JP7481434B2 - 空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステム - Google Patents
空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステム Download PDFInfo
- Publication number
- JP7481434B2 JP7481434B2 JP2022515765A JP2022515765A JP7481434B2 JP 7481434 B2 JP7481434 B2 JP 7481434B2 JP 2022515765 A JP2022515765 A JP 2022515765A JP 2022515765 A JP2022515765 A JP 2022515765A JP 7481434 B2 JP7481434 B2 JP 7481434B2
- Authority
- JP
- Japan
- Prior art keywords
- radar
- data
- neural network
- user
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims description 131
- 239000002131 composite material Substances 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 86
- 239000000872 buffer Substances 0.000 claims description 45
- 230000000306 recurrent effect Effects 0.000 claims description 34
- 238000010801 machine learning Methods 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 9
- 230000002123 temporal effect Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 4
- 241001422033 Thestylus Species 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims 5
- 238000004458 analytical method Methods 0.000 description 38
- 230000015654 memory Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 21
- 238000001514 detection method Methods 0.000 description 15
- 238000009432 framing Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 11
- 210000003811 finger Anatomy 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000004622 sleep time Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/28—Recognition of hand or arm movements, e.g. recognition of deaf sign language
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
- G01S13/345—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/583—Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
- G01S13/584—Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/356—Receivers involving particularities of FFT processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/539—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Social Psychology (AREA)
- Medical Informatics (AREA)
- Psychiatry (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
- User Interface Of Digital Computer (AREA)
Description
レーダは、対象を検出し得る有用なデバイスである。カメラのような他のタイプのセンサに対して、レーダは、薄暗い光および霧などの異なる環境条件の存在下で、または、移動している対象もしくは重なっている対象を伴う異なる環境条件の存在下で性能の改善を提供し得る。レーダはさらに、バッグまたはポケットなどの1つ以上の遮蔽物(occlusion)を通過して対象を検出し得る。レーダは利点を有し得るが、電子デバイスにレーダを統合することに関連付けられる多くの困難が存在する。
空間時間ニューラルネットワークを使用してジェスチャ認識を実行することが可能なスマートデバイスベースのレーダシステムを実現する技術および装置が記載される。空間時間ニューラルネットワークは、ジェスチャ認識のために複合レーダデータ(たとえば、大きさ情報および位相情報の両方)を分析するよう、マシンラーニングを使用する。大きさ情報および位相情報の両方を分析することによって、空間時間ニューラルネットワークは、大きさ情報を処理する他の信号処理技術、ヒューリスティック技術、または、マシンラーニング技術と比較して、分散した対象を検出し、かつ、ジェスチャを認識するための改善された精度を実現し得る。
概要
レーダシステムを電子デバイス内に統合することは困難であり得る。電子デバイスは、たとえば、限られた量の利用可能な電力を有し得る。したがって、レーダシステムは、送信パワーを増加させること、または、より高い更新レートを利用できないことがあり得る。いくつかの場合において、電子デバイスのサイズまたはレイアウト制約は、アンテナ要素の量を制限し得るか、または、角度分解能を制限し得る準最適なアンテナ要素間隔をもたらし得る。他のハードウェア制限または周波数制限は、レーダ信号の帯域幅を制限し得、これは、パルス圧縮技術を使用するレーダについてレンジ分解能を制限し得る。これらの制限により、いくつかのレーダが目標精度を達成することは困難であり得る。
図1は、空間時間ニューラルネットワークを使用してジェスチャ認識を実行することが可能なスマートデバイスベースのレーダシステムを使用する技術および当該スマートデバイスベースのレーダシステムを含む装置が具現化され得る例示的な環境100-1~100-6の図である。示される環境100-1~100-6では、スマートデバイス104は、(図2の)空間時間ニューラルネットワークを使用して、1つ以上の対象(たとえば、ユーザ)を検出することが可能なレーダシステム102を含む。スマートデバイス104は、環境100-1~100-5ではスマートフォンであり、環境100-6ではスマート車両であることが示されている。
図8は、空間時間ニューラルネットワーク222を使用してジェスチャ認識を実行することが可能なスマートデバイスベースのレーダシステムの動作を実行するための例示的な方法800を示す。方法800は、実行される動作(または処置)のセットとして示されるが、必ずしも、当該動作が本明細書において示される順序または組み合わせに限定されない。さらに、当該動作の1つ以上のいずれかが、幅広いさまざまな付加的および/または代替的な方法を提供するよう、繰り返し、組み合わせ、再編成、リンクされてもよい。以下の議論の部分において、図1の環境100-1~100-6および図4または図5に詳述されるエンティティに対して参照がなされ得、それらへの参照は、例示のためにのみ行われる。当該技術は、1つのエンティティまたは1つのデバイス上で動作する複数のエンティティによる実行に限定されない。
図9は、空間時間ニューラルネットワーク222を使用してジェスチャ認識を実現するよう、前述の図2を参照して記載されたような任意のタイプのクライアント、サーバおよび/またはコンピューティングデバイスとして実現され得る例示的なコンピューティングシステム900のさまざまな構成要素を示す。
空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステムを使用する技術および当該スマートデバイスベースのレーダシステムを含む装置が、特徴および/または方法に特有の言語で記載されているが、添付の請求の範囲の主題は、必ずしも、記載される特定の特徴または方法に限定されないことが理解されるべきである。むしろ、特定の特徴および方法は、空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステムの例示的な実現例として開示される。
例1:レーダシステムによって実行される方法であって、
前記レーダシステムのアンテナアレイを使用してレーダ送信信号を送信することと、
前記アンテナアレイを使用してレーダ受信信号を受信することとを含み、前記レーダ受信信号は、少なくとも1人のユーザによって反射される前記レーダ送信信号のバージョンを含み、
前記方法はさらに、
前記レーダ受信信号に基づいて複合レーダデータを生成することと、
前記複合レーダデータを前記レーダシステムの空間時間ニューラルネットワークに提供することとを含み、前記空間時間ニューラルネットワークは、マルチステージマシンラーニングアーキテクチャを含み、
前記方法はさらに、
前記少なくとも1人のユーザによって実行されるジェスチャを認識するよう、前記空間時間ニューラルネットワークを使用して前記複合レーダデータを分析することを含む、方法。
前記複合レーダデータを分析することは、
前記ジェスチャに関連付けられる特徴データを生成するよう、前記空間再帰ネットワークを使用して、空間ドメインにわたって前記複合レーダデータを分析することと、
前記ジェスチャを認識するよう、前記時間再帰ネットワークを使用して、時間ドメインにわたって特徴データを分析することとを含む、例1または2に記載の方法。
前記時間再帰ネットワークが、前記サーキュラーバッファ内に格納された前記特徴データにアクセスすることとをさらに含む、例3に記載の方法。
各レンジビンについてチャネルドップラーデータを生成するよう、非線形活性化関数を使用して、異なるレンジビンに関連付けられる前記複合レーダデータの部分を別々に処理することと、
前記特徴データを生成するよう、前記異なるレンジビンにわたって前記チャネルドップラーデータを分析することとを含む、例3または4に記載の方法。
複合レンジ-ドップラーマップ、
複合干渉測定データ、
前記レーダ受信信号に関連付けられる複数のデジタルビート信号、または
前記複数のデジタルビート信号の周波数ドメイン表現
のうちの少なくとも1つを含む、先行する例のいずれかに記載の方法。
スワイプジェスチャ、
リーチジェスチャ、
ノブ回転ジェスチャ、または
スピンドルねじりジェスチャ
のうちの少なくとも1つを含む、先行する例のいずれかに記載の方法。
前記複合レーダデータを生成することは、前記レーダシステムのそれぞれの受信チャネルを使用してデジタルビート信号を生成することを含み、前記それぞれの受信チャネルは、それぞれ異なる前記アンテナ要素に接続される、先行する例のいずれかに記載の方法。
レーダシステムを含み、
前記レーダシステムは、
アンテナアレイと、
トランシーバと、
例1~12に記載の方法のいずれかを実行するように構成されるプロセッサおよびコンピュータ可読記憶媒体とを含む、装置。
前記スマートデバイスは、
スマートフォン、
スマートウォッチ、
スマートスピーカ、
スマートサーモスタット、
セキュリティカメラ、
車両、または
家庭用電化製品
のうちの1つを含む、例13に記載の装置。
前記空間時間ニューラルネットワークは、
少なくとも1つの対象によって反射されるレーダ受信信号に関連付けられる複合レーダデータを受け付けることと、
特徴データを生成するよう、空間ドメインにわたって前記複合レーダデータを分析することと、
レーダアプリケーションデータを生成するよう、時間ドメインにわたって前記特徴データを分析することと、
前記レーダアプリケーションデータをレーダベースアプリケーションに渡すこととを行うように構成される、コンピュータ可読記憶媒体。
前記レーダアプリケーションデータは、前記ユーザによって実行されるジェスチャを識別し、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、前記レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
識別された前記ジェスチャに基づいて、前記ユーザにコンテンツを表示することとを行うように構成される、例15または16に記載のコンピュータ可読記憶媒体。
前記ユーザに前記ジェスチャを実行するように促すことと、
前記ユーザが前記ジェスチャを実行している間に、前記複合レーダデータを学習データとして記録することと、
前記ユーザによって実行される将来のジェスチャを認識するよう、学習手順を実行することとを行うように構成される、例17に記載のコンピュータ可読記憶媒体。
前記レーダアプリケーションデータは、前記スタイラスを使用してユーザによって実行されるジェスチャを識別する、例15または16に記載のコンピュータ可読記憶媒体。
前記レーダアプリケーションデータは、前記無生物対象と前記ユーザとの間の潜在的な衝突を識別し、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
前記潜在的な衝突について前記ユーザに警告することとを行うように構成される、例15または16に記載のコンピュータ可読記憶媒体。
前記レーダアプリケーションデータは、前記ユーザの測定されたバイタルサインを含み、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
前記測定されたバイタルサインを前記ユーザに知らせることとを行うように構成される、例15または16に記載のコンピュータ可読記憶媒体。
前記ハードウェア抽象化モジュールは、
前記複合レーダデータに基づいて、ハードウェア非依存の複合レーダデータを生成することと、
前記ハードウェア非依存の複合レーダデータを前記複合レーダデータとして前記空間時間ニューラルネットワークに提供することとを行うように構成される、例15~21のいずれかに記載のコンピュータ可読記憶媒体。
前記コンピュータ実行可能命令は、プロセッサによる実行に応答して、マルチステージマシンラーニングアーキテクチャを含む空間時間ニューラルネットワークを実現し、
前記空間時間ニューラルネットワークは、
少なくとも1つの対象によって反射されるレーダ受信信号に関連付けられる複合レーダデータを受け付けることと、
前記少なくとも1人のユーザによって行われるジェスチャを認識するよう、前記複合レーダデータを分析することと
を行うように構成される、コンピュータ可読記憶媒体。
特徴データを生成するよう、空間ドメインにわたって前記複合レーダデータを分析することと、
レーダアプリケーションデータを生成するよう、時間ドメインにわたって前記特徴データを分析することと、
前記レーダアプリケーションデータをレーダベースアプリケーションに渡すことと
を行うように構成される、例23に記載のコンピュータ可読記憶媒体。
Claims (18)
- レーダシステムによって実行される方法であって、
前記レーダシステムのアンテナアレイを使用してレーダ送信信号を送信することと、
前記アンテナアレイを使用してレーダ受信信号を受信することとを含み、前記レーダ受信信号は、少なくとも1人のユーザによって反射される前記レーダ送信信号のバージョンを含み、
前記方法はさらに、
前記レーダ受信信号に基づいて複合レーダデータを生成することと、
前記複合レーダデータを前記レーダシステムの空間時間ニューラルネットワークに提供することとを含み、前記空間時間ニューラルネットワークは、空間再帰ネットワークと時間再帰ネットワークとを含み、
前記方法はさらに、
前記少なくとも1人のユーザによって実行されるジェスチャを認識するよう、前記空間時間ニューラルネットワークを使用して前記複合レーダデータを分析することを含み、
前記複合レーダデータを分析することは、
前記複合レーダデータに関連付けられる空間ドメインにわたって前記複合レーダデータを分析することによって、前記空間再帰ネットワークを使用して、前記ジェスチャに関連付けられる特徴データを生成することと、
時間ドメインにわたって前記特徴データの時間的セットを分析することによって、前記時間再帰ネットワークを使用して、前記ジェスチャを認識することとを含む、方法。 - 前記複合レーダデータを分析することは、前記ジェスチャを認識するよう、マシンラーニング技術を使用して、前記複合レーダデータの大きさ情報および位相情報の両方を分析することを含む、請求項1に記載の方法。
- 前記特徴データをサーキュラーバッファ内に格納することと、
前記時間再帰ネットワークが、前記サーキュラーバッファ内に格納された前記特徴データにアクセスすることとをさらに含む、請求項1または2に記載の方法。 - 前記空間ドメインにわたって前記複合レーダデータを分析することは、
各レンジビンについてチャネルドップラーデータを生成するよう、非線形活性化関数を使用して、異なるレンジビンに関連付けられる前記複合レーダデータの部分を別々に処理することと、
前記特徴データを生成するよう、前記異なるレンジビンにわたって前記チャネルドップラーデータを分析することとを含む、請求項1~3のいずれか1項に記載の方法。 - 前記時間ドメインにわたって前記特徴データを分析することは、少なくとも2つの異なる時間フレームに関連付けられる前記特徴データを分析することによって、前記ジェスチャに関する予測を形成することを含む、請求項1~4のいずれかに記載の方法。
- 前記複合レーダデータは、
複合レンジ-ドップラーマップ、
複合干渉測定データ、
前記レーダ受信信号に関連付けられる複数のデジタルビート信号、または
前記複数のデジタルビート信号の周波数ドメイン表現
のうちの少なくとも1つを含む、請求項1~5のいずれかに記載の方法。 - 前記ジェスチャは、
スワイプジェスチャ、
リーチジェスチャ、
ノブ回転ジェスチャ、または
スピンドルねじりジェスチャ
のうちの少なくとも1つを含む、請求項1~6のいずれかに記載の方法。 - 前記レーダ受信信号を受信することは、前記レーダシステムの異なるアンテナ要素を使用して前記レーダ受信信号の複数のバージョンを受信することを含み、
前記複合レーダデータを生成することは、前記レーダシステムのそれぞれの受信チャネルを使用してデジタルビート信号を生成することを含み、前記それぞれの受信チャネルは、それぞれ異なる前記アンテナ要素に接続される、請求項1~7のいずれかに記載の方法。 - レーダシステムを含み、
前記レーダシステムは、
アンテナアレイと、
トランシーバと、
請求項1~8のいずれかに記載の方法を実行するように構成されるプロセッサおよびコンピュータ可読記憶媒体とを含む、装置。 - 前記装置は、スマートデバイスを含み、
前記スマートデバイスは、
スマートフォン、
スマートウォッチ、
スマートスピーカ、
スマートサーモスタット、
セキュリティカメラ、
車両、または
家庭用電化製品
のうちの1つを含む、請求項9に記載の装置。 - プロセッサによる実行に応答して、空間再帰ネットワークと時間再帰ネットワークとを含む空間時間ニューラルネットワークを実現するコンピュータ実行可能命令を含むコンピュータプログラムであって、
前記空間時間ニューラルネットワークは、
少なくとも1つの対象によって反射されるレーダ受信信号に関連付けられる複合レーダデータを受け付けることと、
前記複合レーダデータに関連付けられる空間ドメインにわたって前記複合レーダデータを分析することによって、前記空間再帰ネットワークを使用して、特徴データを生成することと、
時間ドメインにわたって前記特徴データの時間的セットを分析することによって、前記時間再帰ネットワークを使用して、レーダアプリケーションデータを生成することと、
前記レーダアプリケーションデータをレーダベースアプリケーションに渡すこととを行うように構成される、コンピュータプログラム。 - 前記空間時間ニューラルネットワークはさらに、前記レーダアプリケーションデータを生成するよう、前記複合レーダデータの大きさ情報および位相情報の両方を分析するように構成される、請求項11に記載のコンピュータプログラム。
- 前記少なくとも1つの対象はユーザを含み、
前記レーダアプリケーションデータは、前記ユーザによって実行されるジェスチャを識別し、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、前記レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
識別された前記ジェスチャに基づいて、前記ユーザにコンテンツを表示することとを行うように構成される、請求項11または12に記載のコンピュータプログラム。 - 前記空間時間ニューラルネットワークはさらに、
前記ユーザに前記ジェスチャを実行するように促すことと、
前記ユーザが前記ジェスチャを実行している間に、前記複合レーダデータを学習データとして記録することと、
前記ユーザによって実行される将来のジェスチャを認識するよう、学習手順を実行することとを行うように構成される、請求項13に記載のコンピュータプログラム。 - 前記少なくとも1つの対象はスタイラスを含み、
前記レーダアプリケーションデータは、前記スタイラスを使用してユーザによって実行されるジェスチャを識別する、請求項11または12に記載のコンピュータプログラム。 - 前記少なくとも1つの対象は、無生物対象とユーザとを含み、
前記レーダアプリケーションデータは、前記無生物対象と前記ユーザとの間の潜在的な衝突を識別し、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
前記潜在的な衝突について前記ユーザに警告することとを行うように構成される、請求項11または12に記載のコンピュータプログラム。 - 前記少なくとも1つの対象はユーザを含み、
前記レーダアプリケーションデータは、前記ユーザの測定されたバイタルサインを含み、
前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、レーダベースアプリケーションを実現し、
前記レーダベースアプリケーションは、
前記レーダアプリケーションデータを受け付けることと、
前記測定されたバイタルサインを前記ユーザに知らせることとを行うように構成される、請求項11または12に記載のコンピュータプログラム。 - 前記コンピュータ実行可能命令は、前記プロセッサによる実行に応答して、ハードウェア抽象化モジュールを実現し、
前記ハードウェア抽象化モジュールは、
前記複合レーダデータに基づいて、ハードウェア非依存の複合レーダデータを生成することと、
前記ハードウェア非依存の複合レーダデータを前記複合レーダデータとして前記空間時間ニューラルネットワークに提供することとを行うように構成される、請求項11~17のいずれかに記載のコンピュータプログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962928029P | 2019-10-30 | 2019-10-30 | |
US62/928,029 | 2019-10-30 | ||
PCT/US2020/056505 WO2021086688A2 (en) | 2019-10-30 | 2020-10-20 | Smart-device-based radar system performing gesture recognition using a space time neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022553619A JP2022553619A (ja) | 2022-12-26 |
JP7481434B2 true JP7481434B2 (ja) | 2024-05-10 |
Family
ID=73402159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022515765A Active JP7481434B2 (ja) | 2019-10-30 | 2020-10-20 | 空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220326367A1 (ja) |
EP (1) | EP4052173A2 (ja) |
JP (1) | JP7481434B2 (ja) |
KR (1) | KR20220044809A (ja) |
CN (1) | CN114365008A (ja) |
WO (1) | WO2021086688A2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11983327B2 (en) * | 2021-10-06 | 2024-05-14 | Fotonation Limited | Method for identifying a gesture |
CN113918019A (zh) * | 2021-10-19 | 2022-01-11 | 亿慧云智能科技(深圳)股份有限公司 | 终端设备的手势识别控制方法、装置、终端设备及介质 |
US20230305632A1 (en) * | 2021-12-02 | 2023-09-28 | SoftEye, Inc. | Systems, apparatus, and methods for gesture-based augmented reality, extended reality |
WO2024081122A1 (en) * | 2022-10-14 | 2024-04-18 | Motional Ad Llc | Object detection using radar sensors |
CN115345908B (zh) * | 2022-10-18 | 2023-03-07 | 四川启睿克科技有限公司 | 一种基于毫米波雷达的人体姿态识别方法 |
SE2251238A1 (en) * | 2022-10-25 | 2024-04-26 | Xfinder Sweden Ab | Millimeter radar for interrogation, classification and localization of target objects having a non-linear frequency dependent frequency response, enhanced by wideband chaos generating material (wcgm) |
CN116074835B (zh) * | 2023-01-16 | 2024-09-10 | 上海物骐微电子有限公司 | 基于WiFi的手势识别方法及装置、电子设备、存储介质 |
CN117724094B (zh) * | 2024-02-07 | 2024-05-07 | 浙江大华技术股份有限公司 | 生命体征检测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018170003A (ja) | 2017-03-30 | 2018-11-01 | 富士通株式会社 | ビデオ中のイベントの検出装置、方法及び画像処理装置 |
WO2019104228A1 (en) | 2017-11-21 | 2019-05-31 | Google Llc | Low-power ambient computing system with machine learning |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9024958B2 (en) * | 2012-01-30 | 2015-05-05 | Lenovo (Singapore) Pte. Ltd. | Buffering mechanism for camera-based gesturing |
US20140002338A1 (en) * | 2012-06-28 | 2014-01-02 | Intel Corporation | Techniques for pose estimation and false positive filtering for gesture recognition |
KR102330889B1 (ko) * | 2013-02-22 | 2021-11-26 | 페이스북 테크놀로지스, 엘엘씨 | 제스처-기반 제어를 위해 근활성도 센서 신호와 관성 센서 신호를 결합하는 방법 및 기기 |
CN110794960B (zh) * | 2014-12-08 | 2024-02-06 | 罗希特·塞思 | 可穿戴无线hmi装置 |
US20180046255A1 (en) * | 2016-08-09 | 2018-02-15 | Google Inc. | Radar-based gestural interface |
US20190049558A1 (en) * | 2017-08-08 | 2019-02-14 | KC Sense Limited | Hand Gesture Recognition System and Method |
SG11202001933PA (en) * | 2017-10-06 | 2020-04-29 | Tellus You Care Inc | Non-contact activity sensing network for elderly care |
US10108903B1 (en) * | 2017-12-08 | 2018-10-23 | Cognitive Systems Corp. | Motion detection based on machine learning of wireless signal properties |
CN111433627B (zh) * | 2018-04-05 | 2023-09-22 | 谷歌有限责任公司 | 使用机器学习执行角估计的基于智能设备的雷达系统 |
US11579629B2 (en) * | 2019-03-15 | 2023-02-14 | Nvidia Corporation | Temporal information prediction in autonomous machine applications |
US11126885B2 (en) * | 2019-03-21 | 2021-09-21 | Infineon Technologies Ag | Character recognition in air-writing based on network of radars |
CN110208793B (zh) * | 2019-04-26 | 2022-03-11 | 纵目科技(上海)股份有限公司 | 基于毫米波雷达的辅助驾驶系统、方法、终端和介质 |
-
2020
- 2020-10-20 EP EP20807201.7A patent/EP4052173A2/en active Pending
- 2020-10-20 WO PCT/US2020/056505 patent/WO2021086688A2/en active Search and Examination
- 2020-10-20 CN CN202080064138.1A patent/CN114365008A/zh active Pending
- 2020-10-20 US US17/634,857 patent/US20220326367A1/en active Pending
- 2020-10-20 JP JP2022515765A patent/JP7481434B2/ja active Active
- 2020-10-20 KR KR1020227008000A patent/KR20220044809A/ko not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018170003A (ja) | 2017-03-30 | 2018-11-01 | 富士通株式会社 | ビデオ中のイベントの検出装置、方法及び画像処理装置 |
WO2019104228A1 (en) | 2017-11-21 | 2019-05-31 | Google Llc | Low-power ambient computing system with machine learning |
Non-Patent Citations (1)
Title |
---|
YONG WANG,TS-I3D Based Hand Gesture Recognition Method With Radar Sensor,IEEE ACCESS,2019年03月04日,第7巻,pp.22902-22913 |
Also Published As
Publication number | Publication date |
---|---|
WO2021086688A3 (en) | 2021-06-10 |
EP4052173A2 (en) | 2022-09-07 |
WO2021086688A2 (en) | 2021-05-06 |
KR20220044809A (ko) | 2022-04-11 |
JP2022553619A (ja) | 2022-12-26 |
US20220326367A1 (en) | 2022-10-13 |
CN114365008A (zh) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7481434B2 (ja) | 空間時間ニューラルネットワークを使用してジェスチャ認識を実行するスマートデバイスベースのレーダシステム | |
CN111812633B (zh) | 检测基于智能设备的雷达系统中的参考系变化 | |
CN111433627B (zh) | 使用机器学习执行角估计的基于智能设备的雷达系统 | |
US10698603B2 (en) | Smartphone-based radar system facilitating ease and accuracy of user interactions with displayed objects in an augmented-reality interface | |
CN111830503B (zh) | 执行对称多普勒干扰减轻的基于智能设备的雷达系统 | |
CN113454481B (zh) | 在存在饱和的情况下检测用户姿势的基于智能设备的雷达系统 | |
US20230161027A1 (en) | Smart-Device-Based Radar System Performing Near-Range Detection | |
US20240027600A1 (en) | Smart-Device-Based Radar System Performing Angular Position Estimation | |
CN111695420A (zh) | 一种手势识别方法以及相关装置 | |
US20240337746A1 (en) | Multi-Radar System | |
US20240280669A1 (en) | Radar Application Programming Interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7481434 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |