JP7481450B2 - 切断エッジに対する切断パラメータの影響を明らかにするための方法、コンピュータプログラム製品及びデバイス - Google Patents
切断エッジに対する切断パラメータの影響を明らかにするための方法、コンピュータプログラム製品及びデバイス Download PDFInfo
- Publication number
- JP7481450B2 JP7481450B2 JP2022537848A JP2022537848A JP7481450B2 JP 7481450 B2 JP7481450 B2 JP 7481450B2 JP 2022537848 A JP2022537848 A JP 2022537848A JP 2022537848 A JP2022537848 A JP 2022537848A JP 7481450 B2 JP7481450 B2 JP 7481450B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- parameters
- method step
- neural network
- record
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 61
- 238000004590 computer program Methods 0.000 title claims description 11
- 230000000694 effects Effects 0.000 title description 3
- 238000013528 artificial neural network Methods 0.000 claims description 37
- 238000013527 convolutional neural network Methods 0.000 claims description 11
- 238000003698 laser cutting Methods 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 11
- 238000011176 pooling Methods 0.000 description 6
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 101150006061 neur gene Proteins 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/006—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to using of neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4155—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36199—Laser cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Image Analysis (AREA)
- Laser Beam Processing (AREA)
Description
記録32a:ガス圧20 15bar
フィード22 21m/分
ノズル-ワークピース距離24 1.5mm
ノズル-焦点距離26 -2mm
これと比較して、記録32bは、ノズル-焦点距離26を増加して作成された。記録32cは、記録32aと比較してフィード22を低減して作成された。図3から、切断パラメータ18(図1を参照されたい)の影響は、人間のユーザにとって記録32a~cから直接推測可能でないことが明らかである。
12 切断ヘッド
14 ワークピース
16 切断エッジ
18 切断パラメータ
20 ガス圧
22 フィード
24 ノズル-ワークピース距離
26 ノズル-焦点距離
28 焦点位置
30 カメラ
32、32a~c 記録
34 アルゴリズム
36 ニューラルネットワーク
38 切断パラメータ18の判定
40 逆伝播
42a、b 記録ピクセル
44a~e ニューラルネットワーク36のブロック
46a~l ニューラルネットワーク36の層
48a~e ニューラルネットワーク36のフィルタ
50 出力
Claims (11)
- 工作機械(10)によって作成された切断エッジ(16)を分析するための方法であって、
A)前記工作機械(10)により、前記切断エッジ(16)を作成する方法ステップ、
C)前記切断エッジ(16)の少なくとも1つの記録(32、32a~c)を読み込む方法ステップであって、前記記録(32、32a~c)は、複数の記録ピクセル(42)を有する、方法ステップ、
D)少なくとも1つの切断パラメータ(18)を判定するために、訓練されたニューラルネットワーク(36)によって前記記録(32、32a~c)を分析する方法ステップ、
E)前記判定された切断パラメータ(18)を確認するために、分析された前記記録ピクセル(42)の、前記判定された切断パラメータ(18)によって前記切断エッジ(16)のいずれの領域が影響を受けたかという関連性を判定するために、前記ニューラルネットワーク(36)の逆伝播(40)を行う方法ステップ、
F)方法ステップE)で確認された関連性のある記録ピクセル(42a)及び/又は関連性のない記録ピクセル(42b)の識別を用いて、再生成された記録(32、32a~c)を出力する方法ステップ
を含み、
前記工作機械(10)は、レーザ切断機の形態で構成され、
切断パラメータ(18)のうち、材料パラメータにおけるガス純度の程度及びワークピース(14)の融点は、方法ステップD)において判定される、方法。 - 方法ステップD)における前記分析は、複数の層(46a~l)ごとに複数のフィルタ(48a~e)を有する畳み込みニューラルネットワークによって行われる、請求項1に記載の方法。
- 方法ステップE)における前記逆伝播(40)は、LRP法によって行われる、請求項1又は2に記載の方法。
- 方法ステップE)における前記関連性の割り当ては、ディープテイラー分解に基づく、請求項1~3のいずれか一項に記載の方法。
- 方法ステップF)における前記出力は、ヒートマップの形態で行われる、請求項1~4のいずれか一項に記載の方法。
- 方法ステップC)における前記記録(32、32a~c)は、RGB写真又は3D点群の形態で存在する、請求項1~5のいずれか一項に記載の方法。
- B)前記工作機械(10)のカメラ(30)により、前記記録(32、32a~c)を作成する方法ステップ
を含む、請求項1~6のいずれか一項に記載の方法。 - 以下の切断パラメータ(18):
・ビームパラメータにおける、焦点直径及び/若しくはレーザ出力、
・搬送パラメータにおける、焦点位置(28)、ノズル-焦点距離(26)及び/若しくはフィード(22)、
・ガスダイナミクスパラメータにおける、ガス圧(20)及び/若しくはノズル-ワークピース距離(24)
のうち、任意のパラメータが方法ステップD)において判定される、
請求項1~7のいずれか一項に記載の方法。 - 請求項1~8のいずれか一項に記載の方法ステップC)~F)を実行するためのコンピュータプログラム製品であって、前記ニューラルネットワーク(36)を含むコンピュータプログラム製品。
- 請求項1~8のいずれか一項に記載の方法を実行するためのレーザ切断機の形態の工作機械(10)、コンピュータ及び請求項9に記載のコンピュータプログラム製品を含むデバイス。
- カメラを含む、請求項10に記載のデバイス。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020212510.4 | 2020-10-02 | ||
DE102020212510.4A DE102020212510A1 (de) | 2020-10-02 | 2020-10-02 | Verfahren und Vorrichtung zum Aufzeigen des Einflusses von Schneidparametern auf eine Schnittkante |
PCT/EP2021/077086 WO2022069702A1 (de) | 2020-10-02 | 2021-10-01 | Verfahren, computerprogrammprodukt, und vorrichtung mit einem solchen produkt zum aufzeigen des einflusses von schneidparametern auf eine schnittkante |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023508308A JP2023508308A (ja) | 2023-03-02 |
JP7481450B2 true JP7481450B2 (ja) | 2024-05-10 |
Family
ID=78080298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022537848A Active JP7481450B2 (ja) | 2020-10-02 | 2021-10-01 | 切断エッジに対する切断パラメータの影響を明らかにするための方法、コンピュータプログラム製品及びデバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220339739A1 (ja) |
EP (1) | EP4221930A1 (ja) |
JP (1) | JP7481450B2 (ja) |
CN (1) | CN115461186A (ja) |
DE (1) | DE102020212510A1 (ja) |
WO (1) | WO2022069702A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020086130A2 (en) * | 2018-07-21 | 2020-04-30 | The Regents Of The University Of California | Apparatus and method for boundary learning optimization |
DE102021127016A1 (de) | 2021-10-19 | 2023-04-20 | Precitec Gmbh & Co. Kg | Prozesssignalrekonstruktion und Anomalie-Detektion bei Laserbearbeitungsprozessen |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018129425A1 (de) | 2018-11-22 | 2020-05-28 | Precitec Gmbh & Co. Kg | System zur Erkennung eines Bearbeitungsfehlers für ein Laserbearbeitungssystem zur Bearbeitung eines Werkstücks, Laserbearbeitungssystem zur Bearbeitung eines Werkstücks mittels eines Laserstrahls umfassend dasselbe und Verfahren zur Erkennung eines Bearbeitungsfehlers eines Laserbearbeitungssystems zur Bearbeitung eines Werkstücks |
JP2020121338A (ja) | 2019-01-31 | 2020-08-13 | 三菱電機株式会社 | 加工条件解析装置、レーザ加工装置、レーザ加工システムおよび加工条件解析方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2585975B1 (en) | 2010-06-28 | 2018-03-21 | Precitec GmbH & Co. KG | A method for classifying a multitude of images recorded by a camera observing a processing area and laser material processing head using the same |
JP6625914B2 (ja) | 2016-03-17 | 2019-12-25 | ファナック株式会社 | 機械学習装置、レーザ加工システムおよび機械学習方法 |
DE102018123363B4 (de) | 2018-09-24 | 2021-01-07 | Bystronic Laser Ag | Verfahren zur Kollisionsvermeidung und Laserbearbeitungsmaschine |
EP3654248A1 (en) | 2018-11-19 | 2020-05-20 | Siemens Aktiengesellschaft | Verification of classification decisions in convolutional neural networks |
-
2020
- 2020-10-02 DE DE102020212510.4A patent/DE102020212510A1/de active Pending
-
2021
- 2021-10-01 EP EP21786859.5A patent/EP4221930A1/de active Pending
- 2021-10-01 JP JP2022537848A patent/JP7481450B2/ja active Active
- 2021-10-01 WO PCT/EP2021/077086 patent/WO2022069702A1/de unknown
- 2021-10-01 CN CN202180008252.7A patent/CN115461186A/zh active Pending
-
2022
- 2022-07-11 US US17/861,925 patent/US20220339739A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018129425A1 (de) | 2018-11-22 | 2020-05-28 | Precitec Gmbh & Co. Kg | System zur Erkennung eines Bearbeitungsfehlers für ein Laserbearbeitungssystem zur Bearbeitung eines Werkstücks, Laserbearbeitungssystem zur Bearbeitung eines Werkstücks mittels eines Laserstrahls umfassend dasselbe und Verfahren zur Erkennung eines Bearbeitungsfehlers eines Laserbearbeitungssystems zur Bearbeitung eines Werkstücks |
JP2020121338A (ja) | 2019-01-31 | 2020-08-13 | 三菱電機株式会社 | 加工条件解析装置、レーザ加工装置、レーザ加工システムおよび加工条件解析方法 |
Non-Patent Citations (2)
Title |
---|
J STAHL; ET AL,QUICK ROUGHNESS EVALUATION OF CUT EDGES USING A CONVOLUTIONAL NEURAL NETWORK,PROCEEDINGS OF SPIE,SPIE,2019年07月16日,VOL:11172,PAGE(S):111720P(1-7),https://doi.org/10.1117/12.2519440 |
SEBASTIAN BACH; ET AL,ON PIXEL-WISE EXPLANATIONS FOR NON-LINEAR CLASSIFIER DECISIONS BY LAYER-WISE RELEVANCE PROPAGATION,PLOS ONE,米国,2015年,VOL:10, NO:7,PAGE(S):E0130140(1-46),https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130140&type=printable |
Also Published As
Publication number | Publication date |
---|---|
DE102020212510A1 (de) | 2022-04-07 |
WO2022069702A1 (de) | 2022-04-07 |
EP4221930A1 (de) | 2023-08-09 |
JP2023508308A (ja) | 2023-03-02 |
US20220339739A1 (en) | 2022-10-27 |
CN115461186A (zh) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7481450B2 (ja) | 切断エッジに対する切断パラメータの影響を明らかにするための方法、コンピュータプログラム製品及びデバイス | |
Sassi et al. | A smart monitoring system for automatic welding defect detection | |
Mery | Aluminum casting inspection using deep learning: a method based on convolutional neural networks | |
CN108416266B (zh) | 一种利用光流提取运动目标的视频行为快速识别方法 | |
DE102018109392A1 (de) | Verfahren zum erfassen optischer codes, automatisierungssystem und computerprogrammprodukt zum durchführen des verfahrens | |
Xing et al. | Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process | |
CN118002802B (zh) | 基于深度学习的slm在线质量监测、修复方法及系统 | |
Dobrzański et al. | Computer aided classification of flaws occurred during casting of aluminum | |
WO2021219515A1 (de) | Verfahren, vorrichtung und computerprogramm zum erzeugen von qualitätsinformation über ein beschichtungsprofil, verfahren, vorrichtung und computerprogramm zum erzeugen einer datenbank, überwachungsgerät | |
Ousmane et al. | Automatic recognition system of emotions expressed through the face using machine learning: Application to police interrogation simulation | |
Monigari et al. | Plant leaf disease prediction | |
Hartl et al. | Automated visual inspection of friction stir welds: a deep learning approach | |
Sauter et al. | Defect detection of metal nuts applying convolutional neural networks | |
Zhang et al. | Weld joint penetration state sequential identification algorithm based on representation learning of weld images | |
KR102242011B1 (ko) | 딥러닝 기반의 축산물 이미지 등급 분류 장치 | |
Trinks et al. | Image mining for real time quality assurance in rapid prototyping | |
Nayan et al. | RoseVision: An Android Application To Detect Rose Leaf Diseases Using Modified Convolutional Neural Network | |
Sahid et al. | Implementation of Face Emotion Detection In Classroom Using Convolutional Neural Network | |
Buitrago et al. | Automatic detection surface defects based on convolutional neural networks and deflectometry | |
Jiao | End-to-end Prediction of Weld Penetration in Real Time Based on Deep Learning | |
JP2022187493A (ja) | 白髪識別装置、白髪識別方法及び白髪識別プログラム | |
CN118218617A (zh) | 基于深度学习网络的slm打印缺陷检测与修复方法及系统 | |
Zhang et al. | Welding defects recognition based on DCP-MobileViT network | |
Kuric et al. | Trends and applications of artificial intelligence methods in industry | |
VISHWAKARMA et al. | The Revelation of Dog genres using the YOLO Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7481450 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |