JP7489212B2 - Metallic insulation equipment - Google Patents

Metallic insulation equipment Download PDF

Info

Publication number
JP7489212B2
JP7489212B2 JP2020063310A JP2020063310A JP7489212B2 JP 7489212 B2 JP7489212 B2 JP 7489212B2 JP 2020063310 A JP2020063310 A JP 2020063310A JP 2020063310 A JP2020063310 A JP 2020063310A JP 7489212 B2 JP7489212 B2 JP 7489212B2
Authority
JP
Japan
Prior art keywords
metal
partial cylindrical
plates
casing
flat plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063310A
Other languages
Japanese (ja)
Other versions
JP2021162072A (en
Inventor
一弘 高橋
博隆 山城
重直 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Original Assignee
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Industrial Co Ltd filed Critical Meisei Industrial Co Ltd
Priority to JP2020063310A priority Critical patent/JP7489212B2/en
Publication of JP2021162072A publication Critical patent/JP2021162072A/en
Application granted granted Critical
Publication of JP7489212B2 publication Critical patent/JP7489212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

本発明は、金属被覆断熱装置に関する。 The present invention relates to a metal-coated insulation device.

従来、例えば原子力発電設備や実験用原子炉その他各種原子力関連設備における配管やタンクなどの円柱状外周面を有する断熱対象物を断熱保温するために、円柱状外周面を有する断熱対象物に対し、前記円柱状外周面に沿わせて複数個配設可能で、且つ、前記円柱状外周面に沿った湾曲面を備えた箱状の部分円筒型金属ケーシングを設け、その部分円筒状金属ケーシング内に断熱材を収容してある金属被覆断熱装置がある。
そして前記断熱材として、凹凸形状に形押しした金属箔を複数枚積層して部分円筒型金属ケーシングの内方に収容したものがあり、これは、金属箔が互いに多くの箇所で接触しているために、熱伝導が多くて、より多くの熱量が流失するという欠点がある。
これに対し、金属箔と無機繊維質シートのいずれかを波形に成形して互いに接着し、その複合シートを金属ケーシング内に収容する金属被覆断熱装置が考えられている(例えば、特許文献1参照)。
Conventionally, in order to insulate and keep warm objects having a cylindrical outer peripheral surface, such as pipes and tanks in nuclear power generation facilities, experimental nuclear reactors, and various other nuclear-related facilities, there has been a metal-coated insulation device in which a box-shaped partial cylindrical metal casing with a curved surface that follows the cylindrical outer peripheral surface is provided and can be arranged in multiple units along the cylindrical outer peripheral surface of the object to be insulated having a cylindrical outer peripheral surface, and an insulating material is housed within the partial cylindrical metal casing.
One type of insulation material is one in which multiple sheets of metal foil embossed with an uneven shape are stacked and housed inside a partial cylindrical metal casing.However, this has the disadvantage that the metal foils are in contact with each other at many points, resulting in high thermal conductivity and a large amount of heat loss.
In response to this, a metal-coated thermal insulation device has been proposed in which either a metal foil or an inorganic fiber sheet is corrugated and bonded to each other, and the composite sheet is housed in a metal casing (see, for example, Patent Document 1).

実開平7-41192号公報Japanese Utility Model Application Publication No. 7-41192

上述した従来の金属箔と無機繊維質シートとの組合せの複合シートにおいて、波形に成形されたシートが金属で、平板状シートが無機繊維質シートの場合には、無機繊維質シートの引張強度が、金属シートに比べて弱いために、製作時等に破断の可能性が大きくなり、しかも平板状の無機繊維質シートでは熱反射率が小さく、そのために断熱対象物が高温時の場合の放射熱の遮断には有効ではない。
また、波形に成形されたシートが無機繊維質シートで、平板状シートが金属の場合には、無機繊維質シートは成形が困難であるばかりか、成形を行ってもその弾性は小さく、空間保持のために厚みを厚くして弾性を少しでも上げるか、接着剤を含ませて弾性を上げることも考えられるが、重量増加の原因になるばかりか、高温下での耐久性に問題がある。
つまり、高温下での熱分解等により接着前の強度が減少し、無機繊維が長期使用により脆くなって粉塵が発生しやすくなり、空間を確保する機能が低下する可能性がある。
そのために、複合シートの積層枚数が多くなれば、複数枚の金属製の平板状シートの荷重により、平板状シート同士の間隔を均等に維持するのが困難で、断熱材の断熱性能を均等に維持するのが困難となるという問題点がある。
In the above-mentioned conventional composite sheets combining metal foil and an inorganic fiber sheet, when the corrugated sheet is made of metal and the flat sheet is made of an inorganic fiber sheet, the tensile strength of the inorganic fiber sheet is weaker than that of a metal sheet, increasing the possibility of breakage during production, etc., and furthermore, the flat inorganic fiber sheet has a low thermal reflectivity, so it is not effective in blocking radiant heat when the object to be insulated is at a high temperature.
Furthermore, when the corrugated sheet is an inorganic fiber sheet and the flat sheet is made of metal, not only is it difficult to mold the inorganic fiber sheet, but even if it is molded, its elasticity is low. It is possible to increase the thickness to maintain the space and thus increase the elasticity slightly, or to impart adhesive thereto, but this not only causes an increase in weight but also poses problems with durability at high temperatures.
In other words, the strength before bonding decreases due to thermal decomposition under high temperatures, and the inorganic fibers become brittle with long-term use, making them more susceptible to dust generation, and the function of securing space may be reduced.
Therefore, if the number of laminated composite sheets increases, the load of the multiple metal flat sheets makes it difficult to maintain equal spacing between the flat sheets, which poses the problem of making it difficult to maintain equal insulation performance of the insulation material.

そこで、本願出願人は、上記問題点を解決するべく特願2012-200190(特開2014-55622号公報)において、前記断熱材として、前記部分円筒型金属ケーシング内で前記湾曲面に沿った複数の金属平板を熱貫流方向に積層配置すると共に、複数の前記金属平板夫々の間で、且つ、前記部分円筒型金属ケーシングの長手方向における少なくとも2箇所において、金属製の帯状間隔保持材を前記湾曲面の湾曲方向に沿って配置して、前記熱貫流方向に隣設する金属平板間及び前記部分円筒型金属ケーシングの長手方向に隣設する前記帯状間隔保持材間に空間を形成し、前記金属平板の表面を鏡面又は略鏡面に形成してある金属被覆断熱装置を提案してある。
上記金属被覆断熱装置では、前記部分円筒型金属ケーシング内で熱貫流方向に積層配置した前記湾曲面に沿った複数の金属平板は、夫々が前記湾曲面に沿った形状を成すために保形性を有して、変形しにくくなっており、従って、複数の前記金属平板夫々の間で、且つ、その金属平板の全面に亘って設けずとも部分円筒型金属ケーシングの長手方向における少なくとも2箇所において、金属製の帯状間隔保持材を前記湾曲面の湾曲方向に沿って配置するだけで、金属平板同士の間隔は、その略全面に亘って均等に維持でき、前記熱貫流方向に隣設する金属平板間及び部分円筒型金属ケーシングの長手方向に隣設する帯状間隔保持材間に断熱のための空間を確実に確保でき、しかも、金属平板と帯状間隔保持材とは接触部分の面積が小さく、接触熱伝導を少なく抑えて優れた断熱性能を期待できる。
また、帯状間隔保持材は、金属平板よりは金属使用材料を低減して、製作容易で重量の軽減化を図ることができ、しかも、金属平板と同様の金属製であるために、洗浄が容易であり、帯状間隔保持材の高さは、各金属平板間と、金属ケーシング側板によって形成された各空間において、たとえば、内部空気の対流が生じにくい各高さにすることで、断熱性能を高く維持できる。その上、金属平板と帯状間隔保持材とは、接着剤を使用せずにスポット溶接等により一体固定化もできる。
更に、断熱対象物の円柱状外周面に対して沿った湾曲面の金属平板は、断熱対象物に対する熱放射遮蔽作用が優れる。つまり、断熱対象物から放射される熱線を、波形の金属板の表面よりも、乱反射せずに断熱対象物に向けて反射して、放射熱を外へ逃がさない。
その上、鏡面又は略鏡面に表面が形成されている金属平板は、その優れた表面反射能のために、断熱対象物からの放射熱をより多く反射して、外部への熱リークまたは外部からの熱の侵入を防止でき、輻射断熱性能をより高くできる。
また、金属製の帯状間隔保持材は、無機繊維質シートよりも弾性反発力が大きく、その間隔保持機能が優れている。
従って、部分円筒型金属ケーシング内に均等な断熱性能の断熱材を収容できる、という効果を発揮できるものである。
しかし、熱貫流方向に更に断熱性能を上げるべく金属平板の枚数を増加させて輻射断熱性能を上げるには、金属製の帯状間隔保持材では並設する金属平板同士の間隔を小さくするのは限度があるという問題がある。
Therefore, in order to solve the above-mentioned problems, the applicant of the present application has proposed in Patent Application No. 2012-200190 (JP Patent Publication No. 2014-55622), a metal-coated insulation device in which, as the insulation material, a plurality of metal flat plates aligned along the curved surface within the partial cylindrical metal casing are stacked in the heat transfer direction, and metal strip-shaped spacing members are arranged along the curvature direction of the curved surface between each of the plurality of metal flat plates and at least two locations in the longitudinal direction of the partial cylindrical metal casing, forming spaces between adjacent metal flat plates in the heat transfer direction and between adjacent strip-shaped spacing members in the longitudinal direction of the partial cylindrical metal casing, and the surfaces of the metal flat plates are formed into a mirror or approximately mirror finish.
In the above-mentioned metal-coated insulation device, the multiple metal flat plates along the curved surface and stacked in the heat transfer direction within the partial cylindrical metal casing each have shape that follows the curved surface, so they have shape retention and are less likely to deform. Therefore, by simply arranging metal strip-shaped spacing members along the curvature direction of the curved surface between each of the multiple metal flat plates and at least two locations in the longitudinal direction of the partial cylindrical metal casing, without having to arrange them over the entire surface of the metal flat plates, the spacing between the metal flat plates can be maintained even over almost the entire surface, and space for insulation can be reliably secured between adjacent metal flat plates in the heat transfer direction and between adjacent strip-shaped spacing members in the longitudinal direction of the partial cylindrical metal casing. Moreover, the contact area between the metal flat plates and the strip-shaped spacing members is small, so that contact thermal conduction can be kept low and excellent insulation performance can be expected.
Furthermore, the strip-shaped spacing members use less metal material than flat metal plates, making them easier to manufacture and lighter in weight, and because they are made of the same metal as the flat metal plates, they are easy to clean, and the height of the strip-shaped spacing members can be set to a height that makes it difficult for internal air to convect in the spaces between the metal plates and in the spaces formed by the side plates of the metal casing, thereby maintaining high thermal insulation performance. Moreover, the flat metal plates and the strip-shaped spacing members can be fixed together by spot welding or the like without using adhesive.
Furthermore, the curved metal plate that fits the cylindrical outer periphery of the object to be insulated has an excellent effect of blocking heat radiation from the object to be insulated. In other words, the heat rays radiated from the object to be insulated are reflected toward the object to be insulated without being diffused, as compared to the corrugated metal plate surface, and the radiant heat is not allowed to escape to the outside.
Furthermore, a metal plate having a mirror-like or nearly mirror-like surface can reflect more radiant heat from the object to be insulated due to its excellent surface reflectivity, preventing heat leakage to the outside or heat from entering from the outside, thereby improving the radiation insulation performance.
Furthermore, the metal belt-shaped spacer has a greater elastic resilience than the inorganic fiber sheet and is therefore superior in its space-retaining function.
Therefore, it is possible to obtain the effect that a heat insulating material with uniform heat insulating performance can be accommodated within the partial cylindrical metal casing.
However, when increasing the number of metal flat plates to further improve the insulation performance in the heat transfer direction and thereby increase the radiation insulation performance, there is a problem in that there is a limit to how much the spacing between the adjacent metal flat plates can be reduced when using metal strip-shaped spacing retainers.

従って、本発明の目的は、上記問題点を解消し、部分円筒型金属ケーシング内における放射熱低減と空間確保の機能を更に向上させる金属被覆断熱装置を提供するところにある。 The object of the present invention is therefore to provide a metal-coated thermal insulation device that solves the above problems and further improves the function of reducing radiant heat and securing space within a partial cylindrical metal casing.

本発明の第1の特徴構成は、円柱状外周面を有する断熱対象物に対し、前記円柱状外周面に沿わせて複数個配設可能で、且つ、前記円柱状外周面に沿った湾曲面を備えた箱状の部分円筒型金属ケーシングを設け、その部分円筒型金属ケーシング内に断熱材を収容してある金属被覆断熱装置であって、前記断熱材として、前記部分円筒型金属ケーシング内で前記湾曲面に沿った複数の金属平板を熱貫流方向に積層配置すると共に、複数の前記金属平板夫々の間で、且つ、前記部分円筒型金属ケーシングの長手方向における少なくとも2箇所において互いに間隔を置いて、全長にわたって均等な太さの金属製の線材を、前記湾曲面の湾曲方向の一端部から他端部にかけて湾曲方向に沿って巻き付けた状態で各別に配置して、前記熱貫流方向に隣設する金属平板間及び前記部分円筒型金属ケーシングの長手方向に隣設する前記線材同士の間に空間を形成し、前記金属平板の表面を鏡面又は略鏡面の熱線反射面に形成したところにある。 The first characteristic of the present invention is a metal-coated insulation device that can be arranged along a cylindrical outer peripheral surface of an object to be insulated, and that has a box-shaped partial cylindrical metal casing with a curved surface along the cylindrical outer peripheral surface, and that contains an insulation material inside the partial cylindrical metal casing. As the insulation material, a plurality of metal flat plates along the curved surface are stacked in the heat transmission direction inside the partial cylindrical metal casing, and metal wire rods of uniform thickness are arranged separately between each of the plurality of metal flat plates and at least two locations in the longitudinal direction of the partial cylindrical metal casing, in a state where they are wound along the curved direction from one end to the other end in the curved direction of the curved surface, forming a space between adjacent metal flat plates in the heat transmission direction and between adjacent wire rods in the longitudinal direction of the partial cylindrical metal casing, and the surface of the metal flat plate is formed into a mirror or nearly mirror heat ray reflecting surface.

本発明の第1の特徴構成によれば、前記熱貫流方向に積層した複数枚の金属平板夫々の間で、且つ、その金属平板の全面に亘って設けずとも前記熱貫流方向に積層した複数枚の金属平板夫々の間で、且つ、その金属平板の全面に亘って設けずとも部分円筒型金属ケーシングの長手方向における少なくとも2箇所において互いに間隔を置いて、全長にわたって均等な太さの金属製の線材を、前記湾曲面の湾曲方向の一端部から他端部にかけて湾曲方向に沿って巻き付けた状態で各別に配置するだけで、金属平板同士の間隔は、その略全面に亘って均等に維持でき、前記熱貫流方向に隣設する金属平板間及び部分円筒型金属ケーシングの長手方向に隣設する線材間に断熱のための空間を確実に確保できる。
そして、この金属平板同士の間隔は、線材の太さにより決まるために、先願の帯状間隔保持材を加工して金属平板同士の間隔を設定するよりも、至って簡単に、且つ、精度よく設定でき、組み立ても簡便で生産効率が向上する。
しかも、線材の太さにより金属平板同士の間隔を決められるために、前記部分円筒型金属ケーシング内の収容空間内に、先願の帯状間隔保持材使用時よりも、より多くの枚数の金属平板を積層できる。鏡面又は略鏡面の熱線反射面に表面が形成されている金属平板は、その優れた表面反射能のために、断熱対象物からの放射熱をより多く反射して、外部への熱リークまたは外部からの熱の侵入を防止でき、輻射断熱性能をより高くできる。そして、この輻射断熱性能は、金属平板の枚数に比例して上昇する。そのため、上述のように金属平板の枚数を増加させることで、輻射断熱性能を一層高くできる。
According to the first characteristic configuration of the present invention, by simply arranging metal wires of uniform thickness over the entire length, wound along the curvature direction from one end to the other end of the curved surface in the curvature direction, at intervals between each of the multiple metal flat plates stacked in the heat transfer direction, and at least two locations in the longitudinal direction of the partial cylindrical metal casing, between each of the multiple metal flat plates stacked in the heat transfer direction, and even if not arranged over the entire surface of the metal flat plates, the intervals between the metal flat plates can be maintained uniform over almost the entire surface, and space for insulation can be reliably secured between adjacent metal flat plates in the heat transfer direction and between adjacent wires in the longitudinal direction of the partial cylindrical metal casing.
Furthermore, since the spacing between these metal plates is determined by the thickness of the wire, it can be set much more simply and accurately than in the prior application, when the spacing between the metal plates is set by processing a strip-shaped spacing material, and assembly is simplified, improving production efficiency.
Moreover, since the spacing between the metal flat plates is determined by the thickness of the wire, a larger number of metal flat plates can be stacked in the storage space in the partially cylindrical metal casing than when the strip-shaped spacing material of the prior application is used. Metal flat plates having a mirror or nearly mirror-like heat ray reflecting surface have excellent surface reflectivity, which allows them to reflect more radiant heat from the object to be insulated, preventing heat leakage to the outside or heat penetration from the outside, thereby improving the radiation insulation performance. This radiation insulation performance increases in proportion to the number of metal flat plates. Therefore, by increasing the number of metal flat plates as described above, the radiation insulation performance can be further improved.

本発明の第2の特徴構成は、積層した複数の前記金属平板間に配置させる複数の前記線材において、前記金属平板を挟んだ状態で熱貫流方向に隣接する線材同士は、前記部分円筒型金属ケーシングの長手方向で異なった位置にずらして配置したところにある。 The second characteristic feature of the present invention is that, in the multiple wire rods arranged between the multiple stacked metal plates, adjacent wire rods in the heat transfer direction with the metal plates sandwiched between them are arranged at different offset positions in the longitudinal direction of the partial cylindrical metal casing.

本発明の第2の特徴構成によれば、本発明の第1の特徴構成による上述の作用効果を叶えることができるのに加えて、複数の前記線材は、前記部分円筒型金属ケーシングの長手方向において同じ位置に配置しておらず、部分円筒型金属ケーシングの長手方向で異なった位置にずらして配置してあることにより、断熱対象物からの熱貫流において、伝熱経路が長くなるために伝熱抵抗が大きくなる。そのために、金属被覆断熱装置の断熱性能が向上する。 According to the second characteristic configuration of the present invention, in addition to being able to achieve the above-mentioned effects of the first characteristic configuration of the present invention, the multiple wires are not arranged at the same position in the longitudinal direction of the partial cylindrical metal casing, but are arranged at different positions offset in the longitudinal direction of the partial cylindrical metal casing, so that the heat transfer path becomes longer in the heat transfer from the object to be insulated, and the heat transfer resistance becomes larger. As a result, the insulating performance of the metal-coated insulation device is improved.

本発明の第3の特徴構成は、前記金属平板と前記線材とを同種の金属にしてあるものである。 The third characteristic feature of the present invention is that the metal plate and the wire are made of the same type of metal.

本発明の第3の特徴構成によれば、金属平板と線材は、同種の金属にすることにより、接触に基づく電位差の発生を抑え、そのために電食の発生が抑えられ、その結果、長期に亘って設置使用できる。 According to the third characteristic configuration of the present invention, the metal plate and the wire are made of the same metal, which suppresses the generation of potential differences due to contact, thereby suppressing the occurrence of electrolytic corrosion, and as a result, the device can be installed and used for a long period of time.

断熱対象物に対する本発明の金属被覆断熱装置の装着前の一部切り欠き斜視図である。FIG. 2 is a partially cutaway perspective view of the metal-coated insulation device of the present invention before it is installed on an object to be insulated. 本発明の金属被覆断熱装置の断面図である。1 is a cross-sectional view of a metallized insulation device of the present invention; 断熱装置の保温厚み一定の状態の金属平板の枚数変化に伴う熱伝導率の変化グラフである。1 is a graph showing the change in thermal conductivity with the change in the number of metal flat plates when the insulation thickness of the insulation device is constant. 実験例1における金属被覆断熱装置の断面図で、(a)は横断面の一部を示し、(b)は長手方向に沿った縦断面である。1A and 1B are cross-sectional views of a metal-coated thermal insulation device in Experimental Example 1, in which (a) shows a part of a horizontal cross section, and (b) is a longitudinal cross section along the longitudinal direction. 実験例2において、中間温度変化に伴う熱伝導率の従来品との比較変化グラフである。11 is a graph showing a comparative change in thermal conductivity with intermediate temperature change compared to a conventional product in Experimental Example 2. 実験例3において、断熱装置の保温厚み変化に伴う熱伝導率の従来品との比較変化グラフである。13 is a graph showing the change in thermal conductivity with respect to the conventional product in accordance with the change in the insulation thickness of the insulation device in Experimental Example 3.

以下に本発明の実施の形態を図面に基づいて説明する。
例えば原子力発電設備や実験用原子炉その他各種原子力関連設備における配管や円筒状タンク型の圧力容器などの円柱状外周面を有する断熱対象物6を断熱保温でき、且つ、放射線被爆を最小限にすべく交換作業が短時間で行えるようにするために、前記円柱状外周面を有する断熱対象物6に対し、図1~図2に示すように、前記円柱状外周面に沿わせて複数個配設可能で、且つ、その外周面に沿った湾曲面1を備えた箱状の部分円筒型金属ケーシング2を設け、断熱材として前記湾曲面1に沿った複数のステンレス箔(SUS)の金属平板3を熱貫流方向に積層配置すると共に、複数の金属平板3夫々の間で、且つ、部分円筒型金属ケーシング2の長手方向における両端部または両端部近くの2箇所において、ステンレス(SUS)の線材4を湾曲面1の湾曲方向に沿って配置して,熱貫流方向に隣設する金属平板3間及び部分円筒型金属ケーシング2の長手方向に隣設する線材4間に空間Sを形成し、金属平板3の表面を鏡面又は略鏡面(熱線反射面)に形成して、部分円筒状金属ケーシング内に収容して金属被覆断熱装置を構成してある。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
For example, in order to insulate and keep warm an object 6 having a cylindrical outer peripheral surface, such as piping or a cylindrical tank-type pressure vessel in a nuclear power plant, an experimental nuclear reactor, or other various nuclear power-related facilities, and to enable replacement work to be performed in a short time to minimize radiation exposure, a box-shaped partially cylindrical metal casing 2 having a curved surface 1 along the outer peripheral surface is provided for the object 6 having a cylindrical outer peripheral surface, as shown in Figures 1 and 2. The box-shaped partially cylindrical metal casing 2 can be arranged in plurality along the cylindrical outer peripheral surface, and has a curved surface 1 along the outer peripheral surface. A plurality of stainless steel foils (S US) flat metal plates 3 are stacked in the heat transfer direction, and stainless steel (SUS) wires 4 are arranged between each of the flat metal plates 3 and at two locations, at both ends or near both ends in the longitudinal direction of the partial cylindrical metal casing 2, along the curvature direction of the curved surface 1. Spaces S are formed between adjacent flat metal plates 3 in the heat transfer direction and between adjacent wires 4 in the longitudinal direction of the partial cylindrical metal casing 2, and the surfaces of the flat metal plates 3 are formed into mirror or nearly mirror finishes (heat ray reflecting surfaces) and are housed within the partial cylindrical metal casing to form a metal-coated thermal insulation device.

複数積層配置した金属平板3夫々の間に配置する複数の線材4により、断熱対象物6からの熱貫流や、外部から断熱対象物6への熱貫流現象において、伝熱経路が長くなるために伝熱抵抗が大きくなり、そのために、金属被覆断熱装置の断熱性能が向上する。 By placing multiple wires 4 between each of the multiple stacked metal flat plates 3, the heat transfer path becomes longer in the heat transfer phenomenon from the object to be insulated 6 and from the outside to the object to be insulated 6, and the heat transfer resistance becomes larger, thereby improving the insulating performance of the metal-coated insulation device.

尚、前記部分円筒型金属ケーシング2は、ステンレス製(SUS)で断熱対象物6が流体配管の場合は2つ割れの半円筒型に形成し(場合によっては円周方向に3分割以上に形成)、タンクなどの場合には、そのタンクの円周方向に多数に分割した横断面扇形に形成して、複数の部分円筒型金属ケーシング2を組み付け、端部に敷設したバックル5などの連結部材で隣接するもの同士を連結することで、断熱対象物6を全周に亘って断熱被覆できるように構成する。 The partial cylindrical metal casing 2 is made of stainless steel (SUS) and is formed into a semi-cylindrical shape split into two when the object to be insulated 6 is a fluid pipe (sometimes split into three or more parts in the circumferential direction), and when it is a tank or the like, is formed into a cross section that is split into many parts in the circumferential direction of the tank, and multiple partial cylindrical metal casings 2 are assembled and adjacent ones are connected together with connecting members such as buckles 5 installed at the ends, so that the entire circumference of the object to be insulated 6 can be insulated.

前記金属平板3は、厚さ0.03mm~0.3mmのステンレス製でその表面が鏡面または略鏡面の平板を、部分円筒型金属ケーシング2の湾曲面1に沿わせて部分円筒状に成形することにより、断熱対象物6からの放射熱に対する反射率を上げながら金属平板3自身の保形性を備えさせたものである。
尚、線材4と金属平板3とは非接着で湾曲面1の曲率半径方向に積層させてある。また、図4(b)に示すように、積層した複数の前記金属平板3間に配置させる複数の線材4は、部分円筒型金属ケーシング2の長手方向で異なった位置にずらして配置してある。
The metal flat plate 3 is made of stainless steel and has a thickness of 0.03 mm to 0.3 mm, and has a mirror or nearly mirror-finished surface. It is formed into a partial cylindrical shape to fit the curved surface 1 of the partial cylindrical metal casing 2, thereby giving the metal flat plate 3 its own shape retention while increasing its reflectance against radiant heat from the object to be insulated 6.
The wires 4 and the flat metal plates 3 are not bonded together and are stacked in the direction of the radius of curvature of the curved surface 1. As shown in Fig. 4(b) , the wires 4 arranged between the stacked flat metal plates 3 are shifted to different positions in the longitudinal direction of the partial cylindrical metal casing 2.

[実験例1]
次に、図4(b)と同じ構造となる平板形状の断熱装置で、金属平板同士の間隔を変えて、金属平板3の枚数の違いを作ることにより、熱伝導率の変化を測定した。
尚、保温厚さ29mmで一定の金属断熱材で、金属平板同士の間隔保持材としての線材4は、太さ2mmのステンレス線(SUS)を使用し、熱貫流方向に段積みする本数を変えて設置することで、金属平板同士の間隔を変化させた。金属平板3は、厚さ50μmのステンレス箔(SUS)を使用した。
結果として、図3のグラフに示すように、金属平板3の枚数が増加するに伴って、熱伝導率(W/mK)が低下することが明確である。
[Experimental Example 1]
Next, in a flat-plate-shaped heat insulating device having the same structure as that shown in FIG. 4B, the distance between the metal plates was changed to create different numbers of metal plates 3, and the change in thermal conductivity was measured.
The thickness of the metal insulation material was fixed at 29 mm, and the wire rod 4 used to keep the distance between the metal plates was made of stainless steel wire (SUS) with a thickness of 2 mm. The number of wires stacked in the heat transfer direction was changed to change the distance between the metal plates. The metal plate 3 was made of stainless steel foil (SUS) with a thickness of 50 μm.
As a result, as shown in the graph of FIG. 3, it is clear that as the number of metal plates 3 increases, the thermal conductivity (W/mK) decreases.

[実験例2]
次に、図4(b)と同じ構造となる円筒形状の断熱装置で、熱伝導率を測定し、従来品との比較を行った。尚、保温厚さ50mmで一定の金属断熱材で、実験例1と同様の構造の金属断熱材を使用した。
結果として、図5のグラフに示すように、従来品に比べ、中間温度170℃では熱伝導率が約20%低下することが確認できた。
[Experimental Example 2]
Next, the thermal conductivity was measured using a cylindrical insulation device having the same structure as that shown in Fig. 4(b) and compared with a conventional product. Note that a metal insulation material with a constant insulation thickness of 50 mm and a structure similar to that of Experimental Example 1 was used.
As a result, as shown in the graph of FIG. 5, it was confirmed that the thermal conductivity at the intermediate temperature of 170° C. was reduced by about 20% compared to the conventional product.

[実験例3]
次に、図4(b)と同じ構造となる円筒形状の断熱装置で、熱伝導率を測定し、従来品との比較を行った。尚、保温厚さ50mmと、100mmでの一定の金属断熱材で、実験例1と同様の構造の金属断熱材を使用した。
結果として、図6のグラフに示すように、従来品に比べ、中間温度170℃では、保温厚みが50mm、100mmのいずれにおいても、熱伝導率が約20%低下することが確認でき、図6からは、厚み50mmよりも100mmの方が、より熱伝導率の低下率が大きくなることが明確であった。
[Experimental Example 3]
Next, the thermal conductivity was measured using a cylindrical insulation device with the same structure as in Fig. 4(b) and compared with a conventional product. Note that a metal insulation material with a constant insulation thickness of 50 mm and 100 mm and a structure similar to that of Experimental Example 1 was used.
As a result, as shown in the graph in Figure 6, it was confirmed that at an intermediate temperature of 170°C, the thermal conductivity decreased by approximately 20% compared to the conventional product, regardless of whether the insulation thickness was 50 mm or 100 mm. It is clear from Figure 6 that the rate of decrease in thermal conductivity is greater for a thickness of 100 mm than for a thickness of 50 mm.

〔別実施形態〕
以下に他の実施の形態を説明する。
〈1〉 前記線材4は、部分円筒型金属ケーシング2の長手方向における両端部または両端部近く以外に、それらの中間部に配置してあってもよく、合計3か所以上に配置してあってもよい。つまり、部分円筒型金属ケーシング2の長手方向における少なくとも2箇所に設けてあればよい。
〈2〉 前記部分円筒型金属ケーシング2、前記金属平板3、前記線材4は、すべてステンレス(SUS)から成型してあるが、これに代えて、軽量化のためには、アルミニウム製、又は、その他の金属であってもよい。
〈3〉 前記線材4は、全長に均等な太さの物を使用したが、金属平板3との接触部分をより低減させるために、その長手方向の複数個所において、直径のより小さな箇所を設けてあってもよい。
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
[Another embodiment]
Other embodiments will be described below.
<1> The wire rods 4 may be disposed at an intermediate portion between the two ends or near the two ends in the longitudinal direction of the partial cylindrical metal casing 2, or may be disposed at three or more locations in total. In other words, it is sufficient that the wire rods 4 are disposed at at least two locations in the longitudinal direction of the partial cylindrical metal casing 2.
<2> The partial cylindrical metal casing 2, the metal plate 3, and the wire 4 are all made of stainless steel (SUS). However, to reduce weight, they may be made of aluminum or other metals instead.
<3> The wire 4 used has a uniform thickness along its entire length, but in order to further reduce the contact area with the metal plate 3, it may have multiple locations along its length that have smaller diameters.
As mentioned above, the reference numerals are used for the purpose of easy comparison with the drawings, but the present invention is not limited to the configurations shown in the drawings. Furthermore, it goes without saying that the present invention can be embodied in various forms without departing from the spirit and scope of the present invention.

1 湾曲面
2 部分円筒型金属ケーシング
3 金属平板
4 線材
6 断熱対象物
S 空間
Reference Signs List 1: Curved surface 2: Partial cylindrical metal casing 3: Metal plate 4: Wire rod 6: Object to be insulated S: Space

Claims (3)

円柱状外周面を有する断熱対象物に対し、前記円柱状外周面に沿わせて複数個配設可能で、且つ、前記円柱状外周面に沿った湾曲面を備えた箱状の部分円筒型金属ケーシングを設け、その部分円筒型金属ケーシング内に断熱材を収容してある金属被覆断熱装置であって、前記断熱材として、前記部分円筒型金属ケーシング内で前記湾曲面に沿った複数の金属平板を熱貫流方向に積層配置すると共に、複数の前記金属平板夫々の間で、且つ、前記部分円筒型金属ケーシングの長手方向における少なくとも2箇所において互いに間隔を置いて、全長にわたって均等な太さの金属製の線材を、前記湾曲面の湾曲方向の一端部から他端部にかけて湾曲方向に沿って巻き付けた状態で各別に配置して、前記熱貫流方向に隣設する金属平板間及び前記部分円筒型金属ケーシングの長手方向に隣設する前記線材同士の間に空間を形成し、前記金属平板の表面を鏡面又は略鏡面の熱線反射面に形成してある金属被覆断熱装置。 A metal-coated insulation device that can be arranged along a cylindrical outer peripheral surface of an object to be insulated, and that has a box-shaped partial cylindrical metal casing with a curved surface along the cylindrical outer peripheral surface, and that contains insulation material inside the partial cylindrical metal casing, in which a plurality of metal flat plates along the curved surface are stacked in the heat transmission direction inside the partial cylindrical metal casing as the insulation material, and between each of the plurality of metal flat plates and at least two locations in the longitudinal direction of the partial cylindrical metal casing, metal wire rods of uniform thickness over the entire length are wound along the curved direction from one end to the other end of the curved surface in the curved direction, forming spaces between adjacent metal flat plates in the heat transmission direction and between adjacent wire rods in the longitudinal direction of the partial cylindrical metal casing, and the surfaces of the metal flat plates are formed into mirror or nearly mirror heat ray reflecting surfaces. 積層した複数の前記金属平板間に配置させる複数の前記線材において、前記金属平板を挟んだ状態で熱貫流方向に隣接する物同士は、前記部分円筒型金属ケーシングの長手方向で異なった位置にずらして配置してある請求項1に記載の金属被覆断熱装置。 The metal-coated thermal insulation device according to claim 1, wherein the wires arranged between the stacked metal plates are arranged so that adjacent wires in the heat transfer direction with the metal plates sandwiched between them are shifted to different positions in the longitudinal direction of the partial cylindrical metal casing. 前記金属平板と前記線材とを同種の金属にしてある請求項1または2に記載の金属被覆断熱装置。 A metal-coated insulation device according to claim 1 or 2, in which the metal plate and the wire are made of the same metal.
JP2020063310A 2020-03-31 2020-03-31 Metallic insulation equipment Active JP7489212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063310A JP7489212B2 (en) 2020-03-31 2020-03-31 Metallic insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063310A JP7489212B2 (en) 2020-03-31 2020-03-31 Metallic insulation equipment

Publications (2)

Publication Number Publication Date
JP2021162072A JP2021162072A (en) 2021-10-11
JP7489212B2 true JP7489212B2 (en) 2024-05-23

Family

ID=78002972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063310A Active JP7489212B2 (en) 2020-03-31 2020-03-31 Metallic insulation equipment

Country Status (1)

Country Link
JP (1) JP7489212B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055622A (en) 2012-09-12 2014-03-27 Meisei Ind Co Ltd Metallic coating heat insulation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055622A (en) 2012-09-12 2014-03-27 Meisei Ind Co Ltd Metallic coating heat insulation device

Also Published As

Publication number Publication date
JP2021162072A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
IE61780B1 (en) Insulating mat for bodies having a curved surface, and in particular for pipes, and the use of such a mat
CN105065859A (en) Metallic reflection type insulating layer for nuclear class device and pipe
JP7489212B2 (en) Metallic insulation equipment
CN109616226B (en) Composite metal heat-insulating layer with shielding materials filled on two sides
JP2002527697A (en) Support mechanism for super insulator
JP5948377B2 (en) Metal-coated insulation equipment
CN202076014U (en) Stainless-steel heat insulating layer for reactor pressure vessel and main pipeline of nuclear power station
CN109296869B (en) Dispersion filling composite heat insulation layer for nuclear-grade equipment and pipeline
JP2011226621A (en) Insulated tube and superconductive cable
CN102243896B (en) Stainless steel heat-insulation layer of reactor pressure vessel of nuclear power station and main pipe
CN109595428B (en) Single-side filling shielding material heat-insulating layer for nuclear-grade equipment and pipeline
CN112466498A (en) Device with heat preservation and neutron, gamma ionizing radiation protection
JP2014055622A (en) Metallic coating heat insulation device
RU195032U1 (en) BLOCK REMOVABLE THERMAL INSULATION OF REFLECTIVE TYPE
CN109616227B (en) Dispersion filling composite function metal heat preservation
CN111895224B (en) Modularization heat preservation shell structure
KR101613504B1 (en) Reflective Metal Insulation for pipes
CN109882684A (en) A kind of spherical shape reflection-type insulation construction
JPH09250684A (en) Metal reflection type heat insulating device
CN109585051B (en) Nuclear-grade equipment and pipeline are with middle shielding material heat preservation of filling in
RU2639439C1 (en) Tube-and-shell heat exchanger with curved tubes
CN109616228B (en) Composite functional metal heat-insulating layer filled with shielding material in middle
CN214889761U (en) Bimetal composite pipe
CN210890614U (en) Insulation structure for steam pipeline
CN210982828U (en) High-temperature-resistant optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240513

R150 Certificate of patent or registration of utility model

Ref document number: 7489212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150