JP7486704B2 - Permanent magnet brushless motor - Google Patents

Permanent magnet brushless motor Download PDF

Info

Publication number
JP7486704B2
JP7486704B2 JP2019226810A JP2019226810A JP7486704B2 JP 7486704 B2 JP7486704 B2 JP 7486704B2 JP 2019226810 A JP2019226810 A JP 2019226810A JP 2019226810 A JP2019226810 A JP 2019226810A JP 7486704 B2 JP7486704 B2 JP 7486704B2
Authority
JP
Japan
Prior art keywords
winding
poles
pole
phase
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226810A
Other languages
Japanese (ja)
Other versions
JP2021087348A (en
Inventor
正文 坂本
尚志 見城
Original Assignee
株式会社ケンジョー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケンジョー研究所 filed Critical 株式会社ケンジョー研究所
Priority to JP2019226810A priority Critical patent/JP7486704B2/en
Publication of JP2021087348A publication Critical patent/JP2021087348A/en
Application granted granted Critical
Publication of JP7486704B2 publication Critical patent/JP7486704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は永久磁石界磁形ブラシレス回転電機に関する。The present invention relates to a permanent magnet field type brushless rotating electric machine.

永久磁石界磁形ブラシレス回転電機はDCモータのような摩擦を伴うブラシが無いため、近年、広く使用さている。この種の回転電機は、一般に、コア(鉄心)レス形のものが多いが、コアレス形のものはコギングトルクが無い反面、高トルク、大出力のものを得にくい問題がある。一方、コア付形のものは、高トルク、大出力のものを得やすいが、スロットあるいは歯を持つためにコギングトルクが大きくなる欠点がある。Permanent magnet field brushless rotating electric machines have been widely used in recent years because they do not have brushes that cause friction like DC motors. Most of these types of rotating electric machines are generally coreless, but while coreless types do not have cogging torque, they have the problem that it is difficult to obtain high torque and large output. On the other hand, core-equipped types can easily obtain high torque and large output, but have the disadvantage that the cogging torque is large because they have slots or teeth.

1)非特許文献、新・ブラシレスモータ、117ページ、見城 尚志、永守 重信、総合電子出版社。
2)非特許文献、スロットコンビネーションによるPMSMのコギングトルクの低減、百目鬼 英雄、荘司祐大、電気学会回転機研究会、RM-04-15、1916年。
3)非特許文献、PM型ステッピングモータの特性改善、坂本正文、日本能率協会、モータ技術シンポジウム、1983年。
一方、関係する従来技術として上記の文献1)及び2)がある。また関連技術資料として、文献3)がある。上記の文献をそれぞれ、引例1)、引例2)、引例3)と以後略記すことにする。
1) Non-patent literature, New Brushless Motor, page 117, Hisashi Kenjo, Shigenobu Nagamori, Sogo Electronics Publishers.
2) Non-patent literature, Reduction of cogging torque of PMSM by slot combination, Hideo Doumeki, Yudai Shoji, Institute of Electrical Engineers Rotating Machine Research Society, RM-04-15, 1916.
3) Non-patent document, Improvement of Characteristics of PM Type Stepping Motors, Masafumi Sakamoto, Japan Management Association, Motor Technology Symposium, 1983.
On the other hand, the related prior art includes the above-mentioned documents 1) and 2). Also, the related technical information includes document 3). The above documents will be abbreviated as reference 1), reference 2), and reference 3) below, respectively.

本発明は永久磁石界磁形ブラシレス回転電機で、固定子に鉄心を有し、集中巻きされた複数の巻き線極を有した構成の回転電機に関して、コギングトルクを小さく保ち、高効率で低振動なブラシレス回転電機の実現を課題とする。コギングトルクを小さくする手段としては、固定子の全巻き線極数Qと回転子の極数pの最小公倍数LCMを大きくするように、Qとpの関係を維持することが知られている。
また高出力、高速回転、低振動を実現するために誘起電圧を生み出す鎖交磁束の基本波成分を大きく保ち、第3,第5,第7次高調波成分は極力小さくするような巻き線方式を創出することを課題とする。
The present invention is directed to a permanent magnet field type brushless rotating electric machine having a stator core and multiple concentrated winding poles, and aims to realize a highly efficient, low vibration brushless rotating electric machine that keeps cogging torque small. A known method for reducing cogging torque is to maintain the relationship between the total number of winding poles Q of the stator and the least common multiple LCM of the rotor poles p and Q.
Another objective of the present invention is to create a winding method that keeps the fundamental wave component of the interlinkage magnetic flux that generates the induced voltage large while minimizing the third, fifth, and seventh harmonic components in order to achieve high output, high speed rotation, and low vibration.

本発明を実現するには以下の手段による。
「手段1」
等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数pの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数pの埋め込み磁石式回転子を有した回転電機において、nは2以上の整数であり、1相分の巻き線極数qはq=2n+1と定めて、5以上の奇数であり、3相全巻き線極数Qを、Q=3qとして、回転子の極数pを、p=Q±1、とした回転電機であり、各相の巻き線極のq個は互いに1巻き線極間隔を置いて非隣接的に配置されたことを手段とする回転電機。
「手段2」
等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数pの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数pの埋め込み磁石式回転子を有して、nは2以上の整数であり、1相分の巻き線極数qはq=2n+1と定めて、5以上の奇数であり、3相全巻き線極数Qを、Q=3qとして、回転子の極数pを、p=Q±1、とした回転電機であり、3相巻き線の各相の巻き線極のq個を順に、T ,T ,T ,、、、T q-1 ,T とした場合、T とT 間及びT q-1 とT 間は1巻き線極間隔を有した配置、T ~T q-1 の巻き線極は隣接配置としたことを手段とする回転電機。但し、nは2または3(qは5または7)とする。
「手段3」
等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数pの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数pの埋め込み磁石式回転子を有した固定子と回転子の対向組み合わせを1セットとして繰り返してmセットよりなる回転電機であり、
nは2以上の整数であり、1セット分の1相分の巻き線極数qはq=2n-1と定めて、1セット分の3相分巻き線極数Qを、Q=3qとして、1セット分の回転子の極数pを、p=Q±1、とし、mセット分の総巻き線数Kは、K=3mq、mセット分の極数Mは、M=m・(Q±1)として、1セット中の各相の巻き線極のq個は互いに1巻き線極間隔を置いて非隣接的に配置されたことを手段とする回転電機。但し、mは2、4または6、Mは20以上とする。
「手段4」
手段1の回転電機で、回転子は極異方性磁石を採用したことを手段とする回転電機。
「手段5」
手段1の回転電機で各相巻き線はデルタ結線として駆動することを手段とする回転電機。
The present invention is realized by the following means.
"Method 1"
A rotating electric machine having a three-phase stator with concentrated windings consisting of Q iron cores arranged in the radial or axial direction at equal pitch, and a surface magnet rotor with a pole number p in which an equal number of N and S permanent magnets are arranged alternately through an air gap, or a buried magnet rotor with a pole number p in which an equal number of N and S permanent magnets are arranged alternately and embedded in a magnetic rotor yoke, wherein n is an integer of 2 or more , the number of winding poles q for one phase is defined as q = 2n + 1, the total number of winding poles Q for the three phases is set to Q = 3q, and the number of rotor poles p is p = Q ± 1, and the q winding poles of each phase are arranged non-adjacently with a gap of one winding pole between each other.
"Method 2"
A rotating electric machine having a three-phase stator with concentrated windings made of Q iron cores arranged at equal pitch in the radial or axial direction, and a surface magnet rotor with a pole number p in which an equal number of N-pole and S-pole permanent magnets are arranged alternately through an air gap, or a buried magnet rotor with a pole number p in which an equal number of N-pole and S-pole permanent magnets are arranged alternately and embedded in a magnetic rotor yoke, where n is an integer of 2 or more, the number of winding poles q for one phase is defined as q = 2n + 1 and is an odd number of 5 or more, the total number of three-phase winding poles Q is set to Q = 3q, and the number of rotor poles p is p = Q ± 1, and where the q winding poles of each phase of the three-phase winding are designated T 1 , T 2 , T 3 , . . . T q-1 , T q in order, there is a one winding pole interval between T 1 and T 2, and between T q - 1 and T q , and A rotating electric machine in which the winding poles of q-1 are arranged adjacent to each other, where n is 2 or 3 (q is 5 or 7).
"Method 3"
a three-phase stator with concentrated windings made of Q iron cores arranged at equal pitch in the radial or axial direction; and a surface magnet rotor with p poles in which the same number of N-pole and S-pole permanent magnets are arranged alternately via an air gap, or a recessed magnet rotor with p poles in which the same number of N-pole and S-pole permanent magnets are embedded in a magnetic rotor yoke, each of which is configured as a set of opposing stator and rotor combinations, and these combinations are repeated for m sets,
A rotating electric machine in which n is an integer of 2 or more, the number of winding poles q for one phase in one set is defined as q = 2n-1, the number of winding poles Q for three phases in one set is defined as Q = 3q, the number of poles p of the rotor in one set is defined as p = Q ± 1, the total number of windings K for m sets is defined as K = 3mq, the number of poles M for m sets is defined as M = m (Q ± 1), and the q winding poles of each phase in one set are arranged non-adjacently with an interval of one winding pole between each other, where m is 2, 4, or 6, and M is 20 or more.
"Method 4"
A rotating electric machine according to the first aspect, wherein the rotor is made of a polar anisotropic magnet.
"Measure 5"
A rotating electric machine according to the first aspect, wherein each phase winding is driven as a delta connection.

1)回転子の極数pと固定子の巻き線極数Qは公約数をもたないので、その最小公倍数(以下LCMと略す)はpとQの積となり大きな値となり、低コギングトルクが得られる。
2)手段1ではpとQは1しか違わない数値のため、後述する簡易巻き線率の基本波率が大きくなり、高トルク化に有利。
3)手段1で、n=2でq=5、Q=15、となり、p=14または16の場合、後述する鎖交磁束の基本波率 =0.833、第3高調波率P=0 である。またn>2のQとpにおいても、同様な数値が得られる。この第3高調波が零ということは、デルタ結線駆動に適しており、高速運転に適したものとなる。これに対して、隣接巻き線方式の従来技術では、Pは零とはならずデルタ結線駆動で銅損が増大するため、本発明の大きな進歩性がここにある。
4)手段2で、n=2,q=5,Q=15,p=14または16の場合、基本波率Pは=0.914、第3高調波率P=0.400である。従来技術と比較して、基本波率はやや低いが、第3高調波率は大幅に小さく、高速回転特性では、本発明は大きな進歩性がある。
5)手段3のm=2、4または6では、LCMが大きくできて、不平衡電磁力が消滅するので、高速回転で低振動な回転電機が実現する。
6)本発明の手段1に極異方性磁石回転子を採用すれば、バックヨーク不要の軽量安価で高速性に優れた高効率回転電機が実現する。
7)本発明の手段1~3に疑似磁極磁石に構成した回転子を採用すれば、磁石個数を半減した軽量安価に加えて、更なる低コギングトルク化と弱め界磁効果の大きな、高速性に優れた高効率回転電機がえられる。
8)本発明の手段6で、q個の巻き線極の内の何個かを他の巻き数と相違させれば、誘起電圧を更に正弦波にできる。特に=5以上では、(q-2)個が隣接するので、q個の巻き線極の中央極あるいは両端の2個等を適宜他の巻き数と相違させて、逆起電力波形を調整して、更に正弦波に近づけることができる。
1) Since the number of rotor poles p and the number of stator winding poles Q have no common divisors, their least common multiple (hereinafter abbreviated as LCM) is the product of p and Q, which is a large value, and low cogging torque is obtained.
2) In Method 1, the difference between p and Q is only 1, so the fundamental wave rate of the simplified winding rate, which will be described later, becomes larger, which is advantageous for achieving higher torque.
3) In Means 1, when n=2, q=5 and Q=15, and when p=14 or 16 , the fundamental rate P1 of the interlinkage magnetic flux, which will be described later, is 0.833 and the third harmonic rate P3 is 0. Similar values are also obtained for Q and p when n>2 . The fact that the third harmonic is zero means that the motor is suitable for delta connection drive and high speed operation. In contrast, in the conventional technology using the adjacent winding method , P3 is not zero and copper loss increases when driving with delta connection, so this is where the great inventive step of the present invention lies.
4) In the case of Means 2, when n=2, q=5, Q=15, and p=14 or 16, the fundamental wave rate P1 is 0.914 and the third harmonic rate P3 is 0.400. Compared with the prior art, the fundamental wave rate is slightly lower, but the third harmonic rate is significantly smaller, and the present invention has a great advancement in the high-speed rotation characteristics.
5) In the case of m=2, 4, or 6 in the third means, the LCM can be made large and the unbalanced electromagnetic force disappears, so that a rotating electric machine with high speed rotation and low vibration can be realized.
6) If a polar anisotropic magnet rotor is used in the first aspect of the present invention, a highly efficient rotating electric machine that does not require a back yoke, is lightweight, inexpensive, and has excellent high-speed capabilities, can be realized.
7) If a rotor configured with pseudo-pole magnets is used in means 1 to 3 of the present invention, not only is the number of magnets reduced by half, making it lighter and less expensive, but it also provides a highly efficient rotating electric machine with excellent high-speed performance, with even lower cogging torque and a large field-weakening effect.
8) In the sixth aspect of the present invention, by making some of the q winding poles different from the other winding numbers, the induced voltage can be made even more sinusoidal. In particular, when q =5 or more, (q-2) poles are adjacent, so by appropriately making the central pole or two poles at both ends of the q winding poles different from the other winding numbers, the back electromotive force waveform can be adjusted to be even more sinusoidal.

本発明の説明のための固定子、回転子の概要構成を示す軸方向と垂直な断面図FIG. 2 is a cross-sectional view perpendicular to the axial direction showing the general configuration of a stator and a rotor for explaining the present invention. 本発明の1相分の巻き線極位置の直線状展開とその励磁極性図Linear expansion of the winding pole position for one phase outside the present invention and its excitation polarity diagram 本発明のQ=9の120度通電の巻き線極励磁シーケンスの図FIG. 1 is a diagram of a winding pole excitation sequence for 120-degree conduction of Q=9 outside the present invention. 本発明のQ=9,p=10の歩進原理図Stepping principle diagram for Q=9, p= 10 outside the present invention 本発明のQ=9のスター結線3相励磁の直線展開した固定子巻き線極の極性図Polarity diagram of the stator winding poles linearly expanded for star-connected three-phase excitation with Q=9, not according to the present invention 本発明のQ=15,p=14の直線展開した1相励磁の固定子と回転子の図A diagram of the stator and rotor of the present invention, linearly expanded with one-phase excitation , Q=15, p=14. 本発明のQ=15のスター結線3相励磁の直線展開した固定子巻き線極の極性図Polarity diagram of the stator winding poles linearly expanded for the Q=15 star-connected three-phase excitation of the present invention 別の本発明のQ=15のスター結線3相励磁の直線展開した固定子巻き線極の極性図Polarity diagram of the stator winding poles linearly expanded for a star-connected three-phase excitation with Q=15 according to another embodiment of the present invention. 別の本発明のQ=21のスター結線3相励磁の直線展開した固定子巻き線極の極性図Polarity diagram of the stator winding poles linearly expanded for a star-connected three-phase excitation with Q=21 according to another embodiment of the present invention. 従来技術のQ=9,p=10の2倍体のスター結線3相励磁の直線展開した固定子巻き線極の極性図Polarity diagram of the stator winding poles linearly expanded for a two-fold star-connected three-phase excitation with Q=9, p= 10 of the prior art 従来技術の引例1)のQ=9,p=8の1相励磁の直線展開した固定子巻き線極の図A linear expansion of the stator winding poles for one-phase excitation with Q=9 and p=8 in the prior art reference 1) 従来技術の引例2)のQ=9,p=8の3相励磁の直線展開した固定子巻き線極の図A linear expansion of the stator winding poles for three-phase excitation with Q=9 and p=8 in the prior art reference 2) 従来技術のQ=15,p=14の3相励磁の直線展開した固定子巻き線極の図A linear expansion of the stator winding poles for three-phase excitation with Q=15 and p=14 in the prior art 〔表1〕3相120度通電の励磁シーケンス表[Table 1] Excitation sequence table for 3-phase 120-degree current conduction 〔表2〕簡易巻線率比較表[Table 2] Simple winding ratio comparison table 〔表3〕簡易巻線率比較表[Table 3] Simple winding ratio comparison table

以下図面を参照して、本実施形態にかかる回転電機について説明する。Hereinafter, a rotating electric machine according to this embodiment will be described with reference to the drawings.

図1は本発明の手段1で、n=2,q=5,Q=15,p=14の場合の図であり、固定子、回転子の概要構成をアウターロータ型で示す図であり、軸方向と垂直な断面図である。
1は固定子鉄心で15個の半径方向に突き出た極歯が等ピッチで設けられ、各々の極歯の総てへの符号は省略するが、集中巻きした巻き線4が巻かれ、巻き線極として11~25が時計方向に分布配置されている。図1では1相分の極歯の11,13、15、22,24に符号を付して、他の符号は省略してある。同様に、巻き線極11の巻き線のみに、巻き線4として符号をつけたが、他の巻き線極の巻き線の符号は省略してある。そして回転子は永久磁石で構成された回転子磁極のN極とS極が交互に合計14極、即ち、p=14であり、そのうちの2個の回転子磁極でN極が31とS極が32にしか符号を付けてないが、以下、N極とS極が交互に時計方向に符号を省略した磁極が順次設けられて、回転子2を形成し、15個の巻き線極とエアギャップを介して対向している。
2-1は各14個の回転子磁極のバックヨークを兼ねた回転子2の構造体であり、回転子軸の図示は省略している。
本発明の巻き線方式は、U,V,W相の3相で構成されるが、1相分U相の巻き線は、同極性巻き線極性に巻かれた11,13、15、22,24が1巻き線極間隔をあけて、即ち12、14、及び23,25を飛ばして結線配置構成されている。この固定子の構成を、エアギャップの周方向に直線展開すれば後述する図6、図7となる。図6で上段は図1に対応した巻き線極の番号であり、下段は励磁相とその励磁極性を示す。
図1で巻き線極11と回転子磁極31のN極が、互いの中心位置で対向している場合、巻き線極13対向する回転子磁極31のN極は角度δずれていることを図示している。従って図での符号は省略してあるが巻き線極24と対向する回転子磁極31のN極もδずれている。また巻き線極15と対向する回転子磁極31、及び、巻き線極22と対向する回転子磁極31は各々2δずれている。
尚δはこの場合、機械角では3.428°であるが、14極回転子なので、電気角では24°となる。
従って、U相の個の巻き線極は、対向する回転子磁極とのずれ角は、図1と対応して、巻き線極11が0°、巻き線極24,13がδで24°、巻き線極15と22が48°となる。
手段1は、p=Q±1、Q=3q、q=2n+1、であり、nは2以上の整数とした回転電機であり、巻き線方式は、1相分の巻き線極数qは5以上の奇数であり、互いに1巻き線極間隔を置いて非隣接的に配置されるので、以下、図2、図3、図4、図5は本願発明外の図となる。
この場合の1相分の誘起電圧は巻き線22,24、11,13、15の各々の鎖交磁束の時間微分値の和となるため、鎖交磁束のパーミアンスの基本波率P、第3高調波率P及び第5,第7も含めて、簡易巻き線率と名付けて、以下の(1)、(2)の如く定義して、δに数値を代入して数値計算して求めることにする。この目的は本発明を従来技術と比較する評価要素とするためである。巻き線率としては集中巻き方式であっても、短節巻き係数と分布巻き係数を算出して、それらの積を巻き線係数とする評価方法が一般的であるが、ここで採用する鎖交磁束のパーミアンスの基本波率Pは分布巻き係数に近い値をとり、高調波率まで含めての評価には、この簡易巻き線率で評価する方が便利なためである。
δ=24°(電気角)であり、前述したように、図1を参照して、巻き線極11は対向回転子磁極とのずれ角δ=0、巻き線極15,22のずれ角は2δとなるので、以下となる。
={cos0+2・cosδ+2・cos2δ}/q={1+2・cos24+2・cos48}/5=0.833 (1)
={cos0+2・cos3δ+2・cos6δ}/q={1+2・cos72+2・cos144}/5=0 (2)
従来品の引例1),2)の数値計算による比較は後述する。
即ち、Pが大きいほど、誘起電圧も高くなり、従ってトルク、効率も向上する。
また、Pが大きいと、1相分の誘起電圧は正弦波よりふっくら太った台形波に近い形になるが、誘起電圧の第3次高調波成分はスター結線では線間で打ち消されて影響がないが、デルタ結線では環状結線内部に循環電流を発生させて、銅損の増大を生むことになる。
本発明の巻き線方式では、Pが零のため、デルタ結線も問題なく使用できることになる。
FIG. 1 is a diagram showing the schematic configuration of a stator and rotor of an outer rotor type in accordance with the first embodiment of the present invention, where n=2, q=5, Q=15, and p=14, and is a cross-sectional view perpendicular to the axial direction.
Reference numeral 1 denotes a stator core, on which 15 radially protruding pole teeth are provided at equal pitches, and although reference numerals for all of the pole teeth are omitted, a concentrated winding 4 is wound, with winding poles 11 to 25 distributed in a clockwise direction. In FIG. 1, reference numerals are given to the pole teeth 11, 13, 15, 22, and 24 for one phase , and the other reference numerals are omitted. Similarly, only the winding of the winding pole 11 is referenced as the winding 4 , and the reference numerals for the windings of the other winding poles are omitted. The rotor has a total of 14 poles, that is, p = 14 , with alternating N and S poles of the rotor magnetic poles made of permanent magnets, and reference numerals are given to only two of them, the N pole 31 and the S pole 32 , but the following magnetic poles with reference numerals omitted are provided in a clockwise direction, alternating N and S poles , to form the rotor 2, which faces the 15 winding poles via an air gap.
Reference numeral 2-1 denotes a structure of the rotor 2 which also serves as a back yoke for each of the 14 rotor magnetic poles , and the rotor shaft is not shown.
The winding method of the present invention is composed of three phases, U, V, and W, but the winding of one phase, U, is configured with 11, 13, 15, 22, and 24 wound with the same winding polarity at intervals of one winding pole, that is, skipping 12, 14, and 23 and 25. If this stator configuration is linearly expanded in the circumferential direction of the air gap, it will become Figures 6 and 7, which will be described later . In Figure 6 , the upper row shows the winding pole numbers corresponding to Figure 1, and the lower row shows the excitation phase and its excitation polarity.
1 shows that when the N poles of the winding pole 11 and the rotor pole 31 face each other at their centers, the N pole of the rotor pole 31 facing the winding pole 13 is offset by an angle δ. Therefore, although the reference numerals are omitted in the figure, the N pole of the rotor pole 31 facing the winding pole 24 is also offset by δ. Furthermore, the rotor pole 31 facing the winding pole 15 and the rotor pole 31 facing the winding pole 22 are each offset by 2δ.
In this case, δ is 3.428° in mechanical angle, but since the rotor has 14 poles, it is 24° in electrical angle.
Therefore, the offset angles between the five U-phase winding poles and the opposing rotor poles correspond to FIG. 1 and are as follows: winding pole 11 is 0°, winding poles 24 and 13 are δ or 24° , and winding poles 15 and 22 are 48° .
Means 1 is a rotating electric machine in which p = Q ± 1, Q = 3q, q = 2n + 1, n being an integer of 2 or more , and the winding method is such that the number of winding poles per phase, q, is an odd number of 5 or more , and the winding poles are arranged non-adjacently with a gap of one winding pole between each other , and therefore Figures 2, 3, 4, and 5 below are outside the scope of the present invention.
In this case, the induced voltage for one phase is the sum of the time differentials of the interlinkage magnetic flux of each of the windings 22, 24, 11, 13, and 15, so the fundamental rate P1 of the permeance of the interlinkage magnetic flux, the third harmonic rate P3 , and the fifth and seventh harmonic rates are called the simplified winding rate, defined as follows (1) and (2), and obtained by substituting a numerical value for δ and performing a numerical calculation. The purpose of this is to use this as an evaluation factor for comparing the present invention with the prior art. Even if the winding rate is a concentrated winding method, it is common to calculate the short-pitch winding factor and the distributed winding factor, and use their product as the winding factor. However, the fundamental rate P1 of the permeance of the interlinkage magnetic flux adopted here is close to the distributed winding factor, and it is more convenient to use this simplified winding rate for evaluation including the harmonic rate.
δ= 24° (electrical angle), and as described above with reference to FIG. 1, the offset angle of the winding pole 11 from the opposing rotor pole is δ=0, and the offset angle of the winding poles 15 and 22 is 2δ, so that:
P1 = {cos0 + 2 · cosδ + 2 · cos2δ} / q = {1 + 2 · cos24 + 2 · cos48} / 5 = 0.833 (1)
P3 = {cos0 + 2 · cos3δ + 2 · cos6δ} / q = {1 + 2 · cos72 + 2 · cos144} / 5 = 0 (2)
A comparison of the conventional products 1) and 2) using numerical calculations will be given later.
That is, the larger P1 is, the higher the induced voltage is, and therefore the torque and efficiency are improved.
In addition, when P3 is large, the induced voltage for one phase becomes closer to a trapezoidal wave, which is plump, rather than a sine wave. The third harmonic component of the induced voltage is cancelled between the lines in a star connection and has no effect, but in a delta connection, a circulating current is generated inside the ring connection, resulting in increased copper loss.
In the winding method of the present invention, since P3 is zero, a delta connection can also be used without any problems.

図3は本発明のQ=9の120度通電の3相巻き線の極励磁シーケンスの図である。図中のU,V,Wに対して、は極性が反転するように結線することを意味している。以下の図でも同様である。図3の最上段行は9個の巻き線極を1~9として順に表現したものである。次の行から下段に向かい励磁を1~6の番号で示すようにして、ブラシレスモータの代表的な励磁方式の120度通電で切り替えた場合の本発明の回転子磁極が8または10極で、9巻き線極の場合の巻き線極励磁シーケンスの図であり、1行励磁切り替えごとに、電気角60度ずつの6ステップ歩進で360度電気角歩進することになる。この図3と次に説明する図4の歩進動作図が対応することになる。
3相120度通電のバイポーラ方式インバータの3相ブラシレスモータのスター結線3端子U,V,Wへの印可電圧極性は表1に示すものとなる。
図4は本発明のブラシレスモータとして、確実に動作するための確認図である。固定子と対向する回転子の関係位置を、エアギャップの周方向に直線展開した、3相永久磁石式ステッピングモータの歩進動作の如く、所謂6ステップ歩進することの確認図である。この場合、1相ずつの励磁で、電気角で60度ずつ歩進するので、電気角360度を6ステップで歩進動作することになる。1相励磁で、歩進が確認できれば、ブラシレスモータとして120度通電の2相励磁駆動でも、確実動作するものである。
p=Q±1で、Q=9,p=8の場合で歩進図を示すが、p=10の場合も同様に動作する。各3相の巻き線極は巻き終わり同士をコモン端子として短絡するスター結線を想定しているが、各相の巻き終わりと次相の巻き始めを順次結線して環状結線するデルタ結線でも同様に動作する。
図4よりわかる如く、励磁1)ではU相はすべてN極性として、回転子のS極と対向している。次に励磁2)ではV相が総てS極性となり、回転子のN極と対向している。励磁3)ではW相がすべてN極性として、回転子のS極と対向している。1相分の巻き線極の極性が総て同じで次相励磁が逆となるので、回転子磁束はU相とV相間、あるいはV相とW相、あるいはW相とU相間で閉磁路を形成する磁路となる。以下励磁4)は1)の、5)は2)の、6)は3)の逆極性に固定子巻き線極が励磁されて、図4の如く、回転子を電気角で60度ずつ歩進させる。
FIG. 3 is a diagram of the pole excitation sequence of a three-phase winding with 120-degree conduction of Q=9 according to the present invention. In the diagram, U, V, and W mean that U , V , and W are connected so that the polarity is reversed. The same applies to the following diagrams. The top row of FIG. 3 represents the nine winding poles in order, numbered 1 to 9. From the next row to the bottom, the excitation is numbered 1 to 6, showing the winding pole excitation sequence of the present invention when the rotor poles of the present invention are 8 or 10 poles and there are 9 winding poles when switching with 120-degree conduction, which is a typical excitation method for brushless motors. Each row excitation switching is performed in six steps of 60 degrees electrical angle, for a total of 360 electrical degrees. FIG. 3 corresponds to the stepping operation diagram of FIG. 4, which will be described next.
The polarities of the voltages applied to the three star-connected terminals U, V, and W of a three-phase brushless motor of a bipolar inverter with three-phase 120-degree conduction are as shown in Table 1.
Fig. 4 is a confirmation diagram for reliable operation of the brushless motor of the present invention. The relative positions of the stator and the opposing rotor are linearly expanded in the circumferential direction of the air gap, and this is a confirmation diagram for so-called six-step stepping, like the stepping operation of a three-phase permanent magnet stepping motor. In this case, the motor steps 60 degrees in electrical angle with excitation of one phase at a time, so that the motor steps 360 degrees in electrical angle in six steps. If stepping can be confirmed with one-phase excitation, the motor will also operate reliably with two-phase excitation drive with 120 degrees of current flow as a brushless motor.
The stepping diagram is shown for p = Q ± 1, Q = 9, p = 8, but it also works in the same way when p = 10. It is assumed that the winding poles of each of the three phases are star-connected, with the ends of the windings shorted together as a common terminal, but it also works in the same way with a delta connection, where the end of each phase is connected in sequence to the start of the next phase to form a ring connection.
As can be seen from Figure 4, in excitation 1), the U phase is all N polarity and faces the S pole of the rotor. Next, in excitation 2), the V phase is all S polarity and faces the N pole of the rotor. In excitation 3), the W phase is all N polarity and faces the S pole of the rotor. Since the polarity of the winding poles for one phase is all the same and the next phase excitation is reversed, the rotor magnetic flux becomes a magnetic path that forms a closed magnetic path between the U phase and V phase, or the V phase and W phase, or the W phase and U phase. In excitation 4), the stator winding poles are excited to the opposite polarity of 1), 5) to 2), and 6) to 3), and the rotor advances by 60 electrical degrees at a time as shown in Figure 4.

図5は、図3で示した励磁1と2の2行の励磁極性を1度に示した図である。これは図4の如く、1相ずつの順次励磁1)、2)、3)の3ステップ分のU,V,W相の3相分を一つの表にまとめたものに相当するもので、便宜上3相励磁表現と名づけ、本発明の巻き線方式構成を一つの表で表現できるものである。この図5から表1を適応すれば図3が得られるので、本発明の巻き線方式の表現図はQ及びpを変えた場合にも、必要により図5のような3相励磁で示すことにする。Fig. 5 shows the excitation polarity of two rows, excitation 1 and 2, shown in Fig. 3, at once. This corresponds to a table that summarizes the three steps of sequential excitation 1), 2), and 3) for the three phases, U, V, and W, as shown in Fig. 4, and is called a three-phase excitation representation for convenience, and allows the winding method configuration of the present invention to be expressed in a single table. Since Fig. 3 can be obtained by applying Table 1 from Fig. 5, the representation of the winding method of the present invention will be shown as a three-phase excitation as shown in Fig. 5 as necessary, even when Q and p are changed.

図6は本発明の手段1で、n=2として、q=5、従って、Q=15,p=14の1相励磁時の固定子と回転子の対向図である。表のA行目は固定子の巻き線極番号を表し、1~15と等ピッチで360度にわたり配置されている。B行目は励磁される相とその極性を表している。図6以降の図のA行目,B行目も同様に、A行は巻き線極番号、B行は励磁相とその極性を表す。図6のC行は回転子磁石を表す。励磁B で巻き線極5と回転子のS極が対向した関係図である。C行の回転子磁石は励磁B で左方向に電気角で60度移動し巻き線極10と回転子のN極が対向、更に励磁B で左方向に電気角で60度移動し巻き線極15と回転子のS極が対向し、以下同様にして励磁B ~B で電気角60度づつ左方向に回転する。
5個のU相の巻き線極は1巻き線極間隔を置いて配置されている。p=Q±1なので、Q=15,p=16でも、本巻き線方式は成立するものである。
FIG. 6 is a diagram showing the opposing relationship between the stator and rotor in the case of one-phase excitation with n=2, q=5, and therefore Q=15 and p=14, in the first embodiment of the present invention. Row A of the table shows the winding pole numbers of the stator, which are arranged over 360 degrees at equal pitches from 1 to 15. Row B shows the excited phase and its polarity. Similarly, rows A and B of the figures after FIG. 6 show the winding pole numbers, and row B shows the excitation phase and its polarity. Row C of FIG. 6 shows the rotor magnet. This is a relationship diagram in which the winding pole 5 and the rotor S pole are opposed in excitation B 1. The rotor magnet in row C moves 60 degrees in electrical angle to the left in excitation B 2 , so that the winding pole 10 and the rotor N pole are opposed, and further moves 60 degrees in electrical angle to the left in excitation B 3 , so that the winding pole 15 and the rotor S pole are opposed, and similarly rotates leftward by 60 degrees electrical angle each in excitations B 3 to B 6 .
The five U-phase winding poles are spaced apart by one winding pole. Since p = Q ± 1, this winding method is also valid when Q = 15 and p = 16.

図7は手段1で、n=2として、q=5、従ってQ=15とした場合の本発明による、各相の励磁順をU,V,Wの順で、1相ずつ励磁して3相分表す図である。即ち図6の1相分表示を、3相分の固定子励磁極性で表したもので、前述したQ=9の場合の図5に相当する。
尚、この場合の歩進図は省略するが、図4と同様な歩進図を作成すれば60度ずつの歩進が確認できる。
Fig. 7 shows three phases in the excitation order of U, V, W, with n=2, q=5, and therefore Q=15, according to the present invention in Means 1. In other words, the one-phase display in Fig. 6 is shown in terms of the stator excitation polarity for three phases, and corresponds to Fig. 5 in the case of Q=9 described above.
Although the stepping diagram in this case is omitted, if a stepping diagram similar to that in FIG. 4 is created, the stepping of 60 degrees can be confirmed.

図8は手段2を適用した本発明のQ=15、p=14または16の場合の、3相励磁状態での固定子巻き線極の極性図で、n=2でq=5の場合である。q個の巻き線極は、手段2を適用すれば、3相巻き線の各相の巻き線極のq個は隣接的に配置された位置から、その両端の巻き線極が1巻き線極分離れた非隣接状に配置されるため、1相分の巻き線極の配置は、5-2=3の3個隣接してその両端は1巻き線極分、分離した非隣接状に配置される。即ち、分離して1極分飛ばした箇所を0で表現し、U相の励磁で示せば、U00U、とq=5なので、このような表現にもできる。これを3相励磁状態で表現すれば、図8となる。
この場合、Q=15,p=14で、図8の巻き線極4と対向する回転子磁極とがずれ角が零であるとき、巻き線極3および5と対向する回転子磁極のずれ角をδとすれば、巻き線極1および7と対向する回転子磁極のずれ角は3δであり、δ=12°(電気角)で、図8のU相の5個、即ち、図8の巻き線極1,3,4,5,7の巻き線極の合計のP,Pは以下となる。

Figure 0007486704000001
図9も手段2を適用した本発明のQ=21,p=20または22の場合の、3相励磁状態での固定子巻き線極の極性図である。n=3でq=7の場合である。q個の巻き線極は、手段2を適用すれば、3相巻き線の各相の巻き線極のq個は隣接的に配置された位置から、その両端の巻き線極が1巻き線極分離れた非隣接状に配置されるため、1相分の巻き線極の配置は、5個隣接してその両端は1巻き線極分、分離した非隣接状に配置される。即ち、分離して1極分飛ばした箇所を0で表現し、U相の励磁で示せば、0UU0、とq=7なので、0を除いて7個の文字で表現できる。これを3相励磁状態で表現すれば、図9となる。
この場合、Q=21、p=20で、図9の巻き線極5と対向する回転子磁極とが対向して、ずれ角が零であるとき、巻き線極4および6と、対向する回転子磁極のずれ角をδとすれば、巻き線極3および7と、対向する回転子磁極のずれ角は2δ、巻き線極1および9と、対向する回転子磁極のずれ角は4δとなる。
δ=8.5714°(電気角)で、図9のU相の7個、即ち、図9の巻き線極1,3,4,5,6,7,9の巻き線極の合計のP,Pは以下となる。
Figure 0007486704000002
Fig. 8 is a polarity diagram of the stator winding poles in a three-phase excitation state when Q = 15, p = 14 or 16 according to the present invention to which Means 2 is applied, and shows the case of n = 2 and q = 5. When Means 2 is applied, the q winding poles of each phase of the three-phase winding are arranged in a non-adjacent state with the winding poles at both ends separated by one winding pole from the adjacently arranged positions, so that the arrangement of the winding poles for one phase is 5 - 2 = 3, that is, three adjacent poles, with both ends separated by one winding pole, and arranged in a non-adjacent state. In other words, if the separated one pole-width location is represented by 0, and the excitation of the U phase is represented as U0 U U U 0U, and q = 5, it can also be expressed in this way. If this is expressed in a three-phase excitation state, it becomes Fig. 8.
In this case, when Q = 15, p = 14, and the offset angle between the rotor pole facing winding pole 4 in Figure 8 and the opposing rotor pole is zero, if the offset angle between the rotor poles facing winding poles 3 and 5 is δ, the offset angle between the rotor poles facing winding poles 1 and 7 is 3δ, and δ = 12° (electrical angle), the total P1 and P3 of the five winding poles of the U phase in Figure 8, i.e., winding poles 1 , 3, 4, 5, and 7 in Figure 8, are as follows.
Figure 0007486704000001
Fig. 9 is also a polarity diagram of the stator winding poles in a three-phase excitation state when Q=21, p=20 or 22 according to the present invention to which Means 2 is applied. This is the case of n=3 and q=7. When Means 2 is applied, the q winding poles of each phase of the three-phase winding are arranged in a non-adjacent state with the winding poles at both ends separated by one winding pole from the adjacently arranged positions, so that the winding poles for one phase are arranged in a non-adjacent state with five adjacent poles and both ends separated by one winding pole. In other words, if the separated one pole-width location is represented by 0 and the excitation of the U phase is represented as U 0U U U U U U0 U , and q=7, it can be represented by seven characters excluding 0. If this is represented in a three-phase excitation state, it becomes Fig. 9.
In this case, when Q = 21, p = 20, and winding pole 5 in Figure 9 faces the opposing rotor pole and the offset angle is zero, if the offset angle between winding poles 4 and 6 and the opposing rotor pole is δ, then the offset angle between winding poles 3 and 7 and the opposing rotor pole is 2δ, and the offset angle between winding poles 1 and 9 and the opposing rotor pole is 4δ.
When δ=8.5714° (electrical angle), the sums of P 1 and P 3 of the seven U-phase winding poles in FIG. 9, that is, winding poles 1, 3, 4, 5, 6, 7, and 9 in FIG.
Figure 0007486704000002

本発明の手段1及び手段2を用いて、nを増加すれば、Q=33でp=32,34等、p=Q±1を満たす色々な組み合わせのものに本発明の巻き線方式を適応できる。そして、極数pを増加すれば、そのモータの出し得る限界トルクは極数pに比例するので、電気自動車やドローン等の高トルク用途に適した回転電機が得られる。更に、p,Qが増大すれば、そのLCMも大きくなり、コギングトルクが小さくなる。コギングトルクが大きいと、無負荷電流も大きくなり、効率を阻害する。By increasing n using means 1 and 2 of the present invention, the winding method of the present invention can be applied to various combinations that satisfy p = Q ± 1, such as Q = 33 and p = 32, 34, etc. Furthermore, by increasing the number of poles p, the maximum torque that the motor can produce is proportional to the number of poles p, so a rotating electric machine suitable for high torque applications such as electric vehicles and drones can be obtained. Furthermore, as p and Q increase, the LCM also increases and the cogging torque decreases. If the cogging torque is large, the no-load current also increases, hindering efficiency.

Qが奇数の場合、1相分励磁時に固定子により、回転子にラジアル方向に働く力、を完全に打ち消せない状態、即ち、不平衡電磁力やサイドプルと呼ばれる電磁力が働き、振動騒音に不利になる。
しかし、現実には、Q=9、p=8または10は、Qとpの間で公約数をもたないので、LCMが大きく、コギングトルクが小さいため、多用されている。
更に、本発明の手段3を用いれば、p=m(3q±1)で、mを2以上に選べば、手段1のm倍体回転電機となり、不平衡電磁力を相殺して無くすことができる。また極数の増加で、LCMが大きく、低コギングトルクでpが大きいので、限界トルクの高い、高トルク回転電機が期待できる。
図10は手段3を用いて、m=2,q=3で、Q=3mq=18となり、p=16または20の場合の、巻き線極18個の3相励磁の図である。即ち、図5の、巻き線極Q=9、極数p=8または10極の3相回転電機の2倍体となり、不平衡電磁力も消滅するので、低振動な回転電機が得られる。尚この場合の鎖交磁束のパーミアンスの基本波率P,第3高調波率Pは(1),(2)式の値と同じになる。
If Q is an odd number, the force acting in the radial direction on the rotor by the stator when one phase is excited cannot be completely canceled out; in other words, an electromagnetic force called unbalanced electromagnetic force or side pull will come into play, which is unfavorable in terms of vibration and noise.
However, in reality, Q=9, p=8 or 10 is widely used because there is no common factor between Q and p, so the LCM is large and the cogging torque is small.
Furthermore, by using the third aspect of the present invention, p = m (3q ± 1), and selecting m as 2 or more, it becomes an m-fold rotating electric machine of the first aspect, and the unbalanced electromagnetic force can be offset and eliminated. Also, by increasing the number of poles, the LCM is large, and p is large with low cogging torque, so a high-torque rotating electric machine with high limit torque can be expected.
Fig. 10 shows three-phase excitation of 18 winding poles when m=2, q=3, Q=3mq=18, and p=16 or 20, using Means 3. In other words, this is twice the three-phase rotating electric machine with winding poles Q=9 and pole number p=8 or 10 in Fig. 5, and the unbalanced electromagnetic force disappears, resulting in a rotating electric machine with low vibration. Note that the fundamental wave rate P1 and the third harmonic rate P3 of the permeance of the interlinkage magnetic flux in this case are the same as the values of equations (1) and (2).

図11は従来技術の引例1)として、Q=9、p=8の1相励磁時の固定子と回転子の対向図である。
引用文献1の117ページに、図11の構成が開示されている。
この場合、図11の1相分、例えばU相に関して、以下となる。

Figure 0007486704000003
また図12は引例2)の3相励磁の表示の場合であり、q=3が隣接配置されている。同様にして、1相分に関しては、以下となる。
Figure 0007486704000004
従来技術、及び本発明の手段1,2のP,Pを小数点4桁以下は切り捨てて3桁までの表示で、一覧表として比較すれば、表2となる。
即ち、表2のPが大きいほど、誘起電圧も大きくなり、従ってトルク、効率も向上する。
しかし、従来技術の引例1のPは本発明の手段1が0.844であるのに対して0.657と劣り、Pは手段1が零で小さいのに対して、0.577と大きいので、デルタ結線駆動には適さない回転電機となる。
また、引例2のP値は本発明の手段1より、やや勝るが、Pは0.666とかなり大きな値で、本発明のように零でないので、引例1と同様にデルタ結線駆動に適さない回転電機である。ここに、本発明の進歩性がある。
図13は引例2と同類の従来技術で、q=5を隣接配置した、Q=15,p=14の1相励磁時の固定子と回転子の対向図である。この場合、1相分に関して、P,Pは、(5)、(6)式に準じて同様に計算すれば、以下となる。
Figure 0007486704000005
この値を表2に入れて、本発明のQ=15,q=14の手段2と比較すると、以下のようになる。
P1値は本発明の手段2の0.914と比較すれば、やや勝るが、Pは本発明品が0.400に対して、0.647とかなり大きな値で、引例1と同様にデルタ結線駆動に適さない回転電機である。
ここに、本発明の進歩性がある。
更に巻き線極数のQ=9の場合、引例2と本発明の比較では、引例2の3個のqが隣接しているのに対して、本発明の3個のqは非隣接配置で、より分散しているため、本発明品の方が、1相励磁時の不平衡電磁力がより少なくなり、低振動化に有利な構成といえる。Q=15,p=14の不平衡電磁力は、従来技術は図13に示すように、qである5個の巻き線極が隣接しているのに対して、本発明の手段2の方は、より分散配置されているため、小さくなり、低振動化に有利な構成といえる。
また表2より、本発明の回転電機は表2のLCMは、p=Q±1の効果で、大きな値が得られるので、コギングトルクの低減に有利な構造を採用していることも分かる。
更に表2から次のことが分かる。
1)本発明の手段1と手段2によるQ=9,p=8は巻き線極配置が同一でP,Pの値も同一である。
2)Qを15以上と大きくした場合、手段1と手段2とでは、巻き線極配置も、P,Pの値も相違する。
3)本発明の手段1内でQを変化させても、P,Pの値はほぼ同一である。
4)本発明の手段3内でQを変化させても、P,Pの値はほぼ同一である。
5)本発明の手段3によるQ=27の場合はp=24で、手段1でのQ=27の場合、pは26となるので異なる回転電機となる。FIG. 11 is an example of the prior art 1) and shows the opposing relationship between the stator and rotor during one-phase excitation with Q=9 and p=8.
On page 117 of cited document 1, the configuration shown in FIG. 11 is disclosed.
In this case, the following applies to one phase in FIG. 11, for example, the U phase.
Figure 0007486704000003
12 shows the case of three-phase excitation in the reference 2), where q=3 is arranged adjacently. Similarly, the following applies to one phase.
Figure 0007486704000004
Table 2 is obtained by comparing P 1 and P 3 of the prior art and the means 1 and 2 of the present invention in a list format, with the values rounded down to three decimal places.
That is, the larger P1 in Table 2 is, the larger the induced voltage is, and therefore the torque and efficiency are improved.
However, P1 in Reference 1 of the prior art is 0.657, which is inferior to 0.844 in Means 1 of the present invention, and P3 is 0 in Means 1, which is small, but is large at 0.577, making this a rotating electric machine unsuitable for delta connection drive.
Also, although the P1 value of Reference 2 is slightly better than Means 1 of the present invention, P3 is a fairly large value of 0.666, which is not zero like the present invention, and therefore the rotating machine is not suitable for delta connection drive, just like Reference 1. Herein lies the inventive step of the present invention.
13 shows a conventional technique similar to that of Reference 2, in which q=5 is arranged adjacently to the stator and rotor during one-phase excitation with Q=15 and p=14. In this case, P1 and P3 for one phase can be calculated in the same manner according to equations (5) and (6) as follows:
Figure 0007486704000005
When these values are entered in Table 2 and compared with Means 2 of the present invention in which Q=15 and q=14, the results are as follows.
The P1 value is slightly better than that of the present invention's means 2 (0.914), but P3 is a fairly large value of 0.647 compared to 0.400 for the present invention, and this rotating electric machine is not suitable for delta connection drive, just like Reference 1.
Herein lies the inventive step of the present invention.
Furthermore, in the case of the number of winding poles Q=9, in a comparison between Reference 2 and the present invention, the three q's in Reference 2 are adjacent, whereas the three q's in the present invention are non-adjacent and more dispersed, so that the product of the present invention has less unbalanced electromagnetic force during one-phase excitation and is advantageous in terms of vibration reduction. The unbalanced electromagnetic force of Q=15, p=14 is smaller in the prior art, as shown in Figure 13, because the five winding poles, or q, are adjacent, whereas the means 2 of the present invention is more dispersed, so that the configuration is advantageous in terms of vibration reduction.
It can also be seen from Table 2 that the rotating electric machine of the present invention employs a structure that is advantageous for reducing cogging torque, since the LCM in Table 2 achieves a large value due to the effect of p=Q±1.
Furthermore, from Table 2, the following can be seen:
1) The winding pole arrangements of Q=9, p=8 according to the means 1 and 2 of the present invention are the same, and the values of P1 and P3 are also the same.
2) When Q is increased to 15 or more, the winding pole arrangement and the values of P 1 and P 3 are different between means 1 and means 2.
3) Even if Q is changed in the first aspect of the present invention, the values of P 1 and P 3 are almost the same.
4) Even if Q is changed in the means 3 of the present invention, the values of P 1 and P 3 are almost the same.
5) When Q=27 according to the means 3 of the present invention, p=24, whereas when Q=27 according to the means 1, p is 26, resulting in a different rotating electric machine.

更に、本発明の手段2と従来技術の引例2に関して、Qが15,21,27の場合の鎖交磁束のパーミアンスの第5高調波率P,第7高調波率Pを同様に計算して、表3に示す。表2,表3より、次のことが分かる。
1)Q=9はP=0なので、デルタ結線向きである。
2)引例2と比較しても、Q=15は第5高調波、Q=21は第7高調波が零で、Q=27も、第7高調波が零に近く、P,Pが小さいことは、その回転電機は正弦波逆起電力となり、正弦波駆動の場合の電流によるトルクムラが小さいことを意味する。
3)Q=15、21、27等は、第3高調波は存在するが、第5、第7高調波が小さいので、スター結線向きである。
4)なめらかな回転動作を得るには、QとpのLCMを大きく選びコギングトルクを低減し、逆起電力によるトルクムラも低減すればよい。
5)例えば表3の結果より考えて、Q=15では、第7高調波を、Q=21では、第5高調波を除去するように磁石磁極幅、端部形状、凸レンズ形状磁石肉厚、あるいは、固定子歯形状等を工夫すれば、更にトルクムラ対策に効果的である。
6)特に手段6で述べたように、q個の巻き線極の内の何個かを他の巻き数と相違させれば、誘起電圧を更に正弦波にできる。特にQ=5以上では、(q-2)個が隣接するので、q個の巻き線極の中央極あるいは両端の2個等を適宜他の巻き数と相違させて、逆起電力波形を更に正弦波に近づけることもできる。逆起電力の大きさは巻き数に比例することと、その逆起電力波形の正弦波への修正効果は1相分の巻き線極が隣接している構成で顕著に得られるものである。
Furthermore, for the means 2 of the present invention and the prior art reference 2, the fifth harmonic ratio P5 and the seventh harmonic ratio P7 of the permeance of the interlinkage magnetic flux when Q is 15, 21, and 27 were calculated in the same manner and are shown in Table 3. From Tables 2 and 3, the following can be seen.
1) Q=9 has P 3 =0, so it is suitable for delta connection.
2) In comparison with Reference 2, at Q=15 the fifth harmonic is zero, at Q=21 the seventh harmonic is zero, and at Q=27 the seventh harmonic is also close to zero. The small values of P5 and P7 mean that the rotating electric machine generates a sine wave back electromotive force, and torque unevenness due to current in the case of sine wave drive is small.
3) Q=15, 21, 27, etc. have a third harmonic, but the fifth and seventh harmonics are small, so they are suitable for star connection.
4) To obtain smooth rotational operation, the LCM of Q and p should be set large to reduce the cogging torque, and also reduce torque irregularities caused by back electromotive force.
5) For example, considering the results of Table 3, if the magnet pole width, end shape, convex lens-shaped magnet thickness, or stator tooth shape, etc. are devised so as to remove the seventh harmonic when Q=15, and the fifth harmonic when Q=21, this will be an even more effective countermeasure against torque unevenness.
6) As described in Means 6, by making some of the q winding poles different from the others in number of turns, the induced voltage can be made even more sinusoidal. In particular, when Q=5 or more, (q-2) poles are adjacent, so by appropriately making the central pole or two poles at both ends of the q winding poles different from the others in number of turns, the back electromotive force waveform can be made even more sinusoidal. The magnitude of the back electromotive force is proportional to the number of turns, and the effect of correcting the back electromotive force waveform to a sinusoidal wave is significantly obtained by a configuration in which the winding poles for one phase are adjacent.

本発明の回転電機は極異方性磁石式回転子を採用すると、優れた回転電機となる。手段2の如く巻き線極が隣接しているか、手段1あるいは2の如く、1巻き線極分分離であれば、隣接巻き線極間で永久磁石磁束の磁路が形成されるため、極異方性磁石を使うと、バックヨークを省略することができて、その分安価軽量となる。即ち、図1で説明すれば、永久磁石2のN極の磁極21とS極の磁極22は磁石内部で磁化配向されていて、回転子中子3は非磁性体の樹脂等でもよく、あるいは3を用いないで、永久磁石2と回転子軸4が直接接していてもよい。図1はインナーロータ型であるが、アウターロータ型では、回転子のバックヨークは大きくなるため、これが、樹脂等で代用できるか、または、アルミ等の非磁性体、あるいは不要となることは、軽量安価に有効である。極異方性磁石とは永久磁石内部で決められた極数に対応して磁石成形時に磁路配向して異方性化した磁石であり、筆者の一人が、1983年に日本能率協会主催の小形モータ技術シンポジウムで発表したもので、関連技術として引例3)として資料を前述記載したが、モータのトルクを大幅に向上させて、且つ誘起電圧も正弦波状になるものである。
本発明に上記の特性が加わり、その相乗効果も期待できる。
また巻き線極が隣接しているか、1巻き線極分の分離であれば、同様に隣接巻き線極間で永久磁石磁束の磁路が形成されるため、疑似磁極式回転子にも本発明は適応する。
疑似磁極とはconsequent poleとも呼ばれるが、回転子磁石配置を、N極とS極を交互に配置するのではなくて、同極磁石のみ、例えばN極磁石のみ配置し、S極分は鉄心あるいは空間としたもので、永久磁石の個数は半減し、コギングトルクも低減する。極異方性磁石と比較して、バックヨークは必要であるが、N,S極交互配置の回転子に対して、疑似極配置の構成は、ブラシレスモータの弱め界磁駆動の場合、弱め界磁効果が顕著になり、より高速性に有利となる。
The rotating electric machine of the present invention becomes an excellent rotating electric machine when a polar anisotropic magnet rotor is used. If the winding poles are adjacent as in means 2, or if the winding poles are separated by one winding pole as in means 1 or 2, a magnetic path of the permanent magnet magnetic flux is formed between the adjacent winding poles, so if a polar anisotropic magnet is used, the back yoke can be omitted, which makes the machine cheaper and lighter. That is, as explained with reference to FIG. 1, the N pole 21 and the S pole 22 of the permanent magnet 2 are magnetized and oriented inside the magnet, and the rotor core 3 may be made of a non-magnetic material such as resin, or the permanent magnet 2 and the rotor shaft 4 may be in direct contact without using 3. FIG. 1 shows an inner rotor type, but in the outer rotor type, the rotor back yoke becomes large, so it can be replaced with resin or the like, or it can be made of a non-magnetic material such as aluminum, or it can be made unnecessary, which is effective for making the machine cheaper and lighter. Polar anisotropic magnets are magnets that have been made anisotropic by aligning the magnetic path during magnet molding to correspond to the number of poles determined inside the permanent magnet. One of the authors presented this at the Small Motor Technology Symposium hosted by the Japan Management Association in 1983, and the material was mentioned above as reference 3) as related technology. This significantly improves motor torque and also makes the induced voltage sinusoidal.
The present invention has the above-mentioned characteristics, and a synergistic effect can be expected.
Furthermore, if the winding poles are adjacent to each other or are separated by one winding pole, a magnetic path for the permanent magnet flux is formed between the adjacent winding poles in a similar manner, so the present invention is also applicable to a pseudo-pole type rotor.
Pseudo poles, also called consequent poles, are a type of rotor magnet arrangement in which, instead of alternating N and S poles, only magnets of the same polarity, for example only N pole magnets, are arranged, with the S poles being iron cores or space, and the number of permanent magnets is halved, reducing cogging torque.Compared to polar anisotropic magnets, a back yoke is required, but in the case of a rotor with alternating N and S poles, the pseudo pole arrangement configuration has a more pronounced field weakening effect in the case of field weakening drive of a brushless motor, which is advantageous for higher speeds.

本発明は、固定子巻き線極を集中巻きとして新規創出した巻き線構成として、その数と回転子磁極数を±1、相違させる構成のため、巻き線極数が少ない割には、コギングトルクが小さく、不平衡電磁力も同等構成の従来品より小さく、その2倍体以上とすれば、不平衡電磁力が消えて低振動で高トルクなブラシレスモータが得られるため、産業上の利用可能性の極めて大きいものである。The present invention uses a newly created winding configuration in which the stator winding poles are concentrated windings, and the number of these winding poles and the number of rotor magnetic poles can differ by ±1.As a result, despite the small number of winding poles, the cogging torque is small and the unbalanced electromagnetic force is also smaller than that of conventional products of the same configuration; if the number is doubled or more, the unbalanced electromagnetic force will disappear and a low-vibration, high-torque brushless motor can be obtained, which has extremely great industrial applicability.

1: 固定子鉄心 31、32: 回転子磁極
11、13、15、22、24: 巻き線極 4: 巻き線
2: 回転子 2-1:回転子バックヨーク兼構造体
1: stator core 31, 32 : rotor poles 11, 13, 15, 22, 24 : winding poles 4: winding
2: Rotor 2-1: Rotor back yoke and structure

Claims (5)

等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数pの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数pの埋め込み磁石式回転子を有した回転電機において、nは2以上の整数であり、1相分の巻き線極数qはq=2n+1と定めて、5以上の奇数であり、3相全巻き線極数Qを、Q=3qとして、回転子の極数pを、p=Q±1、とした回転電機であり、各相の巻き線極のq個は互いに1巻き線極間隔を置いて非隣接的に配置されたことを特徴とする回転電機。 A rotating electric machine having a three-phase stator with concentrated winding of winding poles consisting of Q iron cores arranged at equal pitch in the radial or axial direction, and a surface magnet type rotor with pole number p in which an equal number of N and S permanent magnets are arranged alternately through an air gap, or a buried magnet type rotor with pole number p in which an equal number of N and S permanent magnets are arranged alternately and embedded in a magnetic rotor yoke, wherein n is an integer of 2 or more , the number of winding poles q for one phase is defined as q = 2n + 1, the total number of winding poles Q for three phases is set to Q = 3q, and the number of rotor poles p is p = Q ± 1, characterized in that the q winding poles of each phase are arranged non-adjacently with a gap of one winding pole between each other. 等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数pの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数pの埋め込み磁石式回転子を有して、nは2以上の整数であり、1相分の巻き線極数qはq=2n+1と定めて、5以上の奇数であり、3相全巻き線極数Qを、Q=3qとして、回転子の極数pを、p=Q±1、とした回転電機であり、3相巻き線の各相の巻き線極のq個を順に、TA rotating electric machine having a three-phase stator with concentrated windings made of Q iron cores arranged at equal pitch in the radial or axial direction, and a surface magnet type rotor with a pole number p in which an equal number of N-pole and S-pole permanent magnets are arranged alternately through an air gap, or a recessed magnet type rotor with a pole number p in which an equal number of N-pole and S-pole permanent magnets are arranged alternately and embedded in a magnetic rotor yoke, where n is an integer of 2 or more, the number of winding poles per phase q is defined as q = 2n + 1 and is an odd number of 5 or more, the total number of three-phase winding poles Q is set to Q = 3q, and the number of rotor poles p is p = Q ± 1, and the q winding poles of each phase of the three-phase windings are sequentially arranged as T 1 ,T, T 2 ,T, T 3 ,、、、T, , , T q-1q-1 ,T, T q とした場合、TIn this case, T 1 とTand T 2 間及びTBetween and T q-1q-1 とTand T q 間は1巻き線極間隔を有した配置、TThe interval between the winding poles is one. 2 ~T~T q-1q-1 の巻き線極は隣接配置としたことを特徴とする回転電機。但し、nは2または3(qは5または7)とする。The winding poles of the first and second windings are arranged adjacent to each other, where n is 2 or 3 (q is 5 or 7). 等ピッチでラジアル方向あるいはアキシャル方向に設けられたQ個の鉄心よりなる巻き線極に集中巻きされた3相式固定子と、エアギャップを介して、N極とS極の永久磁石を交互に同数個配置した極数qの表面磁石式回転子、あるいは、N極とS極の永久磁石を交互に同数個、磁性体回転子ヨークに埋め込み配置した極数qの埋め込み磁石式回転子を有した固定子と回転子の対向組み合わせを1セットとして繰り返してmセットよりなる回転電機であり、 a three-phase stator with concentrated windings made of Q iron cores arranged at equal pitch in the radial or axial direction; and a surface magnet rotor with q poles in which the same number of N-pole and S-pole permanent magnets are arranged alternately via an air gap, or a recessed magnet rotor with q poles in which the same number of N-pole and S-pole permanent magnets are embedded in a magnetic rotor yoke, each of which is repeated for m sets of opposing combinations of a stator and rotor,
nは2以上の整数であり、1セット分の1相分の巻き線極数qはq=2n-1と定めて、1セット分の3相分巻き線極数Qを、Q=3qとして、1セット分の回転子の極数pを、p=Q±1、とし、mセット分の総巻き線数Kは、K=3mq、mセット分の極数Mは、M=m・(Q±1)として、1セット中の各相の巻き線極のq個は互いに1巻き線極間隔を置いて非隣接的に配置されたことを特徴とする回転電機。但し、mは2、4または6とし、Mは20以上とする。A rotating electric machine characterized in that n is an integer of 2 or more, the number q of winding poles per phase in one set is defined as q = 2n-1, the number Q of winding poles for three phases in one set is defined as Q = 3q, the number p of poles of the rotor in one set is defined as p = Q ± 1, the total number of windings K for m sets is defined as K = 3mq, the number of poles M for m sets is defined as M = m (Q ± 1), and the q winding poles of each phase in one set are arranged non-adjacently with an interval of one winding pole between each other, where m is 2, 4, or 6, and M is 20 or more.
請求項1の回転電機で、回転子は極異方性磁石を採用したことを特徴とする回転電機。2. The rotating electric machine according to claim 1 , wherein the rotor employs a polar anisotropic magnet. 請求項1の回転電機で各相巻き線はデルタ結線として駆動することを特徴とする回転電機。 2. The rotating electric machine according to claim 1, wherein each phase winding is driven as a delta connection.
JP2019226810A 2019-11-29 2019-11-29 Permanent magnet brushless motor Active JP7486704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226810A JP7486704B2 (en) 2019-11-29 2019-11-29 Permanent magnet brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226810A JP7486704B2 (en) 2019-11-29 2019-11-29 Permanent magnet brushless motor

Publications (2)

Publication Number Publication Date
JP2021087348A JP2021087348A (en) 2021-06-03
JP7486704B2 true JP7486704B2 (en) 2024-05-20

Family

ID=76088603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226810A Active JP7486704B2 (en) 2019-11-29 2019-11-29 Permanent magnet brushless motor

Country Status (1)

Country Link
JP (1) JP7486704B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275325A (en) 2000-03-27 2001-10-05 Honda Motor Co Ltd Motor-driven power steering device
JP2003348809A (en) 2002-05-23 2003-12-05 Toyota Motor Corp Magnet-included inner rotor motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275325A (en) 2000-03-27 2001-10-05 Honda Motor Co Ltd Motor-driven power steering device
JP2003348809A (en) 2002-05-23 2003-12-05 Toyota Motor Corp Magnet-included inner rotor motor

Also Published As

Publication number Publication date
JP2021087348A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US7781931B2 (en) Switched reluctance motor
US20070257566A1 (en) Synchronous Machine Using the Eleventh Harmonic
US8680731B2 (en) Permanent-magnetic type rotary electric machine
US7038348B2 (en) Dynamo electric machine
JPH0614514A (en) Permanent magnet type stepping motor
TWI678052B (en) Rotary electric machine and direct drive electric motor
US20130207500A1 (en) Three-phase alternating current permanent magnet motor
US20080296992A1 (en) Electrical Drive Machine
JP2003009486A (en) Variable speed motor
JP5188746B2 (en) Brushless DC motor
JP5538984B2 (en) Permanent magnet motor
CN108712045B (en) Synchronous switch reluctance motor
JP2003088078A (en) Brushless dc motor
JP4309325B2 (en) Composite three-phase hybrid electric rotating machine and driving method thereof
KR102191647B1 (en) Brushless direct current motor
US6236133B1 (en) Three-phase brushless motor
KR102156869B1 (en) Permanent magnet electrical machine having non-identical polo length
JP5885423B2 (en) Permanent magnet rotating electric machine
JP7486704B2 (en) Permanent magnet brushless motor
JP5619522B2 (en) 3-phase AC rotating machine
JP5734135B2 (en) Electric machine and manufacturing method thereof
JPH08182280A (en) Generator
JP2017063594A (en) Brushless motor
JP4172863B2 (en) 5-phase permanent magnet motor
JP4056514B2 (en) Permanent magnet type three-phase rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7486704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150