JP7479620B1 - Lipopolysaccharide, method for producing lipopolysaccharide and lipopolysaccharide formulation - Google Patents
Lipopolysaccharide, method for producing lipopolysaccharide and lipopolysaccharide formulation Download PDFInfo
- Publication number
- JP7479620B1 JP7479620B1 JP2023575490A JP2023575490A JP7479620B1 JP 7479620 B1 JP7479620 B1 JP 7479620B1 JP 2023575490 A JP2023575490 A JP 2023575490A JP 2023575490 A JP2023575490 A JP 2023575490A JP 7479620 B1 JP7479620 B1 JP 7479620B1
- Authority
- JP
- Japan
- Prior art keywords
- lipopolysaccharide
- nite
- medium
- edible plant
- beets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002158 endotoxin Substances 0.000 title claims abstract description 61
- 229920006008 lipopolysaccharide Polymers 0.000 title claims abstract description 60
- 239000000203 mixture Substances 0.000 title claims description 22
- 238000009472 formulation Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 235000016068 Berberis vulgaris Nutrition 0.000 claims abstract description 84
- 241000335053 Beta vulgaris Species 0.000 claims abstract description 84
- 239000000126 substance Substances 0.000 claims abstract description 28
- 241000894006 Bacteria Species 0.000 claims abstract description 25
- 235000013305 food Nutrition 0.000 claims abstract description 13
- 239000003814 drug Substances 0.000 claims abstract description 12
- 229940079593 drug Drugs 0.000 claims abstract description 11
- 239000002537 cosmetic Substances 0.000 claims abstract description 6
- 239000000654 additive Substances 0.000 claims abstract description 4
- 239000003337 fertilizer Substances 0.000 claims abstract description 4
- 235000013376 functional food Nutrition 0.000 claims abstract description 4
- 235000018927 edible plant Nutrition 0.000 claims description 31
- 235000013311 vegetables Nutrition 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 235000021537 Beetroot Nutrition 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000000825 pharmaceutical preparation Substances 0.000 claims 1
- 229940127557 pharmaceutical product Drugs 0.000 claims 1
- 230000003110 anti-inflammatory effect Effects 0.000 abstract description 5
- 208000037976 chronic inflammation Diseases 0.000 abstract description 3
- 230000006020 chronic inflammation Effects 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 3
- 239000000284 extract Substances 0.000 description 47
- 239000002609 medium Substances 0.000 description 47
- 230000014509 gene expression Effects 0.000 description 27
- 108010093965 Polymyxin B Proteins 0.000 description 26
- 229920000024 polymyxin B Polymers 0.000 description 26
- 229960005266 polymyxin b Drugs 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 19
- 239000000047 product Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000012530 fluid Substances 0.000 description 12
- 238000000502 dialysis Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 239000012153 distilled water Substances 0.000 description 8
- 210000002540 macrophage Anatomy 0.000 description 7
- 239000008215 water for injection Substances 0.000 description 7
- 229920001817 Agar Polymers 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 238000010195 expression analysis Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 241000239218 Limulus Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108020004465 16S ribosomal RNA Proteins 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 108010059993 Vancomycin Proteins 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 229960003165 vancomycin Drugs 0.000 description 3
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- 238000003809 water extraction Methods 0.000 description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 241000588912 Pantoea agglomerans Species 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 241001228709 Suruga Species 0.000 description 2
- 229960003942 amphotericin b Drugs 0.000 description 2
- 235000012677 beetroot red Nutrition 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 235000020986 nuts and seeds Nutrition 0.000 description 2
- KSSNXJHPEFVKHY-UHFFFAOYSA-N phenol;hydrate Chemical compound O.OC1=CC=CC=C1 KSSNXJHPEFVKHY-UHFFFAOYSA-N 0.000 description 2
- 235000012015 potatoes Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- DHHFDKNIEVKVKS-FMOSSLLZSA-N Betanin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=C1)O)=CC(C[C@H]2C([O-])=O)=C1[N+]2=C\C=C\1C=C(C(O)=O)N[C@H](C(O)=O)C/1 DHHFDKNIEVKVKS-FMOSSLLZSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 235000000842 betacyanins Nutrition 0.000 description 1
- 235000016614 betalains Nutrition 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000032677 cell aging Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
ビーツの抗炎症作用に係る新規の物質・因子を明らかにして提供する。これにより、慢性炎症を抑制するための、医薬品、食品、及び化粧品等ヘルスケア製品の開発が可能となる。受託番号NITE BP-03839、NITE BP-03840、NITE BP-03841、NITE BP-03842、又はNITE BP-03843である細菌から得られることを特徴とするリポ多糖。そのリポ多糖が配合されている医薬品、動物用医薬品、医薬部外品、化粧品、食品、機能性食品、飼料、肥料、又は浴用剤。To clarify and provide novel substances/factors involved in the anti-inflammatory action of beets. This will enable the development of healthcare products such as medicines, foods, and cosmetics for suppressing chronic inflammation. Lipopolysaccharide obtained from bacteria having accession numbers NITE BP-03839, NITE BP-03840, NITE BP-03841, NITE BP-03842, or NITE BP-03843. Medicines, veterinary medicines, quasi-drugs, cosmetics, foods, functional foods, feed, fertilizers, or bath additives containing the lipopolysaccharide.
Description
本発明は、リポ多糖、リポ多糖製造方法及びリポ多糖配合物に関し、特に、ビーツに特有に共生する細菌由来のリポ多糖(LPS)に関連する。The present invention relates to lipopolysaccharides, methods for producing lipopolysaccharides and lipopolysaccharide formulations, and in particular to lipopolysaccharide (LPS) derived from bacteria that are uniquely symbiotic to beets.
ビーツは栄養価が高く、機能性がある野菜と考えられている。ビーツにはカリウム、マグネシウム、鉄などのミネラルが豊富に含まれている。その他、ビーツに含まれるニトライトは体内で一酸化窒素に変わり、血管を拡張させる効果があり、ベタラインは抗酸化作用による細胞の老化を防ぐ効果、食物繊維は腸内環境を整え、肌荒れの改善にも役立つとされているように機能性も高い(非特許文献1)。ビーツについては、一般的な野菜が持つポリフェノールやビタミンCによる免疫細胞の機能維持作用が知られており、ビーツの色素成分であるベタシアニンは、抗炎症作用が知られていると共に、炎症性サイトカイン(TNF-α、IL-6)の発現を低下させる作用が報告されている(非特許文献2)。しかしながら、ビーツが自然免疫細胞であるマクロファージを活性化し、抗炎症性サイトカイン(IL-10)の発現を高めることについては知られていない。Beets are considered to be a highly nutritious and functional vegetable. They are rich in minerals such as potassium, magnesium, and iron. In addition, the nitrite contained in beets is converted into nitric oxide in the body and has the effect of dilating blood vessels, betalain has the effect of preventing cell aging due to its antioxidant effect, and dietary fiber is said to be useful for improving the intestinal environment and improving rough skin, so they are highly functional (Non-Patent Document 1). It is known that polyphenols and vitamin C contained in common vegetables have the effect of maintaining the function of immune cells, and betacyanin, a pigment component of beets, is known to have an anti-inflammatory effect and has been reported to have the effect of reducing the expression of inflammatory cytokines (TNF-α, IL-6) (Non-Patent Document 2). However, it is not known that beets activate macrophages, which are natural immune cells, and increase the expression of anti-inflammatory cytokines (IL-10).
我々は、植物には共生細菌由来のリポポリサッカライド(LPS)が付着しており(非特許文献3)、このLPSが体内に摂取されて、ヒトの自然免疫を活性化することを見出している(非特許文献4)。したがって、ビーツの免疫調節作用の一部は、ビーツに特有に共生する細菌由来のLPS(以下「ビーツLPS」という)が関与することも考えられる。We have found that lipopolysaccharide (LPS) derived from symbiotic bacteria is attached to plants (Non-Patent Document 3), and that this LPS is taken up by the body and activates the human innate immune system (Non-Patent Document 4). Therefore, it is possible that part of the immunomodulatory effect of beets is related to LPS derived from bacteria that are unique to beets and symbiotic with them (hereinafter referred to as "beet LPS").
本発明は、ビーツの抗炎症作用に係る新規の物質・因子を明らかにして提供する。これにより、慢性炎症を抑制するための、医薬品、食品、及び化粧品等ヘルスケア製品の開発が可能となる。The present invention clarifies and provides novel substances and factors involved in the anti-inflammatory action of beets, which will enable the development of healthcare products such as medicines, foods, and cosmetics to suppress chronic inflammation.
本発明は、以下に示される内容を含む。 The present invention includes the following:
[1]受託番号NITE BP-03839、NITE BP-03840、NITE BP-03841、NITE BP-03842、又はNITE BP-03843である細菌から得られることを特徴とするリポ多糖。
[2]受託番号NITE BP-03839、NITE BP-03840、NITE BP-03841、NITE BP-03842、又はNITE BP-03843である細菌からリポ多糖を得ることを特徴とするリポ多糖製造方法。
[3]上記[1]記載のリポ多糖が配合されていることを特徴とするリポ多糖配合物。
[4]ビーツ内の0.5kDa未満の物質が更に配合されていることを特徴とする上記[1]又は上記[3]記載のリポ多糖配合物。
[5]上記[1]及び上記[3]乃至上記[4]のいずれか一項に記載のリポ多糖が配合されていることを特徴とする食用植物加工品。
[1] A lipopolysaccharide characterized by being obtained from a bacterium having the accession number NITE BP-03839, NITE BP-03840, NITE BP-03841, NITE BP-03842, or NITE BP-03843.
[2] A method for producing lipopolysaccharide, comprising obtaining lipopolysaccharide from a bacterium having accession number NITE BP-03839, NITE BP-03840, NITE BP-03841, NITE BP-03842, or NITE BP-03843.
[3] A lipopolysaccharide formulation comprising the lipopolysaccharide described in [1] above.
[4] A lipopolysaccharide preparation according to [1] or [3] above, further comprising a substance of less than 0.5 kDa contained in beets.
[5] An edible plant processed product, characterized in that it contains the lipopolysaccharide described in any one of [1] and [3] to [4] above.
[6]ビーツ内の0.5kDa未満の物質が更に配合されていることを特徴とする上記[1]及び上記[3]乃至上記[5]のいずれか一項に記載の食用植物加工品。
[7]前記食用植物加工品がビーツ加工品であることを特徴とする上記[5]又は上記[6]に記載の食用植物加工品。
[8]前記食用植物加工品が乾燥野菜又は乾燥食用植物粉末であることを特徴とする上記[5]乃至上記[7]のいずれか一項に記載の食用植物加工品。
[9]上記[5]乃至上記[8]のいずれか一項に記載の食用植物加工品が配合されていることを特徴とする食品。
[10]前記リポ多糖配合物が、医薬品、動物用医薬品、医薬部外品、化粧品、食品、機能性食品、飼料、肥料、又は浴用剤であることを特徴とする上記[3]又は上記[4]記載のリポ多糖配合物。
[6] An edible plant processed product according to any one of [1] and [3] to [5], further comprising a substance of less than 0.5 kDa contained in beets.
[7] The edible plant processed product according to [5] or [6] above, characterized in that the edible plant processed product is a beetroot processed product.
[8] The edible plant processed product according to any one of [5] to [7] above, characterized in that the edible plant processed product is a dried vegetable or a dried edible plant powder.
[9] A food product comprising the edible plant processed product according to any one of [5] to [8] above.
[10] The lipopolysaccharide formulation described in [3] or [4] above, characterized in that the lipopolysaccharide formulation is a pharmaceutical, an animal drug, a quasi-drug, a cosmetic, a food, a functional food, a feed, a fertilizer, or a bath additive.
ビーツから単離した菌体由来のビーツLPSは、マクロファージを活性化するが、公知のパントエア・アグロメランスLPSと比較し、抗炎症性サイトカインIL-10の誘導能が高いなど特殊なマクロファージ活性化を示すこと、その作用はポリミキシンBの作用により確かにLPSであることを示した。また、そのマクロファージ活性化は、ビーツLPS単独の作用ではなく、ビーツ内の低分子物質との相互作用であることを示した。これにより、慢性炎症を抑制するための、医薬品、食品、及び化粧品等ヘルスケア製品の開発が可能となる。 Beet LPS, derived from bacteria isolated from beets, activates macrophages, but compared to the known Pantoea agglomerans LPS, it exhibits special macrophage activation, such as a high ability to induce the anti-inflammatory cytokine IL-10, and this action was demonstrated to be due to LPS through the action of polymyxin B. It was also demonstrated that the macrophage activation is not the action of beet LPS alone, but an interaction with low molecular weight substances in beets. This will enable the development of healthcare products such as medicines, foods, and cosmetics to suppress chronic inflammation.
本明細書におけるビーツとは、日本食品標準成分表2020年版(八訂)に記載のビーツをさす。 Beets in this specification refer to beets listed in the 2020 edition (8th revision) of the Standard Tables of Food Composition in Japan.
本明細書における「食用植物」とは、ヒトの飲食に供される植物である。本明細書における食用植物としては、ヒトの飲食に供されるものであれば何ら制限されるものではないが、野菜類、穀類、イモ類、豆類、種実類、果実類、きのこ類、藻類等が挙げられ、野菜類が好ましく、特にビーツが好ましい。食用植物は、1種を用いてもよく、2種以上を任意の組み合わせで併用してもよい。また、食用植物は、そのまま用いてもよく、各種の処理(例えば乾燥、加熱、灰汁抜き、皮むき、種実抜き、追熟、塩蔵、果皮加工等)を加えてから使用してもよい。なお、一部の可食部(エダマメ、グリーンピースなど)が野菜として取り扱われる食材についても、非可食部(鞘など)と合わさった植物全体の状態(ダイズ、エンドウなど)で豆類かどうかを判断することができる。また、食用植物の分類は、非可食部と合わせた植物全体から判断することができる。具体的には、たとえば、「日本食品標準成分表2015年版(七訂)追補2018年」(厚生労働省が定めている食品成分表、特に第236頁表1参照)に記載された分類のうち、野菜類、穀類、イモ類、豆類、種実類、果実類、きのこ類、藻類を参照することで、いかなる食品が本発明における食用植物に該当するかを理解することができる。In this specification, the term "edible plant" refers to a plant that is consumed by humans. As used herein, the term "edible plant" is not limited as long as it is consumed by humans, but examples include vegetables, grains, potatoes, beans, nuts, fruits, mushrooms, algae, etc., with vegetables being preferred, and beets being particularly preferred. One type of edible plant may be used, or two or more types may be used in any combination. Edible plants may be used as is, or may be used after various treatments (e.g. drying, heating, removing lye, peeling, removing nuts and seeds, ripening, salting, peel processing, etc.). In addition, even if a foodstuff has a part of its edible parts (such as green soybeans and green peas) that is treated as a vegetable, it can be determined whether it is a legume or not based on the state of the whole plant (soybeans, peas, etc.) combined with the inedible parts (pods, etc.). In addition, the classification of edible plants can be determined based on the whole plant combined with the inedible parts. Specifically, for example, by referring to the classifications listed in the "Standard Tables of Food Composition in Japan, 2015 Edition (7th Revised Edition) Supplement 2018" (a food composition table established by the Ministry of Health, Labour and Welfare, see especially Table 1 on page 236), such as vegetables, grains, potatoes, beans, nuts and seeds, fruits, mushrooms, and algae, it is possible to understand what foods correspond to edible plants in the present invention.
本発明における食用植物加工品の性状は、制限されないが、食用植物の粉末、食用植物のペースト、又は食用植物の水系抽出物から選ばれる1種以上であることが好ましい。例えば、食用植物に対して乾燥処理、ロースト処理、熱水抽出処理等の加熱処理(例えば80℃以上)を加えた加工品であることが好ましい。本発明における食用植物加工品は、乾燥野菜又は乾燥食用植物粉末であることが好ましい。
以下、本発明の実施例を説明するが、本発明は、以下の実施例に制限されるものではない。
The properties of the edible plant processed product of the present invention are not limited, but are preferably one or more selected from edible plant powder, edible plant paste, and aqueous extract of edible plant. For example, it is preferably a processed product obtained by subjecting an edible plant to a heat treatment (e.g., 80°C or higher) such as drying, roasting, or hot water extraction. The edible plant processed product of the present invention is preferably a dried vegetable or a dried edible plant powder.
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[ビーツ熱水抽出液のマクロファージ活性化評価]
(1)方法
1)ビーツ抽出液の調製
[Evaluation of macrophage activation by hot water extract of beets]
(1) Method 1) Preparation of beet extract
皮つきのビーツを水で洗浄し、包丁で1cm四方のダイスカットにした。そのカット済みのビーツを、蒸し器を用いて温度90℃以上、15分間加熱を行った。そして、加熱済みのビーツを穴の開いたトレイに重ならないように広げ、70℃に設定した熱風乾燥機にトレイをセットし、水分値が6%以下になるまで乾燥させ(7~8時間)ビーツチップを作成した。その後、粉砕機(大阪ケミカル)を用いて粉砕し、355μmのメッシュを通してビーツ乾燥粉末を作成した。 The beets with the skin on were washed with water and cut into 1 cm square cubes using a knife. The cut beets were then heated in a steamer at a temperature of 90°C or higher for 15 minutes. The heated beets were then spread out on a tray with holes so that they did not overlap, and the tray was placed in a hot air dryer set at 70°C. The beets were then dried (7-8 hours) until the moisture content was 6% or less, creating beet chips. The beets were then crushed using a grinder (Osaka Chemical) and passed through a 355 μm mesh to create dried beet powder.
上記で作成したビーツ乾燥粉末を約2g秤量し50mLチューブに移し、100mg/mLになるように蒸留水を加え、オートクレーブにて90℃、20分加熱した。放熱後、ボルテックスミキサー(Vortex-genie2、Scientific Industries)にて30秒、10回攪拌、続いて37℃、15分超音波処理した。超音波処理後、遠心して回収した上清をビーツ抽出液とした。Approximately 2 g of the dried beet powder prepared above was weighed out and transferred to a 50 mL tube, distilled water was added to make the concentration 100 mg/mL, and the mixture was heated in an autoclave at 90°C for 20 minutes. After cooling, the mixture was stirred 10 times for 30 seconds each using a vortex mixer (Vortex-genie2, Scientific Industries), and then sonicated at 37°C for 15 minutes. After sonication, the mixture was centrifuged and the supernatant was collected to prepare the beet extract.
2)LPS量測定方法
LPS量をトキシノメーター(富士フイルム和光純薬)でリムルス値(リムルステストによって得られる値、コントロールスタンダードエンドトキシン大腸菌UKT-B製のLPSの換算値)として測定した。
2) LPS amount measurement method
The amount of LPS was measured using a toxinometer (Fujifilm Wako Pure Chemical Industries, Ltd.) as the Limulus value (value obtained by the Limulus test, converted value of LPS produced by the control standard endotoxin E. coli UKT-B).
3)ビーツ抽出液によるマクロファージ活性化評価サンプルの調整
RAW264.7細胞は、10%の牛胎児血清、100 U/mLペニシリン、100 μg/mLストレプトマイシンを含有するRPMI1640培地にて継代培養したものを用いた。培養はT25培養フラスコを用い、3日あるいは4日毎に0.25×105cells/mLで植え継いだ。37℃の5%CO2インキュベーター(以下、インキュベーター)内で培養した。試験操作は全てクリーンベンチ内で行った。T25培養フラスコにて前培養した細胞をピペッティングにより壁から剥がし、得られた細胞の懸濁液をコニカルチューブに移した。チューブを室温で1000rpm、5分間遠心分離し、上清をデカンテーションで捨て、細胞を回収した。タッピングにより細胞をほぐした後、培養液を加え、ピペッティングによって細胞を均一に懸濁した。このRAW264.7細胞を24ウェルプレートに5×105 cells/0.5mL/wellとなるように播種し、37℃のインキュベーター内で3時間培養した。その後、2倍濃度の各被験物質を含むまたは含まない培養液をウェルに0.5mL添加した。陽性対照としてパントエア・アグロメランス由来のLPS (LPSp:フナコシ、mac0001)を用いた。培地以外のサンプルは、LPS濃度が10ng/mLになるように培地で希釈した。添加後37℃の5%CO2インキュベーター内で培養し、4時間後に培養液を回収した。
3) Preparation of samples for evaluating macrophage activation by beet extract
RAW264.7 cells were subcultured in RPMI1640 medium containing 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. The cells were subcultured in a T25 culture flask at 0.25×10 5 cells/mL every 3 or 4 days. The cells were cultured in a 5% CO2 incubator (hereinafter referred to as the incubator) at 37°C. All test procedures were performed in a clean bench. The cells precultured in the T25 culture flask were detached from the wall by pipetting, and the resulting cell suspension was transferred to a conical tube. The tube was centrifuged at 1000 rpm for 5 minutes at room temperature, the supernatant was discarded by decantation, and the cells were collected. The cells were loosened by tapping, and then culture medium was added and the cells were uniformly suspended by pipetting. The RAW264.7 cells were seeded in a 24-well plate at 5x105 cells/0.5mL/well and cultured in a 37℃ incubator for 3 hours. Then, 0.5mL of culture medium containing or not containing 2x concentrations of each test substance was added to the wells. LPS derived from Pantoea agglomerans (LPSp: Funakoshi, mac0001) was used as a positive control. Samples other than the medium were diluted with medium to a LPS concentration of 10ng/mL. After addition, the cells were cultured in a 37℃ 5% CO2 incubator, and the culture medium was collected after 4 hours.
4)IL-10遺伝子発現解析方法
培養液を除いた細胞からRNeasy Mini Kit(QIAGEN)を用いて説明書の方法に従って総RNA抽出液(40μL)を調整した。RNA抽出液 10μLを用いてNanoVue Plus(GEヘルスケア・ジャパン株式会社)により吸光度およびRNA濃度を測定した。回収した総RNAの2μg分について、ReverTra Ace(R) qPCR RT Master Mix with gDNA Remover (東洋紡株式会社)を用い、キットの説明書に従いDNase処理により染色体DNAの分解処理を行って、その後逆転写によりcDNAを合成した。qPCRによりGAPDH(ハウスキーピング遺伝子)とIL-10の発現解析を行った。
4) IL-10 gene expression analysis method Total RNA extract (40μL) was prepared from the cells after removing the culture medium using RNeasy Mini Kit (QIAGEN) according to the instructions. The absorbance and RNA concentration were measured using NanoVue Plus (GE Healthcare Japan, Ltd.) using 10μL of the RNA extract. Chromosomal DNA was degraded by DNase treatment using ReverTra Ace(R) qPCR RT Master Mix with gDNA Remover (Toyobo Co., Ltd.) according to the kit's instructions, and then cDNA was synthesized by reverse transcription. Expression analysis of GAPDH (housekeeping gene) and IL-10 was performed by qPCR.
(2)結果
各サンプルのRAW264.7細胞におけるIL-10遺伝子発現の結果を表1に示す。なお、表中の平均は、各サンプルのIL-10発現倍率の算術平均値を表す。
培地:培地のみ
LPSp:培地にLPSpを添加
ビーツ抽出液:培地にビーツ抽出液を添加
ビーツ抽出液はLPSpよりも高いIL-10発現倍率を示した。
(2) Results The results of IL-10 gene expression in RAW264.7 cells for each sample are shown in Table 1. The average in the table represents the arithmetic mean value of the IL-10 expression fold for each sample.
Medium: Medium only
LPSp: LPSp was added to the medium. Beet extract: Beet extract was added to the medium. Beet extract showed a higher IL-10 expression fold than LPSp.
LPSの阻害剤であるポリミキシンB (PB)をRAW264.7細胞に添加してLPSpとビーツ抽出液のIL-10遺伝子発現を測定した。また、PB添加によって阻害されたIL-10発現倍率をPB添加前と比較することで、PBによる阻害率を算出した。結果を表2に示す。Polymyxin B (PB), an LPS inhibitor, was added to RAW264.7 cells, and IL-10 gene expression in LPSp and beet extract was measured. In addition, the inhibition rate by PB was calculated by comparing the IL-10 expression fold inhibition by PB addition with that before PB addition. The results are shown in Table 2.
両サンプルともにPB添加により90%以上阻害されることが示され、本活性はLPSによるものであることが示された。
Both samples were shown to be inhibited by more than 90% by the addition of PB, indicating that this activity was due to LPS.
LPSはグラム陰性菌の細胞外膜に存在するリポ多糖である。以上の結果から、ビーツに含まれるマクロファージの特徴的な活性化作用を持つ物質はビーツに共生するグラム陰性菌に由来するLPSであることが推定された。 LPS is a lipopolysaccharide present in the outer cell membrane of gram-negative bacteria. From these results, it was speculated that the substance in beets that has the characteristic activation effect on macrophages is LPS derived from gram-negative bacteria that live symbiotically with beets.
[ビーツ熱水抽出物の特徴を持つ物質の探索]
次に、LPS以外のビーツ由来成分による効果があるか分子分画で調べた。
(1)方法
1)ビーツ抽出液の作成
実施例1に記載のとおり。
[Searching for substances characteristic of hot water extract of beets]
Next, we used molecular fractionation to examine whether beet-derived components other than LPS had any effect.
(1) Method 1) Preparation of beet extract As described in Example 1.
2)抽出液の分画
上記のビーツ熱水抽出液を、遠心式10kDa限外ろ過フィルター(Merck Millipore Ltd)を用いて、10kDa以上の分子量分画(LPSを含む)内液(限外濾過内液)と10kDa未満の分子量分画(LPSを含まない)外液(限外濾過外液)に遠心分離して分けた。限外濾過内液に蒸留水を添加し、遠心操作(洗浄操作)を5回繰り返した。洗浄に使用した蒸留水を含む各画分を凍結乾燥処理し、蒸留水を加えた。
2) Fractionation of the extract The above beet hot water extract was centrifuged using a centrifugal 10 kDa ultrafiltration filter (Merck Millipore Ltd) to separate it into an inner liquid (ultrafiltrate inner liquid) with a molecular weight of 10 kDa or more (containing LPS) and an outer liquid (ultrafiltrate outer liquid) with a molecular weight of less than 10 kDa (not containing LPS). Distilled water was added to the ultrafiltrate inner liquid, and the centrifugation (washing) procedure was repeated five times. Each fraction, including the distilled water used for washing, was freeze-dried, and distilled water was added.
さらに、0.5kDa透析膜(フナコシ)を用いて限外濾過外液(10kDa未満)を蒸留水で透析した。透析を5回行い、透析膜内液(0.5~10kDa)と、透析膜外液(0.5kDa未満)を回収した。透析膜外液は、凍結乾燥後、蒸留水で調製した。
3)IL-10遺伝子発現解析
サンプルを追加して実施例1に記載のとおりに行った。
Furthermore, the ultrafiltrate (less than 10 kDa) was dialyzed against distilled water using a 0.5 kDa dialysis membrane (Funakoshi). Dialysis was performed five times, and the fluid inside the dialysis membrane (0.5-10 kDa) and the fluid outside the dialysis membrane (less than 0.5 kDa) were collected. The fluid outside the dialysis membrane was freeze-dried and then prepared with distilled water.
3) IL-10 gene expression analysis Additional samples were added and the analysis was carried out as described in Example 1.
(2)結果
各サンプルをRAW264.7細胞に添加し、IL-10遺伝子発現を調べた結果を表3に示す。なお、表中の平均は、各サンプルのIL-10発現倍率の算術平均値を表す。
LPSp:培地にLPSpを添加
ビーツ抽出液:培地にビーツ抽出液を添加
限外濾過内液:培地に限外濾過内液を添加
限外濾過外液:培地に限外濾過外液を添加
限外濾過内液+限外濾過外液:培地に限外濾過内液及び限外濾過外液を添加
(2) Results Each sample was added to RAW264.7 cells, and the results of examining IL-10 gene expression are shown in Table 3. The average in the table represents the arithmetic mean value of the IL-10 expression fold for each sample.
LPSp: LPSp added to the medium Beet extract: Beet extract added to the medium Ultrafiltrate inner solution: Ultrafiltrate inner solution added to the medium Ultrafiltrate outer solution: Ultrafiltrate outer solution added to the medium Ultrafiltrate inner solution + ultrafiltrate outer solution: Ultrafiltrate inner solution and ultrafiltrate outer solution added to the medium
以上の結果から、限外濾過内液のIL-10遺伝子発現は、ビーツ抽出液に比べ著しく低下したことが分かった。また、限外濾過外液にはIL-10遺伝子発現はほとんど見られなかった。限外濾過外液中の何らかの物質がビーツ抽出液の特徴をもたらしていることについて、限外濾過内液と限外濾過外液を再構成されることで確認できた。このことから、限外濾過外液にビーツ抽出液の特徴を誘導する物質が含まれていることを見出した。 These results show that IL-10 gene expression in the ultrafiltrate was significantly lower than in the beet extract. Furthermore, almost no IL-10 gene expression was observed in the ultrafiltrate. By reconstituting the ultrafiltrate and ultrafiltrate, it was confirmed that some substance in the ultrafiltrate gives rise to the characteristics of the beet extract. From this, it was found that the ultrafiltrate contains a substance that induces the characteristics of the beet extract.
ここで、LPSの阻害剤であるポリミキシンB (PB)をRAW264.7細胞に添加して限外濾過内液のIL-10遺伝子発現を測定し、その結果を表4に示した。なお、PBによる阻害率は実施例1と同様の方法で算出した。
LPSp:培地にLPSpを添加
LPSp+限外濾過外液:培地にLPSp及び限外濾過外液を添加
ビーツ抽出液:培地にビーツ抽出液を添加
限外濾過内液:培地に限外濾過内液を添加
限外濾過内液+限外濾過外液:培地に限外濾過内液及び限外濾過外液を添加
Here, polymyxin B (PB), an LPS inhibitor, was added to RAW264.7 cells, and the IL-10 gene expression in the ultrafiltrate was measured, and the results are shown in Table 4. The inhibition rate by PB was calculated in the same manner as in Example 1.
LPSp: LPSp added to the medium
LPSp + UF: LPSp and UF added to the medium. Beet extract: Beet extract added to the medium. UF: UF added to the medium. UF + UF: UF and UF added to the medium.
上記のとおり、PB添加によりIL-10発現倍率が90%以上阻害されることが示され、本活性はLPSによるものであることが示された。
As described above, it was shown that the addition of PB inhibited IL-10 expression by 90% or more, indicating that this activity was due to LPS.
さらに、10kDa限外濾過外液に含まれる低分子物質の分子量を限定するために0.5kDaの透析膜を用いて透析膜内液(0.5~10kDa)と、透析膜外液(0.5kDa未満)を作成し、その効果を調べた。その結果を表5示す。なお、表中の平均は、各サンプルのIL-10発現倍率の算術平均値を表す。
LPSp:培地にLPSpを添加
ビーツ抽出液:培地にビーツ抽出液を添加
限外濾過内液:培地に限外濾過内液を添加
限外濾過内液+透析膜外液:培地に限外濾過内液及び透析膜外液を添加
Furthermore, in order to limit the molecular weight of low molecular weight substances contained in the 10 kDa ultrafiltrate, a 0.5 kDa dialysis membrane was used to prepare a dialysis membrane inner solution (0.5-10 kDa) and a dialysis membrane outer solution (less than 0.5 kDa), and their effects were examined. The results are shown in Table 5. The average in the table represents the arithmetic mean value of the IL-10 expression fold for each sample.
LPSp: LPSp added to the medium. Beet extract: Beet extract added to the medium. Ultrafiltrate inner fluid: Ultrafiltrate inner fluid added to the medium. Ultrafiltrate inner fluid + dialysis membrane outer fluid: Ultrafiltrate inner fluid and dialysis membrane outer fluid added to the medium.
限外濾過内液と透析膜外液を再構成させることでIL-10発現倍率が高くなるというビーツ抽出液の特徴を示した。以上のことから、限外濾過外液に含まれるIL-10発現倍率を高くする何らかの低分子物質は0.5kDa未満の物質に絞られた。 The beet extract showed the characteristic of increasing the IL-10 expression ratio by reconstituting the ultrafiltrate inner fluid and the dialysis membrane outer fluid. From the above, it was narrowed down that any low molecular weight substances contained in the ultrafiltrate outer fluid that increase the IL-10 expression ratio are substances less than 0.5 kDa.
[ビーツ熱水抽出液の特徴を持つ微生物の単離]
(1)ビーツ常在細菌の単離方法
[Isolation of microorganisms with characteristics of hot water extract of beets]
(1) Method for isolating beet-resident bacteria
1)ビーツ寒天培地(ビーツエキス25, 75%、イーストエクストラクト0.5%、アンホテリシン5μg/mL、バンコマイシン10μg/mL、寒天1.5%)の調製方法 1) How to prepare beet agar medium (beet extract 25, 75%, yeast extract 0.5%, amphotericin 5μg/mL, vancomycin 10μg/mL, agar 1.5%)
(1):北海道産ビーツを1cm角程度にカットし、ビーツ重量と等量の注射用水(株式会社大塚製薬)を加えた。ホモジナイザーで粉砕後、遠心(3500rpm、10分間)し上清を回収した(50%ビーツエキス)。50%ビーツエキスを68℃で30分間加熱した後、凍結乾燥した。この凍結乾燥品に元の50%ビーツエキスに対して同量になるように蒸留水を加え、50%ビーツエキスと同濃度(50%)、および3倍濃度(150%)ビーツエキスとなるように調整した。これにアンホテリシンB(富士フイルム和光純薬株式会社)を終濃度10μg/mL、バンコマイシン(富士フイルム和光純薬株式会社)を終濃度20μ/mLとなるように加えた。 (1): Hokkaido-grown beets were cut into 1 cm cubes and an amount of water for injection (Otsuka Pharmaceutical Co., Ltd.) equal to the weight of the beets was added. After crushing with a homogenizer, the mixture was centrifuged (3500 rpm, 10 min) and the supernatant was collected (50% beet extract). The 50% beet extract was heated at 68°C for 30 min and then freeze-dried. Distilled water was added to this freeze-dried product in an amount equal to the original 50% beet extract, to prepare beet extracts of the same concentration (50%) as the 50% beet extract and three times the concentration (150%). Amphotericin B (Fujifilm Wako Pure Chemical Corporation) was added to a final concentration of 10 μg/mL, and vancomycin (Fujifilm Wako Pure Chemical Corporation) was added to a final concentration of 20 μ/mL.
(2):別の容器に、寒天(粉末、富士フイルム和光純薬株式会社)とイーストエクストラクト(ナカライテスク株式会社)がそれぞれ終濃度3%と1%になるように蒸留水に加え、121℃で20分間オートクレーブを行った。 (2): In a separate container, agar (powder, Fujifilm Wako Pure Chemical Industries, Ltd.) and yeast extract (Nacalai Tesque, Inc.) were added to distilled water to final concentrations of 3% and 1%, respectively, and autoclaved at 121°C for 20 minutes.
(3):(2)の溶液が60℃程度になったら、(1)と等量混合し、終濃度25%と75%ビーツ培地を調整した。これを25mLずつ10cmシャーレに分注した。 (3): When the solution (2) reached about 60°C, it was mixed with an equal amount of (1) to prepare final concentrations of 25% and 75% beetroot medium. 25 mL of this was dispensed into 10 cm petri dishes.
2)菌の分離方法
以下の操作はクリーンベンチ内で無菌的に行った。
注射用水を含ませたキムワイプでビーツの表面を擦り洗浄した。洗浄した部分の皮を採取し、ハサミで細切した。ビーツ3玉の皮を混合し、重量と等量の注射用水を加えボルテックスミキサーで攪拌した(懸濁液)。この懸濁液を生理食塩水で5×103倍と5×104倍に希釈した。希釈した懸濁液をビーツ寒天培地(ビーツエキス25、75%)とLB寒天培地に100μLずつ撒いた。
2) Method for isolating bacteria The following operations were carried out aseptically in a clean bench.
The surface of the beet was scrubbed and washed with a Kimwipe soaked in water for injection. The skin of the washed area was collected and cut into small pieces with scissors. The skin of three beets was mixed, and an equal amount of water for injection was added by weight and stirred with a vortex mixer (suspension). This suspension was diluted 5 x 10 3 times and 5 x 10 4 times with physiological saline. 100 μL of the diluted suspension was spread on beet agar medium (beet extract 25, 75%) and LB agar medium.
3)菌の培養方法
各培地に撒いたプレートを好気と嫌気の条件で培養した。好気培養は、5×104倍希釈で撒いたプレートを25℃に設定した恒温槽で3~5日間培養した。嫌気培養は、5×103倍希釈で撒いたプレートを嫌気環境にしたパウチ(アネロパウチ・ケンキ:株式会社スギヤマゲン)に入れて25℃に設定した恒温槽で3日間培養した。培養開始から2時間後、嫌気指示薬が酸素なし(0.1%以下)の状態を示したことを確認した。
3) Cultivation method of bacteria Plates on each medium were cultivated under aerobic and anaerobic conditions. For aerobic cultivation, plates were cultivated with 5x10 4 -fold dilution in a thermostatic chamber set at 25°C for 3-5 days. For anaerobic cultivation, plates were cultivated with 5x10 3 -fold dilution in an anaerobic pouch (Anelopouch Kenki: Sugiyamagen Co., Ltd.) and cultivated for 3 days in a thermostatic chamber set at 25°C. Two hours after the start of cultivation, it was confirmed that the anaerobic indicator showed no oxygen (0.1% or less).
(2)結果
ビーツ培地(25, 75%)で好気培養を5日間、嫌気培養を3日間行った。得られたコロニー数は表6に示した。
ビーツエキス25%培地:濃度25%のビーツエキス培地
ビーツエキス75%培地:濃度75%のビーツエキス培地
(2) Results The bacteria were cultured aerobically for 5 days and anaerobicly for 3 days on beetroot medium (25, 75%). The number of colonies obtained is shown in Table 6.
Beet extract 25% medium: Beet extract medium with a concentration of 25% Beet extract 75% medium: Beet extract medium with a concentration of 75%
各プレートのコロニーをセルスクレーパーでかき取り、湿菌体重量10~100mg/mLになるように注射用水を加え、90℃で20分間加熱した(培養菌群の熱水抽出液)。各培養菌群の熱水抽出液のLPS含量測定結果については表6に示した。各培養菌群にはリムルスで測定できるLPSが存在した。 Colonies from each plate were scraped off with a cell scraper, water for injection was added to give a wet cell weight of 10-100 mg/mL, and the mixture was heated at 90°C for 20 minutes (hot water extract of cultured bacteria). The results of measuring the LPS content of the hot water extract of each cultured bacteria are shown in Table 6. Each cultured bacteria contained LPS that could be measured with Limulus.
次に、培養菌群の熱水抽出物をPB添加有無でのIL-10遺伝子発現を調べ、本活性がLPS由来である確認を行った。その結果は表7に示すように、LPSpを基準として、ビーツエキス25%培地で嫌気培養、75%好気及び嫌気培養でIL-10発現倍率が有意に高いことがわかった。(T検定で危険率P<0.05)また、PBによる阻害率が90%を超えているのは、ビーツエキス25%培地の好気と嫌気培養、75%培地の好気培養であった。以上から、ビーツエキス25%培地の嫌気培養(コロニー数:6個)、75%の好気培養(コロニー数:13個)を選択した。なお、PBによる阻害率は実施例1と同様の方法で算出した。Next, the IL-10 gene expression of the hot water extract of the cultured bacteria group was examined with and without the addition of PB, and it was confirmed that this activity was derived from LPS. As shown in Table 7, the IL-10 expression ratio was significantly higher in anaerobic culture in 25% beet extract medium, 75% aerobic culture, and anaerobic culture in 25% beet extract medium, compared to LPSp (P < 0.05 in the T-test). In addition, the inhibition rate by PB exceeded 90% in aerobic and anaerobic culture in 25% beet extract medium, and aerobic culture in 75% medium. Based on the above, anaerobic culture in 25% beet extract medium (number of colonies: 6) and aerobic culture in 75% beet extract medium (number of colonies: 13) were selected. The inhibition rate by PB was calculated using the same method as in Example 1.
*:T検定で危険率P<0.05
*: P<0.05 in T-test
[ビーツ熱水抽出液の特徴を持つ微生物の同定]
ビーツをビーツエキス25%培地の嫌気培養、75%の好気培養をして出現する菌群から、菌株を選出し、菌属を16SrRNA法で同定し、菌寄託した。
(1)同定方法
1)LB寒天培地の調製方法
[Identification of microorganisms with characteristics of hot water extract of beets]
A strain was selected from the group of bacteria that emerged when beets were cultured anaerobically in a medium containing 25% beet extract and then aerobically in a medium containing 75% beet extract. The genus was identified by the 16S rRNA method and the strain was deposited.
(1) Identification method 1) Preparation method of LB agar medium
LB培地に寒天を1.5%になるように加え、121℃で20分間オートクレーブを行った。60℃程度に冷めたらアンホテリシンB終濃度5μg/mL、バンコマイシン 終濃度10μg/mLとなるように試薬を加え、25mLずつシャーレに分注した。Agar was added to the LB medium to a concentration of 1.5%, and the medium was autoclaved at 121°C for 20 minutes. After cooling to approximately 60°C, reagents were added to make the final concentration of amphotericin B 5μg/mL and vancomycin 10μg/mL, and 25mL was dispensed into petri dishes.
2)菌の同定
25%ビーツ培地(嫌気培養)と75%ビーツ培地(好気培養)のレプリカ(4℃保存)から選択した19個のコロニーを新しいLB培地に画線培養した。25℃で好気培養(2日間)後、シングルコロニーを新しい培地に画線培養した。25℃で2日間培養し、コロニーを確認後、外注先である株式会社テクノスルガ・ラボにプレートを送り、16s rDNA部分塩基配列解析データを得た。
2) Identification of bacteria
Nineteen colonies selected from replicas (stored at 4°C) of 25% beet medium (anaerobic culture) and 75% beet medium (aerobic culture) were streaked onto new LB medium. After aerobic culture at 25°C (2 days), a single colony was streaked onto new medium. After culturing at 25°C for 2 days and confirming the colonies, the plate was sent to Techno Suruga Lab, a subcontractor, to obtain partial 16s rDNA sequence analysis data.
3)熱フェノール水抽出
熱フェノール水抽出は、ウエストファールらの方法でフェノール抽出を行った。湿菌体に100mg/mLになるように注射用水を加え、ボルテックスミキサーで攪拌した。懸濁液と等量の90%フェノールを加え、ボルテックスミキサーで混合した。68℃に設定したウォーターバスで20分間加熱した。加熱中は、5分毎に約10秒間撹拌した。室温まで放熱した後、遠心分離(3500rpm、20分間、室温)を行い、水層を回収した。回収した水層と等量の注射水を加え、再度フェノール抽出を行った。
3) Hot phenol water extraction Hot phenol water extraction was performed using the method of Westphal et al. Water for injection was added to the wet cells to give a concentration of 100 mg/mL, and the mixture was stirred using a vortex mixer. An equal amount of 90% phenol to the suspension was added, and the mixture was mixed using a vortex mixer. The mixture was heated in a water bath set at 68°C for 20 minutes. During heating, the mixture was stirred for approximately 10 seconds every 5 minutes. After cooling to room temperature, the mixture was centrifuged (3500 rpm, 20 minutes, room temperature) and the aqueous layer was collected. An equal amount of water for injection to the collected aqueous layer was added, and phenol extraction was performed again.
回収した水層に注射水を加え、10倍希釈した。この溶液からフェノールを除去するために、遠心式10kDa限外濾過フィルターを用いて限外濾過を行い、LPSを回収し、この溶液のLPS量をリムルス法で測定した。The collected aqueous layer was diluted 10-fold with water for injection. To remove phenol from this solution, ultrafiltration was performed using a centrifugal 10 kDa ultrafiltration filter, and the LPS content of this solution was measured using the Limulus method.
4)IL-10遺伝子発現解析方法
各サンプルについて実施例1に記載のとおりにIL-10遺伝子の発現解析を行った。ここでの低分子物質としては、限外濾過外液を用いたが、上記のとおり、実際にIL-10発現倍率を高くする何らかの低分子物質は0.5kDa未満の物質である。
4) IL-10 gene expression analysis method IL-10 gene expression analysis was performed for each sample as described in Example 1. Ultrafiltrate was used as the low molecular weight substance here, but as described above, any low molecular weight substance that actually increases the IL-10 expression fold is a substance of less than 0.5 kDa.
(2)結果
上記で得られた19菌株の16s rDNA部分塩基配列をテクノスルガ・ラボに委託して決定し、その配列データを、国際塩基配列データベースにてBLAST検索し、菌の属を同定した。その中から、25%ビーツ培地(嫌気培養)から3菌株と、75%ビーツ培地(好気培養)から2菌株を独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託した。表8に各菌の属と受託番号を示す。
(2) Results The 16s rDNA partial base sequences of the 19 strains obtained above were determined by outsourcing to Techno Suruga Lab, and the sequence data was subjected to a BLAST search in the international base sequence database to identify the genus of the bacteria. Of these, three strains from the 25% beet medium (anaerobic culture) and two strains from the 75% beet medium (aerobic culture) were deposited at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation. Table 8 shows the genus and accession number of each strain.
寄託した菌体のIL-10遺伝子発現を測定し、サンプル単独に低分子物質を添加した場合の、低分子物質添加前と比較した増加倍率を算出した。その結果を表9、表10に示す。The IL-10 gene expression of the deposited bacteria was measured, and the increase rate when the low molecular weight substance was added to the sample alone was calculated compared to before the addition of the low molecular weight substance. The results are shown in Tables 9 and 10.
以上の結果から、サンプル単独でのIL-10発現倍率がLPSpより高い(BR-4、BR-6、BR-15、BR-19菌株由来LPS)か、低分子物質(10kDa未満の限外濾過外液を用いたが、実際には0.5kDa未満の物質が効いている。)が入ることでIL-10発現倍率が上がり、サンプル単独に比べて増加倍率が20倍以上に増加する(BR-1、BR-15菌株由来LPS)ビーツ単離菌由来のLPSが明らかになった。 These results reveal that the IL-10 expression fold increase in the sample alone is higher than that of LPSp (LPS derived from BR-4, BR-6, BR-15, and BR-19 strains) or that the IL-10 expression fold increase is due to the addition of low molecular weight substances (ultrafiltrate of less than 10 kDa was used, but substances of less than 0.5 kDa were actually effective), with the increase in IL-10 expression increasing by more than 20-fold compared to the sample alone (LPS derived from BR-1 and BR-15 strains) in LPS derived from beet isolated bacteria.
これらのことから、ビーツには、ビーツ特有の細菌に由来するLPSと、LPSの作用を変化させる低分子物質の相互作用により抗炎症作用を持つことが明らかとなり、ビーツの免疫調節機能に係る新規の物質により、慢性炎症を抑制するための、医薬品、動物用医薬品、医薬部外品、化粧品、食品、機能性食品、飼料、肥料、及び浴用剤並びに野菜や果物、穀物などの食用植物、特に根菜類を処理して得られる食用植物加工品を配合する食品等ヘルスケア製品の開発が可能となる。From these findings, it has become clear that beets have an anti-inflammatory effect due to the interaction between LPS derived from bacteria specific to beets and low molecular weight substances that modify the action of LPS. The new substances related to the immune-regulating function of beets may enable the development of pharmaceuticals, veterinary medicines, quasi-drugs, cosmetics, food, functional foods, feed, fertilizers, and bath additives that suppress chronic inflammation, as well as healthcare products such as foods that incorporate edible plant products obtained by processing edible plants such as vegetables, fruits, and grains, in particular root vegetables.
本明細書で引用したすべての刊行物は、そのまま参考として、ここにとり入れるものとする。 All publications cited herein are incorporated herein by reference in their entirety.
寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
寄託機関のあて名:〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 122号室
寄託日:2023年 3月 2日
受託番号:
(1). NITE BP-03839
(2). NITE BP-03840
(3). NITE BP-03841
(4). NITE BP-03842
(5). NITE BP-03843
Name of depository institution: National Institute of Technology and Evaluation, Patent Microorganism Depository Center Address of depository institution: Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, 292-0818, Japan Date of deposit: March 2, 2023 Accession number:
(1). NITE BP-03839
(2). NITE BP-03840
(3). NITE BP-03841
(4). NITE BP-03842
(5). NITE BP-03843
Claims (10)
The lipopolysaccharide formulation according to claim 3 or 4, characterized in that the lipopolysaccharide formulation is a pharmaceutical product, an animal drug, a quasi-drug, a cosmetic product, a food product, a functional food product, a feed, a fertilizer, or a bath additive.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023033994 | 2023-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP7479620B1 true JP7479620B1 (en) | 2024-05-09 |
Family
ID=90926098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023575490A Active JP7479620B1 (en) | 2023-09-19 | 2023-09-19 | Lipopolysaccharide, method for producing lipopolysaccharide and lipopolysaccharide formulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7479620B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012173163A1 (en) | 2011-06-14 | 2012-12-20 | 有限会社バイオメディカルリサーチグループ | Crushed cells and composition thereof |
JP2017075150A (en) | 2010-11-23 | 2017-04-20 | パンサリクス,インコーポレイティド | Composition and method for treatment in broad-spectrum, undifferentiated, or mixed clinical application |
WO2022090359A1 (en) | 2020-10-28 | 2022-05-05 | Sanofi Pasteur | Liposomes containing tlr4 agonist, preparation and uses thereof |
JP2023537960A (en) | 2020-08-12 | 2023-09-06 | ジボ バイオサイエンス,インコーポレイティド | Use of variovorax organisms as an alternative treatment for coccidiosis |
-
2023
- 2023-09-19 JP JP2023575490A patent/JP7479620B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017075150A (en) | 2010-11-23 | 2017-04-20 | パンサリクス,インコーポレイティド | Composition and method for treatment in broad-spectrum, undifferentiated, or mixed clinical application |
WO2012173163A1 (en) | 2011-06-14 | 2012-12-20 | 有限会社バイオメディカルリサーチグループ | Crushed cells and composition thereof |
JP2023537960A (en) | 2020-08-12 | 2023-09-06 | ジボ バイオサイエンス,インコーポレイティド | Use of variovorax organisms as an alternative treatment for coccidiosis |
WO2022090359A1 (en) | 2020-10-28 | 2022-05-05 | Sanofi Pasteur | Liposomes containing tlr4 agonist, preparation and uses thereof |
Non-Patent Citations (2)
Title |
---|
Chem. Pharm. Bull.,1992年,Vol.40, No.4,p.994-997 |
Food science and nutirition,2021年,Vol.9,p.6406-6420 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mărgăoan et al. | Impact of fermentation processes on the bioactive profile and health-promoting properties of bee bread, mead and honey vinegar | |
KR101805863B1 (en) | Manufacturing method of synbiotics fermentation product and synbiotics fermentation product made by the same | |
Dejsungkranont et al. | Enhancement of antioxidant activity of C-phycocyanin of Spirulina powder treated with supercritical fluid carbon dioxide | |
JP6679202B2 (en) | Type IV allergy composition | |
TWI702005B (en) | Pea extract and its use | |
Vamanu et al. | Antioxidative effects of phenolic compounds of mushroom mycelia in simulated regions of the human colon, in vitro study | |
WO2022085743A1 (en) | Fermented composition | |
Minervini et al. | Use of autochthonous lactobacilli to increase the safety of zgougou | |
Cassanego et al. | Identification by PCR and evaluation of probiotic potential in yeast strains found in kefir samples in the city of Santa Maria, RS, Brazil | |
JP2021530215A (en) | Microbiological process for bee pollen production | |
KR101733990B1 (en) | Brown rice containing GABA coated with rice flour fermentation products and the manufacturing method thereof | |
CN113678942A (en) | Application of chlorella | |
KR20130107940A (en) | Method of producing fermented red ginseng | |
JP7479620B1 (en) | Lipopolysaccharide, method for producing lipopolysaccharide and lipopolysaccharide formulation | |
Martins et al. | Unrevealing the in vitro impacts of Cereus jacamaru DC. cladodes flour on potentially probiotic strains, selected bacterial populations, and metabolic activity of human intestinal microbiota | |
JP2012214452A (en) | Method for producing antioxidant composition and health food | |
Al-Jumaiee et al. | Effect of different level of β-glucan extracted from baker's yeast Saccharomyces cerevisiae and barley bran in the physicochemical properties of fish patties at cooling storage periods | |
KR101733977B1 (en) | Cookie using barley flour fermentation products and the manufacturing method thereof | |
JP7267536B2 (en) | Method for producing lactic acid-fermented carrot | |
Chen et al. | Characteristics of the microstructure and the key components of white kidney bean sourdough bread induced by mixed-strain fermentation and its influence on gut microbiota | |
CA3085995C (en) | Composition for type i allergy | |
JP2013188198A (en) | Immunosuppressive lactic acid bacterium composition and immunosuppressive lactic fermentation food | |
JP2016034274A (en) | Agp degrading enzyme-producing bacterium | |
JP6089165B1 (en) | Bifidobacterium composition | |
Gumienna et al. | Influence of plant extracts addition on the antioxidative properties of products obtained from green lentil seeds during in vitro digestion process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231213 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20231208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7479620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |