JP7484615B2 - Vehicle battery state detection method and detection control device - Google Patents

Vehicle battery state detection method and detection control device Download PDF

Info

Publication number
JP7484615B2
JP7484615B2 JP2020159293A JP2020159293A JP7484615B2 JP 7484615 B2 JP7484615 B2 JP 7484615B2 JP 2020159293 A JP2020159293 A JP 2020159293A JP 2020159293 A JP2020159293 A JP 2020159293A JP 7484615 B2 JP7484615 B2 JP 7484615B2
Authority
JP
Japan
Prior art keywords
temperature
wavelength
battery cell
distortion
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020159293A
Other languages
Japanese (ja)
Other versions
JP2022052827A (en
Inventor
輝彦 花岡
敏貴 ▲高▼橋
貴文 種平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2020159293A priority Critical patent/JP7484615B2/en
Publication of JP2022052827A publication Critical patent/JP2022052827A/en
Application granted granted Critical
Publication of JP7484615B2 publication Critical patent/JP7484615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は車両用電池の状態検出方法及び検出制御装置に関する。 The present invention relates to a method for detecting the state of a vehicle battery and a detection control device.

車両に搭載される電池は、その発火防止のために、電池反応の異常に伴う温度上昇から熱暴走を生ずること、或いはガス発生に伴う内圧上昇から破損に至ることを未然に防ぐことが要求される。そのためには、電池の温度と歪みの両方を監視することが望ましい。温度上昇は熱電対により検出でき、歪み(内圧上昇)は感圧センサーを用いて検出することができる。しかし、その両者を実行するとなると、電気配線等が非常に複雑になってくる。 To prevent batteries installed in vehicles from catching fire, it is necessary to prevent thermal runaway caused by an increase in temperature due to an abnormal battery reaction, or damage caused by an increase in internal pressure due to gas generation. To do this, it is desirable to monitor both the temperature and strain of the battery. Temperature increases can be detected by thermocouples, and strain (increase in internal pressure) can be detected by pressure sensors. However, doing both of these things would result in extremely complicated electrical wiring, etc.

これに対して、光ファイバを用いて温度及び歪みを測定することが知られている。これは、光ファイバに入射光に対してブラッド波長の反射光を生ずる検出部(センサ)を設け、そのブラッド波長が検出部の温度及び歪みに応じて変化することを利用する測定手法である。しかし、その波長は、温度変化及び歪み発生のいずれがあっても変化するため、その波長変化がいずれに由来するものか区別することができない。 In response to this, it is known to use optical fiber to measure temperature and strain. This is a measurement technique that utilizes the fact that a detection unit (sensor) that generates reflected light of a Brad wavelength in response to incident light is provided in the optical fiber, and that the Brad wavelength changes according to the temperature and strain of the detection unit. However, since the wavelength changes due to both a temperature change and the occurrence of strain, it is not possible to distinguish which is the source of the wavelength change.

特許文献1には、光ファイバ内に歪みを検知する第1光学センサと、歪みの影響を受けずに温度を検知する第2光学センサを備え、第1光学センサの値を第2光学センサから得られる温度値で補正して電池の温度補償歪みを求めることが記載されている。 Patent document 1 describes a method of determining the temperature-compensated strain of a battery by providing a first optical sensor that detects strain within an optical fiber and a second optical sensor that detects temperature without being affected by strain, and correcting the value of the first optical sensor with the temperature value obtained from the second optical sensor.

特開2015-198085号公報JP 2015-198085 A

特許文献1に記載された方法の場合、温度補償歪みを求めるために、1本の光ファイバに温度補償用の光学センサを歪み検出用の光学センサとは別に設ける必要がある。また、電池における両光学センサ各々が配置される部位の温度が同じあるとは限らないから、高い精度で歪みを検出することができるとは必ずしも言えない。 In the case of the method described in Patent Document 1, in order to obtain temperature compensation strain, it is necessary to provide an optical sensor for temperature compensation in one optical fiber separately from an optical sensor for strain detection. Also, since the temperatures at the locations on the battery where the two optical sensors are placed are not necessarily the same, it cannot necessarily be said that strain can be detected with high accuracy.

本発明は、光ファイバに補償用の光学センサを設けることなく、電池の温度及び歪みを高精度で検出することを課題とする。 The objective of the present invention is to detect the temperature and strain of a battery with high accuracy without providing a compensation optical sensor in the optical fiber.

本発明は、上記課題を解決するために、電池の温度変化がない状況下で外気温と上記反射光の波長に基いて検出部位の温度補償歪みを求め、上記温度変化を生ずる状況下では、当該温度補償歪みと上記反射光の波長から当該検出部位の歪み補償温度を求める。以下、具体的に説明する。 To solve the above problem, the present invention determines the temperature compensation strain of the detection site based on the outside air temperature and the wavelength of the reflected light when there is no change in the battery temperature, and determines the strain compensation temperature of the detection site from the temperature compensation strain and the wavelength of the reflected light when there is a change in temperature. The details are explained below.

ここに開示する車両用電池の状態検出方法は、車両に搭載された電池セルの温度及び歪みを検出する方法であって、
入射光に対して反射光を生じその反射光の波長が形状変化及び温度変化に応じて変化する光学センサを有し、該光学センサが上記電池セルの温度及び歪みを検出すべき検出部位に固着された光ファイバと、
上記波長を測定する波長測定器と、
上記車両の外気温を測定する外気温センサとを備え、
上記車両の上記電池セルを使用しない駐車時に上記波長及び上記外気温を測定するステップと、
上記駐車時に測定した上記波長と上記外気温とに基いて、上記検出部位の温度補償歪みを求めるステップと、
上記電池セルの使用時に、上記波長測定器によって上記反射光の波長を測定するステップと、
上記電池セルの使用時に測定した上記波長と上記温度補償歪みに基づいて、上記検出部位の歪み補償温度を求めるステップとを備えていることを特徴とする。
The method for detecting the state of a vehicle battery disclosed herein is a method for detecting the temperature and distortion of a battery cell mounted on a vehicle, comprising the steps of:
an optical sensor that reflects incident light and whose wavelength changes in response to changes in shape and temperature, said optical sensor being fixed to an optical fiber at a detection portion of the battery cell where the temperature and distortion of the battery cell are to be detected;
A wavelength measuring device for measuring the wavelength;
An outside air temperature sensor for measuring an outside air temperature of the vehicle,
measuring the wavelength and the outside air temperature when the vehicle is parked and not using the battery cell;
determining a temperature compensation strain of the detection portion based on the wavelength and the outside air temperature measured during parking;
measuring the wavelength of the reflected light by the wavelength measuring device when the battery cell is in use;
The method further comprises a step of determining a strain-compensated temperature of the detection portion based on the wavelength and the temperature-compensated strain measured during use of the battery cell.

また、ここに開示する車両用電池の状態検出制御装置は、車両に搭載された電池セルの温度及び歪みを検出する装置であって、
入射光に対して反射光を生じその反射光の波長が形状変化及び温度変化に応じて変化する光学センサを有し、該光学センサが上記電池セルの温度及び歪みを検出すべき検出部位に固着された光ファイバと、
上記光ファイバに光を入射する光源と、
上記波長を測定する波長測定器と、
上記車両の外気温を測定する外気温センサと、
上記波長及び上記外気温に基いて上記検出部位の温度及び歪みを求める演算装置とを備え、
上記演算装置は、上記車両の上記電池セルを使用しない駐車時に、上記波長測定器によって測定される上記波長及び上記外気温センサによって測定される外気温を取得し、この波長と外気温とに基いて、上記検出部位の温度補償歪みを求め、上記電池セルの使用時に、上記波長測定器によって測定される上記波長を取得し、この波長と上記温度補償歪みに基づいて、上記検出部位の歪み補償温度を求めることを特徴とする。
The present disclosure also provides a vehicle battery state detection control device that detects the temperature and distortion of a battery cell mounted in a vehicle, comprising:
an optical sensor that reflects incident light and whose wavelength changes in response to changes in shape and temperature, said optical sensor being fixed to an optical fiber at a detection portion of the battery cell where the temperature and distortion of the battery cell are to be detected;
a light source for injecting light into the optical fiber;
A wavelength measuring device for measuring the wavelength;
An outside air temperature sensor for measuring an outside air temperature of the vehicle;
a calculation device that calculates the temperature and strain of the detection site based on the wavelength and the outside air temperature,
The calculation device acquires the wavelength measured by the wavelength measuring device and the outside air temperature measured by the outside air temperature sensor when the vehicle is parked and the battery cell is not being used, and calculates a temperature compensation distortion of the detection location based on the wavelength and the outside air temperature, and acquires the wavelength measured by the wavelength measuring device when the battery cell is in use, and calculates a distortion compensation temperature of the detection location based on the wavelength and the temperature compensation distortion.

上記検出方法及び検出制御装置のいずれも、車両駐車時は電池セルは使用されない(充放電はない)から電池セルの検出部位に温度変化がなく、外気温センサによって測定される外気温を当該検出部位の温度とみなすことができることを前提としている。好ましいのは、電池セルの充放電を停止してから数時間(例えば2、3時間)を経過しているときに上記波長を測定することである。そのような時間を経過しているときは、電池セルの温度は外気温と同一になるのが通常である。 Both the detection method and the detection control device described above are based on the premise that the battery cell is not in use (no charging or discharging) when the vehicle is parked, so there is no temperature change at the detection location of the battery cell, and the outside air temperature measured by the outside air temperature sensor can be regarded as the temperature of the detection location. It is preferable to measure the wavelength several hours (e.g., 2 or 3 hours) after charging or discharging of the battery cell has stopped. After such a time has passed, the temperature of the battery cell will usually be the same as the outside air temperature.

上記車両駐車時に得られる上記反射光の波長には電池セルの検出部位の歪みと温度の影響が現れている。上記検出方法及び検出制御装置は、上記検出部位の温度補償歪みを求めるための温度情報を外気温センサから得るものである。端的に言えば、上記反射光の波長に現れている温度影響分を外気温で補正して温度補償歪みを求めるということである。 The wavelength of the reflected light obtained when the vehicle is parked reflects the effects of distortion and temperature at the detection site of the battery cell. The detection method and detection control device obtain temperature information from an outside air temperature sensor to determine the temperature compensation distortion at the detection site. In short, the temperature influence appearing in the wavelength of the reflected light is corrected with the outside air temperature to determine the temperature compensation distortion.

一方、電池セル使用時に得られる上記反射光の波長にも上記検出部位の歪みと温度の影響が現れている。上記検出方法及び検出制御装置は、上記検出部位の歪み補償温度を求めるための歪み情報として先に求めた温度補償歪みを採用するものである。端的に言えば、上記反射光の波長に現れている歪み影響分を温度補償歪みで補正して歪み補償温度を求めるということである。 On the other hand, the wavelength of the reflected light obtained when the battery cell is in use is also affected by the distortion and temperature of the detection site. The detection method and detection control device employ the previously determined temperature compensation distortion as distortion information for determining the distortion compensation temperature of the detection site. In short, the distortion-influenced portion of the wavelength of the reflected light is corrected with the temperature compensation distortion to determine the distortion compensation temperature.

このように、上記検出方法及び検出制御装置によれば、温度補償歪みを求めるための温度情報を車両駐車時の外気温から得るとともに、歪み補償温度を得るための歪み情報として上記温度補償歪みを採用するから、光ファイバに補償用の光学センサを別途設けることなく、電池セルの温度及び歪みを高精度で検出することができる。 In this way, with the above detection method and detection control device, temperature information for determining the temperature compensation distortion is obtained from the outside air temperature when the vehicle is parked, and the above temperature compensation distortion is used as distortion information for obtaining the distortion compensation temperature, so that the temperature and distortion of the battery cell can be detected with high accuracy without providing a separate optical sensor for compensation in the optical fiber.

上記検出方法及び検出制御装置の一実施形態では、上記光学センサによる反射光の波長の温度依存性データを備え、この温度依存性データに基づいて、上記駐車時に測定された上記波長に対応する温度を求め、該温度と上記駐車時に測定された外気温との温度差に対応する波長シフト量から上記温度補償歪みを求める。 In one embodiment of the detection method and detection control device, temperature dependency data of the wavelength of the reflected light by the optical sensor is provided, and the temperature corresponding to the wavelength measured while the vehicle is parked is calculated based on the temperature dependency data, and the temperature compensation distortion is calculated from the wavelength shift amount corresponding to the temperature difference between the temperature and the outside air temperature measured while the vehicle is parked.

すなわち、光学センサによる測温値と外気温センサによる測温値の差に相当する波長シフトを歪みに換算するものである。これにより、電池セルの検出部位の温度補償歪みを精度良く求めることができる。 In other words, the wavelength shift equivalent to the difference between the temperature measured by the optical sensor and the temperature measured by the outside air temperature sensor is converted into strain. This makes it possible to accurately determine the temperature compensation strain of the detection area of the battery cell.

上記検出方法の一実施形態では、上記光学センサを上記電池セルの上記検出部位に固着した後、上記電池セルの最初の使用を開始する前に上記波長及び外気温を測定し、上記温度依存性データに基いて当該波長に対応する温度を求め、この温度が上記外気温に一致するように、上記温度依存性データを修正するデータ修正ステップを備え、この修正した温度依存性データを用いて上記温度補償歪みを求める。 In one embodiment of the detection method, after the optical sensor is fixed to the detection portion of the battery cell, the wavelength and the outside air temperature are measured before the first use of the battery cell is started, the temperature corresponding to the wavelength is obtained based on the temperature dependency data, and the temperature dependency data is corrected so that the temperature corresponds to the outside air temperature, and the temperature compensation distortion is calculated using the corrected temperature dependency data.

光ファイバの光学センサを電池セルの検出部位に固着したとき、その光学センサに歪みを生じなければ、上記反射光の波長から上記温度依存性データに基づいて得られる温度は外気温に一致すると見込まれる。その一致が見られないときは、光学センサの固着時に負荷がかかって歪みを生じているみなすことができる。 When an optical fiber sensor is attached to the detection site of a battery cell, if the optical sensor is not distorted, the temperature obtained from the wavelength of the reflected light based on the temperature dependency data is expected to match the outside air temperature. If this match is not observed, it can be assumed that a load is applied when the optical sensor is attached, causing distortion.

そこで、光学センサを検出部位に固着した後、電池セルの最初の使用を開始する前に、温度依存性データに基いて上記波長に対応する温度を求め、この温度が上記外気温に一致するように当該温度依存性データを修正するものである。すなわち、温度依存性データの温度値を光学センサに生じている取付歪み分修正するものである。これにより、温度補償歪みを精度良く求めることができる。 Therefore, after the optical sensor is fixed to the detection portion, and before the first use of the battery cell is started, the temperature corresponding to the above wavelength is found based on the temperature-dependent data, and the temperature-dependent data is corrected so that this temperature matches the above-mentioned outside air temperature. In other words, the temperature value of the temperature-dependent data is corrected by the amount of mounting distortion occurring in the optical sensor. This makes it possible to accurately find the temperature compensation distortion.

上記検出方法及び検出制御装置の一実施形態では、上記電池セルの使用時に検出された上記波長から上記温度補償歪みの前回値に対応する波長シフト量を減算し、この減算後の波長から上記温度依存性データに基づいて歪み補償温度を求める。 In one embodiment of the detection method and detection control device, a wavelength shift amount corresponding to the previous value of the temperature compensation strain is subtracted from the wavelength detected when the battery cell is in use, and the strain compensation temperature is calculated from the wavelength after this subtraction based on the temperature dependency data.

すなわち、上記反射光の波長を前回求めた温度補償歪み分の波長シフトで補正して温度を求めるものである。これにより、電池セルの検出部位の歪み補償温度を精度良く求めることができる。 In other words, the wavelength of the reflected light is corrected with the wavelength shift of the previously calculated temperature compensation strain to determine the temperature. This makes it possible to accurately determine the strain compensation temperature of the detection site of the battery cell.

上記検出方法及び検出制御装置の一実施形態では、
上記電池セルは六面体状の角型セルであり、
上記電池セルの六面のうちの少なくとも1つの面に沿って延びる電池セル冷却用の冷媒通路を備え、
上記電池セルの六面のうちの最も広い面の中央領域と該中央領域に比べて上記冷媒通路から遠い領域の各々に上記検出部位が設けられ、これら検出部位に上記光学センサが設けられる。
In one embodiment of the detection method and the detection control device,
The battery cell is a hexahedral rectangular cell,
a coolant passage for cooling the battery cell extending along at least one of six faces of the battery cell;
The detection sites are provided in a central region of the widest of the six faces of the battery cell and in a region farther from the refrigerant passage than the central region, and the optical sensors are provided at these detection sites.

六面体形状の電池セルにおける最も広い面の中央領域は、電池セルの内圧が上昇したときに歪みが出やすい部分である。また、電池セルの冷媒通路から遠い領域は、電池反応の異常等によってセル内温度が上昇するときに高温になりやすい部分である。上記実施形態によれば、当該両領域に検出部位を設けて光学センサを配置するから、電池セルの温度上昇及び歪み発生を早めに知ってその対策をとることができる。 The central region of the widest surface of a hexahedral battery cell is the area that is likely to become distorted when the internal pressure of the battery cell rises. In addition, the area of the battery cell that is far from the refrigerant passage is the area that is likely to become hot when the temperature inside the cell rises due to an abnormality in the battery reaction, etc. According to the above embodiment, optical sensors are arranged at detection sites in both of these areas, so that the temperature rise and distortion of the battery cell can be detected early and countermeasures can be taken.

上記検出方法及び検出制御装置の一実施形態では、
上記電池セルの互いに逆向きになった面の各々に沿って延びる2本の電池セル冷却用の冷媒通路を備え、
上記光ファイバは、上記電池セルの上記両冷媒通路の一方側から他方側にわたるように広がった面に、当該両冷媒通路の一方側から他方側に向かって延びるように配設された部分を有し、この部分に複数の上記光学センサが間隔をおいて設けられる。
In one embodiment of the detection method and the detection control device,
two coolant passages for cooling the battery cells extending along the opposing faces of the battery cells,
The optical fiber has a portion arranged on a surface extending from one side of both refrigerant passages of the battery cell to the other side of the both refrigerant passages, and a plurality of the optical sensors are provided at intervals in this portion.

これによれば、相対する冷媒通路間で電池セルにどのような温度分布を生じているかを把握することができるようになる。よって、両冷媒通路の冷媒流量の調節によって電池セルの温度を目標温度に制御すること、或いは局所的な温度ムラを生ずることを防止することが容易になる。 This makes it possible to grasp the temperature distribution occurring in the battery cell between the opposing refrigerant passages. This makes it easy to control the temperature of the battery cell to a target temperature by adjusting the refrigerant flow rate in both refrigerant passages, or to prevent localized temperature unevenness.

本発明によれば、温度補償歪みを求めるための温度情報を車両駐車時の外気温から得るとともに、歪み補償温度を得るための歪み情報として上記温度補償歪みを採用するから、光ファイバに補償用の光学センサを別途設けることなく、電池セルの温度及び歪みを高精度で検出することが容易になる。 According to the present invention, the temperature information for determining the temperature compensation strain is obtained from the outside air temperature when the vehicle is parked, and the above-mentioned temperature compensation strain is used as the strain information for obtaining the strain compensation temperature. This makes it easy to detect the temperature and strain of the battery cell with high accuracy without providing a separate optical sensor for compensation in the optical fiber.

車両用電池の状態検出制御装置の斜視図。FIG. 2 is a perspective view of a vehicle battery state detection control device. 反射光の波長の温度依存性データの一例を示すグラフ図。FIG. 11 is a graph showing an example of temperature dependency data of the wavelength of reflected light. 電池セルの歪みと波長シフトの関係を示すデータの一例を示すグラフ図。FIG. 11 is a graph showing an example of data showing the relationship between the distortion of a battery cell and the wavelength shift. 温度補償歪み演算処理のフロー図。FIG. 4 is a flow diagram of a temperature compensation distortion calculation process. 歪み補償温度演算処理のフロー図。FIG. 4 is a flow diagram of a distortion compensation temperature calculation process.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 The following describes the embodiments of the present invention with reference to the drawings. The following description of the preferred embodiment is merely exemplary in nature and is not intended to limit the present invention, its applications, or its uses.

図1に示す車両用電池の状態検出制御装置において、1は車両に搭載される充放電可能な電池セルであり、この実施形態では六面体状の角型セルである。車両には、複数の電池セル1が、互い面積が最も広い前面1aと後面1bが相対するように並設された電池モジュールとして搭載される。この電池モジュールにおいて、複数の電池セル1は直列に接続されている。当該車両はパラレル式ハイブリッド車である。電池セル1は、車両を駆動するモータへの電力供給と、車両の制動時の運動エネルギーを電気エネルギーとして蓄える蓄電に用いられる。 In the vehicle battery state detection control device shown in Figure 1, 1 is a chargeable and dischargeable battery cell mounted on the vehicle, which in this embodiment is a hexahedral rectangular cell. The vehicle is mounted with multiple battery cells 1 as a battery module in which the front surface 1a and rear surface 1b, which have the largest surface area, are arranged side by side facing each other. In this battery module, the multiple battery cells 1 are connected in series. The vehicle is a parallel type hybrid vehicle. The battery cells 1 are used to supply power to the motor that drives the vehicle, and to store the kinetic energy generated when the vehicle is braked as electrical energy.

上記電池モジュールには、電池セル1の互いに逆向きになった上面1cと下面1dの各々に沿って当該電池セル1の並設方向に延びる上側冷媒通路2と下側冷媒通路3が設けられている。両冷媒通路2,3には冷媒(冷却水)が流れ、この冷媒によって電池セル1をその上側からと下側から冷却する。電池セル1の冷却によって温度が上昇する冷媒は熱交換器による外気との熱交換によって冷やされる。 The battery module is provided with an upper refrigerant passage 2 and a lower refrigerant passage 3 that extend in the direction in which the battery cells 1 are arranged along the upper surface 1c and the lower surface 1d of the battery cells 1, which are opposed to each other. A refrigerant (cooling water) flows through both refrigerant passages 2 and 3, and this refrigerant cools the battery cells 1 from above and below. The refrigerant, whose temperature rises due to cooling the battery cells 1, is cooled by heat exchange with the outside air via a heat exchanger.

複数の電池セル1には、各電池セル1の温度及び歪みを検出するための複数の光学センサ6を有する1本の光ファイバ4が取付けられている。光ファイバ4の一端には、光ファイバ4に光を入射する光源(波長掃引光源)5が接続されている。光学センサ6は、光ファイバ4に回折格子を刻んでなるFBG(ファイバブラッググレーティング)センサであり、光源5からの入射光に対して回折格子の間隔に比例する特定の波長成分であるブラッグ波長の光を反射する。 A single optical fiber 4 having multiple optical sensors 6 for detecting the temperature and distortion of each battery cell 1 is attached to the multiple battery cells 1. One end of the optical fiber 4 is connected to a light source (wavelength swept light source) 5 that inputs light to the optical fiber 4. The optical sensor 6 is an FBG (fiber Bragg grating) sensor in which a diffraction grating is engraved into the optical fiber 4, and reflects light of a Bragg wavelength, which is a specific wavelength component proportional to the spacing of the diffraction grating, in response to the incident light from the light source 5.

<光ファイバの配設>
本実施形態では、光ファイバ4は、冷媒通路2,3の一方側から他方側にわたって広がった各電池セル1の面積が最も広い面である前面1a(後面1bであってもよい)に取付けられている。光ファイバ4は、1つの電池セル1の前面1aにおいては、冷媒通路2,3の一方側と他方側を往復するように、前面1aの一方の側縁から他方の側縁に向かってジグザグに(サインカーブ状に)延びている。
<Installation of optical fiber>
In this embodiment, the optical fiber 4 is attached to the front surface 1a (or the rear surface 1b), which is the surface of each battery cell 1 with the largest area extending from one side to the other side of the refrigerant passages 2, 3. On the front surface 1a of each battery cell 1, the optical fiber 4 extends in a zigzag manner (in the shape of a sine curve) from one side edge of the front surface 1a to the other side edge, going back and forth between one side and the other side of the refrigerant passages 2, 3.

また、光ファイバ4は、1つの電池セル1の上記他方の側縁から隣の電池セル1の前面1aの他方の側縁にわたり、その前面1aの他方の側縁から一方の側縁に向かってジグザグに延びている。さらに、光ファイバ4は、この隣の電池セル1の前面1aの一方の側縁からその次の隣の電池セル1の前面1aの一方の側縁にわたり、その前面1aの一方の側縁から他方の側縁に向かってジグザグに延びている。このようなジグザグ配設パターンの繰り返しによって、1本の光ファイバ4が電池モジュールの全ての電池セル1の前面1aにジグザグに設けられている。 The optical fiber 4 also extends in a zigzag pattern from the other side edge of one battery cell 1 to the other side edge of the front surface 1a of the adjacent battery cell 1, and from the other side edge of the front surface 1a to one side edge. The optical fiber 4 also extends in a zigzag pattern from one side edge of the front surface 1a of the adjacent battery cell 1 to one side edge of the front surface 1a of the next adjacent battery cell 1, and from one side edge of the front surface 1a to the other side edge. By repeating this zigzag arrangement pattern, one optical fiber 4 is provided in a zigzag pattern on the front surfaces 1a of all the battery cells 1 in the battery module.

そうして、光ファイバ4は、上記ジグザグ配設により、各電池セル1の前面1aにおいて、冷媒通路2,3の一方側から他方側に向かって延びる部分を有することになる。この部分に複数の光学センサ6が間隔をおいて設けられている。換言すれば、各電池セル1の前面1aに、その温度及び歪みを検出すべき複数の検出部位7が冷媒通路2,3の一方側から他方側に向かって間隔をおいて設けられ、その各検出部位7に光学センサ6が固着されている。 As a result of the zigzag arrangement, the optical fiber 4 has a portion on the front surface 1a of each battery cell 1 that extends from one side of the refrigerant passages 2, 3 to the other side. A number of optical sensors 6 are provided at intervals on this portion. In other words, a number of detection sites 7 for detecting the temperature and distortion are provided at intervals on the front surface 1a of each battery cell 1 from one side of the refrigerant passages 2, 3 to the other side, and an optical sensor 6 is fixed to each of the detection sites 7.

また、電池セル1の前面1aの中央領域Cと該中央領域Cに比べて冷媒通路2,3から遠い領域Fの各々に検出部位7が設けられ、これら検出部位7に光学センサ6が固着されている。 In addition, detection sites 7 are provided in the central region C of the front surface 1a of the battery cell 1 and in a region F that is farther from the refrigerant passages 2 and 3 than the central region C, and optical sensors 6 are fixed to these detection sites 7.

<ブラッグ波長及び外気温の測定手段>
光学センサ6による反射光のブラッグ波長はその光学センサ6の温度と歪みに応じて変化する。すなわち、光学センサ6に外力が加わったり温度が変化すると、回折格子の間隔 が変わり、その結果、ブラッグ波長が変化する。従って、このブラッグ波長の変化をみることによって、電池セル1における光学センサ6が固着された検出部位7の温度と歪みを検出することができる。
<Means for measuring Bragg wavelength and ambient temperature>
The Bragg wavelength of the light reflected by the optical sensor 6 changes according to the temperature and distortion of the optical sensor 6. In other words, when an external force is applied to the optical sensor 6 or the temperature changes, the spacing of the diffraction grating changes, and as a result, the Bragg wavelength changes. Therefore, by observing this change in the Bragg wavelength, it is possible to detect the temperature and distortion of the detection portion 7 of the battery cell 1 where the optical sensor 6 is fixed.

上記ブラッグ波長の測定のために、光源5とこの光源5に最も近い光学センサ6の中間に波長測定器(受光器)11が光ファイバ12及び光サーキュレータ13を介して接続されている。その波長測定器11と外気温センサ15が演算装置14に接続されている。外気温センサ15は、当該車両に設けられ、車両の外気温を測定する。演算装置14は、各光学センサ6から得られるブラッグ波長及び外気温センサ15から得られる外気温に基いて各電池セル1の各検出部位7の温度及び歪みを求める。 To measure the Bragg wavelength, a wavelength measuring device (photoreceiver) 11 is connected midway between the light source 5 and the optical sensor 6 closest to the light source 5 via an optical fiber 12 and an optical circulator 13. The wavelength measuring device 11 and an outside air temperature sensor 15 are connected to a calculation device 14. The outside air temperature sensor 15 is installed in the vehicle and measures the outside air temperature of the vehicle. The calculation device 14 calculates the temperature and strain of each detection site 7 of each battery cell 1 based on the Bragg wavelength obtained from each optical sensor 6 and the outside air temperature obtained from the outside air temperature sensor 15.

本実施形態では、1つの波長測定器11で複数の光学センサ6の反射スペクトラムを観測するために、波長多重方式を採用している。すなわち、複数の光学センサ6については、各々のブラッグ波長が温度変化及び歪みでシフトしても重なることがないように形成されている。なお、波長多重方式に代えて、時間多重方式や周波数多重方式を採用することもできる。この場合は複数の光学センサ6のブラッグ波長は同一であってもよい。 In this embodiment, a wavelength multiplexing method is used to observe the reflection spectra of multiple optical sensors 6 with one wavelength measuring device 11. That is, the multiple optical sensors 6 are formed so that their Bragg wavelengths do not overlap even if they shift due to temperature changes and distortion. Note that instead of the wavelength multiplexing method, a time multiplexing method or a frequency multiplexing method can also be used. In this case, the Bragg wavelengths of the multiple optical sensors 6 may be the same.

<演算装置>
演算装置14は、マイクロコンピュータ及びメモリ(例えば、EEPROM、フラッシュメモリ)を備える。メモリには、図2に示すブラッグ波長の温度依存性データ(波長-温度マップ)及び図3に示すブラッグ波長の歪みによるシフトに関するデータ(波長シフト-歪みマップ)が含まれる。波長-温度マップは、光学センサ6の温度変化に応じてブラッグ波長が変化することから、両者の対応関係を予め実験的に求めて電子的に格納したマップである。波長シフト-歪みマップは、光学センサ6の歪みに応じてブラッグ波長がシフトすることから、両者の対応関係を予め実験的に求めて電子的に格納したマップである。
<Calculation device>
The arithmetic unit 14 includes a microcomputer and a memory (e.g., an EEPROM, a flash memory). The memory includes temperature dependency data (wavelength-temperature map) of the Bragg wavelength shown in FIG. 2 and data on the shift of the Bragg wavelength due to distortion (wavelength shift-distortion map) shown in FIG. 3. The wavelength-temperature map is a map in which the relationship between the Bragg wavelength and the temperature change of the optical sensor 6 is experimentally determined in advance and stored electronically, since the Bragg wavelength changes in response to the temperature change of the optical sensor 6. The wavelength shift-distortion map is a map in which the relationship between the Bragg wavelength and the temperature change of the optical sensor 6 is experimentally determined in advance and stored electronically, since the Bragg wavelength shifts in response to the distortion of the optical sensor 6.

演算装置14は、上記波長-温度マップの修正処理、並びに波長測定器11によって測定されるブラッグ波長及び外気温センサ15によって測定される外気温に基づく、各検出部位7の温度補償歪みε及び歪み補償温度T1の演算処理を実行する。先に温度補償歪みε及び歪み補償温度T1の演算処理を説明する。 The calculation device 14 performs the correction process of the wavelength-temperature map, and the calculation process of the temperature compensation strain ε and the strain compensation temperature T1 of each detection site 7 based on the Bragg wavelength measured by the wavelength measuring device 11 and the outside air temperature measured by the outside air temperature sensor 15. The calculation process of the temperature compensation strain ε and the strain compensation temperature T1 will be explained first.

(温度補償歪みεの演算)
演算装置14は、車両の電池セル1を使用しない駐車時に、波長測定器11によって測定される各光学センサ6によるブラッグ波長λ’及び外気温センサ15によって測定される車両の外気温Tを取得する。但し、ブラッグ波長λ’及び外気温Tは、駐車開始から電池セル1の温度が外気温と等しくなる所定時間(本実施形態は3時間)を経過した後に測定する。
(Calculation of temperature compensation strain ε)
When the vehicle is parked and not in use with the battery cells 1, the calculation device 14 acquires the Bragg wavelength λ' measured by each optical sensor 6 using the wavelength measurement device 11 and the outside air temperature T of the vehicle measured by the outside air temperature sensor 15. However, the Bragg wavelength λ' and the outside air temperature T are measured after a predetermined time (three hours in this embodiment) has elapsed since the start of parking, during which the temperature of the battery cells 1 becomes equal to the outside air temperature.

演算装置14は、測定されたブラッグ波長に基いて波長-温度マップ(図2)から波長対応温度T’を導出する。演算装置14は、その温度差ΔTに対応する波長シフトΔλを当該波長-温度マップから導出し、この波長シフトΔλに基いて波長シフト-歪みマップ(図3)から各検出部位7の温度補償歪みεを導出する。 The computing device 14 derives the wavelength-corresponding temperature T' from the wavelength-temperature map (Figure 2) based on the measured Bragg wavelength. The computing device 14 derives the wavelength shift Δλ corresponding to the temperature difference ΔT from the wavelength-temperature map, and derives the temperature-compensated strain ε of each detection site 7 from the wavelength shift-strain map (Figure 3) based on this wavelength shift Δλ.

(歪み補償温度T1の演算)
演算装置14は、車両の電池セル1を使用する走行中に歪み補償温度T1を演算する。まず、各検出部位7の温度補償歪みεの前回値ε1に基いて波長シフト-歪みマップ(図3)から歪みε1に対応する波長シフトΔλ1を導出する。各検出部位7の光学センサ6によって得られるブラッド波長λ2から波長シフトΔλ1を減算し、その減算補正後の波長λ3に基づいて波長-温度マップ(図2)から各検出部位7の歪み補償温度T1を導出する。
(Calculation of strain compensation temperature T1)
The computing device 14 calculates the strain compensation temperature T1 while the vehicle is running using the battery cell 1. First, a wavelength shift Δλ1 corresponding to the strain ε1 is derived from the wavelength shift-strain map (FIG. 3) based on the previous value ε1 of the temperature compensation strain ε at each detection site 7. The wavelength shift Δλ1 is subtracted from the blood wavelength λ2 obtained by the optical sensor 6 at each detection site 7, and the strain compensation temperature T1 at each detection site 7 is derived from the wavelength-temperature map (FIG. 2) based on the wavelength λ3 corrected by the subtraction.

(波長-温度マップの修正)
光学センサ6を電池セル1の検出部位7に固着したとき、光学センサ6に負荷がかかってその歪みを生ずることがある。その場合、その歪みが波長測定器11による測定値に反映されるため、演算装置14によって得られる温度補償歪みε及び歪み補償温度T1に当該歪み分の誤差を生ずる。
(Correction of wavelength-temperature map)
When the optical sensor 6 is fixed to the detection site 7 of the battery cell 1, a load may be placed on the optical sensor 6, causing distortion. In that case, the distortion will be reflected in the measurement value obtained by the wavelength measurement device 11, causing an error of the amount of the distortion to occur in the temperature-compensated strain ε and strain-compensated temperature T1 obtained by the calculation device 14.

そこで、光学センサ6を電池セル1の検出部位7に固着した後、電池セル1の最初の使用を開始する前に(電池セル1の温度が外気温に等しいとみなすことができる駐車状態で)、各検出部位7について光学センサ6によるブラッド波長及び外気温を測定する。そして、そのブラッド波長に基づいて波長-温度マップ(図2)から波長対応温度を導出する。この波長対応温度と外気温に温度差がある光学センサ6が存在するときは、その光学センサ6の波長-温度マップに、波長対応温度が外気温に一致するように温度を当該温度差分だけ変更する修正を加える。この修正した波長-温度マップが上記温度補償歪みε及び歪み補償温度T1の検出に使用される。 Therefore, after the optical sensor 6 is fixed to the detection site 7 of the battery cell 1, before the first use of the battery cell 1 is started (in a parked state where the temperature of the battery cell 1 can be considered to be equal to the outside air temperature), the blood wavelength and outside air temperature are measured by the optical sensor 6 for each detection site 7. Then, based on the blood wavelength, the wavelength-corresponding temperature is derived from the wavelength-temperature map (Figure 2). If there is an optical sensor 6 for which there is a temperature difference between this wavelength-corresponding temperature and the outside air temperature, a correction is made to the wavelength-temperature map of that optical sensor 6 by changing the temperature by the temperature difference so that the wavelength-corresponding temperature matches the outside air temperature. This corrected wavelength-temperature map is used to detect the temperature compensation strain ε and the strain compensation temperature T1.

(温度補償歪み及び歪み補償温度の演算処理の流れ)
図4に演算装置14による温度補償歪み演算処理の流れを示す。スタート後のステップS1において、車両の駐車時間が3時間を経過したか否かが判別される。駐車時間が3時間を越えるときはステップS2に進んで、外気温センサ15から外気温情報(外気温T)を取得する。続くステップS3において、各検出部位7の光学センサ6によって反射されるブラッド波長λ’を波長測定器11で測定して取得する。続くステップS4において、そのブラッド波長λ’に基いて波長-温度マップ(図2)から波長対応温度T’を導出する。続くステップS5において、その波長対応温度T’と外気温Tの温度差ΔT(=T’-T)に基いて波長-温度マップ(図2)から波長シフトΔλを導出する。続くステップS6において、その波長シフトΔλに基づいて波長シフト-歪みマップ(図3)から各検出部位7の温度補償歪みεを導出する。
(Flow of calculation process of temperature compensation strain and strain compensation temperature)
FIG. 4 shows the flow of the temperature compensation distortion calculation process by the calculation device 14. In step S1 after the start, it is determined whether the parking time of the vehicle has exceeded three hours. If the parking time exceeds three hours, the process proceeds to step S2, where outside air temperature information (outside air temperature T) is obtained from the outside air temperature sensor 15. In the following step S3, the blood wavelength λ' reflected by the optical sensor 6 of each detection site 7 is measured and obtained by the wavelength measuring device 11. In the following step S4, the wavelength-corresponding temperature T' is derived from the wavelength-temperature map (FIG. 2) based on the blood wavelength λ'. In the following step S5, the wavelength shift Δλ is derived from the wavelength-temperature map (FIG. 2) based on the temperature difference ΔT (=T'-T) between the wavelength-corresponding temperature T' and the outside air temperature T. In the following step S6, the temperature compensation distortion ε of each detection site 7 is derived from the wavelength shift-distortion map (FIG. 3) based on the wavelength shift Δλ.

図5に演算装置14による歪み補償温度演算処理の流れを示す。スタート後のステップS1において、車両走行中(電池セル1の使用中)か否かが判別される。車両走行中であるときはステップS2に進んで、直近で検出した各検出部位7の温度補償歪み(温度補償歪みの前回値)ε1を読み込む。続くステップS3において、その温度補償歪みε1に基づいて波長シフト-歪みマップ(図3)から波長シフトΔλ1を導出する。続くステップS4において、各検出部位7の光学センサ6によって反射されるブラッド波長λ2を波長測定器11で測定して取得する。続くステップS5において、そのブラッド波長λ2から波長シフトΔλ1を減算して、補正後波長λ3を求める。続くステップS6において、その補正後波長λ3に基づいて波長-温度マップ(図2)から各検出部位7の歪み補償温度T1を導出する。 Figure 5 shows the flow of the strain compensation temperature calculation process by the calculation device 14. In step S1 after starting, it is determined whether the vehicle is running (battery cell 1 is in use) or not. If the vehicle is running, proceed to step S2, and the temperature compensation strain (previous value of temperature compensation strain) ε1 of each detection site 7 detected most recently is read. In the following step S3, the wavelength shift Δλ1 is derived from the wavelength shift-strain map (Figure 3) based on the temperature compensation strain ε1. In the following step S4, the blood wavelength λ2 reflected by the optical sensor 6 of each detection site 7 is measured and obtained by the wavelength measuring device 11. In the following step S5, the wavelength shift Δλ1 is subtracted from the blood wavelength λ2 to obtain the corrected wavelength λ3. In the following step S6, the strain compensation temperature T1 of each detection site 7 is derived from the wavelength-temperature map (Figure 2) based on the corrected wavelength λ3.

上記実施形態によれば、電池セル1の検出部位7の温度補償歪みを求めるための温度情報を外気温センサ15から得るから、光ファイバ4には温度補償用の光学センサを設ける必要がない。従って、温度補償用光学センサの性能によって温度補償歪みの検出精度が左右されるということがなく、温度補償歪みを安定して精度良く検出することができる。そうして、歪み補償温度の検出において、温度補償歪みの前回値を歪み情報とするから、歪み補償温度を安定して精度良く検出することができる。 According to the above embodiment, the temperature information for determining the temperature compensation strain at the detection site 7 of the battery cell 1 is obtained from the ambient temperature sensor 15, so there is no need to provide an optical sensor for temperature compensation in the optical fiber 4. Therefore, the detection accuracy of the temperature compensation strain is not affected by the performance of the optical sensor for temperature compensation, and the temperature compensation strain can be detected stably and accurately. In addition, in detecting the strain compensation temperature, the previous value of the temperature compensation strain is used as the strain information, so the strain compensation temperature can be detected stably and accurately.

また、上記実施形態によれば、光学センサ6を電池セル1の検出部位7に固着した後、電池セル1の最初の使用を開始する前に、ブラッド波長及び外気温を測定し、波長対応温度が外気温に一致するように波長-温度マップを修正する。従って、光学センサ6に取付歪みを生じていても、温度補償歪み及び歪み補償温度を精度良く検出することができる。 In addition, according to the above embodiment, after the optical sensor 6 is fixed to the detection site 7 of the battery cell 1, the blood wavelength and the outside air temperature are measured before the first use of the battery cell 1 is started, and the wavelength-temperature map is corrected so that the wavelength-corresponding temperature matches the outside air temperature. Therefore, even if the optical sensor 6 has an installation distortion, the temperature compensation distortion and the distortion compensation temperature can be detected with high accuracy.

また、上記実施形態によれば、電池セル1の最も広い面1aの中央領域(歪みが出やすい領域)Cと冷媒通路2,3から遠い領域(高温になりやすい領域)Fの各々に検出部位7を設けて、温度補償歪み及び歪み補償温度を検出する。従って、電池セル1の温度上昇及び歪み発生を早めに知って、その対策(電池セル1の冷却増強、電池セル1の使用停止等)をとることができる。 In addition, according to the above embodiment, detection sites 7 are provided in the central region C (region where distortion is likely to occur) of the widest surface 1a of the battery cell 1 and in the region F far from the refrigerant passages 2 and 3 (region where high temperatures tend to occur) to detect temperature-compensated distortion and distortion-compensated temperature. Therefore, it is possible to detect the temperature rise and distortion of the battery cell 1 early on and take measures (increasing cooling of the battery cell 1, stopping use of the battery cell 1, etc.).

また、上記実施形態によれば、冷媒通路2,3の一方側から他方側にわたるように広がった面1aにおいて、その一方側から他方側に向かって間隔をおいて複数の検出部位7を設けて、温度補償歪み及び歪み補償温度を検出する。従って、相対する冷媒通路2,3間で電池セル1にどのような温度分布を生じているかを把握することができるようになる。よって、両冷媒通路2,3の冷媒流量の調節によって電池セル1の温度を目標温度に制御すること、或いは局所的な温度ムラを生ずることを防止することが容易になる。 In addition, according to the above embodiment, on the surface 1a extending from one side to the other side of the refrigerant passages 2, 3, a plurality of detection sites 7 are provided at intervals from one side to the other side to detect temperature compensation strain and strain compensation temperature. Therefore, it becomes possible to grasp the type of temperature distribution occurring in the battery cell 1 between the opposing refrigerant passages 2, 3. Therefore, by adjusting the refrigerant flow rate in both refrigerant passages 2, 3, it becomes easy to control the temperature of the battery cell 1 to a target temperature or prevent local temperature unevenness from occurring.

なお、図1では、冷媒通路2,3の一方側から他方側に向かって間隔をおいて3つの検出部位7を設けているが、これは一例である。さらに、多数の検出部位7を短間隔で設けることができ、それにより、電池セル1の温度分布をより精細に把握することができる。 In FIG. 1, three detection points 7 are provided at intervals from one side of the refrigerant passages 2 and 3 to the other side, but this is just one example. Furthermore, multiple detection points 7 can be provided at short intervals, which allows the temperature distribution of the battery cells 1 to be grasped more precisely.

1 電池セル
2 冷媒通路
3 冷媒通路
4 光ファイバ
5 光源
6 光学センサ
7 検出部位
11 波長測定器
14 演算装置
15 外気温センサ
REFERENCE SIGNS LIST 1 Battery cell 2 Coolant passage 3 Coolant passage 4 Optical fiber 5 Light source 6 Optical sensor 7 Detection part 11 Wavelength measuring device 14 Calculation device 15 Outside air temperature sensor

Claims (11)

車両に搭載された電池セルの温度及び歪みを検出する車両用電池の状態検出方法であって、
入射光に対して反射光を生じその反射光の波長が形状変化及び温度変化に応じて変化する光学センサを有し、該光学センサが上記電池セルの温度及び歪みを検出すべき検出部位に固着された光ファイバと、
上記波長を測定する波長測定器と、
上記車両の外気温を測定する外気温センサとを備え、
上記車両の上記電池セルを使用しない駐車時に上記波長及び上記外気温を測定するステップと、
上記駐車時に測定した上記波長と上記外気温とに基いて、上記検出部位の温度補償歪みを求めるステップと、
上記電池セルの使用時に、上記波長測定器によって上記反射光の波長を測定するステップと、
上記使用時に測定した上記波長と上記温度補償歪みに基づいて、上記検出部位の歪み補償温度を求めるステップとを備えていることを特徴とする車両用電池の状態検出方法。
A method for detecting the state of a vehicle battery, comprising the steps of: detecting a temperature and a distortion of a battery cell mounted on a vehicle,
an optical sensor that reflects incident light and whose wavelength changes in response to changes in shape and temperature, said optical sensor being fixed to an optical fiber at a detection portion of the battery cell where the temperature and distortion of the battery cell are to be detected;
A wavelength measuring device for measuring the wavelength;
An outside air temperature sensor for measuring an outside air temperature of the vehicle,
measuring the wavelength and the outside air temperature when the vehicle is parked and not using the battery cell;
determining a temperature compensation strain of the detection portion based on the wavelength and the outside air temperature measured during parking;
measuring a wavelength of the reflected light by the wavelength measuring device when the battery cell is in use;
a step of determining a strain-compensated temperature of the detection portion based on the wavelength and the temperature-compensated strain measured during use.
請求項1において、
上記光学センサによる反射光の波長の温度依存性データを備え、
上記温度補償歪みを求めるステップでは、上記温度依存性データに基づいて、上記駐車時に測定された上記波長に対応する温度を求め、該温度と上記駐車時に測定された外気温との温度差に対応する波長シフト量から上記温度補償歪みを求めることを特徴とする車両用電池の状態検出方法。
In claim 1,
Data on the temperature dependence of wavelength of reflected light by the optical sensor is provided;
A method for detecting the state of a vehicle battery, characterized in that in the step of calculating the temperature compensation distortion, a temperature corresponding to the wavelength measured while the vehicle is parked is calculated based on the temperature dependence data, and the temperature compensation distortion is calculated from an amount of wavelength shift corresponding to a temperature difference between the calculated temperature and the outside air temperature measured while the vehicle is parked.
請求項2において、
上記光学センサを上記電池セルの上記検出部位に固着した後、上記電池セルの最初の使用を開始する前に上記波長及び外気温を測定し、上記温度依存性データに基いて当該波長に対応する温度を求め、この温度が上記外気温に一致するように、上記温度依存性データを修正するデータ修正ステップを備え、この修正した温度依存性データを用いて上記温度補償歪みを求めることを特徴とする車両用電池の状態検出方法。
In claim 2,
a data correction step of measuring the wavelength and the outside air temperature after the optical sensor is fixed to the detection portion of the battery cell and before the first use of the battery cell is started, determining the temperature corresponding to the wavelength based on the temperature dependence data, and correcting the temperature dependence data so that this temperature coincides with the outside air temperature, and determining the temperature compensation distortion using the corrected temperature dependence data.
請求項2又は請求項3において、
上記歪み補償温度を求めるステップでは、上記電池セルの使用時に検出された上記波長から上記温度補償歪みの前回値に対応する波長シフト量を減算し、この減算後の波長から上記温度依存性データに基づいて歪み補償温度を求めることを特徴とする車両用電池の状態検出方法。
In claim 2 or 3,
A method for detecting the state of a vehicle battery, characterized in that in the step of calculating the distortion compensation temperature, a wavelength shift amount corresponding to a previous value of the temperature compensation distortion is subtracted from the wavelength detected when the battery cell is in use, and the distortion compensation temperature is calculated from the wavelength after subtraction based on the temperature dependence data.
請求項1乃至請求項4のいずれか一において、
上記電池セルは六面体状の角型セルであり、
上記電池セルの六面のうちの少なくとも1つの面に沿って延びる電池セル冷却用の冷媒通路を備え、
上記電池セルの六面のうちの最も広い面の中央領域と該中央領域に比べて上記冷媒通路から遠い領域の各々に上記検出部位が設けられ、これら検出部位に上記光学センサが設けられることを特徴とする車両用電池の状態検出方法。
In any one of claims 1 to 4,
The battery cell is a hexahedral rectangular cell,
a coolant passage for cooling the battery cell extending along at least one of six faces of the battery cell;
a detection portion provided in a central region of the widest of the six faces of the battery cell and in a region farther from the refrigerant passage than the central region, and the optical sensor is provided at these detection portions.
請求項1乃至請求項5のいずれか一において、
上記電池セルの互いに逆向きになった面の各々に沿って延びる2本の電池セル冷却用の冷媒通路を備え、
上記光ファイバは、上記電池セルの上記両冷媒通路の一方側から他方側にわたるように広がった面に、当該両冷媒通路の一方側から他方側に向かって延びるように配設された部分を有し、この部分に複数の上記光学センサが間隔をおいて設けられることを特徴とする車両用電池の状態検出方法。
In any one of claims 1 to 5,
two coolant passages for cooling the battery cells extending along the opposing faces of the battery cells,
the optical fiber has a portion arranged to extend from one side of both refrigerant passages of the battery cell to the other side on a surface that extends from one side of both refrigerant passages of the battery cell to the other side, and a plurality of the optical sensors are provided at intervals on this portion.
車両に搭載された電池セルの温度及び歪みを検出する車両用電池の状態検出制御装置であって、
入射光に対して反射光を生じその反射光の波長が形状変化及び温度変化に応じて変化する光学センサを有し、該光学センサが上記電池セルの温度及び歪みを検出すべき検出部位に固着された光ファイバと、
上記光ファイバに光を入射する光源と、
上記波長を測定する波長測定器と、
上記車両の外気温を測定する外気温センサと、
上記波長及び上記外気温に基いて上記検出部位の温度及び歪みを求める演算装置とを備え、
上記演算装置は、上記車両の上記電池セルを使用しない駐車時に、上記波長測定器によって測定される上記波長及び上記外気温センサによって測定される外気温を取得し、この波長と外気温とに基いて、上記検出部位の温度補償歪みを求め、上記電池セルの使用時に、上記波長測定器によって測定される上記波長を取得し、この波長と上記温度補償歪みに基づいて、上記検出部位の歪み補償温度を求めることを特徴とする車両用電池の状態検出制御装置。
A vehicle battery state detection control device that detects the temperature and distortion of a battery cell mounted on a vehicle,
an optical sensor that reflects incident light and whose wavelength changes in response to changes in shape and temperature, said optical sensor being fixed to an optical fiber at a detection portion of the battery cell where the temperature and distortion of the battery cell are to be detected;
a light source for injecting light into the optical fiber;
A wavelength measuring device for measuring the wavelength;
An outside air temperature sensor for measuring an outside air temperature of the vehicle;
a calculation device that calculates the temperature and strain of the detection site based on the wavelength and the outside air temperature,
The vehicle battery state detection control device is characterized in that the calculation device acquires the wavelength measured by the wavelength measuring device and the outside air temperature measured by the outside air temperature sensor when the vehicle is parked and the battery cell is not in use, and determines the temperature compensation distortion of the detection location based on the wavelength and the outside air temperature, and acquires the wavelength measured by the wavelength measuring device when the battery cell is in use, and determines the distortion compensation temperature of the detection location based on the wavelength and the temperature compensation distortion.
請求項7において、
上記演算装置は、上記光学センサによる反射光の波長の温度依存性データを備え、上記温度依存性データに基づいて、上記駐車時に測定された上記波長に対応する温度を求め、該温度と上記駐車時に測定された外気温との温度差に対応する波長シフト量から上記温度補償歪みを求めることを特徴とする車両用電池の状態検出方法。
In claim 7,
The computing device has temperature dependency data of the wavelength of the reflected light by the optical sensor, calculates a temperature corresponding to the wavelength measured while the vehicle is parked based on the temperature dependency data, and calculates the temperature compensation distortion from an amount of wavelength shift corresponding to the temperature difference between that temperature and the outside air temperature measured while the vehicle is parked.
請求項8において、
上記演算装置は、上記電池セルの使用時に測定された上記波長から上記温度補償歪みの前回値に対応する波長シフト量を減算し、この減算後の波長から上記温度依存性データに基づいて歪み補償温度を求めることを特徴とする車両用電池の状態検出制御装置。
In claim 8,
The computing device subtracts a wavelength shift amount corresponding to a previous value of the temperature compensation distortion from the wavelength measured during use of the battery cell, and calculates a distortion compensation temperature from the wavelength after subtraction based on the temperature dependence data.
請求項7乃至請求項9のいずれか一において、
上記電池セルは六面体状の角型セルであり、
上記電池セルの六面のうちの少なくとも1つの面に沿って延びる電池セル冷却用の冷媒通路を備え、
上記電池セルの六面のうちの最も広い面の中央領域と該中央領域に比べて上記冷媒通路から遠い領域の各々に上記検出部位が設けられ、これら検出部位に上記光学センサが設けられることを特徴とする車両用電池の状態検出制御装置。
In any one of claims 7 to 9,
The battery cell is a hexahedral rectangular cell,
a coolant passage for cooling the battery cell extending along at least one of six faces of the battery cell;
a detection site provided in a central region of the widest of the six faces of the battery cell and in a region farther from the refrigerant passage than the central region, and the optical sensor is provided at these detection sites.
請求項7乃至請求項10のいずれか一において、
上記電池セルの互いに逆向きになった面の各々に沿って延びる2本の電池セル冷却用の冷媒通路を備え、
上記光ファイバは、上記電池セルの上記両冷媒通路の一方側から他方側にわたるように広がった面に、当該両冷媒通路の一方側から他方側に向かって延びるように配設された部分を有し、この部分に複数の上記光学センサが間隔をおいて設けられることを特徴とする車両用電池の状態検出制御装置。
In any one of claims 7 to 10,
two coolant passages for cooling the battery cells extending along the opposing faces of the battery cells,
the optical fiber has a portion arranged to extend from one side of both refrigerant passages of the battery cell to the other side on a surface that extends from one side of both refrigerant passages of the battery cell to the other side, and a plurality of the optical sensors are provided at intervals in this portion.
JP2020159293A 2020-09-24 2020-09-24 Vehicle battery state detection method and detection control device Active JP7484615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020159293A JP7484615B2 (en) 2020-09-24 2020-09-24 Vehicle battery state detection method and detection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020159293A JP7484615B2 (en) 2020-09-24 2020-09-24 Vehicle battery state detection method and detection control device

Publications (2)

Publication Number Publication Date
JP2022052827A JP2022052827A (en) 2022-04-05
JP7484615B2 true JP7484615B2 (en) 2024-05-16

Family

ID=80963306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159293A Active JP7484615B2 (en) 2020-09-24 2020-09-24 Vehicle battery state detection method and detection control device

Country Status (1)

Country Link
JP (1) JP7484615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218472050U (en) * 2022-09-15 2023-02-10 比亚迪股份有限公司 Battery cell, battery module and battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289265A (en) 2001-03-23 2002-10-04 Mitsubishi Heavy Ind Ltd Lithium secondary battery monitoring device
JP2010118239A (en) 2008-11-12 2010-05-27 Denso Corp Battery cooling device
JP2013148551A (en) 2012-01-23 2013-08-01 Toyota Industries Corp Optical fiber for temperature sensor, and electric power device monitoring system
JP2015198085A (en) 2014-04-01 2015-11-09 パロ アルト リサーチ センター インコーポレイテッド Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes
JP2016020900A5 (en) 2015-07-01 2018-08-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677916B2 (en) 2014-07-15 2017-06-13 Palo Alto Research Center Incorporated Energy system monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289265A (en) 2001-03-23 2002-10-04 Mitsubishi Heavy Ind Ltd Lithium secondary battery monitoring device
JP2010118239A (en) 2008-11-12 2010-05-27 Denso Corp Battery cooling device
JP2013148551A (en) 2012-01-23 2013-08-01 Toyota Industries Corp Optical fiber for temperature sensor, and electric power device monitoring system
JP2015198085A (en) 2014-04-01 2015-11-09 パロ アルト リサーチ センター インコーポレイテッド Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes
JP2016020900A5 (en) 2015-07-01 2018-08-09

Also Published As

Publication number Publication date
JP2022052827A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
Nascimento et al. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study
US11450918B2 (en) Battery module gas sensor for battery cell monitoring
US7155075B2 (en) Optical battery temperature monitoring system and method
CN105826626B (en) Electric vehicle battery pack monitoring assembly and method
US10818978B2 (en) Battery module having a pressure sensor
KR102172737B1 (en) Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes
US9209494B2 (en) Monitoring/managing electrochemical energy device using detected intercalation stage changes
JP7484615B2 (en) Vehicle battery state detection method and detection control device
KR102385704B1 (en) Apparatus and method for determining the heating temperature of a heating element for an electrically heated catalytic converter, and a vehicle
Panchal et al. Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach
Nascimento et al. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions
US10801900B2 (en) Inspection aid
Yu et al. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors
JP2009059582A (en) Pressure detecting device of secondary battery
JP3832332B2 (en) Battery temperature detector
Li et al. A smart Li-ion battery with self-sensing capabilities for enhanced life and safety
Hong et al. A cryogenic sensor based on fiber Bragg grating for storage monitoring of liquefied natural gas
EP4057418A1 (en) Battery system and battery module evaluation method capable of detecting damaged battery cell
CN112179519A (en) Electric vehicle battery temperature monitoring and alarming system and using method thereof
Atchison et al. Fiber optic based thermal and strain sensing of lithium-ion batteries at the individual cell level
TW202245322A (en) A battery pack
Litos et al. A measuring system for experimental research on the thermomechanical coupling of disc brakes
US12040503B2 (en) Battery module gas sensor for battery cell monitoring
CN117030051B (en) Lithium battery storage temperature monitoring system for distributed optical fiber temperature measurement
US20230152259A1 (en) Calorimeter for in operando measuring of the overall heat released by a battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150