JP7479623B2 - Agents promoting polarity conversion to anti-inflammatory M2 phenotype microglia - Google Patents

Agents promoting polarity conversion to anti-inflammatory M2 phenotype microglia Download PDF

Info

Publication number
JP7479623B2
JP7479623B2 JP2020026373A JP2020026373A JP7479623B2 JP 7479623 B2 JP7479623 B2 JP 7479623B2 JP 2020026373 A JP2020026373 A JP 2020026373A JP 2020026373 A JP2020026373 A JP 2020026373A JP 7479623 B2 JP7479623 B2 JP 7479623B2
Authority
JP
Japan
Prior art keywords
microglia
phenotype
cyclic peptide
inflammatory
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026373A
Other languages
Japanese (ja)
Other versions
JP2020196699A (en
Inventor
幸一 鈴木
洲 武
慎一 石黒
真弓 苅間澤
シラパコング・ピヤマース
真規子 江幡
裕美 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Biococoon Laboratories Inc
Original Assignee
Kyushu University NUC
Biococoon Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Biococoon Laboratories Inc filed Critical Kyushu University NUC
Priority to KR1020200060224A priority Critical patent/KR20200138004A/en
Priority to CN202010493307.5A priority patent/CN112007142A/en
Publication of JP2020196699A publication Critical patent/JP2020196699A/en
Application granted granted Critical
Publication of JP7479623B2 publication Critical patent/JP7479623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、ミクログリアの抗炎症M2表現型への極性転換を促進することができる極性転換促進剤に関する。 The present invention relates to a polarity conversion promoter that can promote polarity conversion of microglia to the anti-inflammatory M2 phenotype.

グリア細胞の1種であるミクログリアは、中胚葉由来の卵黄嚢から分化した細胞と考えられている。ミクログリアは、損傷を受けた細胞の除去やシナプスの保守点検など、脳内外の環境を調整する免疫細胞としての役割を持つことがわかってきた。例えば、外傷性脳損傷から脳を保護する場合、ミクログリアが活性化して炎症性サイトカインを放出することでアストロサイトを反応性アストロサイトに変化し、脳の保護に作用する。また、活性化したミクログリアは脳炎症を誘発し、神経変性疾患を促進することが知られている。 Microglia, a type of glial cell, are thought to be cells differentiated from the mesoderm-derived yolk sac. It has been found that microglia act as immune cells that regulate the environment inside and outside the brain, such as removing damaged cells and maintaining synapses. For example, when protecting the brain from traumatic brain injury, microglia become activated and release inflammatory cytokines, which transform astrocytes into reactive astrocytes and act to protect the brain. Activated microglia are also known to induce brain inflammation and promote neurodegenerative diseases.

一方、ミクログリアを標的とした神経変性疾患の治療方法が開示されている。例えば、グリチルレチン酸誘導体の一種でありギャップ結合阻害剤を用いる方法(非特許文献1、特許文献1)、イソα酸を用いる方法(非特許文献2)などが提案されている。 Meanwhile, methods for treating neurodegenerative diseases that target microglia have been disclosed. For example, a method using a gap junction inhibitor, which is a type of glycyrrhetinic acid derivative (Non-Patent Document 1, Patent Document 1) and a method using iso-α acid (Non-Patent Document 2) have been proposed.

ミクログリアには、2つの活性化タイプがあることが知られている(非特許文献3)。すなわち、図1に示すように、炎症促進M1表現型ミクログリアと、抗炎症M2表現型ミクログリアがある。炎症促進M1表現型ミクログリアは、インターロイキン-1β(IL-1β)、腫瘍壊死因子(TNF-α)、誘導型一酸化炭素合成酵素(iNOS)等を産生する。IL-1βはエフェクタであり、IL-1βの存在下でミクログリアが脳内炎症を起こし、ラジカル活性酸素等のフリーラジカルが放出される。また、IL-1βを産生するミクログリアにおいては、老化した(壊れた)細胞などの老廃物を貪食する能力が低下する。そのため、炎症促進M1表現型ミクログリアは、神経細胞傷害的に作用する。一方、抗炎症M2表現型ミクログリアは、アルギナーゼ-1(ARG1)、インターロイキン-10(IL-10)、インターロイキン-4(IL-4)、トランスフォーミング成長因子(TGF)-β1等を産生する。ARG1はエフェクタであり、これを放出することで神経細胞の保護に働く。抗炎症M2表現型ミクログリアは、脳内炎症を抑えると同時に、老化した細胞などの老廃物を貪食する能力が高く、そのため抗炎症、即ち神経細胞保護的に作用する。 It is known that there are two activation types of microglia (Non-Patent Document 3). That is, as shown in Figure 1, there are pro-inflammatory M1 phenotype microglia and anti-inflammatory M2 phenotype microglia. Pro-inflammatory M1 phenotype microglia produce interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), inducible carbon monoxide synthase (iNOS), etc. IL-1β is an effector, and in the presence of IL-1β, microglia cause intracerebral inflammation and release free radicals such as radical active oxygen. In addition, in microglia that produce IL-1β, the ability to phagocytose waste products such as aged (broken) cells is reduced. Therefore, pro-inflammatory M1 phenotype microglia act in a neuronal cell-damaging manner. On the other hand, anti-inflammatory M2 phenotype microglia produce arginase-1 (ARG1), interleukin-10 (IL-10), interleukin-4 (IL-4), transforming growth factor (TGF)-β1, etc. ARG1 is an effector that protects nerve cells by releasing it. Anti-inflammatory M2 phenotype microglia suppress inflammation in the brain and are highly capable of phagocytosing waste products such as aged cells, and therefore act as an anti-inflammatory, i.e., neuroprotective, agent.

ところで、本発明者らは、特許文献2において新規な環状ペプチド誘導体を提供している。この環状ペプチド誘導体は、冬虫夏草の一種であるハナサナギタケから採取されたものであり、アストロサイトに対して増殖活性を有することが示されているが、ミクログリアに作用して抗炎症M2表現型ミクログリアへの極性転換を促進することは知られていない。 Incidentally, the present inventors have provided a novel cyclic peptide derivative in Patent Document 2. This cyclic peptide derivative is extracted from Cordyceps sinensis, a type of Cordyceps sinensis, and has been shown to have a proliferation activity on astrocytes, but it is not known that it acts on microglia to promote polarity conversion to anti-inflammatory M2 phenotype microglia.

国際公開2007/088712号International Publication No. 2007/088712 国際公開2016/047638号International Publication No. 2016/047638

Takeuchi, H., Mizoguchi, H., Doi, Y., Jin,S., Noda, M., Liang, J., Li,H., Zhou, Y., Mori, R., Yasuka, S., Li, E.,Parajuli, B., Kawanokuchi, J.,Sonobe, Y., Sato, J., Yamanaka, K. and Sobue G.(2011) Blockade of gap junctionhemichannel suppresses disease progression inmouse models of amyotrophiclateral sclerosis and Alzheimer’s disease. ProsOne, 6(6), e21108.Takeuchi, H., Mizoguchi, H., Doi, Y., Jin,S., Noda, M., Liang, J., Li,H., Zhou, Y., Mori, R., Yasuka, S., Li, E.,Parajuli, B., Kawanokuchi, J.,Sonobe, Y., Sato, J., Yamanaka, K. and Sobue G.(2011) Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. ProsOne, 6(6), e21108. Ano, Y., Dohata, A., Taniguchi, Y., Hoshi,A., Uchida, K.,Takashima, A. and Nakayama, H. (2017) Iso-α-acids, bittercomponents of beer, prevent inflammation and cognitivedecline induced in amouse model of Alzheimer’s disease.Journal of Biological Chemistry, 292, 3720-3728.Ano, Y., Dohata, A., Taniguchi, Y., Hoshi,A., Uchida, K.,Takashima, A. and Nakayama, H. (2017) Iso-α-acids, bitter components of beer, prevent inflammation and cognitive decline induced in a mouse model of Alzheimer’s disease.Journal of Biological Chemistry, 292, 3720-3728. Ni J, Wu Z, Peters C, Yamamoto K, Qing H,Nakanishi H. (2015): The Critical Role of Proteolytic Relay throughCathepsins Band E in the Phenotypic Change of Microglia/Macrophage. J Neurosci. 35(36):12488-501.Ni J, Wu Z, Peters C, Yamamoto K, Qing H,Nakanishi H. (2015): The Critical Role of Proteolytic Relay throughCathepsins Band E in the Phenotypic Change of Microglia/Macrophage. J Neurosci. 35(36):12488-501. Wu Z, Sun L, Hashioka S, Yu S, Schwab C,Okada R, Hayashi Y,McGeerPL, Nakanishi H. (2013) Differential pathways forinterleukin-1β production activated by chromogranin Aand amyloid β in microglia. NeurobiologyAging.34(12):2715-25.Wu Z, Sun L, Hashioka S, Yu S, Schwab C,Okada R, Hayashi Y,McGeerPL, Nakanishi H. (2013) Differential pathways for interleukin-1β production activated by chromogranin A and amyloid β in microglia. NeurobiologyAging.34(12):2715-25. 1582087454977_0.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8864135&query_hl=131&itool=pubmed_docsum (1996) Regulation ofmicroglial activation by TGF-β, IL-10, and CSF-1. J. Leukoc Biol. 60, 502-508.1582087454977_0.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8864135&query_hl=131&itool=pubmed_docsum (1996) Regulation of microglial activation by TGF-β, IL-10, and CSF-1. J. Leukoc Biol. 60, 502-508.

本発明は、神経細胞保護的に作用する抗炎症M2表現型ミクログリアへの新規な極性転換促進剤を提供することを目的とする。 The present invention aims to provide a novel agent for promoting polarity conversion to anti-inflammatory M2 phenotype microglia that acts to protect neuronal cells.

本発明の実施形態に係る抗炎症M2表現型ミクログリアへの極性転換促進剤は、下記一般式(1)で表される環状ペプチド誘導体を含むものである。

Figure 0007479623000001
式(1)中、mは0~3、n≧1であり、R~Rはそれぞれ独立に水素原子または炭化水素基であり、RおよびRはそれぞれ独立にカルボキシ基もしくはその塩、またはアルコキシカルボニル基であり、Rは炭化水素基、ヒドロキシ基、アルコキシ基またはアルキルカルボニルオキシ基であり、R10およびR11はそれぞれ独立に水素原子、炭化水素基またはアルキルカルボニルオキシ基であり、R12~R16はそれぞれ独立に水素原子または炭化水素基である。 The agent for promoting polarity conversion to anti-inflammatory M2 phenotype microglia according to an embodiment of the present invention comprises a cyclic peptide derivative represented by the following general formula (1).
Figure 0007479623000001
In formula (1), m is 0 to 3 and n is 1 or greater; R 1 to R 6 are each independently a hydrogen atom or a hydrocarbon group; R 7 and R 8 are each independently a carboxy group or a salt thereof, or an alkoxycarbonyl group; R 9 is a hydrocarbon group, a hydroxy group, an alkoxy group, or an alkylcarbonyloxy group; R 10 and R 11 are each independently a hydrogen atom, a hydrocarbon group, or an alkylcarbonyloxy group; and R 12 to R 16 are each independently a hydrogen atom or a hydrocarbon group.

本発明の実施形態によれば、神経細胞保護的に作用する抗炎症M2表現型ミクログリアへの極性転換促進剤を提供することができる。 According to an embodiment of the present invention, it is possible to provide a polarity conversion promoter for anti-inflammatory M2 phenotype microglia that acts in a neuroprotective manner.

ミクログリアの活性化メカニズムを説明するための図である。FIG. 1 is a diagram for explaining the activation mechanism of microglia. MG6ミクログリアについて環状ペプチド誘導体の濃度と細胞生存率との関係を示すグラフである。1 is a graph showing the relationship between the concentration of a cyclic peptide derivative and the cell viability of MG6 microglia. 実施例におけるMG6ミクログリアの分極化試験結果を示すグラフであり、CGA単独で処理したMG6ミクログリアと、CGA存在下において環状ペプチド誘導体で処理したMG6ミクログリアが、それぞれ産生するIL-1βとARG1の遺伝子発現量を示すグラフである。This is a graph showing the results of a polarization test of MG6 microglia in an example, and is a graph showing the gene expression levels of IL-1β and ARG1 produced by MG6 microglia treated with CGA alone and MG6 microglia treated with a cyclic peptide derivative in the presence of CGA, respectively. 環状ペプチド誘導体の安全性試験結果を示すグラフである。1 is a graph showing the results of a safety test of a cyclic peptide derivative. 初代ミクログリアについて環状ペプチド誘導体の濃度と細胞生存率との関係を示すグラフである。1 is a graph showing the relationship between the concentration of cyclic peptide derivatives and cell viability in primary microglia. 初代ミクログリアについての分極化試験結果を示すグラフである。無刺激のコントロール、環状ペプチド誘導体単独処理、CGA単独処理、及びCGAと環状ペプチド誘導体との組合せ処理による初代ミクログリアが産生するサイトカインの遺伝子発現量を示すグラフであり、(a)は処理24時間後のTGF-1βの遺伝子発現量、(b)は処理72時間後のTGF-1βの遺伝子発現量、(c)は処理24時間後のIL-1βの遺伝子発現量、(d)は処理72時間後のIL-1βの遺伝子発現量を示す。なお、IL-1βは神経細胞障害で、TGF-β1は神経細胞保護である。1 is a graph showing the results of a polarization test on primary microglia. The graph shows the gene expression levels of cytokines produced by primary microglia in a non-stimulated control, treatment with a cyclic peptide derivative alone, treatment with CGA alone, and treatment with a combination of CGA and a cyclic peptide derivative, where (a) shows the gene expression level of TGF-1β after 24 hours of treatment, (b) shows the gene expression level of TGF-1β after 72 hours of treatment, (c) shows the gene expression level of IL-1β after 24 hours of treatment, and (d) shows the gene expression level of IL-1β after 72 hours of treatment. IL-1β is a neuronal disorder, and TGF-β1 is a neuronal protection.

本実施形態に係る抗炎症M2表現型ミクログリアへの極性転換促進剤(以下、単に「極性転換促進剤」ともいう。)は、次の一般式(1)で表される環状ペプチド誘導体を有効成分として含有する。 The polarity conversion promoter for anti-inflammatory M2 phenotype microglia according to this embodiment (hereinafter also simply referred to as the "polarity conversion promoter") contains a cyclic peptide derivative represented by the following general formula (1) as an active ingredient.

Figure 0007479623000002
Figure 0007479623000002

式中、mは0~3の整数であり、nは1以上の整数である。R~Rは、それぞれ独立に水素原子または炭化水素基である。RおよびRは、それぞれ独立にカルボキシ基もしくはその塩、またはアルコキシカルボニル基である。Rは、炭化水素基、ヒドロキシ基、アルコキシ基またはアルキルカルボニルオキシ基である。R10およびR11は、それぞれ独立に水素原子、炭化水素基またはアルキルカルボニルオキシ基である。R12~R16は、それぞれ独立に水素原子または炭化水素基である。 In the formula, m is an integer of 0 to 3, and n is an integer of 1 or more. R 1 to R 6 are each independently a hydrogen atom or a hydrocarbon group. R 7 and R 8 are each independently a carboxy group or a salt thereof, or an alkoxycarbonyl group. R 9 is a hydrocarbon group, a hydroxy group, an alkoxy group, or an alkylcarbonyloxy group. R 10 and R 11 are each independently a hydrogen atom, a hydrocarbon group, or an alkylcarbonyloxy group. R 12 to R 16 are each independently a hydrogen atom or a hydrocarbon group.

ここで、炭化水素基としては、例えば脂肪族炭化水素基、即ち、直鎖状もしくは分枝鎖状の飽和もしくは不飽和の炭化水素基、または脂環式の炭化水素基が挙げられる。炭化水素基の炭素数は特に限定しないが、好ましくは炭素数1~6、より好ましくは炭素数1~4である。アルコキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基における炭化水素部分も同様である。好ましい例としては、炭化水素基および炭化水素部分は、それぞれ炭素数1~4のアルキル基である。 Here, examples of the hydrocarbon group include aliphatic hydrocarbon groups, that is, linear or branched, saturated or unsaturated hydrocarbon groups, or alicyclic hydrocarbon groups. The number of carbon atoms in the hydrocarbon group is not particularly limited, but is preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. The same applies to the hydrocarbon moieties in alkoxy groups, alkoxycarbonyl groups, and alkylcarbonyloxy groups. As a preferred example, the hydrocarbon group and the hydrocarbon moiety are each an alkyl group having 1 to 4 carbon atoms.

およびRについて、カルボキシ基の塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩等の金属塩や、酢酸アンモニウム塩などのアンモニウム塩、ジエチルアミン塩などのアミン塩等が例示される。 With respect to R7 and R8 , examples of the salt of the carboxy group include metal salts such as alkali metal salts and alkaline earth metal salts, ammonium salts such as ammonium acetate salts, and amine salts such as diethylamine salts.

式(1)においては、例えば、R、R、RおよびRがそれぞれ独立にアルキル基であり、n=2~4であり、RおよびRがそれぞれ水素原子であり、RおよびRがそれぞれ独立にカルボキシ基またはその塩であってもよい。 In formula (1), for example, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group, n is 2 to 4, R 5 and R 6 each independently represent a hydrogen atom, and R 7 and R 8 each independently represent a carboxy group or a salt thereof.

式(1)においては、例えば、R、R、RおよびRがそれぞれ独立にアルキル基、特に好ましくはメチル基およびエチル基のいずれかであり、n=2~4であり、RおよびRがそれぞれ水素原子であり、RおよびRがそれぞれ独立にカルボキシ基またはその塩であり、m=0であり、R10およびR11がそれぞれ水素原子であり、R12およびR13がそれぞれ水素原子であり、R14およびR15がそれぞれ独立に水素原子またはアルキル基(特に好ましくはメチル基)のいずれかであり、R16が水素原子であるものが挙げられる。 In formula (1), for example, R 1 , R 2 , R 3 and R 4 are each independently an alkyl group, particularly preferably a methyl group or an ethyl group, n=2 to 4, R 5 and R 6 are each independently a hydrogen atom, R 7 and R 8 are each independently a carboxy group or a salt thereof, m=0, R 10 and R 11 are each independently a hydrogen atom, R 12 and R 13 are each independently a hydrogen atom, R 14 and R 15 are each independently a hydrogen atom or an alkyl group (particularly preferably a methyl group), and R 16 is a hydrogen atom.

一実施形態において、式(1)で表される環状ペプチド誘導体としては、下記式(2)で表される化合物又はその塩でもよい。

Figure 0007479623000003
この式(2)で表される化合物は、N-メチル-β-ヒドロキシドーパ、バリン、β-ヒドロキシロイシン、グルタミン酸の4種のアミノ酸からなるペプチドが環状構造をとったものである。 In one embodiment, the cyclic peptide derivative represented by formula (1) may be a compound represented by the following formula (2) or a salt thereof.
Figure 0007479623000003
The compound represented by formula (2) is a peptide having a cyclic structure, which is composed of four amino acids, N-methyl-β-hydroxydopa, valine, β-hydroxyleucine, and glutamic acid.

式(1)で表される環状ペプチド誘導体の製造方法は、特に限定されず、例えば、特許文献2(WO2016/047638)に記載の通り、ハナサナギタケから各種の抽出、分離方法を用いて採取してもよく、ペプチド合成等の各種の公知の化学合成方法を組み合わせることによって製造してもよい。 The method for producing the cyclic peptide derivative represented by formula (1) is not particularly limited, and for example, as described in Patent Document 2 (WO2016/047638), it may be extracted from Polyporus arbutus using various extraction and separation methods, or it may be produced by combining various known chemical synthesis methods such as peptide synthesis.

式(1)で表される環状ペプチド誘導体は、ミクログリアを炎症促進M1表現型から抗炎症M2表現型に極性転換させることを促進する作用を有することから、抗炎症M2表現型ミクログリアへの極性変換促進剤として用いることができる。すなわち、式(1)で表される環状ペプチド誘導体をグリア細胞の一種であるミクログリアに作用させることにより、ミクログリアを抗炎症性のM2表現型に極性転換(極化)させることができ、M2表現型となることでミクログリアを神経細胞保護的に作用させることができる。そのため、本実施形態に係る極性変換促進剤は、脳疾患や老化に伴う神経細胞傷害の治療や予防のための医薬品や食品に利用することができる。 The cyclic peptide derivative represented by formula (1) has the effect of promoting the polarity conversion of microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and can therefore be used as a polarity conversion promoter for anti-inflammatory M2 phenotype microglia. That is, by acting the cyclic peptide derivative represented by formula (1) on microglia, which is a type of glial cell, the polarity of the microglia can be converted (polarized) to an anti-inflammatory M2 phenotype, and the M2 phenotype allows the microglia to act in a neuroprotective manner. Therefore, the polarity conversion promoter according to this embodiment can be used in medicines and foods for the treatment and prevention of neuronal damage associated with brain diseases and aging.

一実施形態において、上記極性変換促進剤は、医薬組成物または食品組成物の有効成分としてそれらに配合してもよく、抗炎症M2表現型ミクログリアへの極性転換を促進するための医薬組成物または食品組成物を提供することができる。これらの医薬組成物または食品組成物は、例えば、ヒトまたはヒト以外の哺乳動物(実験動物、ペット等)に対して用いることができる。 In one embodiment, the polarity conversion promoter may be incorporated into a pharmaceutical composition or food composition as an active ingredient thereof, thereby providing a pharmaceutical composition or food composition for promoting polarity conversion to anti-inflammatory M2 phenotype microglia. These pharmaceutical compositions or food compositions can be used, for example, for humans or non-human mammals (laboratory animals, pets, etc.).

医薬組成物は、上記極性変換促進剤と、医薬品として許容される種々の添加剤等やその他の成分とを混合するなど、公知の技術を用いて製造することができる。医薬組成物は、経口投与または非経口投与が可能であり、その形態としては、経口投与用であれば、例えば、錠剤、丸剤、粉剤、顆粒剤、カプセル剤、液状製剤(エリキシル剤、シロップ剤、懸濁剤、溶液剤を含む。)などが挙げられ、非経口投与用であれば、例えば、注射剤、点滴剤などが挙げられ、脳内への直接投与でもよい。 The pharmaceutical composition can be produced by using known techniques, such as by mixing the polarity conversion promoter with various medicament-acceptable additives and other ingredients. The pharmaceutical composition can be administered orally or parenterally. For oral administration, the pharmaceutical composition may be in the form of, for example, tablets, pills, powders, granules, capsules, liquid preparations (including elixirs, syrups, suspensions, and solutions), and for parenteral administration, the pharmaceutical composition may be in the form of, for example, injections, infusions, or may be administered directly into the brain.

食品組成物は、上記極性変換促進剤と、食品として許容される種々の添加剤等やその他の成分とを混合するなど、公知の技術を用いて製造することができる。食品組成物としては、保健機能食品(栄養機能食品、特定保健用食品および機能性表示食品)、サプリメントなどが挙げられる。食品組成物の形態の例としては、経口投与用の医薬組成物と同様の形態が挙げられ、また飲料や菓子等の形態でもよい。 The food composition can be produced using known techniques, such as by mixing the polarity conversion promoter with various additives and other ingredients that are acceptable for use in food. Examples of food compositions include health functional foods (nutritional functional foods, foods for specified health uses, and foods with functional claims), supplements, and the like. Examples of the form of the food composition include forms similar to those of pharmaceutical compositions for oral administration, and may also be in the form of beverages, confectioneries, etc.

医薬組成物または食品組成物に配合することのできる添加剤としては、例えば、賦形剤、酸化防止剤、香料、調味料、甘味料、着色料、増粘安定剤、発色剤、漂白剤、ガムベース、乳化剤、結合剤、希釈剤、防腐剤、安定化剤、凝固剤などが挙げられる。 Additives that can be added to pharmaceutical or food compositions include, for example, excipients, antioxidants, flavorings, seasonings, sweeteners, coloring agents, thickening and stabilizing agents, colorants, bleaching agents, gum bases, emulsifiers, binders, diluents, preservatives, stabilizers, and coagulants.

医薬組成物の一投与または一日あたりの有効成分量、及び、食品組成物の一食分または一日あたりの有効成分量は、投与または摂取対象の年齢、体重、性別や、適用される疾患または状態などに応じて、また非臨床的または臨床的な試験結果等に基づいて、適宜設定することができる。特に限定しないが、上記極性転換促進剤の経口摂取量としては、式(1)の環状ペプチド誘導体の量として、例えば、ヒトを含む哺乳動物に対し、1日あたり0.1μg/kg以上50μg/kg以下でもよく、1μg/kg以上25μg/kg以下でもよい。 The amount of active ingredient per dose or day of the pharmaceutical composition, and the amount of active ingredient per meal or day of the food composition can be appropriately set according to the age, weight, sex, and disease or condition of the subject to be administered or ingested, and based on non-clinical or clinical test results. Although not particularly limited, the oral intake amount of the polarity conversion promoter may be, for example, 0.1 μg/kg or more and 50 μg/kg or less, or 1 μg/kg or more and 25 μg/kg or less per day for mammals including humans, as the amount of the cyclic peptide derivative of formula (1).

また、上記極性転換促進剤は、in vitroの実験系において低濃度でも効果が得られる。in vitroの実験系における上記極性転換促進剤の濃度は、特に限定されず、式(1)の環状ペプチド誘導体の濃度として、例えば、0.01μM以上5μM以下(即ち、1×10-8~5×10-6mol/L)でもよく、0.01μM以上1μM以下でもよく、0.03μM以上0.3μM以下でもよい。 The polarity transfer promoter is effective even at a low concentration in an in vitro experimental system. The concentration of the polarity transfer promoter in an in vitro experimental system is not particularly limited, and may be, for example, 0.01 μM or more and 5 μM or less (i.e., 1×10 −8 to 5×10 −6 mol/L) or 0.01 μM or more and 1 μM or less, or 0.03 μM or more and 0.3 μM or less, as the concentration of the cyclic peptide derivative of formula (1).

1.MG6ミクログリア細胞培養
MG6ミクログリア細胞株(Riken Cell Bank)を用いた以下の試験において、MG6ミクログリア細胞の培養は、Dulbecco's Modified Eagle Medium(DMEM,Thermo Fisher Scientific)培地を用いて行った。DMEM中に100μMのβ-メルカプトエタノール、10μg/mlのインスリン、10%ウシ胎仔血清(Gibco)、ペニシリン-ストレプトマイシン(Gibco)、450mg/mlグルコース(Gibco)を含む。
1. MG6 microglial cell culture In the following tests using the MG6 microglial cell line (Riken Cell Bank), MG6 microglial cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, Thermo Fisher Scientific) containing 100 μM β-mercaptoethanol, 10 μg/ml insulin, 10% fetal bovine serum (Gibco), penicillin-streptomycin (Gibco), and 450 mg/ml glucose (Gibco).

2.MG6ミクログリア細胞生存率の測定
MG6ミクログリア細胞を96ウェルプレート中で37℃にて24時間(5×103細胞/ウェル)培養し、次いで、様々な濃度の環状ペプチド誘導体と共に37℃にて48時間インキュベートした。環状ペプチド誘導体としては、特許文献2の実施例に記載の方法により得られた上記式(2)で表される化合物のジエチルアミン塩を用いた(以下の各試験において同じ)。環状ペプチド誘導体の濃度としては、培養液中の濃度が0μM、0.01μM、0.03μM、0.1μM、0.3μM、1μMとなるように調整した。
2. Measurement of MG6 microglial cell viability MG6 microglial cells were cultured in a 96-well plate at 37°C for 24 hours (5 x 103 cells/well), and then incubated with various concentrations of cyclic peptide derivatives at 37°C for 48 hours. As the cyclic peptide derivative, a diethylamine salt of the compound represented by the above formula (2) obtained by the method described in the Examples of Patent Document 2 was used (the same applies to each of the following tests). The concentrations of the cyclic peptide derivative in the culture medium were adjusted to 0 μM, 0.01 μM, 0.03 μM, 0.1 μM, 0.3 μM, and 1 μM.

細胞生存率の評価は、Cell-Counting Kit-8(CCK-8;Dojindo、Kumamoto、Japan)を使用して以下のように製造業者の指示に従い行った。すなわち、環状ペプチド誘導体で処理した後、10μLのCCK-8を96ウェルプレートに移し、次いで37℃で2時間インキュベートした。この指示に従って、マイクロプレートリーダーを用いて光学濃度を波長450nmで読み取った。細胞生存率は、以下の式を用いて計算した。細胞生存率=(処置群の光学濃度/対照群の光学濃度)×100% The evaluation of cell viability was performed using Cell-Counting Kit-8 (CCK-8; Dojindo, Kumamoto, Japan) according to the manufacturer's instructions as follows: after treatment with the cyclic peptide derivatives, 10 μL of CCK-8 was transferred to a 96-well plate and then incubated at 37 °C for 2 h. Following the instructions, the optical density was read at a wavelength of 450 nm using a microplate reader. The cell viability was calculated using the following formula: Cell viability = (optical density of the treatment group/optical density of the control group) × 100%

環状ペプチド誘導体の投与48時間後、ミクログリアの生存率を検討した結果、図2に示したように環状ペプチド誘導体の濃度が0.01~1μMの範囲内においてミクログリアの増殖は認められず、また生存が抑制されることもなかった。そこで、以後の実験では環状ペプチド誘導体の最適濃度を1μMと設定して機能性解析に使用した。なお、図2における「ns」は非有意であることを意味する。 48 hours after administration of the cyclic peptide derivative, the survival rate of microglia was examined. As shown in Figure 2, no microglial proliferation was observed within the range of 0.01-1 μM of the cyclic peptide derivative concentration, and survival was not inhibited. Therefore, in subsequent experiments, the optimal concentration of the cyclic peptide derivative was set at 1 μM and used for functionality analysis. In Figure 2, "ns" means non-significant.

3.MG6ミクログリアの分極化試験
アツルハイマー認知症の脳における老人班の成分であるクロモグラニンA(Chromogranin A,CGA)はアミロイドβよりも神経毒性が強い。また、CGAの蓄積した老人斑は周囲にミクログリアが数多く認められ、ミクログリアの活性化起因であると考えられている(非特許文献4)。そこで、脳内環境に近い条件としてCGAが存在する病態条件下において、環状ペプチド誘導体によるミクログリアの分極化試験を行った。
3. MG6 Microglia Polarization Test Chromogranin A (CGA), a component of senile plaques in the brain of Atzheimer's dementia, is more neurotoxic than amyloid beta. In addition, many microglia are found around senile plaques with CGA accumulation, which is thought to be caused by microglial activation (Non-Patent Document 4). Therefore, a microglia polarization test using cyclic peptide derivatives was performed under pathological conditions in which CGA is present, which is a condition similar to the brain environment.

MG6ミクログリア細胞を96ウェルプレート中で37℃にて24時間(5×103細胞/ウェル)培養し、次いで、CGA(Peptide Institute, Osaka)を濃度が10nMとなるように添加するとともに、環状ペプチド誘導体を濃度が1μMとなるように添加して37℃でインキュベートした。環状ペプチド誘導体を添加せずにCGAを添加したもの、および、環状ペプチド誘導体とCGAをともに添加していないもの(コントロール)についても、同様にインキュベートした。 MG6 microglial cells were cultured in a 96-well plate at 37°C for 24 hours (5 x 103 cells/well), and then CGA (Peptide Institute, Osaka) was added to a concentration of 10 nM, and the cyclic peptide derivative was added to a concentration of 1 μM, followed by incubation at 37°C. The cells were incubated in the same manner as above with the addition of CGA without the addition of the cyclic peptide derivative, and with neither the cyclic peptide derivative nor CGA (control).

添加処理24時間後と72時間後にリアルタイム定量PCR(RT-PCR)分析および統計分析を行い、インターロイキン-1β(IL-1β)とアルギナーゼ-1(ARG1)の遺伝子発現量を求めた。刺激を受けたミクログリアは、産生するファクターによって、神経細胞傷害的に働くM1表現型と神経細胞保護的に働くM2表現型に分極化され、M1表現型ミクログリアはIL-1βを産生し、M2表現型ミクログリアはARG1を産生することが知られている(非特許文献3)。そこで、M1表現型であることをIL-1βの遺伝子発現により、また、M2表現型であることをARG1の遺伝子発現により特定した。リアルタイム定量PCR(RT-PCR)分析および統計分析の方法は以下の通りである。 24 and 72 hours after the treatment, real-time quantitative PCR (RT-PCR) analysis and statistical analysis were performed to determine the gene expression levels of interleukin-1β (IL-1β) and arginase-1 (ARG1). It is known that stimulated microglia are polarized into M1 phenotype, which acts on neuronal cells, and M2 phenotype, which acts on neuronal cells, depending on the factors they produce, and that M1 phenotype microglia produce IL-1β and M2 phenotype microglia produce ARG1 (Non-Patent Document 3). Therefore, the M1 phenotype was identified by the gene expression of IL-1β, and the M2 phenotype was identified by the gene expression of ARG1. The methods of real-time quantitative PCR (RT-PCR) analysis and statistical analysis are as follows.

[リアルタイム定量PCR(RT-PCR)分析]
環状ペプチド誘導体による処理後のMG6ミクログリア細胞株からmRNAを単離し、全RNAをRNAiso Plus(Takara、Japan)を用いて製造者の指示に従って抽出した。QuantiTect ReverseTranscription Kit(Qiagen、Japan)を用いて、合計800ngの抽出されたRNAをcDNAに逆転写した。95℃で5分間の最初の変性工程の後、温度サイクリングを開始した。各サイクルは、95℃で5秒間の変性、60℃で10秒間のアニーリング、および30秒間の伸長からなる。合計で40回のサイクルを行った。Corbett Rotor-Gene RG-3000AReal-Time PCR Systemを用いたRotor-Gene SYBR Green RT-PCRキット(Qiagen、Japan)を使用して、cDNAを2連で増幅した。データは、RG-3000Aソフトウェアプログラム(バージョンRotor-Gene6.1.93、Corbett)を用いて評価した。プライマー対(Invitrogen社製, カスタムプライマー)の配列を以下に記載する。
IL-1β:5'-CAACCAACAAGTGATATTCTCCATG-3'(配列番号1)、
および、5'-GATCCACACTCTCCAGCTGCA-3'(配列番号2)
ARG:5'-CGCCTTTCTCAAAAGGACAG-3'(配列番号3)、
および、5'-CCAGCTCTTCATTGGCTTTC-3'(配列番号4)
データの正規化のために、内在性対照(アクチン)をcDNAの入力を制御するために評価し、相対単位を比較Ct法により計算した。全てのリアルタイムRT-PCR実験を3回繰り返し、結果を平均±SEMとして示した。
Real-time quantitative PCR (RT-PCR) analysis
mRNA was isolated from MG6 microglial cell line after treatment with cyclic peptide derivatives, and total RNA was extracted using RNAiso Plus (Takara, Japan) according to the manufacturer's instructions. A total of 800 ng of extracted RNA was reverse transcribed into cDNA using QuantiTect ReverseTranscription Kit (Qiagen, Japan). After an initial denaturation step at 95°C for 5 min, temperature cycling was started. Each cycle consisted of denaturation at 95°C for 5 s, annealing at 60°C for 10 s, and extension for 30 s. A total of 40 cycles were performed. cDNA was amplified in duplicate using Rotor-Gene SYBR Green RT-PCR kit (Qiagen, Japan) using Corbett Rotor-Gene RG-3000A Real-Time PCR System. Data were evaluated using the RG-3000A software program (version Rotor-Gene 6.1.93, Corbett). The sequences of primer pairs (Invitrogen, custom primers) are listed below.
IL-1β: 5′-CAACCAACAAGTGATATTCTCCATG-3′ (SEQ ID NO: 1);
and 5'-GATCCACACTCTCCAGCTGCA-3' (SEQ ID NO: 2)
ARG: 5'-CGCCTTTCTCAAAAGGACAG-3' (SEQ ID NO: 3),
and 5'-CCAGCTCTTCATTGGCTTTC-3' (SEQ ID NO: 4)
For data normalization, an endogenous control (actin) was evaluated to control for cDNA input, and relative units were calculated by the comparative Ct method. All real-time RT-PCR experiments were repeated three times, and results were presented as the mean ± SEM.

[統計分析]
データは平均±SEMとして表される。統計分析は、GraphPadPrismソフトウェアパッケ
ージを使用したポストホックTukey検定を用いた一元または二元ANOVAによって行った。p<0.05の値は、統計的有意性を示すと考えられる(GraphPadSoftware)。
[Statistical analysis]
Data are expressed as mean ± SEM. Statistical analysis was performed by one-way or two-way ANOVA with post-hoc Tukey's test using the GraphPadPrism software package. A value of p<0.05 was considered to indicate statistical significance (GraphPadSoftware).

結果は、CGA及び環状ペプチド誘導体を添加したもの(実施例)と、CGAのみ添加したもの(比較例)について、コントロール(環状ペプチド誘導体とCGAをともに添加していないもの)に対するmRNAの相対発現量として図3に示した。 The results are shown in Figure 3 as the relative expression level of mRNA for the sample containing CGA and a cyclic peptide derivative (Example) and the sample containing only CGA (Comparative Example) compared to the control (no cyclic peptide derivative or CGA added).

CGAとともに環状ペプチド誘導体で処理した場合、添加処理24時間後には、IL-1βの遺伝子発現がARG1の遺伝子発現よりも約5倍高く、ミクログリアが炎症促進M1表現型に極化されたが、72時間後には逆転してARG1の遺伝子発現がIL-1βの遺伝子発現よりも約9倍高くなった。この結果は、ミクログリアの分極化として、環状ペプチド誘導体の長期時間処理によって抗炎症M2表現型に極化し、神経細胞保護的に作用することを示している。また、一旦炎症促進M1表現型に極化することにより、短時間でミクログリアの活力を高め、効率よくかつ速やかに抗炎症M2表現型に極化できると考えられる。 When treated with the cyclic peptide derivative together with CGA, 24 hours after addition, IL-1β gene expression was about 5 times higher than ARG1 gene expression, and microglia were polarized to the pro-inflammatory M1 phenotype, but after 72 hours, the situation was reversed, with ARG1 gene expression being about 9 times higher than IL-1β gene expression. This result indicates that long-term treatment with the cyclic peptide derivative polarizes microglia to the anti-inflammatory M2 phenotype, which acts to protect neuronal cells. It is also believed that by first polarizing microglia to the pro-inflammatory M1 phenotype, the vitality of microglia can be increased in a short period of time, allowing efficient and rapid polarization to the anti-inflammatory M2 phenotype.

また、CGAのみで処理した場合と比較すると、CGAとともに環状ペプチド誘導体で処理した場合、添加処理24時間後では、IL-1βの遺伝子発現量が約4倍と大きく炎症促進M1表現型の活性化効果が高いが、添加処理72時間後には、CGAのみで処理した場合と有意差がない程度まで炎症促進M1表現型の活性が低下していた。一方、ARG1の遺伝子発現量については、CGAとともに環状ペプチド誘導体で処理した場合、CGAのみで処理した場合と比較して、添加処理24時間後に約4倍大きく、添加処理72時間後にも2倍以上の高い活性化効果を示した。このことから、脳内環境に近いCGAが存在する環境(即ち、ミクログリアが活性化される病態条件下)において、環状ペプチド誘導体を長期間処理することにより、神経細胞保護的に作用する抗炎症M2表現型ミクログリアへの極性転換が促進されることがわかった。 In addition, when treated with CGA and the cyclic peptide derivative, the gene expression level of IL-1β was about four times higher at 24 hours after addition treatment, indicating a high activation effect of the pro-inflammatory M1 phenotype, but after 72 hours after addition treatment, the activity of the pro-inflammatory M1 phenotype had decreased to a level that was not significantly different from that of treatment with CGA alone. On the other hand, when treated with CGA and the cyclic peptide derivative, the gene expression level of ARG1 was about four times higher at 24 hours after addition treatment, and showed a high activation effect of more than twice as much at 72 hours after addition treatment, compared to treatment with CGA alone. From this, it was found that long-term treatment with the cyclic peptide derivative in an environment where CGA is present, which is similar to the brain environment (i.e., under pathological conditions in which microglia are activated), promotes polarity conversion to anti-inflammatory M2 phenotype microglia that acts in a neuroprotective manner.

ミクログリアは脳内環境と脳炎症を制御する脳内免疫第一線に位置する細胞である。M2表現型ミクログリアは脳内に死んだ神経細胞や脳内に蓄積したアミロイド蛋白質など老廃物を取り入れ脳外に排出する能力をもつ。さらに、脳炎症の際にM2表現型ミクログリアが脳炎症を速やかに収束し、神経細胞を保護する。そのため、環状ペプチド誘導体は、抗炎症M2表現型へのミクログリアの極性転換を促進することで、脳老化を遅らせ、また外傷性脳損傷、脳卒中や認知症など急性・慢性脳炎症関連性疾患の予防や病態回復に役立つと考えられる。さらには自閉症やうつ病も含めた精神疾患などの予防や病態回復に役立つと考えられる。 Microglia are cells located at the first line of immunity in the brain that control the brain environment and brain inflammation. M2 phenotype microglia have the ability to take in waste products such as dead nerve cells and amyloid proteins accumulated in the brain and excrete them from the brain. Furthermore, in the event of brain inflammation, M2 phenotype microglia quickly resolve brain inflammation and protect nerve cells. Therefore, by promoting the polarity conversion of microglia to the anti-inflammatory M2 phenotype, cyclic peptide derivatives are thought to delay brain aging and to be useful in preventing and recovering from acute and chronic brain inflammation-related diseases such as traumatic brain injury, stroke, and dementia. They are also thought to be useful in preventing and recovering from mental disorders including autism and depression.

4.環状ペプチド誘導体の安全性試験
MG6ミクログリア細胞を96ウェルプレート中で37℃にて24時間(5×103細胞/ウェル)培養し、次いで、環状ペプチド誘導体を濃度が1μMとなるように添加して37℃でインキュベートした。添加処理24時間後と72時間後に、上記と同様のリアルタイム定量PCR(RT-PCR)分析および統計分析を行い、インターロイキン-1β(IL-1β)とアルギナーゼ-1(ARG1)の遺伝子発現量を求めた。
4. Safety test of cyclic peptide derivatives MG6 microglial cells were cultured in a 96-well plate at 37°C for 24 hours (5 x 103 cells/well), and then the cyclic peptide derivatives were added to a concentration of 1 μM and incubated at 37°C. 24 and 72 hours after the addition treatment, real-time quantitative PCR (RT-PCR) analysis and statistical analysis were performed as described above to determine the gene expression levels of interleukin-1β (IL-1β) and arginase-1 (ARG1).

結果は図4に示すとおりであり、環状ペプチド誘導体の単独投与では24時間後においても72時間後においてミクログリアは活性化されず、炎症促進M1表現型にも抗炎症M2表現型にも分極化されなかった。このことから、環状ペプチド誘導体は、ミクログリアに異物として認識されず、非病態条件ではミクログリアを活性化しないことから、ミクログリアに対する環状ペプチド誘導体の安全性が確認された。 The results are shown in Figure 4. Administration of the cyclic peptide derivative alone did not activate microglia, either 24 or 72 hours later, and did not polarize them to either the pro-inflammatory M1 phenotype or the anti-inflammatory M2 phenotype. This confirmed the safety of the cyclic peptide derivative for microglia, as it is not recognized as a foreign substance by microglia and does not activate microglia under non-pathological conditions.

5.初代ミクログリア培養
初代ミクログリア細胞であるCD11b細胞を、磁気細胞選別MACS法により、成体マウスの脳(8週齢、雄、日本エスエルシー、浜松、日本)から分離した。詳細には、脳を小片に切断し、得られた細胞懸濁液を、Neural Tissue Dissociation Kit(MiltenyiBiotec)を用いた酵素消化とともにgentle MACS Dissociator(Milteny Biotec)を用いて機械的に解離させ、更に30mmの細胞ストレーナーに移して単細胞懸濁液を得た。CD11b MicroBeads(Miltenyi Biotec)で磁気標識した後、細胞懸濁液を磁気分離器(Milteny Biotec)に設置した磁気(MACS)カラムに注入した。MACSカラムをリン酸緩衝生理食塩水(PBS)ですすいだ後、CD11b陽性画分を非特許文献4に記載の方法に従って収集した。初代ミクログリア細胞を用いた以下の試験において、初代ミクログリア細胞の培養は、Eagle’s MEM(Nissui Pharmaceutical Co., Ltd.)培地を用いて行った。
5. Primary Microglial Culture Primary microglial cells, CD11b + cells, were isolated from adult mouse brains (8 weeks old, male, Japan SLC, Hamamatsu, Japan) by magnetic cell sorting (MACS) method. In detail, the brains were cut into small pieces, and the resulting cell suspension was mechanically dissociated using a gentle MACS Dissociator (Milteny Biotec) along with enzymatic digestion using a Neural Tissue Dissociation Kit (MiltenyiBiotec), and further transferred to a 30 mm cell strainer to obtain a single cell suspension. After magnetic labeling with CD11b MicroBeads (Miltenyi Biotec), the cell suspension was injected into a magnetic (MACS) column installed in a magnetic separator (Milteny Biotec). After rinsing the MACS column with phosphate-buffered saline (PBS), the CD11b positive fraction was collected according to the method described in Non-Patent Document 4. In the following tests using primary microglial cells, the primary microglial cells were cultured in Eagle's MEM (Nissui Pharmaceutical Co., Ltd.) medium.

6.初代ミクログリア細胞生存率の測定
初代ミクログリア細胞を96ウェルプレートに撒き(10細胞/ウェル)、様々な濃度の環状ペプチド誘導体と共に37℃で24時間、72時間培養した。環状ペプチド誘導体の濃度としては、培養液中の濃度が0μM、0.01μM、0.1μM、1μM、5μMとなるように調整した。細胞生存率の評価(24時間、72時間)は、上記2.のMG6ミクログリア細胞生存率の測定に記載した通りである。
6. Measurement of primary microglial cell viability Primary microglial cells were seeded on a 96-well plate ( 104 cells/well) and cultured with various concentrations of cyclic peptide derivatives at 37°C for 24 and 72 hours. The concentrations of the cyclic peptide derivatives in the culture medium were adjusted to 0 μM, 0.01 μM, 0.1 μM, 1 μM, and 5 μM. The cell viability was evaluated (24 hours and 72 hours) as described in the measurement of MG6 microglial cell viability in 2 above.

結果は図5に示す通りであり、環状ペプチド誘導体の濃度が0.01~5μMの範囲内において初代ミクログリア細胞の増殖は認められず、また生存が抑制されることもほぼなかった。なお、「*」はP<0.05であることを示す。 The results are shown in Figure 5. Within the range of 0.01 to 5 μM of the cyclic peptide derivative concentration, no proliferation of primary microglial cells was observed, and their survival was hardly inhibited. Note that "*" indicates P<0.05.

7.初代ミクログリア細胞の分極化試験
脳の常在免疫細胞であるミクログリアは、炎症促進性サイトカインおよび抗炎症性サイトカインを調節することにより、アルツハイマー病を含む神経変性疾患の神経炎症に重要な役割を果たす。インターロイキン-1β(IL-1β)が主要な炎症性サイトカインであり、トランスフォーミング成長因子(TGF)-β1が重要な抗炎症性サイトカインであることが知られている(非特許文献5)。上記のように、神経分泌酸性糖タンパク質であるクロモグラニンA(CGA)は、ミクログリアの活性化候補因子としてアルツハイマー病の老人斑に見出されている。そこで、初代ミクログリア細胞とマーカーとしてIL-1βおよびTGF-β1を使用して、環状ペプチド誘導体及びCGAが炎症または抗炎症に及ぼす影響を調べた。
7. Polarization study of primary microglial cells Microglia, the resident immune cells of the brain, play an important role in neuroinflammation in neurodegenerative diseases, including Alzheimer's disease, by regulating pro-inflammatory and anti-inflammatory cytokines. It is known that interleukin-1β (IL-1β) is the main inflammatory cytokine, and transforming growth factor (TGF)-β1 is an important anti-inflammatory cytokine (Non-Patent Document 5). As mentioned above, chromogranin A (CGA), a neurosecretory acidic glycoprotein, has been found in senile plaques of Alzheimer's disease as a candidate factor for microglial activation. Therefore, the effects of cyclic peptide derivatives and CGA on inflammation or anti-inflammation were investigated using primary microglial cells and IL-1β and TGF-β1 as markers.

初代ミクログリア細胞を96ウェルプレート中で37℃にて24時間(10細胞/ウェル)培養し、次いで、CGA(American Peptide Company、Anaspec)を濃度が10nMとなるように添加するとともに、環状ペプチド誘導体を濃度が1μMとなるように添加して37℃でインキュベートした。環状ペプチド誘導体を添加せずにCGAを添加したもの、CGAを添加せずに環状ペプチド誘導体を添加したもの、および、環状ペプチド誘導体とCGAをともに添加していないもの(コントロール)についても、同様にインキュベートした。 Primary microglial cells were cultured in a 96-well plate at 37° C. for 24 hours ( 104 cells/well), and then CGA (American Peptide Company, Anaspec) was added to a concentration of 10 nM, and the cyclic peptide derivative was added to a concentration of 1 μM, followed by incubation at 37° C. The cells were incubated in the same manner as above with the addition of CGA without the addition of the cyclic peptide derivative, the addition of the cyclic peptide derivative without the addition of CGA, and the addition of neither the cyclic peptide derivative nor CGA (control).

添加処理24時間後と72時間後にリアルタイム定量PCR(RT-PCR)分析および統計分析を行い、TGF-β1とIL-1βの遺伝子発現量を求めた。リアルタイム定量PCR(RT-PCR)分析および統計分析の方法は、上記3.のMG6ミクログリアの分極化試験に記載した通りである。但し、TGF-β1のプライマー対(Invitrogen社製, カスタムプライマー)は以下の配列とした。
TGF-β1:5'-TCAGACATTCGGGAAGCAGTG-3'(配列番号5)、
および、5'-ATTCCGTCTCCTTGGTTCAGC-3'(配列番号6)
24 and 72 hours after the treatment, real-time quantitative PCR (RT-PCR) analysis and statistical analysis were performed to determine the gene expression levels of TGF-β1 and IL-1β. The methods for real-time quantitative PCR (RT-PCR) analysis and statistical analysis were as described in the polarization test of MG6 microglia in 3 above. However, the primer pair for TGF-β1 (Invitrogen, custom primers) had the following sequences:
TGF-β1: 5′-TCAGACATTCGGGAAGCAGTG-3′ (SEQ ID NO: 5),
and 5'-ATTCCGTCTCCTTGGTTCAGC-3' (SEQ ID NO: 6)

結果は、図6に示す通りである。なお、図6における「*」はP<0.05であることを示し、「##」はP<0.01であることを示し、「###」はP<0.001であることを示す。また、「con」はコントロール、「ペプチド」は環状ペプチド誘導体単独処理、「CGA」はCGA単独処理、「ペプチド+CGA」は環状ペプチド誘導体とCGAとの組合せ処理を示す。 The results are shown in Figure 6. In Figure 6, "*" indicates P<0.05, "##" indicates P<0.01, and "###" indicates P<0.001. "Con" indicates the control, "peptide" indicates treatment with the cyclic peptide derivative alone, "CGA" indicates treatment with CGA alone, and "peptide + CGA" indicates treatment with a combination of the cyclic peptide derivative and CGA.

図6(a)及び(b)に示すように、初代ミクログリアにおいてコントロールに比較してCGA単独処理は、24時間及び72時間で、TGF-β1の発現を多少増加させた。CGA処理と環状ペプチド誘導体の組合せ処理では、24時間と72時間でTGF-β1の発現を大幅に増加させた(平均3倍程度)。なお、コントロールに比較して、環状ペプチド誘導体単独処理は、TGF-β1の発現に影響しなかった。 As shown in Figures 6(a) and (b), in primary microglia, treatment with CGA alone slightly increased the expression of TGF-β1 at 24 and 72 hours compared to the control. Treatment with CGA in combination with the cyclic peptide derivative significantly increased the expression of TGF-β1 at 24 and 72 hours (approximately 3-fold on average). Furthermore, treatment with the cyclic peptide derivative alone did not affect the expression of TGF-β1 compared to the control.

一方、IL-1βの発現については、図6(c)及び(d)に示すように、CGA単独処理で顕著に増加し、CGA処理と環状ペプチド誘導体の組合せ処理では、IL-1βの発現がコントロールと同等以下と小さく、TGF-β1の発現とは傾向が逆転していた。なお、コントロールに比較して、環状ペプチド誘導体単独処理は、IL-1βの発現に影響しなかった。 On the other hand, as shown in Figures 6(c) and (d), the expression of IL-1β was significantly increased by treatment with CGA alone, and by treatment with a combination of CGA and the cyclic peptide derivative, the expression of IL-1β was equal to or less than that of the control, showing the opposite tendency to the expression of TGF-β1. Furthermore, compared to the control, treatment with the cyclic peptide derivative alone did not affect the expression of IL-1β.

この結果は、環状ペプチド誘導体がTGF-β1を増加させ、IL-1βを抑制することにより、CGAで活性化されたミクログリア(炎症促進表現型M1)を抗炎症表現型M2にシフト、即ち極性転換させることを意味する。環状ペプチド誘導体自体が初代ミクログリア細胞におけるTGF-β1またはIL-1βの発現に影響を与えないことを考慮すると、初代ミクログリアを用いた本試験によっても、ミクログリアに対する環状ペプチド誘導体の安全性が確認されする共に、環状ペプチド誘導体が神経変性疾患を改善するために有効であろうことが理解できる。 This result means that the cyclic peptide derivatives increase TGF-β1 and suppress IL-1β, thereby shifting microglia activated by CGA (pro-inflammatory phenotype M1) to the anti-inflammatory phenotype M2, i.e., reversing polarity. Considering that the cyclic peptide derivatives themselves do not affect the expression of TGF-β1 or IL-1β in primary microglial cells, this test using primary microglia also confirms the safety of the cyclic peptide derivatives for microglia, and it can be understood that the cyclic peptide derivatives will be effective in improving neurodegenerative diseases.

Claims (2)

下記一般式(1)で表される環状ペプチド誘導体を含む、ミクログリアの抗炎症M2表現型への極性転換促進剤。
式(1)中、mは0~3、n≧1であり、R~Rはそれぞれ独立に水素原子または炭化水素基であり、RおよびRはそれぞれ独立にカルボキシ基もしくはその塩、またはアルコキシカルボニル基であり、Rは炭化水素基、ヒドロキシ基、アルコキシ基またはアルキルカルボニルオキシ基であり、R10およびR11はそれぞれ独立に水素原子、炭化水素基またはアルキルカルボニルオキシ基であり、R12~R16はそれぞれ独立に水素原子または炭化水素基である。
A promoter for promoting polarity conversion of microglia to an anti-inflammatory M2 phenotype , comprising a cyclic peptide derivative represented by the following general formula (1):
In formula (1), m is 0 to 3 and n is 1 or greater; R 1 to R 6 are each independently a hydrogen atom or a hydrocarbon group; R 7 and R 8 are each independently a carboxy group or a salt thereof, or an alkoxycarbonyl group; R 9 is a hydrocarbon group, a hydroxy group, an alkoxy group, or an alkylcarbonyloxy group; R 10 and R 11 are each independently a hydrogen atom, a hydrocarbon group, or an alkylcarbonyloxy group; and R 12 to R 16 are each independently a hydrogen atom or a hydrocarbon group.
前記一般式(1)において、R、R、RおよびRはそれぞれ独立にアルキル基であり、n=2~4であり、RおよびRはそれぞれ水素原子であり、RおよびRはそれぞれ独立にカルボキシ基またはその塩である、請求項1に記載のミクログリアの抗炎症M2表現型への極性転換促進剤。 The agent for promoting polarity conversion of microglia to an anti-inflammatory M2 phenotype according to claim 1, wherein, in the general formula (1), R 1 , R 2 , R 3 and R 4 are each independently an alkyl group, n=2 to 4, R 5 and R 6 are each a hydrogen atom, and R 7 and R 8 are each independently a carboxy group or a salt thereof.
JP2020026373A 2019-05-31 2020-02-19 Agents promoting polarity conversion to anti-inflammatory M2 phenotype microglia Active JP7479623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200060224A KR20200138004A (en) 2019-05-31 2020-05-20 Polar conversion accelerator to anti-inflammatory m2 phenotype microglia
CN202010493307.5A CN112007142A (en) 2019-05-31 2020-06-01 Promoter of polar transformation into anti-inflammatory microglia of M2 phenotype

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102983 2019-05-31
JP2019102983 2019-05-31

Publications (2)

Publication Number Publication Date
JP2020196699A JP2020196699A (en) 2020-12-10
JP7479623B2 true JP7479623B2 (en) 2024-05-09

Family

ID=73648925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026373A Active JP7479623B2 (en) 2019-05-31 2020-02-19 Agents promoting polarity conversion to anti-inflammatory M2 phenotype microglia

Country Status (2)

Country Link
JP (1) JP7479623B2 (en)
KR (1) KR20200138004A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7486328B2 (en) * 2020-03-05 2024-05-17 株式会社バイオコクーン研究所 Neurite outgrowth promoter, neuronal dendrite expression promoter, and neurotrophic factor-like substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184923A (en) 2012-03-07 2013-09-19 Iwate Univ Extract derived from paecilomyces tenuipes, astrocyte growth promoter including the same, and method of producing the astrocyte growth promoter
JP2015044785A (en) 2013-08-28 2015-03-12 キエシ・ファーマシューティシ・エス.ピー.エー.Chiesi Farmaceutici S.P.A. 1-phenylalkanecarboxylic acid derivatives for the treatment of alzheimer's disease and multiple sclerosis
WO2016047638A1 (en) 2014-09-24 2016-03-31 国立大学法人岩手大学 Cyclic peptide derivative, method for preparing same and composition thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878100B1 (en) 2004-11-17 2007-05-11 Cit Alcatel METHOD OF ESTABLISHING CONNECTIONS FOR ACCESSING USER TERMINALS TO DATA NETWORKS
KR101649670B1 (en) 2014-10-22 2016-08-22 주식회사 포스코 Apparatus for measuring thickness and method for measuring the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184923A (en) 2012-03-07 2013-09-19 Iwate Univ Extract derived from paecilomyces tenuipes, astrocyte growth promoter including the same, and method of producing the astrocyte growth promoter
JP2015044785A (en) 2013-08-28 2015-03-12 キエシ・ファーマシューティシ・エス.ピー.エー.Chiesi Farmaceutici S.P.A. 1-phenylalkanecarboxylic acid derivatives for the treatment of alzheimer's disease and multiple sclerosis
WO2016047638A1 (en) 2014-09-24 2016-03-31 国立大学法人岩手大学 Cyclic peptide derivative, method for preparing same and composition thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLoS ONE,2021年,Vol.16, No.1:e0245235,pp.1-26

Also Published As

Publication number Publication date
KR20200138004A (en) 2020-12-09
JP2020196699A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Trompette et al. Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism
Willenborg et al. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review
Schubert et al. Glia-related pathomechanisms in Alzheimer's disease: a therapeutic target?
Cianciulli et al. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts
Pardon Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain
JP2015525766A (en) Tetracycline compounds for the treatment of neurodegenerative disorders
Ding et al. Fasudil, a Rho kinase inhibitor, drives mobilization of adult neural stem cells after hypoxia/reoxygenation injury in mice
JP7479623B2 (en) Agents promoting polarity conversion to anti-inflammatory M2 phenotype microglia
JP2021530570A (en) Oral anti-inflammatory peptides for the treatment of epilepsy, seizures and central nervous system disorders
US10590496B2 (en) Composition for preventing and treating degenerative brain disease using novel lactic acid bacteria
CN115209908A (en) Protein-based pharmaceutical compositions with neuroprotective, immunomodulatory, anti-inflammatory and antimicrobial activities
Wu et al. Parkin prevents glutamate excitotoxicity through inhibiting NLRP3 inflammasome in retinal ganglion cells
KR20190036373A (en) Pharmaceutical compositions for prevention and treatment of neurological diseases including black chokeberry extract
EP2978433B1 (en) Polysialic acid and use for treatment of neurodegenerative and neuroinflammatory diseases
KR101046126B1 (en) Composition for preventing or treating neurological diseases, including pomegranate extract
CN112007142A (en) Promoter of polar transformation into anti-inflammatory microglia of M2 phenotype
FR2995534A1 (en) Use of Gelsemium and/or gelsemine as homeopathic or allopathic drug and neurotrophic agent and/or neuroprotective agent for treating and preventing neurodegenerative disease, preferably Alzheimer&#39;s disease and Parkinson&#39;s disease
JP5919208B2 (en) Brain protectant
WO2020027311A1 (en) Tdp-43 aggregation inhibitor
WO2019131136A1 (en) Brain protective agent
Machida et al. Sleep and behavior during vesicular stomatitis virus induced encephalitis in BALB/cJ and C57BL/6J mice
KR101705361B1 (en) Composition for preventing or treating Sjogren&#39;s syndrome, Behcet&#39;s syndrome, Ankylosing spondylitis or Systemic lupus erythematosus comprising EGCG as an active ingredient
Serban et al. Production of nitric oxide by activated microglial cells is inhibited by taurine chloramine
KR20190015106A (en) A composition comprising an exosome derived from stem cell as an active ingredient and its application for improving non-alcoholic simple steatosis or non-alcoholic steatohepatitis
Pritchard et al. The biological bases of pharmacological therapies in Down syndrome

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7479623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150