JP7490182B2 - Biodegradable composite material containing cellulose nanofibers and biodegradable resin - Google Patents

Biodegradable composite material containing cellulose nanofibers and biodegradable resin Download PDF

Info

Publication number
JP7490182B2
JP7490182B2 JP2019139856A JP2019139856A JP7490182B2 JP 7490182 B2 JP7490182 B2 JP 7490182B2 JP 2019139856 A JP2019139856 A JP 2019139856A JP 2019139856 A JP2019139856 A JP 2019139856A JP 7490182 B2 JP7490182 B2 JP 7490182B2
Authority
JP
Japan
Prior art keywords
biodegradable
composite material
wood chips
cnf
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019139856A
Other languages
Japanese (ja)
Other versions
JP2021021041A (en
Inventor
良平 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Pigment Co Ltd
GS Alliance Co Ltd
Original Assignee
Fuji Pigment Co Ltd
GS Alliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Pigment Co Ltd, GS Alliance Co Ltd filed Critical Fuji Pigment Co Ltd
Priority to JP2019139856A priority Critical patent/JP7490182B2/en
Publication of JP2021021041A publication Critical patent/JP2021021041A/en
Application granted granted Critical
Publication of JP7490182B2 publication Critical patent/JP7490182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、生分解性樹脂にセルロースナノファイバーを配合することにより、強度および生分解性が促進された生分解性複合材料に関する。 The present invention relates to a biodegradable composite material in which strength and biodegradability are enhanced by blending cellulose nanofibers with a biodegradable resin.

プラスチックゴミによる環境汚染を防止するために、世界中で、プラスチックの使用量の減量(Reduce)、再使用(Reuse)および再資源化(Recycle)の「3R運動」が進められている。再使用および再資源化のために、プラスチックの分別回収が行われている。回収されたプラスチックゴミは中国や東南アジアに輸出していたが、これらの国々がプラスチック廃棄物の輸入を禁止したことで、日本国内でプラスチック廃棄物が滞留している。近年、特に、海洋ゴミへの関心が高まっている。プラスチックゴミが海洋に流れ込むと、そのまま漂流しているだけではなく、長距離、長時間漂っているうちに微細化して1mmに満たないマイクロプラスチックとなり、それが生態系を破壊するという大きな問題を生み出している。回収したプラスチックゴミを埋め立て処分したものの、洪水により河川へ流入し、海まで流されることもあり、2010年の推計では、日本において、陸上から海洋に流出したプラスチックゴミの発生量は2~6万t/年であった(非特許文献1)。
プラスチックの使用量を減量することが解決策として強力であるが、現代の社会において使用量をゼロにすることはできず、理想通りにはいかない。
In order to prevent environmental pollution caused by plastic waste, the "3R Movement" of reducing, reusing, and recycling plastics is being promoted all over the world. Plastics are being collected separately for reuse and recycling. Collected plastic waste was exported to China and Southeast Asia, but these countries have banned the import of plastic waste, and plastic waste is now stuck in Japan. In recent years, interest in marine litter has been particularly high. When plastic waste flows into the ocean, it does not just drift as it is, but after drifting for a long distance and for a long time, it becomes finer and becomes microplastics less than 1 mm in size, which causes a major problem of destroying the ecosystem. Although collected plastic waste is disposed of in landfills, it sometimes flows into rivers due to floods and is carried to the sea. In 2010, it was estimated that the amount of plastic waste flowing from land to the ocean in Japan was 20,000 to 60,000 tons per year (Non-Patent Document 1).
Reducing plastic usage is a powerful solution, but reducing it to zero is not possible in modern society, so it is not ideal.

それゆえ、様々な生分解性プラスチックが開発されてきた。生分解性プラスチックは、微生物などによって分解し、最終的に二酸化炭素と水になるという性質を有している。生分解性プラスチックの例として、ポリ乳酸、ポリカプロラクトン、ポリヒドロキシアルカノエート、ポリブチレンスクシネート、ポリブチレンアジペートとテレフタレートとのコポリマー、ポリグリコール酸、変性ポリビニルアルコール、カゼインがあり、デンプン由来の生分解性プラスチックも開発されている。 As a result, a variety of biodegradable plastics have been developed. Biodegradable plastics have the property of being decomposed by microorganisms and ultimately turning into carbon dioxide and water. Examples of biodegradable plastics include polylactic acid, polycaprolactone, polyhydroxyalkanoate, polybutylene succinate, copolymers of polybutylene adipate and terephthalate, polyglycolic acid, modified polyvinyl alcohol, and casein, and starch-derived biodegradable plastics have also been developed.

生分解性プラスチックは環境汚染を低減するものとして期待されるが、強度が低いという欠点を有する。そこで、生分解性を損なわずに強度を上げるために、植物由来のバイオマスを混合した複合材料の研究が進んでいる(特許文献1および2など)。さらに、バイオマス/生分解性樹脂複合材料の強度を向上させるために、バイオマスと生分解性樹脂との界面における異相の界面における相溶性を改善する試みも行われている(特許文献3)。 Biodegradable plastics are expected to reduce environmental pollution, but they have the drawback of low strength. Therefore, research is being conducted on composite materials that contain plant-derived biomass in order to increase strength without impairing biodegradability (Patent Documents 1 and 2, etc.). Furthermore, in order to improve the strength of biomass/biodegradable resin composite materials, attempts are being made to improve the compatibility at the interface between different phases at the interface between biomass and biodegradable resin (Patent Document 3).

特開2000-160034号公報JP 2000-160034 A 特開2002-069303号公報JP 2002-069303 A 特開2018-100312号公報JP 2018-100312 A

J. R. Jambeck et al., "Plastic waste inputs from land into the ocean; Science 13 Feb. 2015, p.768J. R. Jambeck et al., "Plastic waste inputs from land into the ocean; Science 13 Feb. 2015, p.768

上記のような生分解性複合材料の研究は強度の向上に注力しているが、複合化による生分解性への影響についてはあまり知見がない。
そこで、本発明者は、生分解性樹脂の強度を増強するとともに、生分解性を向上させることを課題として、新たな生分解性複合材料を検討した。
Research into biodegradable composite materials such as those mentioned above has focused on improving strength, but little is known about the effect of composite formation on biodegradability.
Therefore, the present inventors have investigated new biodegradable composite materials with the aim of increasing the strength of biodegradable resins and improving their biodegradability.

本発明者は、セルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料中、特定量のセルロースナノファイバー(CNF)を配合することによって、生分解性樹脂の引張強度を15%以上増進し、その分解率を7.5%以上促進させることに成功した。 By blending a specific amount of cellulose nanofibers (CNF) into a biodegradable composite material containing cellulose nanofibers and a biodegradable resin, the inventors have succeeded in increasing the tensile strength of the biodegradable resin by 15% or more and promoting its decomposition rate by 7.5% or more.

より具体的には、本発明は、セルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料であって、前記セルロースナノファイバーおよび生分解性樹脂の合計量100重量%中、セルロースナノファイバーの含有量が2重量%以上、好ましくは5重量%、より具体的には、5~30重量%である、生分解性複合材料を提供する。 More specifically, the present invention provides a biodegradable composite material containing cellulose nanofibers and a biodegradable resin, in which the content of cellulose nanofibers is 2% by weight or more, preferably 5% by weight, and more specifically, 5 to 30% by weight, based on a total weight of 100% by weight of the cellulose nanofibers and the biodegradable resin.

本発明に好適に用いることができるセルロースナノファイバーは、木材チップをソルボサーマル処理し、解砕した木材粉砕物を化学処理して得ることができる。 Cellulose nanofibers that can be suitably used in the present invention can be obtained by subjecting wood chips to solvothermal treatment and then chemically treating the crushed wood pulverized material.

本発明によれば、生分解性樹脂に特定のCNFを配合して生分解性複合材料を調製するので、引張強度を増強し、かつ、生分解性を向上させることができる。 According to the present invention, a biodegradable composite material is prepared by blending a specific CNF with a biodegradable resin, which enhances the tensile strength and improves the biodegradability.

生分解性樹脂にセルロースナノファイバー(CNF)を配合してCNF含有生分解性複合材料を調製し、それらの生分解性複合材料の引張強度および生分解性を向上させた。 Cellulose nanofibers (CNF) were blended with biodegradable resin to prepare CNF-containing biodegradable composite materials, and the tensile strength and biodegradability of these biodegradable composite materials were improved.

本発明によるセルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料に用いることができる生分解性樹脂の例示は、ポリ乳酸 (PLA);プルランおよびカードランなどの微生物多糖類;ポリカプロラクトン (PCL);デンプン系生分解性ポリマー;ポリヒドロキシブチレート (PHB)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート) (PHBV)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート) (PHBH)、ポリヒドロキシブチレートバリレート (PBAV)などのポリヒドロキシアルカノエート (PHA)などを含む、全ての微生物由来の生分解性プラスチック;ポリビニルアルコール;ポリアミノ酸類;キチンおよびキトサン;酢酸セルロース、ヒドロキシエチルセルロース (HEC)、ヒドロキシプロピルメチルセルロース (HPMC)などを含む、全てのセルロース系生分解性プラスチック;ポリグリコール酸;ポリエチレンテレフタレートスクシネート (PETS);ポリブチレンスクシネート (PBS)およびポリブチレンアジペート-co-テレフタレート (PBAT)などのあらゆる全ての生分解性樹脂およびそれらの組合せを含む。 Examples of biodegradable resins that can be used in the biodegradable composite material comprising the cellulose nanofibers and biodegradable resins according to the present invention include polylactic acid (PLA); microbial polysaccharides such as pullulan and curdlan; polycaprolactone (PCL); starch-based biodegradable polymers; all microbially derived biodegradable plastics, including polyhydroxyalkanoates (PHAs) such as polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and polyhydroxybutyrate valerate (PBAV); polyvinyl alcohol; polyamino acids; chitin and chitosan; all cellulose-based biodegradable plastics, including cellulose acetate, hydroxyethyl cellulose (HEC), and hydroxypropyl methylcellulose (HPMC); polyglycolic acid; polyethylene terephthalate succinate (PETS); polybutylene succinate (PBS), and polybutylene adipate-co-terephthalate. This includes any and all biodegradable resins such as (PBAT) and combinations thereof.

本発明によるセルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料に用いることができるCNFは、従来の製造方法(例えば、特許文献4,5など)で製造されたものとは異なり、予め化学処理を経ることなしに木材チップなどの大きさの木材を、そのままで、ソルボサーマル処理して得られるものである。
より詳しくは、本発明に用いるCNFは、木材チップをソルボサーマル処理に付す工程、ソルボサーマル処理した木材チップを解砕する工程、および解砕した木材チップを化学処理に付す工程を含む製造方法により製造される。
本明細書中で用いるソルボサーマル処理とは、木材チップ等の原料を溶媒に浸漬し、高温高圧条件下で亜臨界から超臨界状態に一定時間付する処理をいい、特に溶媒として水を用いる場合を水熱処理という場合がある。
The CNFs that can be used in the biodegradable composite material containing cellulose nanofibers and biodegradable resins according to the present invention differ from those produced by conventional manufacturing methods (e.g., Patent Documents 4 and 5) in that they are obtained by subjecting wood of the size of wood chips or the like to a solvothermal treatment as is, without any prior chemical treatment.
More specifically, the CNF used in the present invention is produced by a manufacturing method including the steps of subjecting wood chips to solvothermal treatment, crushing the solvothermal treated wood chips, and subjecting the crushed wood chips to chemical treatment.
As used herein, solvothermal treatment refers to a treatment in which raw materials such as wood chips are immersed in a solvent and exposed to a subcritical to supercritical state under high temperature and pressure conditions for a certain period of time, and is sometimes referred to as hydrothermal treatment in particular when water is used as the solvent.

上記製造方法の原料となる木材チップは、天然セルロースを取り出せる原料であればいずれのものであってもよく、例えば、広葉樹または針葉樹などの木材のチップのほか草本類を原料としてもよい。また、本発明における木材チップには木片など好ましくは0.5×0.5cm~2.0×2.0cm、より好ましくは0.7×0.7cm~1.5×1.5cm、最も好ましくは0.8×0.8cm~1.2×1.2cmの大きさを有するものが含まれる。 The wood chips used as the raw material in the above manufacturing method may be any raw material from which natural cellulose can be extracted, for example, wood chips of broadleaf or coniferous trees, as well as herbaceous plants. The wood chips in the present invention include pieces of wood, preferably having a size of 0.5 x 0.5 cm to 2.0 x 2.0 cm, more preferably 0.7 x 0.7 cm to 1.5 x 1.5 cm, and most preferably 0.8 x 0.8 cm to 1.2 x 1.2 cm.

上記製造方法のソルボサーマル処理工程は、原料としての木材のチップや草本類をそのまま溶媒に浸漬し、高温、高圧条件の亜臨界から超臨界状態に付す。ここで用いる溶媒としては、水、メタノール、エタノール、プロパノール、N-メチルピロリドンのようなピロリドン系溶剤、酢酸ブチルのようなアセテート系溶剤、ジエチレングリコールモノメチルエーテルのようなグリコールエーテル系溶剤、メチルエチルケトンのようなケトン系溶剤、トルエン、キシレンのような芳香族溶剤、パラフィンなどの炭化水素系溶剤などの溶媒を挙げることができる。溶媒に浸漬したチップ等は、1~300気圧下、~400℃の、好ましくは2~250気圧下、5~200℃の、より好ましくは25~100気圧下、100~380℃の、最も好ましくは25~100気圧下、150~250℃であって亜臨界から超臨界状態となる範囲内に60~180分間付して処理する。これらのソルボサーマル処理により、チップ等は柔らかい膨潤した木材粉砕物の状態になる。本発明の製造方法は、木材チップ等をそのままソルボサーマル処理工程に付することを特徴とする。従来のCNFの製造方法では木材チップ等を最初に化学処理していたが、上記製造方法では木材チップなどある程度の大きさを有するセルロース原料を、化学処理を経ずにまずソルボサーマル処理に付するところに特徴がある。この製造方法により製造したCNFは樹脂と混合した場合に、複合材料の物性を高める。 In the solvothermal treatment step of the above-mentioned manufacturing method, wood chips or herbaceous plants as raw materials are immersed in a solvent and subjected to a subcritical to supercritical state under high temperature and high pressure conditions. Examples of the solvent used here include water, methanol, ethanol, propanol, pyrrolidone-based solvents such as N-methylpyrrolidone, acetate-based solvents such as butyl acetate, glycol ether-based solvents such as diethylene glycol monomethyl ether, ketone-based solvents such as methyl ethyl ketone, aromatic solvents such as toluene and xylene, and hydrocarbon solvents such as paraffin. The chips immersed in the solvent are treated for 60 to 180 minutes at 1 to 300 atmospheres and up to 400°C, preferably 2 to 250 atmospheres and 5 to 200°C, more preferably 25 to 100 atmospheres and 100 to 380°C, and most preferably 25 to 100 atmospheres and 150 to 250°C, which is within the range from subcritical to supercritical. These solvothermal treatments turn the chips into a soft, swollen, ground wood material. The manufacturing method of the present invention is characterized by subjecting the wood chips directly to the solvothermal treatment process. In conventional CNF manufacturing methods, wood chips are first chemically treated, but the above manufacturing method is characterized in that cellulose raw materials of a certain size, such as wood chips, are first subjected to solvothermal treatment without chemical treatment. When mixed with resin, CNF produced by this manufacturing method improves the physical properties of the composite material.

つぎに、得られた木材粉砕物は解砕工程に付して木材粉砕物等のパルプをさらに微細化する。この解砕工程には、ボールミル、ディスクミル、湿式カッターミル、圧力式ホモジナイザーなどを用いることができる。この解砕工程により木材は0.05~0.5mmのより小さな木材粉砕物となる。 Then, the obtained ground wood is subjected to a crushing process to further reduce the pulp of the ground wood. This crushing process can be performed using a ball mill, disk mill, wet cutter mill, pressure homogenizer, etc. This crushing process breaks the wood into smaller ground wood particles of 0.05 to 0.5 mm.

最後に、解砕した木材粉砕物を化学処理する。化学処理としては、例えば、酸化処理、加水分解処理、塩基処理、またはこれらの組み合わせが挙げられる。酸化処理には、オゾン、次亜塩素酸またはその塩、過硫酸またはその塩、過有機酸またはその塩などの酸化剤を用いることができる。この酸化処理には、N-オキシル化合物などの酸化触媒を併用してもよい。また、加水分解処理には、セルラーゼ系酵素、ヘミセルラーゼ系酵素などの加水分解酵素を用いることができる。塩基処理には苛性ソーダ、KOHなどを用いることができる。 Finally, the crushed wood fragments are chemically treated. Examples of chemical treatments include oxidation treatment, hydrolysis treatment, base treatment, or a combination of these. For the oxidation treatment, an oxidizing agent such as ozone, hypochlorous acid or its salts, persulfuric acid or its salts, or perorganic acid or its salts can be used. For this oxidation treatment, an oxidation catalyst such as an N-oxyl compound can be used in combination. For the hydrolysis treatment, hydrolases such as cellulase enzymes and hemicellulase enzymes can be used. For the base treatment, caustic soda, KOH, etc. can be used.

また、ソルボサーマル処理に付す前に、木材チップなどにリグニンを加えることもできる。リグニンを加えることにより、生成されるCNFの表面が疎水化される(疎水化CNF)。疎水化CNFと樹脂とを混合して生成する複合材料では、リグニンを加えない非疎水化CNFの複合材料と比べて引張強度が高くなるのでより好ましい。木材粉砕物とリグニンの混合比は木材粉砕物/リグニン(重量比)=0.5~2、好ましくは0.7~1.5、より好ましくは0.8~1.2ぐらいが好ましい。 Lignin can also be added to wood chips before the solvothermal treatment. By adding lignin, the surface of the CNF produced is hydrophobized (hydrophobized CNF). A composite material produced by mixing hydrophobized CNF with resin has higher tensile strength than a composite material made of non-hydrophobized CNF without the addition of lignin, making this more preferable. The mixing ratio of ground wood and lignin is preferably ground wood/lignin (weight ratio) = 0.5 to 2, preferably 0.7 to 1.5, and more preferably 0.8 to 1.2.

本発明によるセルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料には、強度および生分解性を阻害しないかぎり、種々の添加物を配合することができる。例えば、実用上、着色するために、有機顔料、無機顔料を添加することができる。 Various additives can be added to the biodegradable composite material containing the cellulose nanofibers and biodegradable resin according to the present invention, as long as they do not impair the strength and biodegradability. For example, organic pigments and inorganic pigments can be added to the material for coloring purposes.

本発明による生分解性複合材料を材料として用いて様々な樹脂成型品を成形することができる。
このような樹脂成形品として、射出成型法により成形されたスプーン、ナイフ、フォークなどのカトラリー製品、容器、食器、家電製品部材、自動車部材、電子部品、携帯電話用部品やレンズ、スイッチ類、光ディスク、注射器などの医療用具など;真空成型法により成形されたトレー、容器、食器など;ブロー成型法により成形されたボトル、容器など;フィルム成型法またはインフレーション成型法により成形されたフィルム、シート、袋など;熱プレス成型により成形された容器、食器、家電製品部材、自動車部材など;発泡成形法により成形された各種発泡成形品、他の成形法を含めた手法でも成形できるあらゆる樹脂成型品が挙げられる。
The biodegradable composite material according to the present invention can be used as a material to mold various resin molded products.
Examples of such resin molded products include cutlery products such as spoons, knives, and forks, containers, tableware, home appliance parts, automobile parts, electronic components, mobile phone parts, lenses, switches, optical discs, syringes, and other medical tools molded by injection molding; trays, containers, tableware, and the like molded by vacuum molding; bottles, containers, and the like molded by blow molding; films, sheets, bags, and the like molded by film molding or inflation molding; containers, tableware, home appliance parts, automobile parts, and the like molded by hot press molding; various foam molded products molded by foam molding, and all resin molded products that can be molded by other molding methods as well.

[実施例1]
木材チップ(1.0x1.0cm)1kgとN-メチルピロリドン10Lとを混合してオートクレーブ(200℃、25気圧)中で2時間ソルボサーマル処理した。得られた木材粉砕物を次亜塩素酸10%の水溶液中90℃で1時間熱処理を施して、本発明のCNF(ソルボサーマル処理/化学処理CNF:実施例においては、本発明のCNFを単に「CNF」と称する。)を得た。
ポリ乳酸(PLA; Natureworks社製)100gに対して、上記で製造したCNF30gを配合して、二軸押出機により混合して、約23重量%のCNFを含有する生分解性複合材料を調製した。
PLAおよびそれにCNFを混合して得られた生分解性複合材料の引張特性(引張強度、破断伸び、弾性率)および曲げ特性(曲げ強度)を、それぞれ、精密万能試験機オートグラフAG-Xおよび小型卓上試験器EZ-X(株式会社島津製作所製)を用いて測定し、試験器に付属するマクロ機能を搭載した「TRAPEZIUM LITE X」によりデータ処理を行った。測定結果を表1に示す。
[Example 1]
1 kg of wood chips (1.0 x 1.0 cm) was mixed with 10 L of N-methylpyrrolidone and subjected to solvothermal treatment in an autoclave (200°C, 25 atm) for 2 hours. The resulting ground wood was heat-treated in a 10% aqueous solution of hypochlorous acid at 90°C for 1 hour to obtain the CNF of the present invention (solvothermal-treated/chemically-treated CNF: in the examples, the CNF of the present invention is simply referred to as "CNF").
30 g of the CNF produced above was blended with 100 g of polylactic acid (PLA; Natureworks) and mixed using a twin-screw extruder to prepare a biodegradable composite material containing approximately 23 wt% CNF.
The tensile properties (tensile strength, elongation at break, elastic modulus) and flexural properties (flexural strength) of PLA and the biodegradable composite material obtained by mixing it with CNF were measured using a precision universal testing machine Autograph AG-X and a small tabletop testing machine EZ-X (manufactured by Shimadzu Corporation), respectively, and the data was processed using "TRAPEZIUM LITE X" equipped with a macro function attached to the testing machine. The measurement results are shown in Table 1.

[引張特性試験]
JIS K 7161:1994に準拠して、生分解性複合材料の引張強度、弾性率および破断伸びを測定した。
試験速度 :20 mm/分
ダンベル試験片寸法:1Bサイズ
[曲げ特性試験]
JIS K 7171:1994に準拠して、生分解性複合材料の曲げ強度を測定した。
試験速度 :2 mm/分
試験片寸法 :80×10×4 mm
圧子先端半径R1 :5 mm
支点先端半径R2 :5 mm
支点間距離 :60 mm
[Tensile property test]
The tensile strength, elastic modulus and breaking elongation of the biodegradable composite material were measured in accordance with JIS K 7161:1994.
Test speed: 20 mm/min Dumbbell test piece size: 1B size [Bending property test]
The bending strength of the biodegradable composite material was measured in accordance with JIS K 7171:1994.
Test speed: 2 mm/min. Test piece dimensions: 80×10×4 mm
Indenter tip radius R1: 5 mm
Support tip radius R2: 5 mm
Distance between supporting points: 60 mm

[実施例2~11]
実施例1と同様にして、ポリ乳酸 (PLA)の代わりに、ポリカプロラクトン (PCL)、ポリブチレンスクシネート (PBS)、ポリヒドロキシアルカノエート (PHA)、ポリブチレンアジペート-co-テレフタレート (PBAT)、デンプン系樹脂、デンプン系樹脂とPLAとの混合樹脂(重量比6:4)、デンプン系樹脂とPBATとの混合樹脂(重量比6:4)、酢酸セルロース、ヒドロキシエチルセルロース (HEC)、ヒドロキシプロピルメチルセルロース (HPMC)を用いて、それぞれ、約23~30重量%のCNFを含有する生分解性複合材料を得た。
各生分解性樹脂およびそれぞれにCNFを混合して得られた生分解性複合材料の引張強度、引張ストローク、弾性率、曲げ強度および曲げストロークを測定した。測定結果を表1に示す。
[Examples 2 to 11]
In the same manner as in Example 1, biodegradable composite materials containing approximately 23 to 30% by weight of CNF were obtained using polycaprolactone (PCL), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA), polybutylene adipate-co-terephthalate (PBAT), starch-based resin, a mixed resin of starch-based resin and PLA (weight ratio 6:4), a mixed resin of starch-based resin and PBAT (weight ratio 6:4), cellulose acetate, hydroxyethyl cellulose (HEC), and hydroxypropyl methylcellulose (HPMC) instead of polylactic acid (PLA).
The tensile strength, tensile stroke, elastic modulus, flexural strength and flexural stroke of each biodegradable resin and the biodegradable composite material obtained by mixing each of them with CNF were measured. The measurement results are shown in Table 1.

いずれの生分解性樹脂も、CNFを配合することにより、引張強度が増強されることが確認できた。 It was confirmed that the tensile strength of both biodegradable resins was increased by blending CNF.

[比較例1~3]
実施例1と同様にして、ポリ乳酸 (PLA)、ポリブチレンスクシネート (PBS)、ポリブチレンアジペート-co-テレフタレート (PBAT)を用いて、それぞれ、約2重量%の未処理CNF(本発明のCNFの原料)を含有する生分解性複合材料を得た。
各生分解性樹脂およびそれぞれに未処理CNFを混合して得られた生分解性複合材料の引張強度を測定した。測定結果を表2に示す。
[Comparative Examples 1 to 3]
In the same manner as in Example 1, biodegradable composite materials containing approximately 2 wt. % of untreated CNF (the raw material for the CNF of the present invention) were obtained using polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene adipate-co-terephthalate (PBAT), respectively.
The tensile strength of each biodegradable resin and the biodegradable composite material obtained by mixing each of them with untreated CNF was measured. The measurement results are shown in Table 2.

未処理CNFは、生分解性樹脂に対する分散性が低く、約2重量%を超えて配合することができなかった。
しかも、未処理CNFを配合することにより、引張強度が低下した。
Untreated CNF had low dispersibility in biodegradable resins and could not be blended in amounts exceeding about 2% by weight.
Moreover, the incorporation of untreated CNF reduced the tensile strength.

[実施例12]
ポリ乳酸(PLA)を用いて、CNF配合による生分解性特性への影響を調べた。
PLA100gに対して、CNFを、5g、11gまたは30g配合して、それぞれ、CNF含有量が約5重量%、約10重量%または約23重量%のCNFを含有する生分解性複合材料を得た。
PLAおよびそれにCNFを混合して得られた生分解性複合材料の生分解性特性の結果を表3に示す。
[Example 12]
The effect of CNF blending on the biodegradable properties of polylactic acid (PLA) was investigated.
CNF was blended in amounts of 5 g, 11 g, or 30 g per 100 g of PLA to obtain biodegradable composite materials containing CNF at approximately 5 wt %, approximately 10 wt %, or approximately 23 wt %, respectively.
The results of the biodegradability properties of PLA and its biodegradable composites mixed with CNF are shown in Table 3.

[生分解性試験]
試料となる材料を凍結粉砕して粉体にしたあと、プロテイナーゼKによる酵素加水分解試験を行った。
0.2M NaH2PO4 2.8mLを0.2M Na2HPO4 22.8mLを混合し、蒸留水を加えて全量を50mLにして、pH7.7のリン酸バッファーを調製した。別途、Tritirachium album由来プロテイナーゼK(白色結晶性粉末;冨士フィルム和光純薬株式会社)を所定量計量し、リン酸バッファーに溶解させて、酵素溶液とした。
酵素溶液に所定量の材料を入れ、ボルテックスでいったんよく撹拌して測定用試料を調製し、これを恒温振とう器にセットした。所定時間後に測定用試料を取り出し、氷冷した後、0.2μメンブランフィルターでろ過し、ろ液を蒸留水で5倍希釈した。希釈したろ液の水溶性全有機炭素濃度(TOC)をTOC測定装置(島津製作所, TOC-VCSH)で測定した。
ろ液のTOC値から、酵素由来のTOC値と材料中の微量水溶性成分に由来するTOC値とを差し引いて、材料の正味TOC値とした。酵素由来のTOC値は酵素溶液を用いて測定し、材料由来のTOC値は、各材料をリン酸バッファーに投入し、ボルテックスでよく撹拌して得られた懸濁液を用いて測定した。
ポリ乳酸の繰り返し単位 (-O-CH(CH3)-CO-;M=72)の中の炭素量はC3=36なので、ポリ乳酸の重量のちょうど半分が炭素量となる(36/72=50%)。例えば、5mLリン酸バッファー中の10mgポリ乳酸が100%生分解(加水分解)されて水溶化すると、5mL水溶液中の炭素量が5mgとなるので、TOC値は5mg/5mL=1mg/mL=1000ppmと計算される。このとき、酵素分解試験後のTOC値が500ppmならば生分解率50%となる。なお、酵素によりポリ乳酸部分のみが加水分解されて水溶化されるが、セルロースナノファイバーは分解されないと仮定して、計算を行った。
[Biodegradability test]
The sample materials were freeze-pulverized to powder and then subjected to an enzymatic hydrolysis test using proteinase K.
2.8 mL of 0.2 M NaH2PO4 was mixed with 22.8 mL of 0.2 M Na2HPO4, and distilled water was added to make the total volume 50 mL to prepare a phosphate buffer with a pH of 7.7. Separately, a predetermined amount of proteinase K derived from Tritirachium album (white crystalline powder; Fujifilm Wako Pure Chemical Industries, Ltd.) was weighed and dissolved in the phosphate buffer to prepare an enzyme solution.
A specified amount of material was added to the enzyme solution, and the sample was prepared by thoroughly mixing it once with a vortex mixer, and then placed in a thermostatic shaker. After a specified time, the sample was removed, cooled on ice, filtered through a 0.2μ membrane filter, and the filtrate was diluted 5 times with distilled water. The water-soluble total organic carbon concentration (TOC) of the diluted filtrate was measured with a TOC measuring device (Shimadzu Corporation, TOC-VCSH).
The net TOC value of the material was determined by subtracting the TOC value derived from the enzyme and the TOC value derived from trace water-soluble components in the material from the TOC value of the filtrate. The TOC value derived from the enzyme was measured using the enzyme solution, and the TOC value derived from the material was measured using a suspension obtained by putting each material into phosphate buffer and thoroughly mixing it with a vortex.
The carbon content in the repeating unit of polylactic acid (-O-CH(CH3)-CO-; M=72) is C3=36, so the carbon content is exactly half of the weight of polylactic acid (36/72=50%). For example, if 10 mg of polylactic acid in 5 mL of phosphate buffer is 100% biodegraded (hydrolyzed) and becomes water-soluble, the carbon content in 5 mL of aqueous solution is 5 mg, so the TOC value is calculated as 5 mg/5 mL=1 mg/mL=1000 ppm. In this case, if the TOC value after the enzyme degradation test is 500 ppm, the biodegradation rate is 50%. The calculation was performed under the assumption that only the polylactic acid portion is hydrolyzed and water-soluble by the enzyme, but the cellulose nanofiber is not decomposed.

[実施例13~17]
実施例12と同様にして、ポリ乳酸 (PLA)の代わりに、ポリカプロラクトン (PCL)、ポリブチレンスクシネート (PBS)、ポリブチレンアジペート-co-テレフタレート (PBAT)、ポリヒドロキシブチレートバリレート (PBAV)、デンプン系樹脂とPBATとの混合樹脂、酢酸セルロース、ヒドロキシエチルセルロース (HEC)、ヒドロキシプロピルメチルセルロース (HPMC)および、それぞれに約5~25重量%のCNFを含有する生分解性複合材料を得た。
各生分解性樹脂およびそれぞれにCNFを混合して得られた生分解性複合材料の生分解性特性の結果を表3に示す。
[Examples 13 to 17]
In the same manner as in Example 12, biodegradable composite materials were obtained that contained polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate-co-terephthalate (PBAT), polyhydroxybutyrate valerate (PBAV), a mixed resin of starch-based resin and PBAT, cellulose acetate, hydroxyethyl cellulose (HEC), and hydroxypropyl methylcellulose (HPMC), each of which contained about 5 to 25 wt % of CNF, instead of polylactic acid (PLA).
The results of the biodegradability properties of each biodegradable resin and the biodegradable composite materials obtained by mixing each of them with CNF are shown in Table 3.

表3から分かるように、CNFを5重量%以上配合すると、生分解性樹脂の強度が増強するだけではなく、同時に分解率が向上することが確認された。 As can be seen from Table 3, it was confirmed that adding 5% or more by weight of CNF not only increases the strength of the biodegradable resin, but also improves the decomposition rate.

[比較例]
実施例12と同様にして、ポリ乳酸(PLA)に約2重量%の未処理CNFを含有する生分解性複合材料の生分解特性の結果を表3に示す。
PLAに未処理CNFを混合して得られた生分解性複合材料の生分解性特性の結果を表4に示す。
[Comparative Example]
The results of the biodegradation properties of the biodegradable composite material containing approximately 2 wt % untreated CNF in polylactic acid (PLA) in the same manner as in Example 12 are shown in Table 3.
The results of the biodegradability properties of the biodegradable composites obtained by mixing PLA with untreated CNF are shown in Table 4.

未処理CNFは、生分解性樹脂に対する分散性が低く、約2重量%を超えて混合することができなかった。
未処理CNFを配合することにより、生分解性が低下した。
Untreated CNF had poor dispersibility in biodegradable resins and could not be mixed in amounts exceeding about 2% by weight.
The inclusion of untreated CNF reduced biodegradability.

未処理のセルロースナノファイバーは樹脂に対する分散性が低く、約2重量%を超えて混合することができなかった。そして、樹脂に対して上限の2重量%を配合すると、強度も生分解性も低下する。一方、本発明のセルロースナノファイバーは生分解性樹脂に対する分散性が高く、所望する強度に応じて樹脂に配合することができる。さらに、驚くべきことに、生分解性樹脂の生分解率を向上させる効果が実証された。 Untreated cellulose nanofibers have low dispersibility in resins and could not be mixed in amounts exceeding approximately 2% by weight. Furthermore, when the upper limit of 2% by weight is added to resin, both strength and biodegradability decrease. On the other hand, the cellulose nanofibers of the present invention have high dispersibility in biodegradable resins and can be mixed into resins according to the desired strength. Furthermore, surprisingly, the effect of improving the biodegradation rate of biodegradable resins has been demonstrated.

本発明のセルロースナノファイバーを生分解性樹脂に配合すれば、強度と生分解性が同時に向上した生分解性樹脂組成物を得ることができる。 By blending the cellulose nanofibers of the present invention with a biodegradable resin, a biodegradable resin composition with improved strength and biodegradability can be obtained.

Claims (4)

セルロースナノファイバーおよび生分解性樹脂を含む生分解性複合材料であって、前記セルロースナノファイバーおよび生分解性樹脂の合計量100重量%中、セルロースナノファイバーの含有量が5~30重量%であり、前記生分解性樹脂は、
ポリ乳酸;ポリカプロラクトン;デンプン系生分解性ポリマー;ポリヒドロキシブチレートバリレート、ポリヒドロキシアルカノエート;酢酸セルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース;ポリブチレンスクシネート;ポリブチレンアジペート-co-テレフタレートコポリマーおよびそれらの組合せから選択され、
前記セルロースナノファイバーが、木片または木材チップをソルボサーマル処理に付す工程、ソルボサーマル処理した木材チップを解砕する工程、および解砕した木材チップを化学処理に付してセルロースナノファイバー(CNF)を得る工程をこの順序で含む製造方法により製造され、ソルボサーマル処理を臨界または亜臨界条件下で行い、化学処理が酸化処理である、生分解性複合材料。
A biodegradable composite material comprising a cellulose nanofiber and a biodegradable resin, the cellulose nanofiber content being 5 to 30% by weight in a total amount of 100% by weight of the cellulose nanofiber and the biodegradable resin, and the biodegradable resin is
selected from polylactic acid ; polycaprolactone; starch-based biodegradable polymers ; polyhydroxybutyrate valerates, polyhydroxyalkanoates ; cellulose acetate, hydroxyethyl cellulose, hydroxypropyl methylcellulose ; polybutylene succinate; polybutylene adipate-co-terephthalate copolymers, and combinations thereof;
A biodegradable composite material, in which the cellulose nanofibers are produced by a production method including, in this order, a step of subjecting wood pieces or wood chips to a solvothermal treatment, a step of crushing the solvothermal treated wood chips, and a step of subjecting the crushed wood chips to a chemical treatment to obtain cellulose nanofibers (CNF), wherein the solvothermal treatment is carried out under critical or subcritical conditions, and the chemical treatment is an oxidation treatment.
木片または木材チップが針葉樹または広葉樹の木片または木材チップである、請求項1に記載の生分解性複合材料。 The biodegradable composite material according to claim 1, wherein the wood chips or wood chips are softwood or hardwood chips or wood chips. さらに、ソルボサーマル処理工程の前にリグニンを添加する工程を含む、請求項1または2に記載の生分解性複合材料。 The biodegradable composite material according to claim 1 or 2, further comprising a step of adding lignin prior to the solvothermal treatment step. 請求項1~3いずれかに記載の生分解性複合材料を用いて形成された成形品。 A molded article formed using the biodegradable composite material according to any one of claims 1 to 3.
JP2019139856A 2019-07-30 2019-07-30 Biodegradable composite material containing cellulose nanofibers and biodegradable resin Active JP7490182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019139856A JP7490182B2 (en) 2019-07-30 2019-07-30 Biodegradable composite material containing cellulose nanofibers and biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139856A JP7490182B2 (en) 2019-07-30 2019-07-30 Biodegradable composite material containing cellulose nanofibers and biodegradable resin

Publications (2)

Publication Number Publication Date
JP2021021041A JP2021021041A (en) 2021-02-18
JP7490182B2 true JP7490182B2 (en) 2024-05-27

Family

ID=74575121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139856A Active JP7490182B2 (en) 2019-07-30 2019-07-30 Biodegradable composite material containing cellulose nanofibers and biodegradable resin

Country Status (1)

Country Link
JP (1) JP7490182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223385B2 (en) * 2021-03-28 2023-02-16 静岡油化工業株式会社 Resin product biodegradation accelerator
CN113105725A (en) * 2021-03-30 2021-07-13 西北民族大学 Biodegradable material and preparation method and application thereof
CN114989582B (en) * 2022-05-17 2024-05-03 福建省南安市帮登鞋业有限公司 Preparation method for acetylation of cotton cellulose nanofiber/polycaprolactone composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248202A (en) 2007-03-30 2008-10-16 Toyota Motor Corp Method and apparatus for purifying cellulose
JP2010042604A (en) 2008-08-13 2010-02-25 Nobuaki Oki Method for separating wood fiber as fibrous solid component in subcritical condition
JP2011140632A (en) 2009-12-11 2011-07-21 Kao Corp Composite material
JP2015096624A (en) 2010-03-31 2015-05-21 大阪瓦斯株式会社 Method for production of cellulose
JP2016176052A (en) 2015-03-19 2016-10-06 国立大学法人京都大学 Fiber reinforced resin composition containing chemical modified cellulose nanofiber and thermoplastic resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248202A (en) 2007-03-30 2008-10-16 Toyota Motor Corp Method and apparatus for purifying cellulose
JP2010042604A (en) 2008-08-13 2010-02-25 Nobuaki Oki Method for separating wood fiber as fibrous solid component in subcritical condition
JP2011140632A (en) 2009-12-11 2011-07-21 Kao Corp Composite material
JP2015096624A (en) 2010-03-31 2015-05-21 大阪瓦斯株式会社 Method for production of cellulose
JP2016176052A (en) 2015-03-19 2016-10-06 国立大学法人京都大学 Fiber reinforced resin composition containing chemical modified cellulose nanofiber and thermoplastic resin

Also Published As

Publication number Publication date
JP2021021041A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP7490182B2 (en) Biodegradable composite material containing cellulose nanofibers and biodegradable resin
Mariana et al. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends
Ridho et al. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications
Arrieta et al. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films
Lani et al. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites
Szabó et al. Competitive interactions in aromatic polymer/lignosulfonate blends
JP5128595B2 (en) Masterbatch and polymer composition
JP6177119B2 (en) Method for producing oxidized cellulose fiber
JPWO2020066537A1 (en) Method for Producing Cellulose Nanofiber (CNF) and Composite Material Containing It
Zarrinbakhsh et al. Biodegradable green composites from distiller's dried grains with solubles (DDGS) and a polyhydroxy (butyrate‐co‐valerate)(PHBV)‐based bioplastic
Zandi et al. Thermal and biodegradation properties of poly (lactic acid)/rice straw composites: effects of modified pulping products
Dias et al. Recent approaches and future trends for lignin-based materials
Perera et al. Synthesis and characterization of lignin nanoparticles isolated from oil palm empty fruit bunch and application in biocomposites
TW201529740A (en) Resin composition, molded body, and production method
CN102093703A (en) Method for preparing chitin whisker modified waterborne polyurethane
CN113717505A (en) Degradable plastic and preparation method thereof
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
Worku et al. Experimental investigations on PVA/chitosan and PVA/chitin films for active food packaging using Oxytenanthera abyssinica lignin nanoparticles and its UV-shielding, antimicrobial, and antiradical effects
Zeleke et al. Enhancing the thermo-mechanical properties of thermoplastic starch films using rice straw fibers as reinforcement
JPH10273582A (en) Biodegradable resin composition
JP2021063193A (en) Cellulose nanofiber (cnf) and method for producing composite material comprising the same
JP2021109942A (en) Composite material including cellulose nanofiber (cnf) and method for producing the same
JP2018100312A (en) Biodegradable composite material and method for producing the same
JP6888274B2 (en) Molding composition and molded article
Qiu Biobased and biodegradable polymer nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240502

R150 Certificate of patent or registration of utility model

Ref document number: 7490182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150