JP7491235B2 - Glass substrate for EUVL and its manufacturing method, and mask blank for EUVL and its manufacturing method - Google Patents

Glass substrate for EUVL and its manufacturing method, and mask blank for EUVL and its manufacturing method Download PDF

Info

Publication number
JP7491235B2
JP7491235B2 JP2021021787A JP2021021787A JP7491235B2 JP 7491235 B2 JP7491235 B2 JP 7491235B2 JP 2021021787 A JP2021021787 A JP 2021021787A JP 2021021787 A JP2021021787 A JP 2021021787A JP 7491235 B2 JP7491235 B2 JP 7491235B2
Authority
JP
Japan
Prior art keywords
glass substrate
euvl
fluorine
main surface
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021021787A
Other languages
Japanese (ja)
Other versions
JP2021181398A (en
Inventor
拓真 奈良
昌彦 田村
哲史 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to US17/245,585 priority Critical patent/US20210355024A1/en
Priority to TW110116159A priority patent/TW202208297A/en
Priority to KR1020210058933A priority patent/KR20210139162A/en
Publication of JP2021181398A publication Critical patent/JP2021181398A/en
Application granted granted Critical
Publication of JP7491235B2 publication Critical patent/JP7491235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Glass Compositions (AREA)

Description

本開示は、EUVL用ガラス基板、及びその製造方法、並びにEUVL用マスクブランク、及びその製造方法に関する。 This disclosure relates to a glass substrate for EUVL and a manufacturing method thereof, as well as a mask blank for EUVL and a manufacturing method thereof.

従来から、半導体デバイスの製造には、フォトリソグラフィ技術が用いられている。フォトリソグラフィ技術では、露光装置によって、フォトマスクのパターンに光を照射し、フォトマスクのパターンをレジスト膜に転写する。 Traditionally, photolithography technology has been used to manufacture semiconductor devices. In photolithography technology, an exposure device irradiates light onto a photomask pattern, transferring the photomask pattern onto a resist film.

最近では、微細パターンの転写を可能とするため、短波長の露光光、例えば、ArFエキシマレーザ光、さらにはEUV(Extreme Ultra-Violet)光などの使用が検討されている。 Recently, the use of short-wavelength exposure light, such as ArF excimer laser light or even EUV (Extreme Ultra-Violet) light, has been considered to enable the transfer of fine patterns.

ここで、EUV光とは、軟X線および真空紫外光を含み、具体的には波長が0.2nm~100nm程度の光のことである。現時点では、露光光として13.5nm程度の波長のEUV光が主に検討されている。 Here, EUV light includes soft X-rays and vacuum ultraviolet light, and specifically refers to light with a wavelength of about 0.2 nm to 100 nm. At present, EUV light with a wavelength of about 13.5 nm is mainly being considered as exposure light.

特許文献1には、EUVL(Extreme Ultra-Violet Lithography)用マスクブランクの製造方法が記載されている。EUVL用マスクブランクは、ガラス基板と、ガラス基板の上に形成される反射膜と、反射膜の上に形成される吸収膜とを含む。 Patent Document 1 describes a method for manufacturing a mask blank for EUVL (Extreme Ultra-Violet Lithography). The mask blank for EUVL includes a glass substrate, a reflective film formed on the glass substrate, and an absorbing film formed on the reflective film.

EUVL用マスクブランクには、微細パターンの転写精度を向上すべく、高い平坦度が求められる。EUVL用マスクブランクの平坦度は主に基板であるガラス基板の平坦度で決まるので、ガラス基板には高い平坦度が求められる。 Mask blanks for EUVL require high flatness to improve the transfer accuracy of fine patterns. The flatness of EUVL mask blanks is determined primarily by the flatness of the glass substrate, which serves as the substrate, so the glass substrate must have high flatness.

そこで、ガラス基板の平坦度を向上すべく、ビーム状のガスクラスタをガラス基板の主面に照射するエッチング工程が行われる。ガラス基板の主面は、ガスクラスタによって局所的にエッチングされ、平坦化される。 Therefore, in order to improve the flatness of the glass substrate, an etching process is performed in which a beam of gas clusters is irradiated onto the main surface of the glass substrate. The main surface of the glass substrate is locally etched and flattened by the gas clusters.

特許文献1には、ガスクラスタの照射によって、ガラス基板の主面から深さ100nm程度までフッ素又は塩素を打ち込む技術が開示されている。この技術によれば、ガラス基板の主面に圧縮応力層が生じ、ガラス基板の主面の強度が向上する。 Patent Document 1 discloses a technique for implanting fluorine or chlorine into the main surface of a glass substrate to a depth of about 100 nm by irradiating the substrate with gas clusters. This technique creates a compressive stress layer on the main surface of the glass substrate, improving the strength of the main surface of the glass substrate.

特開2009-155170号公報JP 2009-155170 A

ところで、EUVL用ガラス基板は、ガスクラスタを照射するエッチング工程の後に、研磨工程、検査工程、及び成膜工程などに供される。これらの工程をまとめて後工程と呼ぶ。 After the etching process in which gas clusters are irradiated, glass substrates for EUVL are subjected to a polishing process, an inspection process, a film formation process, and the like. These processes are collectively called post-processing.

後工程では、ガラス基板の端面が、保持具又は位置決め具等に押し当てられる。それゆえ、端面には、傷が付きやすい。なお、端面の代わりに、又は端面に加えて、ノッチ面が、保持具又は位置決め具に押し当てられることもある。 In a later process, the edge of the glass substrate is pressed against a holder or positioning tool. Therefore, the edge is easily scratched. Sometimes, instead of or in addition to the edge, the notch surface is pressed against the holder or positioning tool.

ノッチ面は、隣り合う2つの端面と主面の角を削り落とすように、主面に対して斜めに形成される。ノッチ面はガラス基板の向きを示し、ガラス基板の向きが所望の向きになるように、ガラス基板が各種の装置に設置され、保持具又は位置決め具等に押し当てられる。 The notch surface is formed at an angle to the main surface so as to remove the corners of the two adjacent end faces and the main surface. The notch surface indicates the orientation of the glass substrate, and the glass substrate is placed in various devices and pressed against a holder or positioning tool so that the orientation of the glass substrate is the desired orientation.

なお、ノッチ面は、無くてもよい。 The notch surface may be omitted.

ガラス基板の端面又はノッチ面に、傷が付くのは避けられない。但し、その傷が伸展し、大きな欠陥が生じると、ガラス基板は不良品として廃棄されてしまう。従って、歩留まりが低下してしまう。 It is unavoidable that scratches will occur on the edge or notch surface of the glass substrate. However, if the scratches spread and cause major defects, the glass substrate will be discarded as a defective product, which will result in a decrease in yield.

本開示の一態様は、EUVL用ガラス基板の端面又はノッチ面に形成された傷の伸展を抑制できる、技術を提供する。 One aspect of the present disclosure provides a technology that can suppress the extension of scratches formed on the edge or notch surface of a glass substrate for EUVL.

本開示の一態様に係るEUVL用ガラス基板は、矩形状の第1主面と、前記第1主面とは反対向きの矩形状の第2主面と、前記第1主面及び前記第2主面に対して垂直な4つの端面と、前記第1主面と前記端面との境界に形成された4つの第1面取面と、前記第2主面と前記端面との境界に形成された4つの第2面取面と、を有する。EUVL用ガラス基板は、TiOを含有する石英ガラスで形成される。前記端面は、フッ素(F)及び前記フッ素と共にガスクラスタを形成する前記フッ素以外の元素(A)を含み、下記式(1)及び下記式(2)を満たす。 A glass substrate for EUVL according to one aspect of the present disclosure has a rectangular first main surface, a rectangular second main surface facing opposite to the first main surface, four end surfaces perpendicular to the first main surface and the second main surface, four first chamfered surfaces formed at the boundaries between the first main surface and the end surfaces, and four second chamfered surfaces formed at the boundaries between the second main surface and the end surfaces. The glass substrate for EUVL is made of quartz glass containing TiO2 . The end surfaces contain fluorine (F) and an element (A) other than fluorine that forms a gas cluster together with the fluorine, and satisfy the following formulas (1) and (2).

Figure 0007491235000001
Figure 0007491235000001

Figure 0007491235000002
上記式(1)中、D1(x)は、TOF-SIMSで測定される、Siの強度で規格化したFの強度であり、xは前記端面からの深さ(単位:nm)、a1x+b1はxが200以上400以下の範囲におけるD1(x)を最小二乗法で近似した直線である。上記式(2)中、D2(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xは前記端面からの深さ(単位:nm)、a2x+b2はxが200以上400以下の範囲におけるD2(x)を最小二乗法で近似した直線である。
Figure 0007491235000002
In the above formula (1), D1(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the end face (unit: nm), and a1x+b1 is a straight line obtained by approximating D1(x) by the least squares method in the range of x from 200 to 400. In the above formula (2), D2(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the end face (unit: nm), and a2x+b2 is a straight line obtained by approximating D2(x) by the least squares method in the range of x from 200 to 400.

本開示の別の一態様に係るEUVL用ガラス基板は、矩形状の第1主面と、前記第1主面とは反対向きの矩形状の第2主面と、前記第1主面及び前記第2主面に対して垂直な4つの端面と、前記第1主面と前記端面との境界に形成された4つの第1面取面と、前記第2主面と前記端面との境界に形成された4つの第2面取面と、隣り合う2つの前記端面と前記第1主面の角を削り落とすように前記第1主面に対して斜めに形成された1つ以上のノッチ面と、を有する。EUVL用ガラス基板は、TiOを含有する石英ガラスで形成される。前記ノッチ面は、フッ素(F)及び前記フッ素と共にガスクラスタを形成する前記フッ素以外の元素(A)を含み、下記式(3)及び下記式(4)を満たす。 A glass substrate for EUVL according to another aspect of the present disclosure has a rectangular first main surface, a rectangular second main surface facing opposite to the first main surface, four end surfaces perpendicular to the first main surface and the second main surface, four first chamfered surfaces formed at the boundaries between the first main surface and the end surfaces, four second chamfered surfaces formed at the boundaries between the second main surface and the end surfaces, and one or more notch surfaces formed obliquely with respect to the first main surface so as to cut off corners of two adjacent end surfaces and the first main surface. The glass substrate for EUVL is formed of quartz glass containing TiO2 . The notch surfaces contain fluorine (F) and an element (A) other than fluorine that forms a gas cluster together with the fluorine, and satisfy the following formulas (3) and (4).

Figure 0007491235000003
Figure 0007491235000003

Figure 0007491235000004
上記式(3)中、D3(x)は、TOF-SIMSで測定される、Siの強度で規格化したFの強度であり、xは前記ノッチ面からの深さ(単位:nm)、a3x+b3はxが200以上400以下の範囲におけるD3(x)を最小二乗法で近似した直線であり、上記式(4)中、D4(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xは前記ノッチ面からの深さ(単位:nm)、a4x+b4はxが200以上400以下の範囲におけるD4(x)を最小二乗法で近似した直線である。
Figure 0007491235000004
In the above formula (3), D3(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the notch face (unit: nm), and a3x+b3 is a straight line obtained by approximating D3(x) using the least squares method when x is in the range of 200 to 400, and in the above formula (4), D4(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the notch face (unit: nm), and a4x+b4 is a straight line obtained by approximating D4(x) using the least squares method when x is in the range of 200 to 400.

本開示の一態様によれば、EUVL用ガラス基板の端面又はノッチ面に形成された傷の伸展を抑制できる。 According to one aspect of the present disclosure, it is possible to suppress the extension of scratches formed on the edge face or notch face of a glass substrate for EUVL.

図1は、一実施形態に係るEUVL用マスクブランクの製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing an EUVL mask blank according to one embodiment. 図2は、図1のS101に供されるガラス基板の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a glass substrate to be subjected to S101 in FIG. 図3は、図2のガラス基板の一例を示す平面図である。FIG. 3 is a plan view showing an example of the glass substrate of FIG. 図4は、一実施形態に係るEUVL用マスクブランクを示す断面図である。FIG. 4 is a cross-sectional view showing an EUVL mask blank according to an embodiment. 図5は、EUVL用フォトマスクの一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a photomask for EUVL. 図6は、一実施形態に係る加工装置を示す断面図である。FIG. 6 is a cross-sectional view showing a processing device according to an embodiment. 図7は、図6のガラス基板、及びその周辺部品を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing the glass substrate and its peripheral components in FIG. 図8は、図7のガスクラスタの照射方向から見た、ガラス基板、及びその周辺部品を示す図である。FIG. 8 is a diagram showing the glass substrate and its peripheral parts as viewed from the direction of irradiation of the gas clusters in FIG. 図9は、図7のクランプ及びスペーサを別の方向から見た図である。FIG. 9 is a view of the clamp and spacer of FIG. 7 from another angle. 図10は、ガラス基板に対するガスクラスタの衝突の一例を示す模式図である。FIG. 10 is a schematic diagram showing an example of collision of gas clusters with a glass substrate. 図11は、例1のガラス基板の端面に対する、ガスクラスタの照射を示す図である。FIG. 11 is a diagram showing irradiation of gas clusters onto the end face of the glass substrate of Example 1. In FIG. 図12は、例1のガラス基板の端面をTOF-SIMSで測定した、F強度/Si強度の深さ方向分布を示す図である。FIG. 12 is a diagram showing the F intensity/Si intensity distribution in the depth direction measured by TOF-SIMS on the end face of the glass substrate of Example 1. 図13は、例1のガラス基板の端面をTOF-SIMSで測定した、C強度/Si強度の深さ方向分布を示す図である。FIG. 13 is a diagram showing the depth direction distribution of C intensity/Si intensity measured by TOF-SIMS on the end face of the glass substrate of Example 1. 図14は、例1のガラス基板の端面の、ガスクラスタ照射前後の硬さを比較した図である。FIG. 14 is a diagram comparing the hardness of the end face of the glass substrate of Example 1 before and after the gas cluster irradiation. 図15は、例2のガラス基板のノッチ面をTOF-SIMSで測定した、F強度/Si強度の深さ方向分布を示す図である。FIG. 15 is a diagram showing the depth direction distribution of F intensity/Si intensity measured by TOF-SIMS on the notch surface of the glass substrate of Example 2. 図16は、例2のガラス基板のノッチ面をTOF-SIMSで測定した、C強度/Si強度の深さ方向分布を示す図である。FIG. 16 is a diagram showing the depth direction distribution of C intensity/Si intensity measured by TOF-SIMS on the notch surface of the glass substrate of Example 2.

以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Embodiments of the present disclosure will be described below with reference to the drawings. Note that the same or corresponding configurations in each drawing will be given the same reference numerals, and descriptions thereof may be omitted. In the specification, "~" indicating a numerical range means that the numerical values before and after it are included as the lower and upper limits.

図1に示すように、EUVL(Extreme Ultra-Violet Lithography)用マスクブランクの製造方法は、S101~S107を有する。マスクブランクの製造にはガラス基板が用いられる。ガラス基板のガラスは、TiOを含有する石英ガラスが好ましい。石英ガラスは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による寸法変化が小さい。石英ガラスは、SiOを80質量%~95質量%、TiOを4質量%~17質量%含んでよい。TiO含有量が4質量%~17質量%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。石英ガラスは、SiOおよびTiO以外の第三成分や不純物を含んでもよい。このような石英ガラスとして、例えば、Corning社のULE(登録商標)7973シリーズを用いてもよい。 As shown in FIG. 1, the method for manufacturing a mask blank for EUVL (Extreme Ultra-Violet Lithography) includes steps S101 to S107. A glass substrate is used for manufacturing the mask blank. The glass of the glass substrate is preferably quartz glass containing TiO 2. Quartz glass has a smaller linear expansion coefficient and a smaller dimensional change due to temperature change than general soda-lime glass. Quartz glass may contain 80% to 95% by mass of SiO 2 and 4% to 17% by mass of TiO 2. When the TiO 2 content is 4% to 17% by mass, the linear expansion coefficient is approximately zero near room temperature, and there is almost no dimensional change near room temperature. Quartz glass may contain a third component or impurities other than SiO 2 and TiO 2. As such quartz glass, for example, Corning's ULE (registered trademark) 7973 series may be used.

ガラス基板2は、図2及び図3に示すように、第1主面21と、第2主面22と、4つの端面23と、4つの第1面取面24と、4つの第2面取面25と、3つのノッチ面26とを含む。第1主面21は、矩形状である。本明細書において、矩形状とは、角に面取加工を施した形状を含む。また、矩形は、正方形を含む。第2主面22は、第1主面21とは反対向きである。第2主面22も、第1主面21と同様に、矩形状である。端面23は、第1主面21及び第2主面22に対して垂直である。第1面取面24は、第1主面21と端面23の境界に形成される。第2面取面25は、第2主面22と端面23の境界に形成される。第1面取面24及び第2面取面25は、本実施形態では、いわゆるC面取面であるが、R面取面であってもよい。ノッチ面26は、隣り合う2つの端面23と第1主面21の角を削り落とすように、第1主面21に対して斜めに形成される。ノッチ面26はガラス基板2の向きを示し、ガラス基板2の向きが所望の向きになるように、ガラス基板2が各種の装置に設置される。ノッチ面26の数は、本実施形態では3つであるが、1つ以上であればよく、特に限定されない。例えばノッチ面26の数が4つであっても、ノッチ面26の大きさが異なれば、ガラス基板2の向きは判別可能である。なお、ノッチ面26は無くてもよく、ノッチ面26の数はゼロでもよい。 2 and 3, the glass substrate 2 includes a first main surface 21, a second main surface 22, four end surfaces 23, four first chamfered surfaces 24, four second chamfered surfaces 25, and three notch surfaces 26. The first main surface 21 is rectangular. In this specification, a rectangular shape includes a shape with chamfered corners. A rectangle also includes a square. The second main surface 22 faces in the opposite direction to the first main surface 21. The second main surface 22 is also rectangular like the first main surface 21. The end surface 23 is perpendicular to the first main surface 21 and the second main surface 22. The first chamfered surface 24 is formed at the boundary between the first main surface 21 and the end surface 23. The second chamfered surface 25 is formed at the boundary between the second main surface 22 and the end surface 23. In this embodiment, the first chamfered surface 24 and the second chamfered surface 25 are so-called C-chamfered surfaces, but may be R-chamfered surfaces. The notch surface 26 is formed at an angle to the first main surface 21 so as to cut off the corners between the two adjacent end surfaces 23 and the first main surface 21. The notch surface 26 indicates the orientation of the glass substrate 2, and the glass substrate 2 is installed in various devices so that the orientation of the glass substrate 2 is a desired orientation. The number of notch surfaces 26 is three in this embodiment, but is not particularly limited as long as it is one or more. For example, even if the number of notch surfaces 26 is four, the orientation of the glass substrate 2 can be determined as long as the sizes of the notch surfaces 26 are different. It is to be noted that the notch surface 26 may not be present, and the number of notch surfaces 26 may be zero.

ガラス基板2の第1主面21は、図3にドット模様で示す品質保証領域27を有する。品質保証領域27は、S101~S104によって所望の平坦度に加工される領域である。品質保証領域27は、第1主面21に直交する方向から見て、例えば端面23からの距離Lが5mm以内の周縁領域28を除く領域である。なお、図示しないが、ガラス基板2の第2主面22も、第1主面21と同様に、品質保証領域と周縁領域とを有する。 The first main surface 21 of the glass substrate 2 has a quality assurance region 27, which is shown by a dot pattern in FIG. 3. The quality assurance region 27 is an area that is processed to the desired flatness by steps S101 to S104. The quality assurance region 27 is an area excluding a peripheral region 28 that is within a distance L of 5 mm from the end face 23, for example, when viewed from a direction perpendicular to the first main surface 21. Although not shown, the second main surface 22 of the glass substrate 2 also has a quality assurance region and a peripheral region, similar to the first main surface 21.

先ず、図1のS101では、ガラス基板2の第1主面21及び第2主面22を研磨する。第1主面21及び第2主面22は、両面研磨機で同時に研磨されてもよいし、片面研磨機で順番に研磨されてもよい。S101では、研磨パッドとガラス基板2の間に研磨スラリーを供給しながら、ガラス基板2を研磨する。研磨スラリーは、研磨剤を含む。研磨剤は、例えば酸化セリウム粒子である。第1主面21及び第2主面22は、異なる材質又は粒度の研磨剤で、複数回研磨されてもよい。 First, in S101 of FIG. 1, the first main surface 21 and the second main surface 22 of the glass substrate 2 are polished. The first main surface 21 and the second main surface 22 may be polished simultaneously using a double-sided polisher, or may be polished sequentially using a single-sided polisher. In S101, the glass substrate 2 is polished while a polishing slurry is supplied between the polishing pad and the glass substrate 2. The polishing slurry contains an abrasive. The abrasive is, for example, cerium oxide particles. The first main surface 21 and the second main surface 22 may be polished multiple times with abrasives of different materials or grain sizes.

なお、S101で用いられる研磨剤は、酸化セリウム粒子には限定されない。例えば、S101で用いられる研磨剤は、酸化シリコン粒子、酸化アルミニウム粒子、酸化ジルコニウム粒子、酸化チタン粒子、ダイヤモンド粒子、又は炭化珪素粒子などであってもよい。 The abrasive used in S101 is not limited to cerium oxide particles. For example, the abrasive used in S101 may be silicon oxide particles, aluminum oxide particles, zirconium oxide particles, titanium oxide particles, diamond particles, silicon carbide particles, etc.

次に、図1のS102では、ガラス基板2の第1主面21及び第2主面22の表面形状を測定する。表面形状の測定には、例えば、表面が傷付かないように、レーザ干渉式等の非接触式の測定機が用いられる。測定機は、第1主面21の品質保証領域27、及び第2主面22の品質保証領域の表面形状を測定する。 Next, in S102 of FIG. 1, the surface shapes of the first main surface 21 and the second main surface 22 of the glass substrate 2 are measured. For example, a non-contact measuring device such as a laser interference type is used to measure the surface shape so as not to scratch the surface. The measuring device measures the surface shape of the quality assurance area 27 of the first main surface 21 and the quality assurance area of the second main surface 22.

次に、図1のS103では、S102の測定結果を参照し、平坦度を向上すべく、ガラス基板2の第1主面21及び第2主面22をビーム状のガスクラスタで加工する。第1主面21と第2主面22は、ガスクラスタで順番にエッチングされる。その順番は、どちらが先でもよく、特に限定されない。 Next, in S103 of FIG. 1, the measurement results of S102 are referenced, and the first main surface 21 and the second main surface 22 of the glass substrate 2 are processed with a beam-shaped gas cluster to improve flatness. The first main surface 21 and the second main surface 22 are etched in order with the gas cluster. The order in which they are etched may be either first or second, and is not particularly limited.

ガスクラスタは、熱電子の衝突によってイオン化され、続いて、電界によって加速され、更に中性化後に、第1主面21又は第2主面22に向けて照射される。ガスクラスタの衝突によって、第1主面21又は第2主面22が局所的にエッチングされ、平坦化される。S103の詳細は、後述する。 The gas clusters are ionized by the impact of the thermal electrons, then accelerated by the electric field, and after neutralization, are irradiated toward the first main surface 21 or the second main surface 22. The impact of the gas clusters locally etches and flattens the first main surface 21 or the second main surface 22. Details of S103 will be described later.

次に、図1のS104では、ガラス基板2の第1主面21及び第2主面22の仕上げ研磨を行う。第1主面21及び第2主面22は、両面研磨機で同時に研磨されてもよいし、片面研磨機で順番に研磨されてもよい。S104では、研磨パッドとガラス基板2の間に研磨スラリーを供給しながら、ガラス基板2を研磨する。研磨スラリーは、研磨剤を含む。研磨剤は、例えばコロイダルシリカ粒子である。 Next, in S104 of FIG. 1, the first main surface 21 and the second main surface 22 of the glass substrate 2 are subjected to finish polishing. The first main surface 21 and the second main surface 22 may be polished simultaneously using a double-sided polisher, or may be polished sequentially using a single-sided polisher. In S104, the glass substrate 2 is polished while a polishing slurry is supplied between the polishing pad and the glass substrate 2. The polishing slurry contains an abrasive. The abrasive is, for example, colloidal silica particles.

次に、図1のS105では、ガラス基板2の第1主面21の品質保証領域27に、図4に示す反射膜3を形成する。反射膜3は、EUV光を反射する。反射膜3は、例えば高屈折率層と低屈折率層とを交互に積層した多層反射膜であってよい。高屈折率層は例えばシリコン(Si)で形成され、低屈折率層は例えばモリブデン(Mo)で形成される。反射膜3の成膜方法としては、例えばイオンビームスパッタリング法、マグネトロンスパッタリング法などのスパッタリング法が用いられる。 Next, in S105 of FIG. 1, a reflective film 3 shown in FIG. 4 is formed in the quality assurance area 27 of the first main surface 21 of the glass substrate 2. The reflective film 3 reflects EUV light. The reflective film 3 may be, for example, a multilayer reflective film in which high-refractive index layers and low-refractive index layers are alternately stacked. The high-refractive index layers are formed of, for example, silicon (Si), and the low-refractive index layers are formed of, for example, molybdenum (Mo). The reflective film 3 is formed by a sputtering method such as ion beam sputtering or magnetron sputtering.

次に、図1のS106では、S105で形成された反射膜3の上に、図4に示す吸収膜4を形成する。吸収膜4は、EUV光を吸収する。吸収膜4は、例えばタンタル(Ta)、クロム(Cr)、パラジウム(Pd)から選ばれる少なくとも1つの元素を含む単金属、合金、窒化物、酸化物、酸窒化物などで形成される。吸収膜4の成膜方法としては、例えばスパッタリング法が用いられる。 Next, in S106 of FIG. 1, an absorbing film 4 shown in FIG. 4 is formed on the reflective film 3 formed in S105. The absorbing film 4 absorbs EUV light. The absorbing film 4 is formed of a single metal, alloy, nitride, oxide, oxynitride, or the like containing at least one element selected from tantalum (Ta), chromium (Cr), and palladium (Pd), for example. The absorbing film 4 is formed, for example, by sputtering.

最後に、図1のS107では、ガラス基板2の第2主面22の品質保証領域に、図4に示す導電膜5を形成する。導電膜5は、露光装置の静電チャックでフォトマスクを静電吸着するのに用いられる。導電膜5は、例えば窒化クロム(CrN)などで形成される。導電膜5の成膜方法としては、例えばスパッタリング法が用いられる。なお、S107は、本実施形態ではS105及びS106の後に実施されるが、S105及びS106の前に実施されてもよい。 Finally, in S107 of FIG. 1, a conductive film 5 shown in FIG. 4 is formed in the quality assurance area of the second main surface 22 of the glass substrate 2. The conductive film 5 is used to electrostatically attract the photomask with an electrostatic chuck of an exposure device. The conductive film 5 is made of, for example, chromium nitride (CrN). The conductive film 5 is formed by, for example, sputtering. Note that, in this embodiment, S107 is performed after S105 and S106, but may be performed before S105 and S106.

なお、反射膜3と導電膜5の配置は逆でもよい。つまり、導電膜5がガラス基板2の第1主面21の品質保証領域27に形成され、反射膜3がガラス基板2の第2主面22の品質保証領域に形成されてもよい。吸収膜4は、反射膜3の上に形成される。 The arrangement of the reflective film 3 and the conductive film 5 may be reversed. That is, the conductive film 5 may be formed in the quality assurance area 27 of the first main surface 21 of the glass substrate 2, and the reflective film 3 may be formed in the quality assurance area of the second main surface 22 of the glass substrate 2. The absorbing film 4 is formed on the reflective film 3.

上記S101~S107により、図4に示すEUVL用マスクブランク1が得られる。EUVL用マスクブランク1は、ガラス基板2と、反射膜3と、吸収膜4と、導電膜5とを含む。なお、EUVL用マスクブランク1は、導電膜5を含まなくてもよい。また、EUVL用マスクブランク1は、更に別の膜を含んでもよい。 By steps S101 to S107, the EUVL mask blank 1 shown in FIG. 4 is obtained. The EUVL mask blank 1 includes a glass substrate 2, a reflective film 3, an absorbing film 4, and a conductive film 5. Note that the EUVL mask blank 1 does not have to include the conductive film 5. Furthermore, the EUVL mask blank 1 may further include another film.

例えば、EUVL用マスクブランク1は、更に、低反射膜を含んでもよい。低反射膜は、吸収膜4上に形成される。低反射膜は、図5に示す吸収膜4の開口パターン41の検査に用いられ、検査光に対して吸収膜4よりも低反射特性を有する。低反射膜は、例えばTaONまたはTaOなどで形成される。低反射膜の成膜方法としては、例えばスパッタリング法が用いられる。 For example, the EUVL mask blank 1 may further include a low-reflection film. The low-reflection film is formed on the absorbing film 4. The low-reflection film is used to inspect the opening pattern 41 of the absorbing film 4 shown in FIG. 5, and has lower reflection characteristics with respect to the inspection light than the absorbing film 4. The low-reflection film is formed of, for example, TaON or TaO. The low-reflection film is formed, for example, by sputtering.

また、EUVL用マスクブランク1は、更に、保護膜を含んでもよい。保護膜は、反射膜3と吸収膜4との間に形成される。保護膜は、吸収膜4に開口パターン41を形成すべく吸収膜4をエッチングする際に、反射膜3がエッチングされないように、反射膜3を保護する。保護膜は、例えばRu、Si、またはTiOなどで形成される。保護膜の成膜方法としては、例えばスパッタリング法が用いられる。 Moreover, the EUVL mask blank 1 may further include a protective film. The protective film is formed between the reflective film 3 and the absorbing film 4. The protective film protects the reflective film 3 so that the reflective film 3 is not etched when the absorbing film 4 is etched to form an opening pattern 41 in the absorbing film 4. The protective film is made of, for example, Ru, Si, or TiO2 . The protective film is formed by, for example, sputtering.

図5に示すように、EUVL用フォトマスクは、吸収膜4に開口パターン41を形成して得られる。開口パターン41の形成には、フォトリソグラフィ法およびエッチング法が用いられる。従って、開口パターン41の形成に用いられるレジスト膜が、EUVL用マスクブランク1に含まれてもよい。 As shown in FIG. 5, the EUVL photomask is obtained by forming an opening pattern 41 in the absorbing film 4. Photolithography and etching are used to form the opening pattern 41. Therefore, the resist film used to form the opening pattern 41 may be included in the EUVL mask blank 1.

次に、図6を参照して、図1のS103で用いられる加工装置について説明する。加工装置100は、いわゆるGCIB(Gas Cluster Ion Beam)加工装置である。 Next, the processing device used in S103 in FIG. 1 will be described with reference to FIG. 6. The processing device 100 is a so-called GCIB (Gas Cluster Ion Beam) processing device.

加工装置100は、真空容器101を含む。真空容器101は、ノズルチャンバ102と、イオン化/加速チャンバ103と、処理チャンバ104とを有する。3つのチャンバ102、103、104は、互いに接続され、ガスクラスタの通路を形成する。3つのチャンバ102、103、104は、3つの真空ポンプ105、106、107によって排気され、所望の真空度に維持される。なお、チャンバの数、及び真空ポンプの数は、特に限定されない。 The processing apparatus 100 includes a vacuum vessel 101. The vacuum vessel 101 has a nozzle chamber 102, an ionization/acceleration chamber 103, and a processing chamber 104. The three chambers 102, 103, and 104 are connected to each other and form a passage for the gas cluster. The three chambers 102, 103, and 104 are evacuated by three vacuum pumps 105, 106, and 107, and are maintained at a desired vacuum level. Note that the number of chambers and the number of vacuum pumps are not particularly limited.

加工装置100は、生成部110を含む。生成部110は、ガスクラスタを生成する。生成部110は、例えば、原料タンク111と、圧力制御器113と、供給管114と、ノズル116とを含む。原料タンク111は、原料ガス(例えばCFガス)を貯蔵する。圧力制御器113は、供給管114を介して原料タンク111からノズル116に供給される原料ガスの供給圧を制御する。ノズル116は、ノズルチャンバ102内に設けられ、真空中に原料ガスを噴射し、超音速のガスジェット118を形成する。 The processing apparatus 100 includes a generation unit 110. The generation unit 110 generates gas clusters. The generation unit 110 includes, for example, a raw material tank 111, a pressure controller 113, a supply pipe 114, and a nozzle 116. The raw material tank 111 stores a raw material gas (for example, CF4 gas). The pressure controller 113 controls the supply pressure of the raw material gas supplied from the raw material tank 111 to the nozzle 116 via the supply pipe 114. The nozzle 116 is provided in the nozzle chamber 102, and ejects the raw material gas into a vacuum to form a supersonic gas jet 118.

原料ガスは、ガスジェット118内にて、断熱膨張によって冷却される。その結果、ガスジェット118の一部は、それぞれが数個から数1000個の原子又は分子の集合体であるガスクラスタに凝縮する。ガスジェット118の流れの中心付近にガスクラスタが多く含まれる。それゆえ、スキーマ119によって、ガスジェット118の流れの中心付近のみを通過させることにより、ガスクラスタを効率的に送り出せる。 The source gas is cooled by adiabatic expansion in the gas jet 118. As a result, part of the gas jet 118 condenses into gas clusters, each of which is an aggregate of several to several thousand atoms or molecules. Many gas clusters are found near the center of the gas jet 118 flow. Therefore, the gas clusters can be efficiently delivered by passing only the center of the gas jet 118 flow using the schema 119.

なお、原料ガスは、CFガスには限定されず、CHFガス、CHガス、Cガス、BFガス、NFガス、SFガス、SeFガス、TeFガス、又はWFガスなどであってもよい。詳しくは後述するが、これらのガスの中でも、CFガス、CHFガス、又はCHガスが好ましい。これらのガスから複数のガスが選ばれてもよく、混合ガスが原料ガスとして用いられてもよい。 The raw material gas is not limited to CF4 gas, and may be CHF3 gas, CH2F2 gas, C2F6 gas, BF3 gas, NF3 gas, SF6 gas, SeF6 gas, TeF6 gas, or WF6 gas. Of these gases, CF4 gas, CHF3 gas, or CH2F2 gas is preferable, as described in detail below. A plurality of gases may be selected from these gases, or a mixed gas may be used as the raw material gas.

加工装置100は、イオン化部120を含む。イオン化部120は、ガスジェット118内のガスクラスタの少なくとも一部をイオン化する。イオン化部120は、例えば、1以上の熱フィラメント124と、円筒電極126とを含む。熱フィラメント124は、電源125からの電力(電圧V)によって発熱し、熱電子を放出する。円筒電極126は、熱フィラメント124から放出された熱電子を加速し、加速した熱電子をガスクラスタと衝突させる。電子とガスクラスタとの衝突によってガスクラスタの一部から電子が放出され、これらのガスクラスタが正イオン化する。なお、2つ以上の電子が放出され、多価イオン化する場合もある。円筒電極126と熱フィラメント124の間に、電源127からの電圧Vが印加される。この電圧V(電界)によって、熱電子が加速され、ガスクラスタと衝突する。 The processing apparatus 100 includes an ionization section 120. The ionization section 120 ionizes at least a portion of the gas clusters in the gas jet 118. The ionization section 120 includes, for example, one or more thermal filaments 124 and a cylindrical electrode 126. The thermal filament 124 generates heat by power (voltage V F ) from a power source 125 and emits thermoelectrons. The cylindrical electrode 126 accelerates the thermoelectrons emitted from the thermal filament 124 and causes the accelerated thermoelectrons to collide with the gas clusters. Electrons are emitted from some of the gas clusters due to the collision between the electrons and the gas clusters, and these gas clusters are positively ionized. Note that two or more electrons may be emitted and the gas clusters may be multiply ionized. A voltage V A from a power source 127 is applied between the cylindrical electrode 126 and the thermal filament 124. The thermal electrons are accelerated by this voltage V A (electric field) and collide with the gas clusters.

加工装置100は、加速部130を含む。加速部130は、イオン化部120でイオン化したガスクラスタを加速し、GCIB128を形成する。加速部130は、例えば、第1電極132と、第2電極134とを含む。第2電極134は接地され、第1電極132には電源135から正の電圧Vsが印加される。第1電極132および第2電極134は、正イオン化したガスクラスタを加速する電界を形成する。加速されたガスクラスタは、第2電極134の開口からGCIB128として引き出される。電源136は、第1電極132および第2電極134に対してイオン化部120にバイアスをかける加速電圧VAccを供給し、総GCIB加速電位がVAccに等しくなるようにする。VAccは、例えば1kV~200kV、好ましくは1kV~70kVである。 The processing apparatus 100 includes an acceleration section 130. The acceleration section 130 accelerates the gas clusters ionized in the ionization section 120 to form a GCIB 128. The acceleration section 130 includes, for example, a first electrode 132 and a second electrode 134. The second electrode 134 is grounded, and a positive voltage Vs is applied to the first electrode 132 from a power supply 135. The first electrode 132 and the second electrode 134 form an electric field that accelerates the positively ionized gas clusters. The accelerated gas clusters are extracted as a GCIB 128 from an opening of the second electrode 134. The power supply 136 supplies an acceleration voltage V Acc that biases the ionization section 120 relative to the first electrode 132 and the second electrode 134, so that the total GCIB acceleration potential is equal to V Acc . V Acc is, for example, 1 kV to 200 kV, preferably 1 kV to 70 kV.

加工装置100は、不図示の中性化部を含んでもよい。中性化部は、加速部130で形成されたGCIB128を中性化し、中性のガスクラスタを形成する。中性のガスクラスタをガラス基板2に照射するので、ガラス基板2の帯電を防止できる。なお、正イオン化されたガスクラスタをガラス基板2に照射しても、ガラス基板2のエッチングは可能である。 The processing apparatus 100 may include a neutralization section (not shown). The neutralization section neutralizes the GCIB 128 formed in the acceleration section 130 to form neutral gas clusters. Since the glass substrate 2 is irradiated with neutral gas clusters, charging of the glass substrate 2 can be prevented. Note that even if the glass substrate 2 is irradiated with positively ionized gas clusters, etching of the glass substrate 2 is possible.

加工装置100は、照射部150を含む。照射部150は、ビーム状のガスクラスタ129をガラス基板2に照射し、ガラス基板2を局所的にエッチングする。ガスクラスタ129のビームの強度分布の半値幅は、例えば1~30mmである。照射部150は、例えば、ステージ151と、ステージ移動機構152と、アパーチャ153とを含む。ステージ151は、処理チャンバ104内に設置され、ガラス基板2を保持する。ステージ移動機構152は、ガラス基板2におけるガスクラスタ129の照射点を移動させるべく、ステージ151を2次元的にY軸方向及びZ軸方向に移動させる。移動速度を制御することで、エッチング量を制御でき、ガラス基板2を平坦化できる。なお、ステージ移動機構152は、ステージ151をX軸方向にも移動可能である。また、ステージ移動機構152は、Y軸方向に延びる回転軸を中心にステージ151を回転可能である。アパーチャ153は、ガスクラスタ129の通路の途中に設けられ、ガスクラスタ129の強度の均一性を高める。ガスクラスタ129は、アパーチャ153の開口を通り、ガラス基板2に照射される。 The processing apparatus 100 includes an irradiation unit 150. The irradiation unit 150 irradiates the glass substrate 2 with a beam-shaped gas cluster 129 to locally etch the glass substrate 2. The half-width of the intensity distribution of the beam of the gas cluster 129 is, for example, 1 to 30 mm. The irradiation unit 150 includes, for example, a stage 151, a stage moving mechanism 152, and an aperture 153. The stage 151 is installed in the processing chamber 104 and holds the glass substrate 2. The stage moving mechanism 152 moves the stage 151 two-dimensionally in the Y-axis direction and the Z-axis direction to move the irradiation point of the gas cluster 129 on the glass substrate 2. By controlling the moving speed, the amount of etching can be controlled and the glass substrate 2 can be flattened. The stage moving mechanism 152 can also move the stage 151 in the X-axis direction. The stage moving mechanism 152 can also rotate the stage 151 around a rotation axis extending in the Y-axis direction. The aperture 153 is provided midway through the passage of the gas cluster 129 to increase the uniformity of the intensity of the gas cluster 129. The gas cluster 129 passes through the opening of the aperture 153 and is irradiated onto the glass substrate 2.

次に、図7~図9を参照して、加工装置100の照射部150について説明する。本明細書において、X軸方向、Y軸方向、及びZ軸方向は互いに垂直な方向である。X軸方向及びY軸方向が水平方向、Z軸方向が鉛直方向である。以下の説明において、X軸正方向が前方、X軸負方向が後方である。図7に矢印で示すガスクラスタ129の照射方向は、X軸正方向である。 Next, the irradiation section 150 of the processing apparatus 100 will be described with reference to Figures 7 to 9. In this specification, the X-axis direction, the Y-axis direction, and the Z-axis direction are mutually perpendicular. The X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is vertical. In the following description, the positive X-axis direction is the forward direction, and the negative X-axis direction is the rearward direction. The irradiation direction of the gas cluster 129 indicated by the arrow in Figure 7 is the positive X-axis direction.

図7に示すように、照射部150は、ビーム状のガスクラスタ129を前方に照射し、照射したガスクラスタ129でガラス基板2の第1主面21、端面23、第1面取面24及びノッチ面26を局所的にエッチングする。第1主面21は、後方に向けて配置され、且つ斜め上向きに傾斜して配置される。傾斜角度は、特に限定されないが、例えば5°である。第1主面21を斜め上向きに傾斜して配置することで、4つの端面23のうち下方の端面23にビーム状のガスクラスタ129を直接照射することが可能となる。なお、ガラス基板2の向きを逆向きにすれば、ガラス基板2の第2主面22及び第2面取面25の局所的なエッチングも当然に可能である。 As shown in FIG. 7, the irradiation unit 150 irradiates the beam-shaped gas cluster 129 forward, and the irradiated gas cluster 129 locally etches the first main surface 21, the end surface 23, the first chamfered surface 24, and the notch surface 26 of the glass substrate 2. The first main surface 21 is arranged facing backward and tilted obliquely upward. The tilt angle is not particularly limited, but is, for example, 5°. By arranging the first main surface 21 tilted obliquely upward, it becomes possible to directly irradiate the beam-shaped gas cluster 129 to the lower end surface 23 of the four end surfaces 23. Note that if the orientation of the glass substrate 2 is reversed, it is naturally possible to locally etch the second main surface 22 and the second chamfered surface 25 of the glass substrate 2.

図9に示すように、ステージ151は、ガラス基板2の第2主面22に対向配置される。ステージ151は、ガラス基板2の前方に配置される。ステージ151は、例えばスペーサ155を介してガラス基板2を保持してもよい。スペーサ155は、ステージ151とガラス基板2の間に隙間を形成する。ガラス基板2の第2主面22の全体がステージ151に接触する場合に比べて、第2主面22の接触傷の発生を抑制できる。 As shown in FIG. 9, the stage 151 is disposed opposite the second main surface 22 of the glass substrate 2. The stage 151 is disposed in front of the glass substrate 2. The stage 151 may hold the glass substrate 2 via a spacer 155, for example. The spacer 155 forms a gap between the stage 151 and the glass substrate 2. Compared to a case where the entire second main surface 22 of the glass substrate 2 is in contact with the stage 151, the occurrence of contact scratches on the second main surface 22 can be suppressed.

スペーサ155は、先細り状のテーパ面を有してもよい。スペーサ155のテーパ面でガラス基板2の第2面取面25を保持すれば、第2主面22に全く接触しないので、第2主面22の接触傷の発生を確実に防止できる。スペーサ155の一部は、図8に示すようにガスクラスタ129の照射方向から見て、ガラス基板2の外側に配置される。 The spacer 155 may have a tapered surface. If the tapered surface of the spacer 155 holds the second chamfered surface 25 of the glass substrate 2, it will not come into contact with the second main surface 22 at all, so that the occurrence of contact scratches on the second main surface 22 can be reliably prevented. A part of the spacer 155 is positioned outside the glass substrate 2 when viewed from the irradiation direction of the gas cluster 129 as shown in FIG. 8.

なお、本実施形態ではガスクラスタ129の照射方向から見て、スペーサ155の一部をガラス基板2の外側に配置するが、スペーサ155の全体をガラス基板2の内側に配置することも可能である。その場合、スペーサ155は、ガラス基板2の第2面取面25ではなく、第2主面22の品質保証領域を除く周縁領域に接触する。 In this embodiment, a part of the spacer 155 is disposed outside the glass substrate 2 when viewed from the irradiation direction of the gas cluster 129, but it is also possible to dispose the entire spacer 155 inside the glass substrate 2. In that case, the spacer 155 contacts the peripheral region excluding the quality assurance region of the second main surface 22, rather than the second chamfered surface 25 of the glass substrate 2.

また、ステージ151は、クランプ156を介して、ガラス基板2を保持してもよい。真空中でガラス基板2を安定的に保持できる。クランプ156の全体は、ガスクラスタ129の照射方向から見て、ガラス基板2の外側に配置される。クランプ156は、例えばガラス基板2の端面23を押さえる。クランプ156は、ガラス基板2の周縁に沿って間隔をおいて複数設けられる。 The stage 151 may also hold the glass substrate 2 via a clamp 156. The glass substrate 2 can be stably held in a vacuum. The entire clamp 156 is disposed outside the glass substrate 2 when viewed from the direction of irradiation of the gas cluster 129. The clamp 156 holds down, for example, the end surface 23 of the glass substrate 2. A plurality of clamps 156 are provided at intervals along the periphery of the glass substrate 2.

なお、クランプ156は、本実施形態ではガラス基板2の端面23を押さえるが、ガラス基板2の第1主面21の周縁領域28を押さえてもよい。また、クランプ156は、ガラス基板2の第1面取面24を押さえてもよい。これらの場合も、クランプ156の一部は、ガスクラスタ129の照射方向から見て、ガラス基板2の外側に配置される。 In this embodiment, the clamp 156 presses against the edge surface 23 of the glass substrate 2, but it may also press against the peripheral region 28 of the first main surface 21 of the glass substrate 2. The clamp 156 may also press against the first chamfered surface 24 of the glass substrate 2. In these cases, too, a portion of the clamp 156 is positioned outside the glass substrate 2 when viewed from the irradiation direction of the gas cluster 129.

ところで、図1に示すように、ガラス基板2は、ガスクラスタ129を照射するエッチング工程の後に、研磨工程、検査工程、及び成膜工程などに供される。これらの工程をまとめて後工程と呼ぶ。後工程では、ガラス基板2の端面23が、保持具又は位置決め具等に押し当てられる。それゆえ、端面23には、傷が付きやすい。 As shown in FIG. 1, after the etching process in which gas clusters 129 are irradiated, the glass substrate 2 is subjected to a polishing process, an inspection process, a film formation process, and the like. These processes are collectively called the post-process. In the post-process, the end surface 23 of the glass substrate 2 is pressed against a holder or a positioning tool. Therefore, the end surface 23 is easily scratched.

そこで、本実施形態では、ガスクラスタ129の照射によって、ガラス基板2の端面23に、フッ素(F)及びフッ素以外の元素(以下、「A」とも表記する。)を打ち込み、端面23の近傍を軟化させる。端面23の近傍の硬さが柔らかいので、傷を伸展させる応力を吸収するように、端面23の近傍が変形できる。従って、傷の伸展を抑制でき、歩留まりの低下を抑制できる。 In this embodiment, fluorine (F) and elements other than fluorine (hereinafter also referred to as "A") are implanted into the end face 23 of the glass substrate 2 by irradiating the gas cluster 129, softening the vicinity of the end face 23. Because the hardness of the vicinity of the end face 23 is soft, the vicinity of the end face 23 can deform so as to absorb the stress that propagates the scratches. Therefore, the extension of the scratches can be suppressed, and a decrease in yield can be suppressed.

Aは、Fと共にガスクラスタ129を形成するものであれば特に限定されないが、例えば、炭素(C)、ホウ素(B)、水素(H)、窒素(N)、硫黄(S)、セレン(Se)、テルル(Te)、又はタングステン(W)である。詳しくは後述するが、Aは、価電子数が少ない元素が好ましく、また、原子半径が小さい元素が好ましい。具体的には、Aは、好ましくは炭素(C)、ホウ素(B)、又は窒素(N)であり、より好ましくは炭素(C)である。 A is not particularly limited as long as it forms a gas cluster 129 together with F, but may be, for example, carbon (C), boron (B), hydrogen (H), nitrogen (N), sulfur (S), selenium (Se), tellurium (Te), or tungsten (W). As will be described in detail later, A is preferably an element with a small number of valence electrons and a small atomic radius. Specifically, A is preferably carbon (C), boron (B), or nitrogen (N), and more preferably carbon (C).

図10に示すようにガスクラスタ129がガラス基板2に打ち込まれると、反応性の高いフッ素によって、ガラス表面近傍のSi-O結合が切断される。その結果、Si、O、F、及びAがランダムに結合し、密度が疎になるので、ガラス表面の硬さが柔らかくなると推定される。 As shown in FIG. 10, when gas clusters 129 are implanted into the glass substrate 2, the highly reactive fluorine breaks the Si-O bonds near the glass surface. As a result, Si, O, F, and A bond randomly, making the density sparse, which is presumably why the hardness of the glass surface becomes softer.

ガラス表面の密度が疎になれば、ガラス表面に圧縮応力が生じないので、ガラス表面の硬さが硬くなることはない。ガラス表面の密度を疎にする目的で、Aは、価電子数が少ない元素が好ましく、また、原子半径が小さい元素が好ましい。Aは、上記の通り、好ましくは炭素、ホウ素、又は窒素であり、より好ましくは炭素である。AとFによって形成されるガスクラスタ129は、好ましくはCF、CHF、CH、BF、又はNFであり、より好ましくはCF、CHF、又はCHである。CF等は、BF及びNFに比べて、取り扱いが容易である。 If the density of the glass surface becomes low, no compressive stress occurs on the glass surface, so the hardness of the glass surface does not become high. In order to make the density of the glass surface low, A is preferably an element with a small number of valence electrons and an element with a small atomic radius. As described above, A is preferably carbon, boron, or nitrogen, and more preferably carbon. The gas cluster 129 formed by A and F is preferably CF 4 , CHF 3 , CH 2 F 2 , BF 3 , or NF 3 , and more preferably CF 4 , CHF 3 , or CH 2 F 2. CF 4 and the like are easier to handle than BF 3 and NF 3 .

また、ガラス表面の密度が疎になれば、ガラス表面に圧縮応力が生じないので、圧縮応力によるガラス基板2の変形が生じない。従って、ガラス基板2の第1主面21及び第2主面22の平坦度が良好である。 In addition, if the density of the glass surface is low, compressive stress is not generated on the glass surface, and deformation of the glass substrate 2 due to compressive stress does not occur. Therefore, the flatness of the first main surface 21 and the second main surface 22 of the glass substrate 2 is good.

F及びAは、ガラス基板2の端面23に打ちこまれる。図1のS103にて、ガスクラスタ129をガラス基板2の端面23に直接照射してもよいし、ガラス基板2の周辺部品との衝突によって向きを変えたガスクラスタ129を、ガラス基板2の端面23に打ちこんでもよい。また、4つの端面23にガスクラスタ129を直接照射するために、X軸に対して平行な回転軸を中心にガラス基板2を90度ずつ回転させ、S103を複数回実施してもよい。このとき、ガスクラスタ129の照射時間およびステージ151の座標を制御することで、4つの端面23に打ちこまれるF及びAの量を制御することができる。ガラス基板2の周辺部品としては、例えばステージ151、スペーサ155、及びクランプ156等が挙げられる。 F and A are implanted into the end surface 23 of the glass substrate 2. In S103 of FIG. 1, the gas cluster 129 may be directly irradiated onto the end surface 23 of the glass substrate 2, or the gas cluster 129 that has been changed in direction due to collision with peripheral parts of the glass substrate 2 may be implanted into the end surface 23 of the glass substrate 2. In addition, in order to directly irradiate the four end surfaces 23 with the gas cluster 129, the glass substrate 2 may be rotated 90 degrees around a rotation axis parallel to the X-axis, and S103 may be performed multiple times. At this time, the amount of F and A implanted into the four end surfaces 23 can be controlled by controlling the irradiation time of the gas cluster 129 and the coordinates of the stage 151. Examples of peripheral parts of the glass substrate 2 include the stage 151, the spacer 155, and the clamp 156.

端面23は、F及びAを含み、下記式(1)及び下記式(2)を満たす。 The end surface 23 includes F and A and satisfies the following formula (1) and formula (2).

Figure 0007491235000005
Figure 0007491235000005

Figure 0007491235000006
上記式(1)中、D1(x)は、TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)で測定される、Siの強度で規格化したFの強度であり、xは端面23からの深さ(単位:nm)、a1x+b1はxが200以上400以下の範囲におけるD1(x)を最小二乗法で近似した直線である。上記式(2)中、D2(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xは端面23からの深さ(単位:nm)、a2x+b2はxが200以上400以下の範囲におけるD2(x)を最小二乗法で近似した直線である。上記式(1)の左辺の値S1は、好ましくは10以下である。また、上記式(2)の左辺の値S2は、好ましくは1以下である。
Figure 0007491235000006
In the above formula (1), D1(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry), x is the depth (unit: nm) from the end face 23, and a1x+b1 is a straight line obtained by approximating D1(x) in the range of x from 200 to 400 using the least squares method. In the above formula (2), D2(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth (unit: nm) from the end face 23, and a2x+b2 is a straight line obtained by approximating D2(x) in the range of x from 200 to 400 using the least squares method. The value S1 on the left side of the above formula (1) is preferably 10 or less. The value S2 on the left side of the above formula (2) is preferably 1 or less.

上記の通り、端面23は、F及びAを含み、上記式(1)及び上記式(2)を満たす。これにより、保持具又は位置決め具等に当てられる端面23の近傍の硬さを軟化できる。端面23の近傍の硬さが柔らかいので、傷を伸展させる応力を吸収するように、端面23の近傍が変形できる。従って、傷の伸展を抑制でき、歩留まりの低下を抑制できる。 As described above, the end face 23 includes F and A, and satisfies the above formula (1) and formula (2). This makes it possible to soften the hardness in the vicinity of the end face 23 that is brought into contact with a holder, positioning tool, or the like. Because the hardness in the vicinity of the end face 23 is soft, the vicinity of the end face 23 can deform so as to absorb the stress that causes the scratches to extend. Therefore, the extension of the scratches can be suppressed, and a decrease in yield can be suppressed.

なお、端面23の代わりに、又は端面23に加えて、ノッチ面26が、保持具又は位置決め具に押し当てられることもある。この場合、ノッチ面26に傷が付くのは、避けられない。但し、その傷が伸展し、大きな欠陥が生じると、ガラス基板は不良品として廃棄されてしまう。従って、歩留まりが低下してしまう。 In addition, instead of or in addition to the end face 23, the notch face 26 may be pressed against a holder or positioning tool. In this case, scratches on the notch face 26 are unavoidable. However, if the scratches extend and cause a major defect, the glass substrate will be discarded as a defective product. This will result in a decrease in yield.

そこで、ガスクラスタ129の照射によって、ガラス基板2のノッチ面26に、フッ素(F)及びフッ素以外の元素(A)を打ち込み、ノッチ面26の近傍を軟化させてもよい。ノッチ面26の近傍の硬さが柔らかいので、傷を伸展させる応力を吸収するように、ノッチ面26の近傍が変形できる。従って、傷の伸展を抑制でき、歩留まりの低下を抑制できる。 Therefore, fluorine (F) and an element other than fluorine (A) may be implanted into the notch surface 26 of the glass substrate 2 by irradiating it with gas clusters 129, thereby softening the vicinity of the notch surface 26. Because the vicinity of the notch surface 26 is soft, the vicinity of the notch surface 26 can deform so as to absorb the stress that propagates the scratches. Therefore, the propagation of the scratches can be suppressed, and a decrease in yield can be suppressed.

図1のS103にて、ガスクラスタ129をガラス基板2のノッチ面26に直接照射してもよいし、ガラス基板2の周辺部品との衝突によって向きを変えたガスクラスタ129を、ガラス基板2のノッチ面26に打ちこんでもよい。また、X軸に対して平行な回転軸を中心にガラス基板2を90度ずつ回転させ、S103を複数回実施してもよい。このとき、ガスクラスタ129の照射時間およびステージ151の座標を制御することで、全てのノッチ面26に打ちこまれるF及びAの量を制御することができる。ノッチ面26は、端面23に比べて、ガスクラスタ129を直接照射しやすく、F及びAの含有量を大きくできる。 In S103 of FIG. 1, the gas clusters 129 may be directly irradiated onto the notch surface 26 of the glass substrate 2, or the gas clusters 129 that have been changed in direction due to collision with peripheral components of the glass substrate 2 may be injected into the notch surface 26 of the glass substrate 2. Alternatively, S103 may be performed multiple times by rotating the glass substrate 2 by 90 degrees around a rotation axis parallel to the X-axis. At this time, the amount of F and A injected into all of the notch surfaces 26 can be controlled by controlling the irradiation time of the gas clusters 129 and the coordinates of the stage 151. The notch surface 26 is easier to directly irradiate with the gas clusters 129 than the end surface 23, and the content of F and A can be increased.

ガスクラスタ129を照射したノッチ面26は、F及びAを含み、下記式(3)及び下記式(4)を満たす。 The notch surface 26 irradiated with the gas cluster 129 contains F and A, and satisfies the following formulas (3) and (4).

Figure 0007491235000007
Figure 0007491235000007

Figure 0007491235000008
上記式(3)中、D3(x)は、TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)で測定される、Siの強度で規格化したFの強度であり、xはノッチ面26からの深さ(単位:nm)、a3x+b3はxが200以上400以下の範囲におけるD3(x)を最小二乗法で近似した直線である。上記式(4)中、D4(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xはノッチ面26からの深さ(単位:nm)、a4x+b4はxが200以上400以下の範囲におけるD4(x)を最小二乗法で近似した直線である。上記式(3)の左辺の値S3は、好ましくは10以下である。また、上記式(4)の左辺の値S4は、好ましくは1以下である。
Figure 0007491235000008
In the above formula (3), D3(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry), x is the depth (unit: nm) from the notch face 26, and a3x+b3 is a straight line obtained by approximating D3(x) by the least squares method in the range of x being 200 or more and 400 or less. In the above formula (4), D4(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth (unit: nm) from the notch face 26, and a4x+b4 is a straight line obtained by approximating D4(x) by the least squares method in the range of x being 200 or more and 400 or less. The value S3 on the left side of the above formula (3) is preferably 10 or less. Moreover, the value S4 on the left side of the above formula (4) is preferably 1 or less.

上記の通り、ノッチ面26は、F及びAを含み、上記式(3)及び上記式(4)を満たす。これにより、保持具又は位置決め具等に当てられるノッチ面26の近傍の硬さを軟化できる。ノッチ面26の近傍の硬さが柔らかいので、傷を伸展させる応力を吸収するように、ノッチ面26の近傍が変形できる。従って、傷の伸展を抑制でき、歩留まりの低下を抑制できる。 As described above, the notch surface 26 includes F and A, and satisfies the above formula (3) and formula (4). This makes it possible to soften the hardness of the vicinity of the notch surface 26 that is brought into contact with a holder, positioning tool, or the like. Because the hardness of the vicinity of the notch surface 26 is soft, the vicinity of the notch surface 26 can deform so as to absorb the stress that causes the scratches to extend. Therefore, the extension of the scratches can be suppressed, and a decrease in yield can be suppressed.

次に、主に図12~図14を参照して、実験データについて説明する。例1では、ガスクラスタ129をガラス基板2の端面23に直接照射した。具体的には、図11に図示の如く、ガスクラスタ129のビーム129Aがガラス基板2の下方の端面23に斜めに入射するように、第1主面21を後方に向けて且つ斜め上向きに傾斜して配置した。傾斜角度は、5°であった。これにより、ガラス基板2の端面23にガスクラスタ129を直接照射した。これを、X軸に対して平行な回転軸を中心にガラス基板2を90度ずつ回転させて行うことで、4つの端面23にガスクラスタ129を直接照射した。ガスクラスタ129の原料ガスとしては、CFガスを用いた。つまり、フッ素(F)以外の元素(A)は炭素(C)であった。ガスクラスタ129の照射後、ガラス基板2の端面23の組成分析を、TOF-SIMSにより測定した。組成分析用のサンプルは、ガラス基板2の端面23から切り出し、端面23を上に向けて略水平となるように治具に固定した。端面23の組成分析には、ION-TOF社製のTOF.SIMS5を用いた。ガラス基板2としては、TiOを含有する石英ガラスを用いた。 Next, the experimental data will be described with reference mainly to FIG. 12 to FIG. 14. In Example 1, the end surface 23 of the glass substrate 2 was directly irradiated with the gas cluster 129. Specifically, as shown in FIG. 11, the first main surface 21 was arranged facing backward and tilted obliquely upward so that the beam 129A of the gas cluster 129 was obliquely incident on the lower end surface 23 of the glass substrate 2. The tilt angle was 5°. As a result, the end surface 23 of the glass substrate 2 was directly irradiated with the gas cluster 129. This was performed by rotating the glass substrate 2 by 90 degrees each time around a rotation axis parallel to the X-axis, so that the gas cluster 129 was directly irradiated on four end surfaces 23. CF4 gas was used as the raw material gas for the gas cluster 129. That is, the element (A) other than fluorine (F) was carbon (C). After irradiation with the gas cluster 129, the composition analysis of the end surface 23 of the glass substrate 2 was measured by TOF-SIMS. The sample for composition analysis was cut from the end surface 23 of the glass substrate 2 and fixed to a jig so that the end surface 23 was facing upward and approximately horizontal. A TOF.SIMS5 manufactured by ION-TOF was used for the composition analysis of the end surface 23. Quartz glass containing TiO2 was used as the glass substrate 2.

図12に、例1のガラス基板2の端面23をTOF-SIMSで測定した、F強度/Si強度の深さ方向分布を示す。図12から明らかなように、Fは、ガラス基板2の端面23の近傍に打ち込まれた。上記式(1)の左辺の値S1は、1.00であった。なお、ガスクラスタ129の照射前に、端面23の組成分析をTOF-SIMSにより実施したところ、S1は0.139であった。 Figure 12 shows the depth distribution of F intensity/Si intensity measured by TOF-SIMS on the end face 23 of the glass substrate 2 in Example 1. As is clear from Figure 12, F was implanted near the end face 23 of the glass substrate 2. The value S1 of the left side of the above formula (1) was 1.00. Note that when a composition analysis of the end face 23 was performed by TOF-SIMS before irradiation with the gas cluster 129, S1 was 0.139.

また、図13に、例1のガラス基板2の端面23をTOF-SIMSで測定した、C強度/Si強度の深さ方向分布を示す。図13から明らかなように、Cは、ガラス基板2の端面23の近傍に打ち込まれた。上記式(2)の左辺の値S2は、0.07であった。なお、ガスクラスタ129の照射前に、端面23の組成分析をTOF-SIMSにより実施したところ、S2は0.017であった。 Figure 13 shows the depth distribution of C intensity/Si intensity measured by TOF-SIMS on the end face 23 of the glass substrate 2 in Example 1. As is clear from Figure 13, C was implanted near the end face 23 of the glass substrate 2. The value S2 of the left side of the above formula (2) was 0.07. Note that when a composition analysis of the end face 23 was performed by TOF-SIMS before irradiation with the gas cluster 129, S2 was 0.017.

図14に、例1のガラス基板2の端面23の、ガスクラスタ照射前後の硬さを示す。硬さは、エリオニクス社製の超微小押込み硬さ試験機(商品名:ENT-1100a)により測定した。押込み荷重は60mN、保持時間は1000ms、測定回数は100回であった。図14において、Hminは最小値、H25%は25パーセンタイル、H50%は50パーセンタイル(中央値)、H75%は75パーセンタイル、Hmaxは最大値を示す。一般的に、測定値を小さい順に並べた際に、初めから数えて全体のα%に位置する値を、αパーセンタイルと言う。図14から明らかなように、ガスクラスタの照射前の硬さに比べて、ガスクラスタの照射後の硬さは柔らかいことが分かる。 FIG. 14 shows the hardness of the end surface 23 of the glass substrate 2 of Example 1 before and after the gas cluster irradiation. The hardness was measured by an ultra-microindentation hardness tester (product name: ENT-1100a) manufactured by Elionix. The indentation load was 60 mN, the holding time was 1000 ms, and the number of measurements was 100. In FIG. 14, H min indicates the minimum value, H 25% indicates the 25th percentile, H 50% indicates the 50th percentile (median value), H 75% indicates the 75th percentile, and H max indicates the maximum value. In general, when the measured values are arranged in ascending order, the value that is located at α% of the total, counting from the beginning, is called the α percentile. As is clear from FIG. 14, it can be seen that the hardness after the gas cluster irradiation is softer than the hardness before the gas cluster irradiation.

例2では、例1と同一のガラス基板2のノッチ面26にガスクラスタ129を直接照射した。ガスクラスタ129の原料ガスとしては、CFガスを用いた。つまり、フッ素(F)以外の元素(A)は炭素(C)であった。ガスクラスタ129の照射後、ガラス基板2のノッチ面26の組成分析を、TOF-SIMSにより測定した。組成分析用のサンプルは、ガラス基板2のノッチ面26を含む角から切り出し、ノッチ面26を上に向けて水平に治具に固定した。ノッチ面26の組成分析には、ION-TOF社製のTOF.SIMS5を用いた。 In Example 2, the notch surface 26 of the same glass substrate 2 as in Example 1 was directly irradiated with gas clusters 129. CF4 gas was used as the raw material gas for the gas clusters 129. In other words, the element (A) other than fluorine (F) was carbon (C). After irradiation with the gas clusters 129, the composition of the notch surface 26 of the glass substrate 2 was analyzed by TOF-SIMS. The sample for composition analysis was cut from a corner including the notch surface 26 of the glass substrate 2, and was fixed horizontally to a jig with the notch surface 26 facing upward. A TOF.SIMS5 manufactured by ION-TOF was used for the composition analysis of the notch surface 26.

図15に、例2のガラス基板2のノッチ面26をTOF-SIMSで測定した、F強度/Si強度の深さ方向分布を示す。図15から明らかなように、Fは、ガラス基板2のノッチ面26の近傍に打ち込まれた。上記式(3)の左辺の値S3は、4.83であった。なお、ガスクラスタ129の照射前に、ノッチ面26の組成分析をTOF-SIMSにより実施したところ、S3は0.139であった。 Figure 15 shows the depth distribution of F intensity/Si intensity measured by TOF-SIMS for the notch surface 26 of the glass substrate 2 in Example 2. As is clear from Figure 15, F was implanted near the notch surface 26 of the glass substrate 2. The value S3 of the left side of the above formula (3) was 4.83. Note that when a composition analysis of the notch surface 26 was performed by TOF-SIMS before irradiation with the gas cluster 129, S3 was 0.139.

また、図16に、例2のガラス基板2のノッチ面26をTOF-SIMSで測定した、C強度/Si強度の深さ方向分布を示す。図16から明らかなように、Cは、ガラス基板2のノッチ面26の近傍に打ち込まれた。上記式(4)の左辺の値S4は、0.114であった。なお、ガスクラスタ129の照射前に、ノッチ面26の組成分析をTOF-SIMSにより実施したところ、S4は0.017であった。 Figure 16 shows the depth distribution of C intensity/Si intensity measured by TOF-SIMS on the notch surface 26 of the glass substrate 2 in Example 2. As is clear from Figure 16, C was implanted near the notch surface 26 of the glass substrate 2. The value S4 of the left side of the above formula (4) was 0.114. Note that when a composition analysis of the notch surface 26 was performed by TOF-SIMS before irradiation with the gas cluster 129, S4 was 0.017.

以上の結果から、例2のガラス基板2のノッチ面26も、例1のガラス基板2の端面23と同様に、ガスクラスタ129の照射によって硬さが柔らかくなったことがわかる。 The above results show that the hardness of the notch surface 26 of the glass substrate 2 in Example 2 was softened by irradiation with the gas cluster 129, similar to that of the end surface 23 of the glass substrate 2 in Example 1.

以上、本開示に係るEUVL用ガラス基板、及びその製造方法、並びにEUVL用マスクブランク、及びその製造方法について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 The glass substrate for EUVL and its manufacturing method, as well as the mask blank for EUVL and its manufacturing method according to the present disclosure have been described above, but the present disclosure is not limited to the above-mentioned embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. Naturally, these also fall within the technical scope of the present disclosure.

1 EUVL用マスクブランク
2 ガラス基板
21 第1主面
22 第2主面
23 端面
24 第1面取面
25 第2面取面
26 ノッチ面
3 反射膜
4 吸収膜
129 ガスクラスタ
129A ビーム
1 EUVL mask blank 2 Glass substrate 21 First main surface 22 Second main surface 23 End surface 24 First chamfered surface 25 Second chamfered surface 26 Notch surface 3 Reflective film 4 Absorbing film 129 Gas cluster 129A Beam

Claims (13)

矩形状の第1主面と、前記第1主面とは反対向きの矩形状の第2主面と、前記第1主面及び前記第2主面に対して垂直な4つの端面と、前記第1主面と前記端面との境界に形成された4つの第1面取面と、前記第2主面と前記端面との境界に形成された4つの第2面取面と、を有し、
TiOを含有する石英ガラスで形成され、
前記端面は、フッ素(F)及び前記フッ素と共にガスクラスタを形成する前記フッ素以外の元素(A)を含み、下記式(1)及び下記式(2)を満たす、EUVL用ガラス基板。
Figure 0007491235000009
Figure 0007491235000010
上記式(1)中、D1(x)は、TOF-SIMSで測定される、Siの強度で規格化したFの強度であり、xは前記端面からの深さ(単位:nm)、a1x+b1はxが200以上400以下の範囲におけるD1(x)を最小二乗法で近似した直線であり、上記式(2)中、D2(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xは前記端面からの深さ(単位:nm)、a2x+b2はxが200以上400以下の範囲におけるD2(x)を最小二乗法で近似した直線である。
a rectangular first main surface, a rectangular second main surface facing opposite to the first main surface, four end surfaces perpendicular to the first main surface and the second main surface, four first chamfered surfaces formed at boundaries between the first main surface and the end surfaces, and four second chamfered surfaces formed at boundaries between the second main surface and the end surfaces;
It is made of quartz glass containing TiO2 ,
The end surface of the glass substrate for EUVL contains fluorine (F) and an element (A) other than fluorine that forms a gas cluster together with the fluorine, and satisfies the following formulas (1) and (2):
Figure 0007491235000009
Figure 0007491235000010
In the above formula (1), D1(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the end face (unit: nm), and a1x+b1 is a straight line obtained by approximating D1(x) using the least squares method when x is in the range of 200 to 400, and in the above formula (2), D2(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the end face (unit: nm), and a2x+b2 is a straight line obtained by approximating D2(x) using the least squares method when x is in the range of 200 to 400.
矩形状の第1主面と、前記第1主面とは反対向きの矩形状の第2主面と、前記第1主面及び前記第2主面に対して垂直な4つの端面と、前記第1主面と前記端面との境界に形成された4つの第1面取面と、前記第2主面と前記端面との境界に形成された4つの第2面取面と、隣り合う2つの前記端面と前記第1主面の角を削り落とすように前記第1主面に対して斜めに形成された1つ以上のノッチ面と、を有し、
TiOを含有する石英ガラスで形成され、
前記ノッチ面は、フッ素(F)及び前記フッ素と共にガスクラスタを形成する前記フッ素以外の元素(A)を含み、下記式(3)及び下記式(4)を満たす、EUVL用ガラス基板。
Figure 0007491235000011
Figure 0007491235000012
上記式(3)中、D3(x)は、TOF-SIMSで測定される、Siの強度で規格化したFの強度であり、xは前記ノッチ面からの深さ(単位:nm)、a3x+b3はxが200以上400以下の範囲におけるD3(x)を最小二乗法で近似した直線であり、上記式(4)中、D4(x)は、TOF-SIMSで測定される、Siの強度で規格化したAの強度であり、xは前記ノッチ面からの深さ(単位:nm)、a4x+b4はxが200以上400以下の範囲におけるD4(x)を最小二乗法で近似した直線である。
a rectangular first main surface, a rectangular second main surface facing away from the first main surface, four end surfaces perpendicular to the first main surface and the second main surface, four first chamfered surfaces formed at boundaries between the first main surface and the end surfaces, four second chamfered surfaces formed at boundaries between the second main surface and the end surfaces, and one or more notch surfaces formed obliquely with respect to the first main surface so as to cut off corners of two adjacent end surfaces and the first main surface,
It is made of quartz glass containing TiO2 ,
The notch surface contains fluorine (F) and an element (A) other than fluorine that forms a gas cluster together with the fluorine, and satisfies the following formulas (3) and (4):
Figure 0007491235000011
Figure 0007491235000012
In the above formula (3), D3(x) is the intensity of F normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the notch face (unit: nm), and a3x+b3 is a straight line obtained by approximating D3(x) using the least squares method when x is in the range of 200 to 400, and in the above formula (4), D4(x) is the intensity of A normalized by the intensity of Si measured by TOF-SIMS, x is the depth from the notch face (unit: nm), and a4x+b4 is a straight line obtained by approximating D4(x) using the least squares method when x is in the range of 200 to 400.
前記フッ素以外の前記元素(A)は、炭素(C)、ホウ素(B)、窒素(N)、硫黄(S)、セレン(Se)、テルル(Te)、又はタングステン(W)である、請求項1又は2に記載のEUVL用ガラス基板。 The glass substrate for EUVL according to claim 1 or 2, wherein the element (A) other than fluorine is carbon (C), boron (B), nitrogen (N), sulfur (S), selenium (Se), tellurium (Te), or tungsten (W). 前記フッ素以外の前記元素(A)は、炭素(C)である、請求項3に記載のEUVL用ガラス基板。 The glass substrate for EUVL according to claim 3, wherein the element (A) other than fluorine is carbon (C). 請求項1~4のいずれか1項に記載のEUVL用ガラス基板と、
EUVL用ガラス基板上に形成される、EUV光を反射する反射膜と、
前記反射膜上に形成される、前記EUV光を吸収する吸収膜とを有する、EUVL用マスクブランク。
A glass substrate for EUVL according to any one of claims 1 to 4,
a reflective film formed on a glass substrate for EUVL to reflect EUV light;
and an absorbing film that absorbs the EUV light and is formed on the reflective film.
請求項1に記載のEUVL用ガラス基板を製造する方法であって、
前記フッ素及び前記フッ素以外の前記元素を含むガスクラスタを前記EUVL用ガラス基板に照射し、前記端面に前記フッ素及び前記フッ素以外の前記元素を打ち込むことを含む、EUVL用ガラス基板の製造方法。
A method for producing the EUVL glass substrate according to claim 1, comprising the steps of:
A method for manufacturing a glass substrate for EUVL, comprising: irradiating the glass substrate for EUVL with gas clusters containing the fluorine and the element other than the fluorine, and implanting the fluorine and the element other than the fluorine into the end surface.
請求項2に記載のEUVL用ガラス基板を製造する方法であって、
前記フッ素及び前記フッ素以外の前記元素を含むガスクラスタを前記EUVL用ガラス基板に照射し、前記ノッチ面に前記フッ素及び前記フッ素以外の前記元素を打ち込むことを含む、EUVL用ガラス基板の製造方法。
A method for producing the EUVL glass substrate according to claim 2, comprising the steps of:
A method for manufacturing a glass substrate for EUVL, comprising: irradiating the glass substrate for EUVL with gas clusters containing the fluorine and the element other than the fluorine, and implanting the fluorine and the element other than the fluorine into the notch surface.
前記ガスクラスタは、CF、CHF、CH、C、BF、NF、SF、SeF、TeF、又はWFを含む、請求項6又は7に記載のEUVL用ガラス基板の製造方法。 8. The method for producing a glass substrate for EUVL according to claim 6 or 7, wherein the gas clusters include CF4, CHF3, CH2F2, C2F6 , BF3 , NF3 , SF6 , SeF6 , TeF6 , or WF6 . 前記ガスクラスタは、CF、CHF、又はCHを含む、請求項8に記載のEUVL用ガラス基板の製造方法。 The method for producing a glass substrate for EUVL according to claim 8 , wherein the gas clusters include CF 4 , CHF 3 , or CH 2 F 2 . 請求項1に記載のEUVL用ガラス基板と、前記EUVL用ガラス基板上に形成される、EUV光を反射する反射膜と、前記反射膜上に形成される、前記EUV光を吸収する吸収膜とを有するEUVL用マスクブランクの製造方法であって、
前記フッ素及び前記フッ素以外の前記元素を含むガスクラスタを前記EUVL用ガラス基板に照射し、前記端面に前記フッ素及び前記フッ素以外の前記元素を打ち込むことを含む、EUVL用マスクブランクの製造方法。
2. A method for producing a mask blank for EUVL comprising: a glass substrate for EUVL according to claim 1; a reflective film that reflects EUV light and is formed on the glass substrate for EUVL; and an absorbing film that absorbs the EUV light and is formed on the reflective film, the method comprising the steps of:
A method for manufacturing an EUVL mask blank, comprising: irradiating the EUVL glass substrate with gas clusters containing the fluorine and the element other than the fluorine, and implanting the fluorine and the element other than the fluorine into the end surface.
請求項2に記載のEUVL用ガラス基板と、前記EUVL用ガラス基板上に形成される、EUV光を反射する反射膜と、前記反射膜上に形成される、前記EUV光を吸収する吸収膜とを有するEUVL用マスクブランクの製造方法であって、
前記フッ素及び前記フッ素以外の前記元素を含むガスクラスタを前記EUVL用ガラス基板に照射し、前記ノッチ面に前記フッ素及び前記フッ素以外の前記元素を打ち込むことを含む、EUVL用マスクブランクの製造方法。
3. A method for producing a mask blank for EUVL comprising: a glass substrate for EUVL according to claim 2; a reflective film that reflects EUV light and is formed on the glass substrate for EUVL; and an absorbing film that absorbs the EUV light and is formed on the reflective film, the method comprising the steps of:
A method for manufacturing a mask blank for EUVL, comprising: irradiating the glass substrate for EUVL with a gas cluster containing the fluorine and the element other than the fluorine, and implanting the fluorine and the element other than the fluorine into the notch surface.
前記ガスクラスタは、CF、CHF、CH、C、BF、NF、SF、SeF、TeF、又はWFを含む、請求項10又は11に記載のEUVL用マスクブランクの製造方法。 12. The method for producing a mask blank for EUVL according to claim 10 or 11, wherein the gas clusters include CF4, CHF3, CH2F2, C2F6 , BF3 , NF3 , SF6 , SeF6 , TeF6 , or WF6 . 前記ガスクラスタは、CF、CHF、又はCHを含む、請求項12に記載のEUVL用マスクブランクの製造方法。 The method for producing a mask blank for EUVL according to claim 12 , wherein the gas cluster comprises CF 4 , CHF 3 , or CH 2 F 2 .
JP2021021787A 2020-05-13 2021-02-15 Glass substrate for EUVL and its manufacturing method, and mask blank for EUVL and its manufacturing method Active JP7491235B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/245,585 US20210355024A1 (en) 2020-05-13 2021-04-30 Glass substrate for euvl, manufacturing method thereof, mask blank for euvl, and manufacturing method thereof
TW110116159A TW202208297A (en) 2020-05-13 2021-05-05 Glass substrate for EUVL, manufacturing method thereof, mask blank for EUVL, and manufacturing method thereof
KR1020210058933A KR20210139162A (en) 2020-05-13 2021-05-07 Glass substrate for euvl and manufacturing method thereof, and mask blank for euvl and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084729 2020-05-13
JP2020084729 2020-05-13

Publications (2)

Publication Number Publication Date
JP2021181398A JP2021181398A (en) 2021-11-25
JP7491235B2 true JP7491235B2 (en) 2024-05-28

Family

ID=78607040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021021787A Active JP7491235B2 (en) 2020-05-13 2021-02-15 Glass substrate for EUVL and its manufacturing method, and mask blank for EUVL and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7491235B2 (en)
KR (1) KR20210139162A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155170A (en) 2007-12-27 2009-07-16 Asahi Glass Co Ltd Optical member for euvl and surface treatment method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155170A (en) 2007-12-27 2009-07-16 Asahi Glass Co Ltd Optical member for euvl and surface treatment method therefor

Also Published As

Publication number Publication date
KR20210139162A (en) 2021-11-22
JP2021181398A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US7622050B2 (en) Process for polishing glass substrate
KR101409682B1 (en) Method for finishing surface of preliminary polished glass substrate
JP4506689B2 (en) Method for finishing a pre-polished glass substrate surface
US20040192171A1 (en) Method of producing a glass substrate for a mask blank and method of producing a mask blank
US7771603B2 (en) Process for polishing glass substrate
US7691279B2 (en) Method of producing a glass substrate for a mask blank and method of producing a mask blank
JP2009013046A (en) Method of processing glass substrate
US8182708B2 (en) Method of finishing pre-polished glass substrate surface
JP4786899B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, reflective mask blank manufacturing method, exposure mask manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method
US9684232B2 (en) Glass substrate for mask blank, and method for producing the same
KR20100032865A (en) Method for removing foreign matter from glass substrate surface and method for processing glass substrate surface
JP2011207757A (en) Method for producing glass substrate for mask blank, method for producing mask blank, method for producing reflection type mask blank, method for producing exposure mask, method for producing reflection type mask, and method for producing semiconductor device
JP7491235B2 (en) Glass substrate for EUVL and its manufacturing method, and mask blank for EUVL and its manufacturing method
US20210355024A1 (en) Glass substrate for euvl, manufacturing method thereof, mask blank for euvl, and manufacturing method thereof
JP4548319B2 (en) Glass substrate polishing method
WO2021229968A1 (en) Processing method and processing device for glass substrates, and production method for euvl mask blanks
WO2021229967A1 (en) Processing method for glass substrates and production method for euvl mask blanks
US20250019289A1 (en) Titania-silica glass body with high quality polishing characteristics
JP2022073953A (en) Euvl glass substrate, and euvl mask blank
JP2022073952A (en) Euvl glass substrate, and euvl mask blank
KR20070022655A (en) Process for polishing glass substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240429

R150 Certificate of patent or registration of utility model

Ref document number: 7491235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150