JP7481628B2 - Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same - Google Patents

Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same Download PDF

Info

Publication number
JP7481628B2
JP7481628B2 JP2020170607A JP2020170607A JP7481628B2 JP 7481628 B2 JP7481628 B2 JP 7481628B2 JP 2020170607 A JP2020170607 A JP 2020170607A JP 2020170607 A JP2020170607 A JP 2020170607A JP 7481628 B2 JP7481628 B2 JP 7481628B2
Authority
JP
Japan
Prior art keywords
coating
steel sheet
aluminum borate
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020170607A
Other languages
Japanese (ja)
Other versions
JP2022062529A (en
Inventor
史明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020170607A priority Critical patent/JP7481628B2/en
Publication of JP2022062529A publication Critical patent/JP2022062529A/en
Application granted granted Critical
Publication of JP7481628B2 publication Critical patent/JP7481628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、方向性電磁鋼板の張力被膜形成用塗布剤及びその製造方法並びにこれを用いた方向性電磁鋼板の製造方法に関する。 The present invention relates to a coating agent for forming a tension coating on grain-oriented electrical steel sheets, a manufacturing method thereof, and a manufacturing method thereof for grain-oriented electrical steel sheets.

方向性電磁鋼板は、{110}<001>を主方位とする結晶組織を有することを特徴とする。方向性電磁鋼板は主として変圧器の鉄心材料として用いられており、特にエネルギーロスを少なくするために鉄損の小さい材料が求められている。鉄及び珪素を含有する鉄合金は結晶磁気異方性が大きいため、外部張力を付加すると磁区の細分化が起こり、鉄損の主要素である渦電流損失を低下させることができる。特に、5%以下の珪素を含有する方向性電磁鋼板の鉄損の低減には鋼板に張力を付与することが有効であることが知られている。この張力は、表面に形成された被膜によって付与される。 Grain-oriented electrical steel sheets are characterized by having a crystal structure with a primary orientation of {110}<001>. Grain-oriented electrical steel sheets are primarily used as iron core materials for transformers, and materials with low iron loss are particularly sought after to reduce energy loss. Iron and iron alloys containing silicon have large crystalline magnetotropy, so when external tension is applied, magnetic domains are subdivided, and eddy current loss, the main factor in iron loss, can be reduced. In particular, it is known that applying tension to the steel sheet is effective in reducing the iron loss of grain-oriented electrical steel sheets containing 5% or less silicon. This tension is applied by a coating formed on the surface.

特許文献1には、特に高い張力を発生する被膜を有する方向性電磁鋼板として、硼酸アルミニウム結晶を主とする被膜を表面に有する方向性電磁鋼板が開示されている。 Patent Document 1 discloses a grain-oriented electrical steel sheet having a coating that generates particularly high tension, the coating being mainly composed of aluminum borate crystals on the surface.

ある被膜が高張力被膜となるためには、被膜のヤング率が高く、かつ熱膨張係数が小さいことが求められる。一般に、結晶は非晶質よりもヤング率が高い。ホウ酸アルミニウムからなる被膜は主たる構成物が結晶であるためシリカとリン酸塩からなる従来の非晶質の被膜よりもヤング率が高い。ホウ酸アルミニウムからなる被膜は、熱膨張係数も十分に低いため、ヤング率の効果と相まって、高い張力を得ることが可能である。 For a coating to become a high-tensile coating, it is required that the coating have a high Young's modulus and a small coefficient of thermal expansion. In general, crystals have a higher Young's modulus than amorphous materials. A coating made of aluminum borate is primarily composed of crystals, so it has a higher Young's modulus than conventional amorphous coatings made of silica and phosphate. A coating made of aluminum borate also has a sufficiently low coefficient of thermal expansion, which, combined with the effect of the Young's modulus, makes it possible to obtain high tensile strength.

しかし、特許文献1の技術では現在使われている絶縁被膜に比較して防錆効果が弱いことから、この点を改善する必要があった。 However, the technology in Patent Document 1 has a weaker rust prevention effect than the insulating coatings currently in use, and this point needed to be improved.

このような問題を改善するために、特許文献2には、ホウ酸アルミニウム被膜と現行被膜との二層塗りの方法が開示されている。特許文献3には、無電解ニッケルめっきによるホウ酸アルミニウム被膜形成前の下地処理が開示されている。特許文献4には、ホウ酸アルミニウム被膜上に防錆成分を塗布する方法が開示されている。特許文献5には、防錆成分含有ホウ酸アルミニウム被膜成分の提案がなされている。 To solve these problems, Patent Document 2 discloses a method of applying two layers of an aluminum borate coating and an existing coating. Patent Document 3 discloses a base treatment prior to the formation of an aluminum borate coating by electroless nickel plating. Patent Document 4 discloses a method of applying a rust-preventive component onto an aluminum borate coating. Patent Document 5 proposes an aluminum borate coating component that contains a rust-preventive component.

特開平6-65754号公報Japanese Patent Application Laid-Open No. 6-65754 特開平9-272982号公報Japanese Patent Application Laid-Open No. 9-272982 特開平9-279358号公報Japanese Patent Application Laid-Open No. 9-279358 特開平8-277474号公報Japanese Patent Application Laid-Open No. 8-277474 特開平9-256164号公報Japanese Patent Application Laid-Open No. 9-256164

特許文献2の技術は、工程が増えることでコストが増加する、また、占積率が悪化するという問題があった。特許文献3、特許文献4の技術も、また、工程増によるコストの増加が問題であった。特許文献5の技術は防錆成分による張力低下等の問題の克服が難しいとの課題があった。 The technology of Patent Document 2 had the problem that the cost increased due to the increase in the number of processes and the space factor deteriorated. The technologies of Patent Documents 3 and 4 also had the problem of the increase in costs due to the increase in the number of processes. The technology of Patent Document 5 had the problem that it was difficult to overcome the problem of the reduction in tension due to the rust-preventing components.

本発明は上記の事情に鑑みなされたものであって、高い張力が付与されるホウ酸アルミニウム被膜を有する方向性電磁鋼板の防錆性を向上する簡便な方法を提供することを課題とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a simple method for improving the rust prevention properties of grain-oriented electrical steel sheets having an aluminum borate coating that is imparted with high tension.

本発明者らは、ホウ酸アルミニウム被膜における耐錆性の問題は、被膜中に含まれる未反応のホウ素を抑制すれば解決できると考え、未反応のホウ素を低減する方法を検討した。その結果、ホウ酸アルミニウム被膜形成用の塗布剤中に、ホウ酸アルミニウムの結晶化を促進するためのホウ酸アルミニウムの微細粒子を加えることが効果的であることを見出した。 The inventors believed that the rust resistance problem in aluminum borate coatings could be solved by suppressing the amount of unreacted boron contained in the coating, and investigated methods for reducing the amount of unreacted boron. As a result, they found that adding fine particles of aluminum borate to the coating agent used to form the aluminum borate coating was effective in promoting the crystallization of aluminum borate.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention was made based on the above findings, and its gist is as follows:

(1)固形分濃度が5~40質量%であり、かつ(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶からなる平均粒子径が0.1~0.7μmである微細粒子を固形分のうち1~50質量%含み、残部にアルミニウム化合物及びホウ素化合物をAlとBのモル比Al/Bが1.9~2.1の範囲で含むことを特徴とする方向性電磁鋼板の張力被膜形成用塗布剤。 (1) A coating agent for forming a tension coating on grain-oriented electrical steel sheets, characterized in that the solid content is 5-40% by mass, the solid content is 1-50% by mass of fine particles having an average particle size of 0.1-0.7 μm and made of aluminum borate crystals with a (220) interplanar spacing of 0.525-0.535 nm, and the remainder is an aluminum compound and a boron compound in a molar ratio of Al to B, Al/B, in the range of 1.9-2.1.

(2)前記(1)の方向性電磁鋼板の張力被膜形成用塗布剤を製造する方法であって、アルミニウム化合物とホウ素化合物をAlとBのモル比Al/Bで1.9~2.1の範囲で含む混合物を作製し、上記混合物を800~1000℃で焼成してホウ酸アルミニウム粉体を合成し、得られたホウ酸アルミニウム粉体を粉砕して(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶からなる平均粒子径が0.1~0.7μmの微細粒子を得、得られた微細粒子を溶媒に加える工程を含むことを特徴とする方向性電磁鋼板の張力被膜形成用塗布剤の製造方法。 (2) A method for producing a coating agent for forming a tensile coating on grain-oriented electrical steel sheets as described in (1) above, comprising the steps of preparing a mixture containing an aluminum compound and a boron compound in a molar ratio of Al to B, Al/B, in the range of 1.9 to 2.1, firing the mixture at 800 to 1000°C to synthesize aluminum borate powder, pulverizing the obtained aluminum borate powder to obtain fine particles having an average particle size of 0.1 to 0.7 μm and consisting of aluminum borate crystals with a (220) interplanar spacing of 0.525 to 0.535 nm, and adding the obtained fine particles to a solvent.

(3)方向性電磁鋼板の製造方法であって、仕上げ焼鈍が終了した鋼板に、前記(1)の方向性電磁鋼板の張力被膜形成用塗布剤を塗布乾燥し、次いで、露点が0~40℃であり、水素を0~30体積%含み残部が窒素及び不活性ガスの一方又は両方である雰囲気中で、750~1000℃で20秒間以上熱処理することを特徴とする方向性電磁鋼板の製造方法。 (3) A method for producing grain-oriented electrical steel sheet, comprising: applying the coating agent for forming a tension coating for grain-oriented electrical steel sheet described in (1) to a steel sheet that has been subjected to finish annealing, drying the coating agent, and then heat treating the steel sheet at 750 to 1000°C for 20 seconds or more in an atmosphere having a dew point of 0 to 40°C, containing 0 to 30% by volume of hydrogen, and the remainder being one or both of nitrogen and an inert gas.

本発明によれば、十分な耐錆性を備えるとともに、張力の大きいホウ酸アルミニウム被膜を簡便に形成可能な方向性電磁鋼板の張力被膜形成用塗布剤及びその製造方法、並びにこれを用いてホウ酸アルミニウム被膜を形成した方向性電磁鋼板の製造方法を提供することができる。 The present invention provides a coating agent for forming a tensile coating on grain-oriented electrical steel sheet that has sufficient rust resistance and can easily form an aluminum borate coating with high tension, a method for producing the same, and a method for producing grain-oriented electrical steel sheet on which an aluminum borate coating is formed using the same.

以下、本発明の好適な実施形態に基づき、本発明を詳細に説明する。 The present invention will be described in detail below based on a preferred embodiment of the present invention.

まず、本実施形態に係る方向性電磁鋼板の張力被膜形成用塗布剤(以下、単に「塗布剤」ともいう)について説明する。 First, we will explain the coating agent for forming a tension coating on the grain-oriented electrical steel sheet according to this embodiment (hereinafter, simply referred to as "coating agent").

(本発明者の検討)
方向性電磁鋼板として、二次再結晶焼鈍を終えた、表面にいわゆるグラス被膜を有する鋼板表面に、高い張力付与効果を有するホウ酸アルミニウム被膜を形成した鋼板が知られている。グラス被膜は数μm程度のフォルステライト結晶(Mg2SiO4)を主体とした酸化物からなる被膜である。
(Investigation by the inventor)
A known grain-oriented electrical steel sheet is one in which an aluminum borate coating having a high tension-imparting effect is formed on the surface of a steel sheet that has undergone secondary recrystallization annealing and has a so-called glass coating on its surface. The glass coating is a coating made of an oxide mainly composed of forsterite crystals ( Mg2SiO4 ) of about several μm in size.

通常この被膜には微細な欠陥があり、この欠陥の部分では鋼板がフォルステライトに覆われていないと考えられる。すなわち、グラス被膜の欠陥では鋼板が露出してホウ酸アルミニウム被膜と直接接している個所があり、このような個所では、ホウ酸アルミニウム被膜が水分を含むと鉄が溶出するため錆が発生すると推定される。 This coating usually has tiny defects, and it is believed that in these defective areas the steel sheet is not covered by forsterite. In other words, defects in the glass coating leave the steel sheet exposed in places where it is in direct contact with the aluminum borate coating, and it is believed that in these areas, when the aluminum borate coating absorbs moisture, iron dissolves, causing rust.

このような機構での錆の発生を防ぐためには、鋼板表面で鉄が溶出するpHとならないようにすることが考えられる。本発明者らは、鋼板表面を鉄が溶出するpHとしない方法で耐錆性を改善する方法を検討した。その考え方は以下のとおりである。 In order to prevent rust from occurring through this mechanism, it is conceivable to prevent the pH of the steel sheet surface from being at a level at which iron dissolves. The inventors have investigated a method for improving rust resistance by preventing the pH of the steel sheet surface from being at a level at which iron dissolves. The idea behind this is as follows.

本発明者らは、鋼板表面で鉄が溶出するpHとなる理由は、被膜中にホウ酸が存在するためであり、ホウ酸は、以下の原因で生成されると推定した。 The inventors hypothesized that the pH at the steel sheet surface at which iron dissolves is due to the presence of boric acid in the coating, and that boric acid is produced for the following reasons:

従来技術によるホウ酸アルミニウム被膜形成用塗布剤中のアルミニウムとホウ素の比率は、ホウ酸アルミニウムであるAl429の化学量論組成よりもホウ素量が多い組成となっている。この理由は、アルミニウムとホウ素の比率をホウ酸アルミニウムの化学量論組成とすると、ホウ酸アルミニウムの結晶が生成される温度が著しく高くなり、被膜形成工程で非常に高い温度とする必要が生じるためである。したがって、従来技術では、Al/Bをホウ酸アルミニウムの化学量論組成よりも小さくして、ホウ酸アルミニウム結晶が850℃程度で生成可能な組成としている。 The ratio of aluminum to boron in the coating agent for forming an aluminum borate film according to the prior art is a composition in which the amount of boron is greater than the stoichiometric composition of aluminum borate, Al 4 B 2 O 9. The reason for this is that if the ratio of aluminum to boron were the stoichiometric composition of aluminum borate, the temperature at which aluminum borate crystals are formed would be significantly higher, and a very high temperature would be required in the film formation process. Therefore, in the prior art, the Al/B is made smaller than the stoichiometric composition of aluminum borate, resulting in a composition in which aluminum borate crystals can be formed at about 850°C.

化学量論組成よりも余分なホウ素は、被膜焼き付け後でも被膜中にホウ酸として残存すると考えられる。ホウ酸が残存する被膜を有する鋼板が湿潤雰囲気に晒されると、被膜中に存在するホウ酸が水分を吸収して酸性環境を形成し、ホウ酸アルミニウム被膜と鋼板の界面において鉄が溶解する条件が満たされ、錆が発生すると推定される。したがって、耐錆性を向上するには余剰のホウ酸を排除すればよいと考えられる。 It is believed that excess boron compared to the stoichiometric composition remains in the coating as boric acid even after the coating is baked. When a steel sheet having a coating with residual boric acid is exposed to a humid atmosphere, the boric acid present in the coating absorbs moisture to form an acidic environment, which satisfies the conditions for iron to dissolve at the interface between the aluminum borate coating and the steel sheet, causing rust. Therefore, it is believed that the way to improve rust resistance is to eliminate the excess boric acid.

ホウ酸は高温での蒸気圧が高いため、余剰のホウ酸は高温での熱処理を行うと気化し、被膜中から除去できる可能性がある。実際、ホウ酸アルミニウムの化学量論組成よりもホウ素量が多い組成の塗布剤を1200℃程度で焼き付けると耐錆性が著しく改善される。しかし、この方法で実際の生産を行うためには1200℃程度の高温での熱処理が必要になるほか、連続熱処理を1200℃程度の高温で行う場合に問題となる板の塑性変形を避けるための技術開発等が必要である。したがって、ホウ酸アルミニウムの化学量論組成よりもホウ素量が多い組成の塗布剤を用いた場合、焼き付け後の被膜中から余剰のホウ酸をなくすことは現在のところ生産用の技術としては実現できていない。 Because boric acid has a high vapor pressure at high temperatures, excess boric acid may be vaporized by heat treatment at high temperatures and removed from the coating. In fact, baking a coating agent with a composition containing more boron than the stoichiometric composition of aluminum borate at around 1200°C significantly improves rust resistance. However, in order to actually carry out production using this method, heat treatment at a high temperature of around 1200°C is required, and technological development is required to avoid the plastic deformation of the plate, which is a problem when continuous heat treatment is performed at a high temperature of around 1200°C. Therefore, when using a coating agent with a composition containing more boron than the stoichiometric composition of aluminum borate, it is currently not possible to realize a production technology that can remove excess boric acid from the coating after baking.

そこで本発明者らは、ホウ素比率を上げずにホウ酸アルミニウム結晶を低温で形成することを検討した。その結果、ホウ酸アルミニウム被膜形成のための塗布剤に、ホウ酸アルミニウム結晶の微細粒子を添加することが効果的であることを見出した。ホウ酸アルミニウム被膜形成のための塗布剤に、ホウ酸アルミニウム結晶の微細粒子を添加することでホウ酸アルミニウム結晶の形成温度が低温化する理由は、次のように考えられる。 The inventors therefore investigated forming aluminum borate crystals at low temperatures without increasing the boron ratio. As a result, they discovered that adding fine particles of aluminum borate crystals to a coating agent for forming an aluminum borate film is effective. The reason why the temperature at which aluminum borate crystals are formed is lowered by adding fine particles of aluminum borate crystals to a coating agent for forming an aluminum borate film is thought to be as follows.

化学量論組成よりもホウ素量が多い組成を持つホウ酸アルミニウムの塗布剤を鋼板上に塗布乾燥すると、ホウ酸とアルミナが混合された状態となる。この状態から温度を上げてゆくと、ホウ酸とアルミナが反応して、まず、ホウ酸アルミニウムの非晶質相が形成されると考えられる。この反応が進行する系にホウ酸アルミニウムの結晶の微細粒子があらかじめ存在すると、これを核としてホウ酸アルミニウム結晶が形成されやすく、結果的に低温でホウ酸アルミニウム結晶からなる張力被膜が形成できると推定される。 When an aluminum borate coating, which has a composition with a higher amount of boron than the stoichiometric composition, is applied to a steel sheet and dried, a mixture of boric acid and alumina is formed. When the temperature is raised from this state, the boric acid and alumina react, and it is believed that an amorphous phase of aluminum borate is formed first. If fine particles of aluminum borate crystals are already present in the system in which this reaction progresses, these act as nuclei to make it easier for aluminum borate crystals to form, and as a result, it is believed that a tensile coating made of aluminum borate crystals can be formed at low temperatures.

以上から、本発明の効果が得られる機構は以下のように推定している。すなわち、ホウ酸アルミニウム微細粒子が含まれる塗布剤を焼き付ける際には、従来よりも低い温度でホウ酸アルミニウム結晶が被膜中に形成されるので、従来ホウ酸アルミニウム結晶生成温度を低下させるために塗布剤に余剰に配合していたホウ素源を減じることができる。その結果、焼き付け後の被膜中の残存ホウ酸量を著しく減じることができるので、水分の存在下でも、鋼板と被膜の界面における環境が、鉄が溶解する条件ではなくなる。 From the above, the mechanism by which the effects of the present invention are achieved is presumed to be as follows. That is, when a coating agent containing fine aluminum borate particles is baked, aluminum borate crystals are formed in the coating at a lower temperature than before, so it is possible to reduce the amount of boron source that was previously mixed in excess into the coating agent to lower the temperature at which aluminum borate crystals form. As a result, the amount of boric acid remaining in the coating after baking can be significantly reduced, so that even in the presence of moisture, the environment at the interface between the steel sheet and the coating is no longer one in which iron dissolves.

<方向性電磁鋼板被膜形成用塗布剤>
以下、本発明の方向性電磁鋼板の張力被膜形成用塗布剤について詳細に説明する。
<Coating agent for forming coating on grain-oriented electrical steel sheets>
The coating agent for forming a tension film on grain-oriented electrical steel sheet according to the present invention will be described in detail below.

本発明の方向性電磁鋼板の張力被膜形成用塗布剤は、固形分濃度が5~40質量%であり、かつ(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶からなる平均粒子径が0.1~0.7μmである微細粒子を固形分のうち1~50質量%含み、残部にアルミニウム化合物及びホウ素化合物をAlとBのモル比Al/Bが1.9~2.1の範囲で含む。ここで、AlとBのモル比Al/Bとは、アルミニウム化合物及びホウ素化合物に含まれるAl原子、B原子のモル比のことをいう。残部に含まれるアルミニウム化合物及びホウ素化合物は、それぞれ、後述する酸化アルミニウム等のアルミニウム源とホウ酸等のホウ素源である。 The coating agent for forming a tensile coating on grain-oriented electrical steel sheet of the present invention has a solids concentration of 5 to 40 mass %, contains 1 to 50 mass % of fine particles of aluminum borate crystals with an average particle size of 0.1 to 0.7 μm and a (220) interplanar spacing of 0.525 to 0.535 nm, and contains aluminum compounds and boron compounds in the balance with a molar ratio of Al to B, Al/B, in the range of 1.9 to 2.1. Here, the molar ratio of Al to B, Al/B, refers to the molar ratio of Al atoms and B atoms contained in the aluminum compounds and boron compounds. The aluminum compounds and boron compounds contained in the balance are, respectively, an aluminum source such as aluminum oxide and a boron source such as boric acid, which will be described later.

ホウ酸アルミニウム結晶にはいくつかの種類が存在する。本発明で方向性電磁鋼板の張力被膜形成用塗布剤に含まれることで高い張力を得ることができる添加粒子は、Al429の組成である結晶である。これは、CuターゲットによるX線回折での最強線の面間隔(220)が0.525~0.535nmのホウ酸アルミニウム結晶である。 There are several types of aluminum borate crystals. The additive particles that can obtain high tension when included in the coating agent for forming a tensile film on grain-oriented electrical steel sheet in the present invention are crystals with a composition of Al 4 B 2 O 9. This is an aluminum borate crystal with a plane spacing (220) of the strongest ray in X-ray diffraction using a Cu target of 0.525 to 0.535 nm.

塗布剤中の添加粒子の(220)面間隔が0.525~0.535nmであることは、塗布剤を100℃程度で乾燥した粉末のCuターゲットによるX線回折で確認することができる。塗布剤の乾燥物にはホウ酸アルミニウムの微細粒子以外にホウ酸及び水酸化アルミニウムが含まれるが、これらの回折線はホウ酸アルミニウムと異なるので、添加したホウ酸アルミニウム微細粒子の回折線を分離することができる。 The (220) interplanar spacing of the added particles in the coating agent is 0.525-0.535 nm, which can be confirmed by X-ray diffraction using a powdered Cu target obtained by drying the coating agent at around 100°C. The dried coating agent contains boric acid and aluminum hydroxide in addition to fine aluminum borate particles, but as the diffraction lines of these are different from those of aluminum borate, it is possible to separate the diffraction lines of the added fine aluminum borate particles.

上記のホウ酸アルミニウム結晶は、平均粒子径が0.1μmから~0.7μmである微細粒子である。ホウ酸アルミニウム結晶の微細粒子の大きさは、大きすぎると被膜の平滑性に問題を生じ、張力被膜形成後の占積率が低下するため好ましくない。一方、粒子径が小さすぎると塗布剤中での分散が困難になり、塗布剤中で粒子同士が凝集しやすくなり、微細粒子を添加した効果が得られにくくなる。したがって、添加する微細粒子の平均粒径は、0.1~0.7μmであることが必要である。 The aluminum borate crystals are fine particles with an average particle size of 0.1 μm to 0.7 μm. If the size of the fine particles of the aluminum borate crystals is too large, problems will arise with the smoothness of the coating, and the space factor will decrease after the formation of the tensile coating, which is not preferable. On the other hand, if the particle size is too small, it will be difficult to disperse them in the coating agent, and the particles will tend to aggregate together in the coating agent, making it difficult to achieve the effect of adding the fine particles. Therefore, the average particle size of the fine particles to be added needs to be 0.1 to 0.7 μm.

微細粒子の粒径は、同じく乾燥後の粉末について、X線回折ピークの半価幅から算出する方法が簡便である。この方法は式(1)に示すSherrerの式を用いてホウ酸アルミニウム結晶の結晶粒径tを見積もる方法である。 The particle size of the fine particles can be easily calculated from the half-width of the X-ray diffraction peak of the dried powder. This method estimates the crystal grain size t of the aluminum borate crystals using the Scherrer formula shown in formula (1).

Figure 0007481628000001
Figure 0007481628000001

ここで、K:定数(0.9)、λ:X線の波長(0.1542nm)、B:半価幅(rad)、θ:CuターゲットでのX線回折におけるピーク位置(°)である。 Here, K is a constant (0.9), λ is the wavelength of the X-ray (0.1542 nm), B is the half-width (rad), and θ is the peak position (°) in the X-ray diffraction with a Cu target.

ホウ酸アルミニウム結晶の微細粒子の塗布剤中の量が少なすぎると、ホウ酸アルミニウム結晶生成温度低下の効果が得られない。一方、多すぎると、平滑な張力被膜が得られなくなり、製品の占積率が低下する。したがって、固形分のうちホウ酸アルミニウム結晶の微細粒子が占める量を1~50質量%とする。なお、固形分には、ホウ酸アルミニウム結晶の微細粒子の他に、酸化アルミニウム等のアルミニウム源、ホウ酸等のホウ素源が含まれる。 If the amount of fine particles of aluminum borate crystals in the coating agent is too small, the effect of lowering the temperature at which aluminum borate crystals form will not be obtained. On the other hand, if the amount is too large, a smooth tensile coating will not be obtained and the space factor of the product will decrease. Therefore, the amount of fine particles of aluminum borate crystals in the solid content is set to 1 to 50 mass%. In addition to the fine particles of aluminum borate crystals, the solid content also contains an aluminum source such as aluminum oxide and a boron source such as boric acid.

固形分のうちの微細粒子が占める量は、まず塗布剤の固形分量を決定したのち、この塗布剤を静置した場合の沈殿物中のホウ素量から決定できる。塗布剤の固形分量は式(2)に従い求める。 The amount of fine particles in the solid content can be determined by first determining the solid content of the coating agent, and then determining the amount of boron in the precipitate when the coating agent is allowed to stand. The solid content of the coating agent is calculated according to formula (2).

固形分量(g)=A+B …(2)
ここで
A:アルミニウム源の酸化アルミニウム換算質量(g)
B:ホウ素源のオルトホウ酸換算質量(g)
Solid content (g) = A + B ... (2)
Where A: mass (g) of the aluminum source converted into aluminum oxide
B: mass of boron source converted to orthoboric acid (g)

本発明での微細粒子はホウ酸アルミニウムAl429の化学量論組成を持つと考えられる。したがって、沈殿物中のホウ素量とホウ酸アルミニウムのモル質量及び、最初の塗布剤の固形分量から、塗布剤中の固形分のうちの微細粒子が占める量を算出することができる。算出方法は以下のとおりである。 The fine particles in the present invention are considered to have a stoichiometric composition of aluminum borate Al 4 B 2 O 9. Therefore, the amount of fine particles in the solid content of the coating agent can be calculated from the amount of boron in the precipitate, the molar mass of aluminum borate, and the solid content of the initial coating agent. The calculation method is as follows.

まず分析対象の塗布剤を等分して2つの容器に分ける。一方の容器の塗布剤を乾燥し、残渣の中に含まれるホウ素及びアルミニウムの量を化学分析等により求め、それぞれのモル数をp(モル)、q(モル)とする。 First, the coating material to be analyzed is divided equally into two containers. The coating material in one container is dried, and the amount of boron and aluminum contained in the residue is determined by chemical analysis, etc., and the number of moles of each is designated p (moles) and q (moles).

もう一方の容器にある塗布剤は、沈殿物を回収してこの中に含まれるホウ酸アルミニウム微細粒子の量を決定する。沈殿物は全量回収する必要があるので、静置後の上澄みを注意深く捨て、残った沈殿物を回収する。静置する際には、塗布剤のゲル化が起こらないように静置前の塗布剤に10質量%程度の無機酸を加える。無機酸としては硝酸や塩酸を用いる。無機酸を加えることにより塗布剤中のアルミナゾル等アルミナ源が凝集して分散状態が悪くなるが、沈殿物中のホウ素量の分析には影響はない。 The precipitate from the coating agent in the other container is collected and the amount of fine aluminum borate particles contained therein is determined. Since the entire amount of precipitate needs to be collected, the supernatant liquid after leaving it to stand is carefully discarded and the remaining precipitate is collected. When leaving it to stand, about 10% by mass of inorganic acid is added to the coating agent before leaving it to prevent the coating agent from gelling. Nitric acid or hydrochloric acid is used as the inorganic acid. Adding inorganic acid causes the alumina sol and other alumina sources in the coating agent to coagulate and become less dispersed, but this does not affect the analysis of the amount of boron in the precipitate.

この方法では、微細粒子に含まれるホウ素以外の塗布剤中のホウ酸成分を十分排除することが必要である。微細粒子以外のホウ素は、水溶性のホウ酸であるので、上澄み中に溶解したホウ酸、あるいは沈殿物中に析出したホウ酸が多量に存在すると、分析のために乾燥させた沈殿物中にホウ酸が多量に残り、固形分のうちの微細粒子が占める量を正確に計測できない。このため、上澄みを廃棄したのちに残った水分を含む沈殿物の容積の3倍以上の純水を加えてこれを十分に攪拌した後再度静置し、上澄みを廃棄する作業を5回繰り返す。このような作業を行うことによって、固形分内に残存するホウ酸量を十分に低減できる。 In this method, it is necessary to thoroughly remove all boric acid components in the coating agent other than the boron contained in the fine particles. Since boron other than the fine particles is water-soluble boric acid, if there is a large amount of boric acid dissolved in the supernatant or precipitated in the precipitate, a large amount of boric acid will remain in the precipitate dried for analysis, and the amount of fine particles in the solid content cannot be accurately measured. For this reason, after discarding the supernatant, pure water three times the volume of the precipitate containing the remaining water is added, thoroughly stirred, and then allowed to stand again, and the supernatant is discarded. This process is repeated five times. By performing such operations, the amount of boric acid remaining in the solid content can be sufficiently reduced.

以上のようにして得られた沈殿物の含まれるホウ素のモル数をr(モル)とする。上澄み廃棄作業を5回以上行えば塗布剤中に含まれるホウ酸は十分に除去されているので、rはホウ酸アルミニウム微細粒子のホウ素由来と考えてよい。 The number of moles of boron contained in the precipitate obtained in this manner is called r (moles). If the supernatant is discarded five or more times, the boric acid contained in the coating agent is sufficiently removed, so r can be considered to be derived from the boron in the aluminum borate microparticles.

固形分中のホウ酸アルミニウム微細粒子の比率は、以下のように求める。 The ratio of aluminum borate fine particles in the solid content is calculated as follows:

乾燥後の残渣に含まれるホウ酸アルミニウム微細粒子以外のホウ素のオルトホウ酸換算量X(g)、アルミニウムの酸化アルミニウム換算量Y(g)とすると、それぞれp、qより
X=(p-r)×59.8
Y={(q-r×2)/2}×102
となる。なお上式での59.8はオルトホウ酸の分子量、102は酸化アルミニウムの分子量である。
If the amount of boron other than the aluminum borate fine particles contained in the residue after drying is converted to orthoboric acid as X (g), and the amount of aluminum is converted to aluminum oxide as Y (g), then X = (p-r) x 59.8 from p and q, respectively.
Y = {(q - r x 2) / 2} x 102
In the above formula, 59.8 is the molecular weight of orthoboric acid, and 102 is the molecular weight of aluminum oxide.

沈殿物中のホウ酸アルミニウム微細粒子の重量をZ(g)とすると、固形分中でホウ酸アルミニウム微細粒子が占める割合M(質量%)は
Z=(r/2)×146.5
M=Z×100/(X+Y+Z)
となる。ここで、146.5は、硼酸アルミニウム(Al429)の分子量である。
If the weight of the aluminum borate fine particles in the precipitate is Z (g), the proportion M (mass%) of the aluminum borate fine particles in the solid content is Z = (r/2) × 146.5
M = Z x 100 / (X + Y + Z)
Here, 146.5 is the molecular weight of aluminum borate (Al 4 B 2 O 9 ).

以上のようにして固形分中のホウ酸アルミニウム微細粒子の割合を決めることができる。 In this way, the proportion of aluminum borate fine particles in the solids can be determined.

微細粒子を添加した塗布剤全体の固形分濃度には、公知の技術と同様に適正範囲があり、低すぎると乾燥時に突沸等が生じて被膜欠陥が生じて被膜の張力が低下する。一方高すぎると塗布剤の安定性が低下し、ゲル化が起こりやすくなり、このような塗布剤では欠陥が多い被膜となり張力が低下する。したがって、固形分濃度は5~40質量%の間であることが必要である。ここで固形分濃度は、式(3)に従い定義する。 As with known technologies, there is an appropriate range for the solids concentration of the entire coating agent to which fine particles have been added. If it is too low, bumping and other problems will occur during drying, resulting in coating defects and reduced tension of the coating. On the other hand, if it is too high, the stability of the coating agent will decrease and gelation will occur more easily, resulting in a coating with many defects and reduced tension. Therefore, the solids concentration must be between 5 and 40% by mass. Here, the solids concentration is defined according to formula (3).

固形分濃度(質量%)={(WAB+WAl+WB)×100}/(WAB+WAl+WB+WW) …(3)
ここで
WAB:ホウ酸アルミニウム微細粒子の質量
WAl:アルミニウム源の酸化アルミニウム換算質量
WB:ホウ素源のオルトホウ酸換算質量
WW:塗布剤の水分量
である。
Solid concentration (mass%) = {(W AB + W Al + W B ) × 100} / (W AB + W Al + W B + W W ) ... (3)
here
W AB : Mass of aluminum borate microparticles
W Al : Mass of aluminum source converted to aluminum oxide
W B : Mass of boron source converted to orthoboric acid
W W : The water content of the coating agent.

アルミニウム源の酸化アルミニウム換算質量とは、アルミニウム源となる原料に対し、酸化アルミニウム(Al23)に含まれるアルミニウムのモル量が等しくなるような酸化アルミニウム量の質量に置き換えることを意味する。ホウ素源のオルトホウ酸換算質量も同様に、ホウ素源となる原料に対し、オルトホウ酸(H3BO3)に含まれるホウ素のモル量が等しくなるようなオルトホウ酸量の質量に置き換えることを意味する。 The aluminum oxide-equivalent mass of the aluminum source means that the raw material serving as the aluminum source is replaced with the mass of aluminum oxide ( Al2O3 ) such that the molar amount of aluminum contained in the aluminum oxide is equal to that of the raw material serving as the aluminum source. Similarly, the orthoboric acid-equivalent mass of the boron source means that the raw material serving as the boron source is replaced with the mass of orthoboric acid ( H3BO3 ) such that the molar amount of boron contained in the orthoboric acid is equal to that of the raw material serving as the boron source.

固形分のうちホウ酸アルミニウム微細粒子が占める量は式(4)にて求める。 The amount of aluminum borate fine particles in the solid content is calculated using formula (4).

固形分中のホウ酸アルミニウム微細粒子量(wt%)=WAB×100/(WAB+WAl+WB) …(4) Amount of aluminum borate fine particles in the solid content (wt%) = W AB × 100 / (W AB + W Al + W B ) ... (4)

本発明における塗布剤における微細粒子以外のホウ素とアルミニウムの比率は、従来技術よりもホウ素が少ない量にする必要があり、Al/Bで1.9~2.1の間であるとよい結果が得られる。Al/Bが小さすぎると被膜中の余剰ホウ酸量が多くなって耐錆性が不良となり、一方、大きすぎると十分な張力が得られなくなる。 The ratio of boron to aluminum other than the fine particles in the coating agent of the present invention must be less boron than in the prior art, and good results are obtained when Al/B is between 1.9 and 2.1. If Al/B is too small, the amount of excess boric acid in the coating increases, resulting in poor rust resistance, while if it is too large, sufficient tension cannot be obtained.

<方向性電磁鋼板の張力被膜形成用塗布剤の製造方法>
上記の方向性電磁鋼板の張力被膜形成用塗布剤は、(220)面間隔が0.525~0.535nmであるホウ酸アルミニウムの微細粒子を得、上述した固形分濃度、Al/Bとなるよう、溶媒に加えればよい。
<Method of manufacturing coating agent for forming tensile film on grain-oriented electrical steel sheet>
The coating agent for forming a tensile film on the above-mentioned grain-oriented electrical steel sheet may be prepared by obtaining fine particles of aluminum borate having a (220) interplanar spacing of 0.525 to 0.535 nm, and adding the particles to a solvent so as to achieve the above-mentioned solid content concentration, Al/B.

(220)面間隔が0.525~0.535nmであるホウ酸アルミニウムの微細粒子はホウ酸アルミニウム粉体を合成した後、これをボールミルなどで粉砕して得ることができる。ホウ酸アルミニウム粉体を得る方法は、ホウ酸アルミニウム被膜を形成する公知技術の塗布剤と同様な組成のゾルを乾燥、焼成することにより得られる。 Fine particles of aluminum borate with a (220) interplanar spacing of 0.525 to 0.535 nm can be obtained by synthesizing aluminum borate powder and then pulverizing it using a ball mill or the like. Aluminum borate powder can be obtained by drying and firing a sol with the same composition as a coating agent in known technology that forms an aluminum borate coating.

焼成温度はホウ酸アルミニウム結晶形成に十分な温度が必要で、最低800℃が必要である。温度が高い場合はホウ酸アルミニウム結晶を得るうえでは特に問題はないが、微細粒子に粉砕することが困難になりやすいことから上限を1000℃とする。 The firing temperature must be high enough to form aluminum borate crystals, and must be at least 800°C. If the temperature is higher, there is no particular problem in obtaining aluminum borate crystals, but it becomes difficult to crush into fine particles, so the upper limit is set at 1000°C.

微細粒子を得るためのゾルにおいては余剰ホウ酸の生成を抑制するために、本発明でのホウ酸アルミニウム被膜の塗布剤と同様にゾルのAl/Bを1.9~2.1の範囲とする必要がある。この値が大きすぎると被膜と同様にホウ酸アルミニウム結晶の形成が不十分であり、小さすぎると余剰ホウ酸が増えてこれを用いたホウ酸アルミニウム被膜の耐錆性が劣位となる。 In order to suppress the production of excess boric acid in the sol used to obtain fine particles, the Al/B ratio of the sol must be in the range of 1.9 to 2.1, as with the coating agent for the aluminum borate coating of the present invention. If this value is too large, the formation of aluminum borate crystals will be insufficient, as with the coating, and if it is too small, the excess boric acid will increase, resulting in inferior rust resistance of the aluminum borate coating used.

以下、塗布剤に含まれる各成分等について詳細に説明する。 Below, we will explain in detail each component contained in the coating agent.

(アルミニウム源)
塗布剤のアルミニウム源は、酸化アルミニウム及び/又は酸化アルミニウム前駆体化合物を含む。酸化アルミニウム前駆体化合物は、形成されるホウ酸アルミニウム被膜中で酸化アルミニウムを形成可能であれば特に限定されず、例えば、ベーマイトのようなAl23・mH2Oで表記される酸化アルミニウムの水和物、水酸化アルミニウム等が挙げられ、これらのうち1種を単独で又は2種以上を組み合わせて用いることができる。
(Aluminum Source)
The aluminum source of the coating agent includes aluminum oxide and/or an aluminum oxide precursor compound. The aluminum oxide precursor compound is not particularly limited as long as it can form aluminum oxide in the aluminum borate coating to be formed, and examples thereof include aluminum oxide hydrates represented by Al2O3.mH2O such as boehmite , aluminum hydroxide , etc., and one of these can be used alone or two or more can be used in combination.

アルミニウム源は、塗布剤中で分散していてもよいが、塗布在中に溶解していてもよい。通常、アルミニウム源は、塗布剤中で分散する。アルミニウム源は、塗布剤中で安定して分散するように、粒子状であることが好ましい。この場合、アルミニウム源のレーザー回折散乱法による体積基準平均粒径(D50)は、例えば0.005μm以上1.0μm以下、好ましくは0.015μm以上0.7μm以下である。 The aluminum source may be dispersed in the coating agent, or may be dissolved in the coating agent. Usually, the aluminum source is dispersed in the coating agent. The aluminum source is preferably particulate so that it is stably dispersed in the coating agent. In this case, the volume-based average particle size (D50) of the aluminum source measured by the laser diffraction scattering method is, for example, 0.005 μm or more and 1.0 μm or less, preferably 0.015 μm or more and 0.7 μm or less.

また、アルミニウム源は、ゾル状で、塗布剤に添加されてもよい。このようなゾルと呼ばれる微細粒子分散系を用いることにより薄くて均一、かつ、密着性の良いホウ酸アルミニウム被膜が得られる。このようなゾルとしては、例えばアルミナゾル、ベーマイトゾル等が挙げられる。ベーマイトゾル及びアルミナゾルは、作業性、あるいは価格等の点から特に適している。 The aluminum source may also be added to the coating agent in the form of a sol. By using such a fine particle dispersion system called a sol, a thin, uniform aluminum borate coating with good adhesion can be obtained. Examples of such sols include alumina sol and boehmite sol. Boehmite sol and alumina sol are particularly suitable in terms of workability and price.

(ホウ素源)
塗布剤のホウ素源としては、オルトホウ酸、メタホウ酸、四ホウ酸等のホウ素のオキソ酸(ホウ酸)、B23で表される酸化ホウ素等が挙げられ、これらのうち1種を単独で又は2種以上を組み合わせて用いることができる。これらのうち、H3BO3で表されるオルトホウ酸は、作業性及びコストの観点から好ましい。
(boron source)
Examples of the boron source for the coating agent include boron oxoacids (boric acid) such as orthoboric acid, metaboric acid, and tetraboric acid, and boron oxide represented by B2O3 , and one of these may be used alone or two or more may be used in combination. Of these, orthoboric acid represented by H3BO3 is preferred from the viewpoints of workability and cost.

本実施形態に係る塗布剤は、従来と比較して、ホウ素源がアルミニウム源に対し、少なくなっている。具体的には、塗布剤は、モル比にしてAl/Bが1.9~2.1となるようにアルミニウム源とホウ素源とを含む。これは、本発明の特徴である、ホウ酸アルミニウムの微細結晶を塗布剤に含むことにより、ホウ素を過剰に含まなくてもホウ酸アルミニウム結晶が十分に形成される効果を得たことにより実現できたものである。ホウ素源が少なすぎると十分な張力が得られず、一方、ホウ素源が多すぎるとホウ酸アルミニウム被膜の耐水性の劣化による錆が発生する。 The coating agent according to this embodiment contains less boron source relative to the aluminum source compared to conventional coating agents. Specifically, the coating agent contains an aluminum source and a boron source such that the molar ratio Al/B is 1.9 to 2.1. This is made possible by the inclusion of aluminum borate microcrystals in the coating agent, which is a feature of the present invention, and by achieving the effect of sufficient aluminum borate crystals being formed without the need for an excess of boron. If the boron source is too little, sufficient tension cannot be obtained, while if the boron source is too much, rust will occur due to deterioration of the water resistance of the aluminum borate coating.

(酸化珪素及び酸化珪素前駆体)
塗布剤は、ホウ酸アルミニウム被膜の密着性を向上させる目的で、公知の酸化珪素及び/又は酸化珪素前駆体を含むことができる。酸化珪素及び/又は酸化珪素前駆体は、ホウ酸アルミニウム被膜中のガラス質のネットワークの形成に寄与し、得られるホウ酸アルミニウム被膜の密着性の向上に寄与する。
(Silicon oxide and silicon oxide precursors)
The coating agent may contain known silicon oxide and/or silicon oxide precursors for the purpose of improving the adhesion of the aluminum borate coating. The silicon oxide and/or silicon oxide precursors contribute to the formation of a glassy network in the aluminum borate coating, and contribute to improving the adhesion of the resulting aluminum borate coating.

酸化珪素としては、特に限定されないが、各種公知の酸化珪素を用いることができる。特に、コロイダルシリカは、塗布剤中における分散性に優れている。 The silicon oxide is not particularly limited, but various known silicon oxides can be used. Colloidal silica, in particular, has excellent dispersibility in the coating agent.

また、酸化珪素前駆体としては、酸化珪素を形成可能な化合物、例えばシラン化合物が挙げられる。シラン化合物としては、特に限定されないが、例えば、テトラエトキシシラン等のアルコキシシランや、他の酸化珪素前駆体等が挙げられ、これらのうち1種を単独で又は2種以上を組み合わせて用いることができる。あるいは、これらのシラン化合物の一部をあらかじめ加水分解したものを用いてもよい。 Examples of silicon oxide precursors include compounds capable of forming silicon oxide, such as silane compounds. Examples of silane compounds include, but are not limited to, alkoxysilanes such as tetraethoxysilane, and other silicon oxide precursors, and one of these can be used alone or two or more can be used in combination. Alternatively, a portion of these silane compounds may be hydrolyzed in advance.

(溶媒)
塗布剤は、溶媒を含む。溶媒は、各成分を分解する溶媒としても機能するとともに、各成分を分散させる分散媒としても機能する。
(solvent)
The coating agent contains a solvent, which functions as a solvent for decomposing each component and also functions as a dispersion medium for dispersing each component.

溶媒としては、特に限定されないが、水や、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒等が挙げられ、これらのうち1種を単独で又は2種以上を組み合わせて用いることができる。作業性及び乾燥時の欠陥抑制効果並びに各成分の分散性、溶解性に優れる観点からは、水が好ましい。 The solvent is not particularly limited, but examples thereof include water, alcohol-based solvents, ketone-based solvents, ether-based solvents, and hydrocarbon-based solvents, and one of these can be used alone or two or more can be used in combination. Water is preferred from the viewpoints of workability, suppression of defects during drying, and excellent dispersibility and solubility of each component.

以上説明した本実施形態に係る塗布剤によれば、増工程によるコストの問題や、占積率悪化あるいは張力低下の問題を起こすことなく、耐錆性に優れ、鋼板への張力付与効果の高い塗布剤が得られ、これを用いると耐錆性が十分で張力の大きいホウ酸アルミニウム被膜を形成することができる。 The coating agent according to the present embodiment described above does not cause problems such as cost issues due to additional processes, deterioration of the space factor, or reduction in tension, and provides a coating agent that is highly rust-resistant and effective in applying tension to steel sheets. By using this coating agent, an aluminum borate coating film with sufficient rust resistance and high tension can be formed.

<方向性電磁鋼板の製造方法>
以下に、本実施形態に係る方向性電磁鋼板の製造方法について述べる。本実施形態に係る方向性電磁鋼板の製造方法は、上述した本実施形態に係る方向性電磁鋼板の張力被膜形成用塗布剤を用いて、ホウ酸アルミニウム被膜を形成する工程を有する。
<Method of manufacturing grain-oriented electrical steel sheet>
The method for producing the grain-oriented electrical steel sheet according to the present embodiment will be described below. The method for producing the grain-oriented electrical steel sheet according to the present embodiment includes a step of forming an aluminum borate coating using the coating agent for forming a tensile coating for the grain-oriented electrical steel sheet according to the present embodiment described above.

(母材鋼板の準備)
まず、ホウ酸アルミニウム被膜を形成する母材鋼板を準備する。母材鋼板としては、たとえば、(1)従来公知の方法で仕上げ焼鈍を行って、表面にフォルステライト質の一次被膜が形成された鋼板、(2)一次被膜及び付随的に生成している内部酸化層を酸に浸漬して除去した鋼板、(3)上記(2)で得た鋼板に水素含有雰囲気中で平坦化焼鈍を施した鋼板、又は化学研磨や電解研磨等の研磨を施した鋼板、又は(4)被膜生成に対して不活性であるアルミナ粉末等、又は塩化物等の微量添加物を添加した従来公知の焼鈍分離剤を塗布し、一次被膜を生成させない条件下で仕上げ焼鈍を行った鋼板やその表面を(3)の方法で平坦化した鋼板等の仕上げ焼鈍が完了した鋼板、を準備すればよい。なお、母材鋼板の準備は、次に述べる塗布剤の準備と前後してもよい。
(Preparation of base steel plate)
First, a base steel sheet on which an aluminum borate coating is to be formed is prepared. As the base steel sheet, for example, (1) a steel sheet on which a forsterite-based primary coating is formed by finish annealing using a conventionally known method, (2) a steel sheet on which the primary coating and the internal oxide layer formed concomitantly are removed by immersion in acid, (3) a steel sheet obtained by the above (2) performing flattening annealing in a hydrogen-containing atmosphere, or a steel sheet polished by chemical polishing, electrolytic polishing, or the like, or (4) a steel sheet on which a conventionally known annealing separator containing alumina powder or the like that is inactive against coating formation or a trace amount of chloride or the like is added, and finish annealing is performed under conditions that do not cause the formation of a primary coating, or a steel sheet whose surface is flattened by the method of (3), etc., may be prepared. The preparation of the base steel sheet may be performed before or after the preparation of the coating agent described below.

(方向性電磁鋼板の張力被膜形成用塗布剤の準備及びホウ酸アルミニウム被膜の形成)
次に前述の方法で、方向性電磁鋼板の張力被膜形成用塗布剤を準備する。得られた塗布剤を用いて、鋼板の表面にホウ酸アルミニウム被膜を形成する。ホウ酸アルミニウム被膜の形成は、鋼板の表面に塗布剤を塗布し、その後乾燥・焼き付けを行うことにより行うことができる。
(Preparation of coating agent for forming tension coating on grain-oriented electrical steel sheet and formation of aluminum borate coating)
Next, a coating agent for forming a tension coating on a grain-oriented electrical steel sheet is prepared by the above-mentioned method. The obtained coating agent is used to form an aluminum borate coating on the surface of the steel sheet. The aluminum borate coating can be formed by applying the coating agent to the surface of the steel sheet, followed by drying and baking.

鋼板表面への塗布は、例えば、ロールコーター等のコーター、ディップ法、スプレー吹き付けあるいは電気泳動等、従来公知の方法によって行うことができる。 The coating on the steel sheet surface can be carried out by conventional methods such as using a coater such as a roll coater, dipping, spraying, or electrophoresis.

塗布剤の塗布後の鋼板を乾操後、焼き付けを行うことにより、鋼板の表面にホウ酸アルミニウム被膜が形成される。焼き付けは、例えば750℃以上の温度で行うことができる。焼き付け温度は750℃末満の場合、塗布した前駆体が酸化物とならない場合があり、また焼き付け温度が低いため十分な張力が発現せず、好ましくない。焼き付け温度は、好ましくは750℃以上1000℃以下、より好ましくは800℃以上1000℃以下である。 After the coating agent is applied to the steel sheet, the sheet is dried and then baked, forming an aluminum borate coating on the surface of the steel sheet. Baking can be performed at a temperature of, for example, 750°C or higher. If the baking temperature is less than 750°C, the applied precursor may not become an oxide, and sufficient tension may not be developed due to the low baking temperature, which is not preferred. The baking temperature is preferably 750°C or higher and 1000°C or lower, more preferably 800°C or higher and 1000°C or lower.

焼き付け時間は20秒以上とする。焼き付け時間がこれより短いと、ホウ酸アルミニウム結晶が十分に生成されず、焼き付け後の被膜の張力が十分に得られなくなる。一方、焼き付け時間が長くても特に影響はないが、熱処理時間が長くなるのみで新たな効果が得られないことから、焼き付け時間は120秒以下とするのが好ましい。 The baking time should be 20 seconds or more. If the baking time is shorter than this, aluminum borate crystals will not be sufficiently generated, and the coating will not have sufficient tension after baking. On the other hand, a longer baking time will not have any particular effect, but it will simply increase the heat treatment time without providing any new effects, so it is preferable to keep the baking time to 120 seconds or less.

焼き付け時の雰囲気は、水素を0~30体積%含み、残部が窒素及び不活性ガスの一方又は両方である雰囲気が好ましい。具体的には窒素ガス雰囲気や、アルゴン等の不活性ガス雰囲気、窒素-アルゴンの混合雰囲気、窒素-水素混合雰囲気等の還元性雰囲気等が好ましい。空気、あるいは酸素を過度に含む雰囲気は、鋼板を過度に酸化させる可能性があり好ましくない。また、水素の割合が30体積%を超えても特に有害な影響はないが、水素量が増えても特に効果がなく、水素ガスのコストが増えるのみであることから上限を30体積%とする。 The atmosphere during baking is preferably one containing 0 to 30% by volume of hydrogen, with the remainder being either or both of nitrogen and an inert gas. Specifically, reducing atmospheres such as a nitrogen gas atmosphere, an inert gas atmosphere such as argon, a mixed nitrogen-argon atmosphere, or a mixed nitrogen-hydrogen atmosphere are preferred. Atmospheres containing an excessive amount of air or oxygen are not preferred as they may cause the steel sheet to be excessively oxidized. In addition, there is no particular harmful effect if the hydrogen ratio exceeds 30% by volume, but an increase in the amount of hydrogen has no particular effect and only increases the cost of hydrogen gas, so the upper limit is set at 30% by volume.

雰囲気ガスの露点は、0~40℃とすると良好な結果が得られる。 Good results can be obtained by keeping the dew point of the ambient gas between 0 and 40°C.

以上のようにして、十分な防錆効果及び張力を有するホウ酸アルミニウム被膜を備えた方向性電磁鋼板を製造することができる。 In this way, grain-oriented electrical steel sheets can be manufactured that have an aluminum borate coating that provides sufficient rust prevention and tensile strength.

以下に本発明を実施例に基づいてより詳細に説明するが、以下に示す実施例は、本発明のあくまでも一例であって、本発明はかかる実施例にのみ限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the examples shown below are merely examples of the present invention, and the present invention is not limited to these examples.

[実施例1]
市販のホウ酸試薬及び、酸化アルミニウム(Al23)粉末(平均粒径:0.4μm)を表1に記載の量で混合し、これに蒸留水を加え、さらに表1に記載の粒径で、また(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶の微細粒子を、表1にある量を添加して十分に攪拌し、塗布剤となるスラリーを作製した。
[Example 1]
A commercially available boric acid reagent and aluminum oxide ( Al2O3 ) powder (average particle size: 0.4 μm) were mixed in the amounts shown in Table 1, distilled water was added to this, and then fine particles of aluminum borate crystals having the particle size shown in Table 1 and a (220) interplanar spacing of 0.525 to 0.535 nm in the amount shown in Table 1 were added and thoroughly stirred to prepare a slurry to serve as a coating agent.

ここで用いたホウ酸アルミニウム結晶の微細粒子は、酸化アルミニウムとホウ酸を用いてAl/B=2.0の組成で秤量して十分に混合し、これを大気中にて900℃×1時間で熱処理したのち、純水を媒体としたアルミナ製ボールミルにて粉砕した。粉砕後のスラリーをスプレードライ後、ジェットミルにて一次粒子に粉砕した後、サイクロンにて目的とする粒子径への分級を行った。 The fine particles of aluminum borate crystals used here were made by weighing out aluminum oxide and boric acid in a composition of Al/B = 2.0, thoroughly mixing them, heat treating them in air at 900°C for 1 hour, and then pulverizing them in an alumina ball mill using pure water as a medium. The pulverized slurry was spray-dried, pulverized into primary particles in a jet mill, and then classified into the desired particle size in a cyclone.

得られたスラリーを、Siを3.2%含有する厚さ0.23mmの仕上げ焼鈍が完了した一方向性珪素鋼板(グラス被膜あり)に4g/m2となるように塗布した。これを大気中雰囲気温度100℃にて60秒間乾燥後に800℃まで昇温し、この温度で均熱時間を100秒として焼き付け、絶縁被膜を形成した。焼き付け時の雰囲気は、水素を10%含む窒素雰囲気で、露点は30℃とした。 The obtained slurry was applied to a 0.23 mm thick unidirectional silicon steel sheet (with glass coating) containing 3.2% Si and having been subjected to finish annealing, at a rate of 4 g/ m2 . This was dried in air at an atmospheric temperature of 100°C for 60 seconds, then heated to 800°C and baked at this temperature for a soaking time of 100 seconds to form an insulating coating. The baking atmosphere was a nitrogen atmosphere containing 10% hydrogen, with a dew point of 30°C.

得られた試料について、耐錆性、被膜張力、及び占積率を測定した。 The rust resistance, coating tension, and space factor of the obtained samples were measured.

耐錆性は、50mm角の試料を、温度50℃、相対湿度98%の雰囲気に48時間暴露し、発錆があるかどうかを目視で確認し、発錆がなければ耐錆性が良好であるため「良」、発錆があれば「不良」とした。 Rust resistance was evaluated by exposing a 50 mm square sample to an atmosphere with a temperature of 50°C and a relative humidity of 98% for 48 hours and visually checking whether rust had developed. If there was no rust, the rust resistance was good and the sample was rated "good," and if there was rust, the sample was rated "poor."

被膜張力は、幅30mm、長さ300mmの形状の試料のホウ酸アルミニウム被膜を片面ずつ除去し、この際に発生する鋼板の曲がりから算出した。絶縁被膜の除去には水酸化ナトリウム水溶液を用い、得られた張力はグラス被膜を含まない張力である。ここで、被膜張力が12MPa以上であれば高い張力であり「良」、12MPa未満であれば「不良」と判断した。 The coating tension was calculated by removing the aluminum borate coating from each side of a sample measuring 30 mm in width and 300 mm in length, and from the bending of the steel plate that occurs during this process. A sodium hydroxide solution was used to remove the insulating coating, and the tension obtained does not include the glass coating. Here, a coating tension of 12 MPa or more was deemed to be high and "good," while a coating tension of less than 12 MPa was deemed to be "poor."

占積率は、JISC2550-5の方法で測定し、97.5%以上を「良」とし、97.5%未満を「不良」とした。 The space factor was measured using the JIS C2550-5 method, with 97.5% or more being considered "good" and less than 97.5% being considered "poor."

表1の結果から、実施例では耐錆性を有し、かつ占積率が良好で張力の高い被膜が得られていることが確認できた。 From the results in Table 1, it was confirmed that the coating obtained in the examples had rust resistance, a good space factor, and high tensile strength.

Figure 0007481628000002
Figure 0007481628000002

[実施例2]
市販のホウ酸試薬及び、酸化アルミニウム(Al23)粉末(平均粒径:0.4μm)を表2に記載の量で混合し、これに蒸留水を加え、さらに表2に記載の粒径で、また(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶の微細粒子を、表2に記載の量となるよう添加して十分に攪拌し、塗布剤となるスラリーを作製した。ここで用いたホウ酸アルミニウム結晶の微細粒子は、実施例1と同様にして作製したものである。
[Example 2]
A commercially available boric acid reagent and aluminum oxide ( Al2O3 ) powder (average particle size: 0.4 μm) were mixed in the amounts shown in Table 2, distilled water was added to the mixture, and fine particles of aluminum borate crystals having a particle size and a (220) interplanar spacing of 0.525 to 0.535 nm shown in Table 2 were added in the amount shown in Table 2 and thoroughly stirred to prepare a slurry to serve as a coating agent. The fine particles of aluminum borate crystals used here were prepared in the same manner as in Example 1.

得られたスラリーを、Siを3.2%含有する厚さ0.23mmの仕上げ焼鈍が完了した一方向性珪素鋼板(グラス被膜あり)に、焼き付け後の被膜質量で4g/m2となるように塗布した。これを大気中雰囲気温度100℃にて60秒間乾燥後に800℃まで昇温し、この温度で均熱時間を100秒として焼き付けた。焼き付け時の雰囲気は、水素を10%含む窒素雰囲気で、露点は30℃とした。 The obtained slurry was applied to a 0.23 mm thick unidirectional silicon steel sheet (with glass coating) containing 3.2% Si and having been subjected to finish annealing, so that the coating mass after baking was 4 g/ m2 . This was dried in air at an atmospheric temperature of 100°C for 60 seconds, then heated to 800°C and baked at this temperature for a soaking time of 100 seconds. The atmosphere during baking was a nitrogen atmosphere containing 10% hydrogen, with a dew point of 30°C.

得られた試料について、耐錆性、被膜張力及び、占積率を測定した。これらの評価方法は、実施例1と同様にした。 The obtained samples were measured for rust resistance, coating tension, and space factor. The evaluation methods were the same as in Example 1.

表2の結果から、実施例では耐錆性を有し、かつ占積率が良好で張力の高い被膜が得られていることが確認できた。 From the results in Table 2, it was confirmed that the examples provided a coating that was rust-resistant, had a good space factor, and had high tensile strength.

Figure 0007481628000003
Figure 0007481628000003

[実施例3]
市販のホウ酸試薬及び、酸化アルミニウム(Al23)粉末(平均粒径:0.4μm)を、表3に記載の量で混合し、これに蒸留水を加え、さらにある粒径0.4μmで、また(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶の微細粒子を、表3に記載の量となるよう添加して十分に攪拌し、塗布剤となるスラリーを作製した。
[Example 3]
A commercially available boric acid reagent and aluminum oxide ( Al2O3 ) powder (average particle size: 0.4 μm) were mixed in the amounts shown in Table 3, distilled water was added to this, and fine particles of aluminum borate crystals having a particle size of 0.4 μm and a (220) interplanar spacing of 0.525 to 0.535 nm were added in the amount shown in Table 3 and thoroughly stirred to prepare a slurry to be used as a coating agent.

ここで用いたホウ酸アルミニウム結晶の微細粒子は、Al/Bの値が表3に記載の値となるよう酸化アルミニウムとホウ酸を秤量し、ホウ酸アルミニウム微細粒子粉砕前焼成温度を表3のとおりとした他は、実施例1と同様にして作製したものである。ただし、比較例3-4は、ホウ酸アルミニウム微細粒子粉砕前焼成温度が1200℃と高すぎるために粉砕が難しく、ホウ酸アルミニウム微細粒子の粒径は1.1μmであった。 The fine particles of aluminum borate crystals used here were prepared in the same manner as in Example 1, except that aluminum oxide and boric acid were weighed so that the Al/B value was the value shown in Table 3, and the firing temperature before crushing the aluminum borate fine particles was as shown in Table 3. However, in Comparative Example 3-4, the firing temperature before crushing the aluminum borate fine particles was too high at 1200°C, making crushing difficult, and the particle size of the aluminum borate fine particles was 1.1 μm.

得られたスラリーを、Siを3.2%含有する厚さ0.23mmの仕上げ焼鈍が完了した一方向性珪素鋼板(グラス被膜あり)に、焼き付け後の被膜質量で4g/m2となるように塗布した。これを大気中雰囲気温度100℃にて60秒間乾燥後に800℃まで昇温し、この温度で均熱時間を100秒として焼き付けた。焼き付け時の雰囲気は、水素を10%含む窒素雰囲気で、露点は30℃とした。 The obtained slurry was applied to a 0.23 mm thick unidirectional silicon steel sheet (with glass coating) containing 3.2% Si and having been subjected to finish annealing, so that the coating mass after baking was 4 g/ m2 . This was dried in air at an atmospheric temperature of 100°C for 60 seconds, then heated to 800°C and baked at this temperature for a soaking time of 100 seconds. The atmosphere during baking was a nitrogen atmosphere containing 10% hydrogen, with a dew point of 30°C.

得られた試料について、耐錆性、被膜張力及び、占積率を測定した。これらの評価方法は、実施例1と同様にした。 The obtained samples were measured for rust resistance, coating tension, and space factor. The evaluation methods were the same as in Example 1.

表3の結果から、実施例では耐錆性を有し、かつ占積率が良好で張力の高い被膜が得られていることが確認できた。 From the results in Table 3, it was confirmed that the coating obtained in the examples had rust resistance, a good space factor, and high tensile strength.

Figure 0007481628000004
Figure 0007481628000004

[実施例4]
市販のホウ酸試薬及び、酸化アルミニウム(Al23)粉末(平均粒径:0.4μm)を表4に記載の量で混合し、これに蒸留水を加え、さらに(220)面間隔が0.525~0.535nmで、粒径が表4に記載の値であるホウ酸アルミニウム結晶の微細粒子を、表4にある量となるよう添加して十分に攪拌し、塗布剤となるスラリーを作製した。ここで用いたホウ酸アルミニウム結晶の微細粒子は、実施例1と同様にして作製したものである。
[Example 4]
A commercially available boric acid reagent and aluminum oxide ( Al2O3 ) powder (average particle size: 0.4 μm) were mixed in the amounts shown in Table 4, distilled water was added to the mixture, and fine particles of aluminum borate crystals having a (220) interplanar spacing of 0.525 to 0.535 nm and a particle size shown in Table 4 were added in the amount shown in Table 4 and thoroughly stirred to prepare a slurry to serve as a coating agent. The fine particles of aluminum borate crystals used here were prepared in the same manner as in Example 1.

得られたスラリーを、Siを3.2%含有する厚さ0.23mmの仕上げ焼鈍が完了した一方向性珪素鋼板(グラス被膜あり)に焼き付け後の被膜質量で4g/m2となるように塗布した。これを大気中雰囲気温度100℃にて60秒間乾燥後に表4に示す条件で焼き付けた。 The obtained slurry was applied to a 0.23 mm thick grain-oriented silicon steel sheet (with glass coating) containing 3.2% Si and having been subjected to finish annealing, so that the coating mass after baking would be 4 g/ m2 . This was dried in air at an atmospheric temperature of 100°C for 60 seconds and then baked under the conditions shown in Table 4.

得られた試料について、耐錆性、被膜張力を測定した。これらの評価方法は、実施例1と同様にした。 The rust resistance and coating tension of the obtained samples were measured. The evaluation methods were the same as in Example 1.

表4の結果から、実施例では耐錆性を有し、かつ占積率が良好で張力の高い被膜が得られていることが確認できた。 From the results in Table 4, it was confirmed that the coating obtained in the examples had rust resistance, a good space factor, and high tensile strength.

Figure 0007481628000005
Figure 0007481628000005

Claims (3)

固形分濃度が5~40質量%であり、かつ
(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶からなる平均粒子径が0.1~0.7μmである微細粒子を固形分のうち1~50質量%含み、
残部にアルミニウム化合物及びホウ素化合物をAlとBのモル比Al/Bが1.9~2.1の範囲で含む
ことを特徴とする方向性電磁鋼板の張力被膜形成用塗布剤。
The solid content is 5 to 40% by mass, and the solid content contains 1 to 50% by mass of fine particles having an average particle size of 0.1 to 0.7 μm and made of aluminum borate crystals having a (220) interplanar spacing of 0.525 to 0.535 nm,
The remainder of the coating agent for forming a tension film on a grain-oriented electrical steel sheet is an aluminum compound and a boron compound, with the molar ratio of Al to B being in the range of 1.9 to 2.1 (Al/B).
請求項1に記載の方向性電磁鋼板の張力被膜形成用塗布剤を製造する方法であって、
アルミニウム化合物とホウ素化合物をAlとBのモル比Al/Bで1.9~2.1の範囲で含む混合物を作製し、
上記混合物を800~1000℃で焼成してホウ酸アルミニウム粉体を合成し、
得られたホウ酸アルミニウム粉体を粉砕して(220)面間隔が0.525~0.535nmであるホウ酸アルミニウム結晶からなる平均粒子径が0.1~0.7μmの微細粒子を得、
得られた微細粒子を溶媒に加える
工程を含むことを特徴とする方向性電磁鋼板の張力被膜形成用塗布剤の製造方法。
A method for producing a coating agent for forming a tension coating on a grain-oriented electrical steel sheet according to claim 1, comprising the steps of:
A mixture containing an aluminum compound and a boron compound in a molar ratio of Al to B, Al/B, of 1.9 to 2.1 is prepared;
The mixture is fired at 800 to 1000° C. to synthesize aluminum borate powder.
The obtained aluminum borate powder is pulverized to obtain fine particles having an average particle size of 0.1 to 0.7 μm and made of aluminum borate crystals having a (220) interplanar spacing of 0.525 to 0.535 nm;
A method for producing a coating agent for forming a tensile film on a grain-oriented electrical steel sheet, comprising the step of adding the obtained fine particles to a solvent.
方向性電磁鋼板の製造方法であって、
仕上げ焼鈍が終了した鋼板に、請求項1に記載の方向性電磁鋼板の張力被膜形成用塗布剤を塗布乾燥し、次いで、
露点が0~40℃であり、水素を0~30体積%含み残部が窒素及び不活性ガスの一方又は両方である雰囲気中で、750~1000℃で20秒間以上熱処理する
ことを特徴とする方向性電磁鋼板の製造方法。
A method for producing a grain-oriented electrical steel sheet, comprising the steps of:
The coating agent for forming a tension coating for a grain-oriented electrical steel sheet according to claim 1 is applied to the steel sheet which has been subjected to the final annealing, and then dried.
A method for producing a grain-oriented electrical steel sheet, comprising heat treating the steel sheet at 750 to 1000°C for 20 seconds or more in an atmosphere having a dew point of 0 to 40°C, containing 0 to 30 volume% hydrogen, and the remainder being one or both of nitrogen and an inert gas.
JP2020170607A 2020-10-08 2020-10-08 Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same Active JP7481628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020170607A JP7481628B2 (en) 2020-10-08 2020-10-08 Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020170607A JP7481628B2 (en) 2020-10-08 2020-10-08 Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same

Publications (2)

Publication Number Publication Date
JP2022062529A JP2022062529A (en) 2022-04-20
JP7481628B2 true JP7481628B2 (en) 2024-05-13

Family

ID=81210892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170607A Active JP7481628B2 (en) 2020-10-08 2020-10-08 Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same

Country Status (1)

Country Link
JP (1) JP7481628B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026979A (en) 1998-07-09 2000-01-25 Nippon Steel Corp Coating fluid for insulating coating of grain-oriented silicon steel sheet excellent in adhesion resistance and space factor and formation of insulation coating
JP2004099929A (en) 2002-09-05 2004-04-02 Nippon Steel Corp Method for forming insulation film on grain oriented magnetic steel sheet
WO2020145317A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026979A (en) 1998-07-09 2000-01-25 Nippon Steel Corp Coating fluid for insulating coating of grain-oriented silicon steel sheet excellent in adhesion resistance and space factor and formation of insulation coating
JP2004099929A (en) 2002-09-05 2004-04-02 Nippon Steel Corp Method for forming insulation film on grain oriented magnetic steel sheet
WO2020145317A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2022062529A (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JPWO2002088403A1 (en) Method for producing unidirectional silicon steel sheet without inorganic mineral coating
JP2007023329A (en) Chromium-free insulating film agent for electromagnetic steel sheet
BR112013000120B1 (en) magnetic steel sheet with semi-organic insulation coating
CN110396683A (en) Insulating coating solution and directionality electric steel plate and its manufacturing method for directionality electric steel plate
EP3508614B1 (en) Coated metal, processing liquid for coating formation and coated metal production method
JP7481628B2 (en) Coating agent for forming tension coating on grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet using same
JP7047932B2 (en) A coating liquid for forming an insulating film for grain-oriented electrical steel sheets, a method for manufacturing grain-oriented electrical steel sheets, and a method for manufacturing grain-oriented electrical steel sheets.
JP7027925B2 (en) Electrical steel sheet and its manufacturing method
JP2698549B2 (en) Low iron loss unidirectional silicon steel sheet having magnesium oxide-aluminum oxide composite coating and method for producing the same
JP7226528B2 (en) Coating agent for forming grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP3162570B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JP3394845B2 (en) Low iron loss unidirectional silicon steel sheet
JP2019173173A (en) Magnesium oxide for annealing separation agent, and manufacturing method of directional electromagnetic steel sheet
KR102628699B1 (en) Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
JP6822501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with insulating film
JP4236431B2 (en) Method for forming insulating film on grain-oriented electrical steel sheet
JP3369837B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JP2664335B2 (en) Low iron loss unidirectional silicon steel sheet having aluminum oxide-silicon oxide composite coating and method for producing the same
JP6939870B2 (en) Chromium-free insulating film forming treatment agent, grain-oriented electrical steel sheet with insulating film, and its manufacturing method
JPH07278830A (en) Production of grain-oriented silicon steel sheet low in iron loss
JP3098691B2 (en) Low iron loss unidirectional silicon steel sheet with excellent coating water resistance and rust resistance
JP2664336B2 (en) Low iron loss unidirectional silicon steel sheet having oxide-based composite coating and method for producing the same
WO2024096068A1 (en) Coating liquid, method for producing coating liquid, and method for producing directional electromagnetic steel sheet
JP2021075769A (en) Directional electrical steel sheet, and manufacturing method of directional electrical steel sheet
WO2024002261A1 (en) Paint, oriented silicon steel sheet having coating formed from paint, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7481628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150