記式(1C)とは組成が異なる下記式(1C’)で表される組成を有する第2フッ化物蛍光体からなる群から選択される少なくとも1種を含む、請求項1又は2に記載の発光装置。
SrCaAlSi:Eu (1B)
(式(1B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
[M 1-bMn4+ ] (1C)
(式(1C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
A’c’[M1-b’Mn4+ b’d’] (1C’)
(式(1C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M2’ 1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
The light emitting device according to claim 1 or 2, wherein the first phosphor further comprises at least one selected from the group consisting of a second nitride phosphor having a composition represented by the following formula (1B), a first fluoride phosphor having a composition represented by the following formula (1C), and a second fluoride phosphor having a composition represented by the following formula (1C') which has a different composition from that of the following formula (1C).
SrqCasAltSiuNv : Eu ( 1B )
(In formula (1B), q, s, t, u, and v respectively satisfy 0≦q<1, 0<s≦1, q+s≦1, 0.9≦t≦1.1, 0.9≦u≦1.1, and 2.5≦v≦3.5.)
A c [M 2 1-b Mn 4+ b F d ] (1C)
(In formula (1C), A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements, b satisfies 0<b<0.2, c is the absolute value of the charge of the [M 2 1-b Mn 4+ b F d ] ion, and d satisfies 5<d<7.)
A'c' [M 2 '1-b' Mn 4 + b' F d' ] (1C')
(In formula (1C'), A' includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + ; M 2 ' includes at least one element selected from the group consisting of Group 4 elements, Group 13 elements and Group 14 elements; b' satisfies 0<b'<0.2;c' is the absolute value of the charge of the [M 2 ' 1-b' Mn 4+ b' F d' ] ion, and d' satisfies 5<d'<7.)
前記第1蛍光体は、前記第1蛍光体の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が3nm以上120nm以下の範囲内である、請求項1から4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, wherein the full width at half maximum of the emission spectrum showing the maximum emission intensity in the emission spectrum of the first phosphor is in the range of 3 nm to 120 nm. 前記発光装置は、さらに、480nm以上570nm未満の範囲内に発光ピーク波長を有する第2蛍光体を、備える、請求項1から5のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5, further comprising a second phosphor having an emission peak wavelength in the range of 480 nm or more and less than 570 nm. 前記第2蛍光体が、下記式(2A)で表される組成を有する希土類アルミン酸塩蛍光体を少なくとも1種含む、請求項6に記載の発光装置。
Ln (Al1-aGa12:Ce (2A)
(式(2A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
The light emitting device according to claim 6 , wherein the second phosphor comprises at least one rare earth aluminate phosphor having a composition represented by the following formula (2A):
Ln13 ( Al1 -aGaa ) 5O12 : Ce(2A)
(In formula (2A), Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and a satisfies 0≦a≦0.5.)
前記第2蛍光体は、前記第2蛍光体の発光スペクトルにおいて最大の発光強度を示す発光スペクトルの半値全幅が20nm以上125nm以下の範囲内である、請求項6又は7に記載の発光装置。 The light emitting device according to claim 6 or 7, wherein the full width at half maximum of the emission spectrum showing the maximum emission intensity in the emission spectrum of the second phosphor is in the range of 20 nm to 125 nm. 前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が5質量%以上95質量%以下の範囲内である、請求項6から8のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 6 to 8, wherein the content of the first phosphor relative to the total amount of the first phosphor and the second phosphor is in the range of 5% by mass to 95% by mass. 黒体放射軌跡からの色偏差Duvがマイナス0.008以上プラス0.008以下の光を発する、請求項1から9のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 9, which emits light with a color deviation Duv from the blackbody radiation locus of -0.008 or more and +0.008 or less. 400nm以上750nm以下の範囲の第1放射輝度100%に対して、650nm以上750nm以下の範囲の第2放射輝度が50%以下である光を発する、請求項1から10のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 10, which emits light in which the second radiance in the range of 650 nm to 750 nm is 50% or less relative to the first radiance in the range of 400 nm to 750 nm, which is 100%. 前記発光素子の光の出射側に、前記第1蛍光体を含む蛍光体層と、前記蛍光体層の光の出射側に配置されたバンドパスフィルタ層と、を含む波長変換部材を備え、
前記バンドパスフィルタ層は、入射角度が0度以上30度以下の範囲内の光に対して、380nm以上495nm未満の波長範囲内の光の平均反射率が80%以上であり、580nmを超えて780nm以下の波長範囲内の光の平均反射率が20%以下である、請求項1から11のいずれか1項に記載の発光装置。
a wavelength conversion member including a phosphor layer including the first phosphor and a bandpass filter layer disposed on the light emission side of the phosphor layer, the wavelength conversion member being disposed on the light emission side of the light emitting element;
12. The light emitting device according to claim 1, wherein the bandpass filter layer has an average reflectance of 80% or more for light in a wavelength range of 380 nm or more and less than 495 nm, and an average reflectance of 20% or less for light in a wavelength range of more than 580 nm and less than 780 nm, for light having an incident angle in a range of 0 degrees or more and 30 degrees or less.
相関色温度が1950Kを超える光を発する発光装置の下記式(4)から導き出される基準メラノピック比MR に対する、相関色温度が1950K以下である光を発する前記発光装置の前記式(1)から導き出される前記メラノピック比MRの比率である相対メラノピック比MR/MR が10%以上99%以下の範囲内である、請求項1から12のいずれか1項に記載の発光装置。
(式(4)中、MR は、相関色温度が1950Kを超える発光装置のメラノピック比であり、S (λ)は相関色温度が1950Kを超える発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、R (λ)はCIE(国際照明委員会)で規定された哺乳類の内因性光感受性網膜神経節細胞(ipRGC)の感度曲線である。)
13. The light-emitting device according to claim 1, wherein a relative melanopic ratio MR/MR 0 , which is a ratio of the melanopic ratio MR derived from the formula (1) of a light-emitting device emitting light having a correlated color temperature of 1950 K or less to a reference melanopic ratio MR 0 derived from the following formula (4) of a light-emitting device emitting light having a correlated color temperature of more than 1950 K, is within a range of 10% to 99%.
(In formula (4), MR 0 is the melanopic ratio of a light-emitting device having a correlated color temperature of more than 1950 K, S 0 (λ) is the spectral radiance of light emitted from a light-emitting device having a correlated color temperature of more than 1950 K, V(λ) is the standard luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de l'Eclairage), and R m (λ) is the sensitivity curve of mammalian intrinsically photosensitive retinal ganglion cells (ipRGCs) defined by the CIE (Commission Internationale de l'Eclairage).)
請求項1から13のいずれか1項に記載の発光装置を備えた灯具。 A lamp comprising the light emitting device according to any one of claims 1 to 13 . 請求項1から13のいずれか1項に記載の発光装置を備えた照明器具。 A lighting fixture comprising the light-emitting device according to claim 1 .
JP2021110054A 2021-07-01 2021-07-01 Light-emitting devices, lamps and lighting equipment Active JP7492142B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021110054A JP7492142B2 (en) 2021-07-01 2021-07-01 Light-emitting devices, lamps and lighting equipment
PCT/JP2022/007080 WO2023276259A1 (en) 2021-07-01 2022-02-22 Light-emitting device, lamp, and lighting fixture
EP22832426.5A EP4349936A1 (en) 2021-07-01 2022-02-22 Light-emitting device, lamp, and lighting fixture
CN202280046350.4A CN117597789A (en) 2021-07-01 2022-02-22 Light emitting device, lamp, and lighting fixture
US18/575,859 US20240279541A1 (en) 2021-07-01 2022-02-22 Light-emitting device, lamp, and lighting fixture
JP2024074607A JP2024109628A (en) 2021-07-01 2024-05-02 Light-emitting devices, lamps and lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021110054A JP7492142B2 (en) 2021-07-01 2021-07-01 Light-emitting devices, lamps and lighting equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024074607A Division JP2024109628A (en) 2021-07-01 2024-05-02 Light-emitting devices, lamps and lighting equipment

Publications (2)

Publication Number Publication Date
JP2023007059A JP2023007059A (en) 2023-01-18
JP7492142B2 true JP7492142B2 (en) 2024-05-29

Family

ID=84692269

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021110054A Active JP7492142B2 (en) 2021-07-01 2021-07-01 Light-emitting devices, lamps and lighting equipment
JP2024074607A Pending JP2024109628A (en) 2021-07-01 2024-05-02 Light-emitting devices, lamps and lighting equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024074607A Pending JP2024109628A (en) 2021-07-01 2024-05-02 Light-emitting devices, lamps and lighting equipment

Country Status (5)

Country Link
US (1) US20240279541A1 (en)
EP (1) EP4349936A1 (en)
JP (2) JP7492142B2 (en)
CN (1) CN117597789A (en)
WO (1) WO2023276259A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300694A (en) 2007-05-31 2008-12-11 Nichia Corp Light-emitting device, resin-molded body constituting same, and method of manufacturing them
JP2015149454A (en) 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Led light source for display
US20190341531A1 (en) 2018-05-05 2019-11-07 Cree, Inc. Solid state lighting device providing spectral power distribution with enhanced perceived brightness
JP2020167399A (en) 2019-03-29 2020-10-08 日亜化学工業株式会社 Light-emitting device
JP2020535651A (en) 2017-09-26 2020-12-03 ルミレッズ リミテッド ライアビリティ カンパニー Luminescent device with improved warm white point

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217800B2 (en) 2008-09-03 2013-06-19 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
EP3848985B1 (en) 2011-04-22 2023-06-07 Seoul Semiconductor Co., Ltd. White light equipment
JP7360003B2 (en) 2018-09-26 2023-10-12 日亜化学工業株式会社 Light emitting device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300694A (en) 2007-05-31 2008-12-11 Nichia Corp Light-emitting device, resin-molded body constituting same, and method of manufacturing them
JP2015149454A (en) 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Led light source for display
JP2020535651A (en) 2017-09-26 2020-12-03 ルミレッズ リミテッド ライアビリティ カンパニー Luminescent device with improved warm white point
US20190341531A1 (en) 2018-05-05 2019-11-07 Cree, Inc. Solid state lighting device providing spectral power distribution with enhanced perceived brightness
JP2020167399A (en) 2019-03-29 2020-10-08 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2023007059A (en) 2023-01-18
CN117597789A (en) 2024-02-23
US20240279541A1 (en) 2024-08-22
EP4349936A1 (en) 2024-04-10
JP2024109628A (en) 2024-08-14
WO2023276259A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9109762B2 (en) White light source and white light source system including the same
US20130307011A1 (en) White light source and white light source system including the same
JP7504980B2 (en) Full spectrum white light emitting device
JP7311818B2 (en) light emitting device
JP7125618B2 (en) light emitting device
JP7492142B2 (en) Light-emitting devices, lamps and lighting equipment
CN110970542A (en) Light emitting device and lamp provided with same
WO2021199752A1 (en) Light emission device and light fixture comprising same
JP7492143B2 (en) Light-emitting devices, lighting fixtures and street lights
JP7464861B2 (en) Light-emitting devices, lighting fixtures and street lights
JP7502650B2 (en) Light-emitting devices, lighting fixtures and street lights
JP7534642B2 (en) Light-emitting devices, lighting fixtures and street lights
JP7381960B2 (en) light emitting device
CN118448405A (en) Full spectrum white light luminous device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240429

R150 Certificate of patent or registration of utility model

Ref document number: 7492142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150