JP7479370B2 - High-Temperature Superconducting Magnets - Google Patents
High-Temperature Superconducting Magnets Download PDFInfo
- Publication number
- JP7479370B2 JP7479370B2 JP2021533417A JP2021533417A JP7479370B2 JP 7479370 B2 JP7479370 B2 JP 7479370B2 JP 2021533417 A JP2021533417 A JP 2021533417A JP 2021533417 A JP2021533417 A JP 2021533417A JP 7479370 B2 JP7479370 B2 JP 7479370B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- hts
- windings
- magnet
- electrical contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims description 99
- 239000004020 conductor Substances 0.000 claims description 75
- 239000000463 material Substances 0.000 claims description 24
- 239000002887 superconductor Substances 0.000 claims description 10
- 238000005253 cladding Methods 0.000 claims description 7
- 238000010292 electrical insulation Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 17
- 239000010949 copper Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 238000009413 insulation Methods 0.000 description 9
- 229910052709 silver Inorganic materials 0.000 description 9
- 239000004332 silver Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 235000012771 pancakes Nutrition 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 7
- 229910020658 PbSn Inorganic materials 0.000 description 6
- 101150071746 Pbsn gene Proteins 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000805 composite resin Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 241000239290 Araneae Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000909 Lead-bismuth eutectic Inorganic materials 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910020073 MgB2 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- OVYJWJFXGDOMSD-UHFFFAOYSA-N boron;manganese Chemical compound B#[Mn]#B OVYJWJFXGDOMSD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
- G21B1/057—Tokamaks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/10—Connecting leads to windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
- H01F6/065—Feed-through bushings, terminals and joints
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
- H01F27/2828—Construction of conductive connections, of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
- H01F27/2852—Construction of conductive connections, of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/048—Superconductive coils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
本願は、高温超伝導体(HTS)磁石に関する。特に、本願は、HTS磁石に電流を供給することに関する。 This application relates to high temperature superconductor (HTS) magnets. In particular, this application relates to supplying electrical current to HTS magnets.
超伝導材料は、通常、「高温超伝導体」(HTS)と、「低温超伝導体」(LTS)とに分離される。LTS材料は、NbおよびNbTiなどであり、これらは、その超伝導性がBCS理論により表される金属または金属合金である。全ての低温超伝導体は、約30K未満の臨界温度(それを超える温度では、ゼロ磁場でも、材料は超伝導性ではなくなる)を有する。HTS材料の挙動は、BCS理論では記述されず、そのような材料は、約30Kを超える臨界温度を有し得る(ただし、HTS材料を定義するのは、臨界温度ではなく、超伝導作動と組成における物理的な差異であることに留意する必要がある)。最も普遍的に使用されるHTSは、「銅酸塩超伝導体」であり、これは、BSCCOまたはReBCO(ここで、Reは、希土類元素であり、通常、YまたはGdである)のような、銅酸塩系(銅の酸化物群を含有する化合物)のセラミックスである。他のHTS材料には、鉄ニクタイド(例えばFeAsおよびFeSe)および二ホウ素マンガン(MgB2)が含まれる。 Superconducting materials are usually separated into "high temperature superconductors" (HTS) and "low temperature superconductors" (LTS). LTS materials are metals or metal alloys whose superconductivity is described by the BCS theory, such as Nb and NbTi. All low temperature superconductors have a critical temperature below about 30 K (above which the material is no longer superconducting, even in zero magnetic field). The behavior of HTS materials is not described by the BCS theory, and such materials may have critical temperatures above about 30 K (it should be noted, however, that it is the physical differences in superconducting operation and composition, not the critical temperature, that define HTS materials). The most commonly used HTS are "cuprate superconductors", which are ceramics of the cuprate family (compounds containing the oxide group of copper), such as BSCCO or ReBCO (where Re is a rare earth element, usually Y or Gd). Other HTS materials include iron pnictides (eg, FeAs and FeSe) and manganese diboron ( MgB2 ).
ReBCOは、通常、図1に示すような構造を有するテープとして製造される。そのようなテープ100は、通常、約100μmの厚さを有し、基板101(通常、約50μmの厚さの電気研磨された「ハステロイ」)を有し、その上に、IBAD、マグネトロンスパッタリング、または他の好適な技術により、バッファスタック102として知られる、厚さが約0.2μmの一連のバッファ層が成膜される。エピタキシャルReBCO-HTS層103(MOCVDまたは他の好適な技術により成膜される)がバッファスタックの上に配置され、これは、通常、厚さが1μmである。スパッタリング法または他の好適な技術により、HTS層上に1~2μmの銀層104が成膜され、電気めっきまたは他の好適な技術により、テープ上に、銅安定化層105(または「クラッド」)が成膜される。これは、しばしば、テープを完全に被覆する。電流は、通常、クラッドを介して、テープ100に結合される。
ReBCO is typically manufactured as a tape with a structure as shown in FIG. 1. Such a
基板101は、機械的な骨格を提供し、製造ラインを介して固定され、その後の層の成長が可能となる。バッファスタック102は、二軸テクスチャ化された結晶化テンプレートを提供する必要があり、この上にHTS層が成長し、その超伝導特性に影響を及ぼす、基板からHTSへの元素の化学的拡散が抑制される。銀層104は、ReBCOから安定化層までの低抵抗界面を提供する必要があり、安定下層105は、ReBCOの任意の部分が超伝導ではなくなった(「通常」の状態に入った)場合に、代替の電流経路を提供する。
The
HTS磁石は、前述のReBCOテープ100のような、巻きHTSテープにより、コイル状に形成することができる。そのようなHTS磁石における共通の問題点は、個々のテープまたはケーブルが巻き回しパックから離れ、接合(すなわち、電気的接続)領域に入る部分である。
HTS magnets can be formed into coils by winding HTS tape, such as the ReBCO
図2には、HTSテープ100を有するコイル201に対する「従来」の電気的接合を概略的に示す。コイル201の外側巻き線は、巻き線パックから遠ざかるように、部分的に引っぱられ、「フライングリード」202が形成される。コイル201に電流を供給するため、フライングリード202には、電気的接合固定具203が設置される。
Figure 2 shows a schematic of a "conventional" electrical connection to a
図2に示したようなフライングリード接続において、HTSテープは、電磁(EM)力下での繰り返し移動、および熱収縮による影響を受け、通常の作動中に、劣化が生じる。また、HTSテープのこれらの「露出」区画は、しばしば、さらなるリスクを受ける。臨界電流の劣化の際に、電流を共有する、隣接するHTS周り部(巻き部)が存在しないからである。これは、これらの区画では、熱および/または電流逸散のため、主要な巻き線パックに近接するという利点が得られないことを意味する。 In flying lead connections such as that shown in Figure 2, the HTS tape is subject to repeated movement under electromagnetic (EM) forces and thermal contraction, resulting in degradation during normal operation. Additionally, these "exposed" sections of the HTS tape are often at additional risk since there are no adjacent HTS wraps to share the current during critical current degradation. This means that these sections do not have the advantage of proximity to the main winding pack for heat and/or current dissipation.
また、個々のテープは、脆弱で、取り扱いのミスで容易に湾曲するため、これらのフライングリード領域は、磁石巻きおよび組立プロセスの間の損傷に弱い。さらに、フライングリード方式では、しばしば、高価な精密に機械加工された部品を作製して、フライングリードを誘導支持し、これらを巻き線パックから接合固定具に移動させる必要がある。 Also, these flying lead areas are vulnerable to damage during the magnet winding and assembly process because the individual tapes are fragile and easily bent with mishandling. Furthermore, flying lead approaches often require the fabrication of expensive precision machined parts to guide and support the flying leads and move them from the winding pack to the joining fixture.
超伝導磁石に生じ得る別の問題は、クエンチ(急冷)である。クエンチは、超伝導ワイヤまたはコイルの一部が抵抗状態に入った際に生じる。これは、温度もしくは磁場の変動により、または超伝導体の(例えば、溶融反応炉で磁石が使用される場合、中性子放射線による)物理的な損傷もしくは欠陥により、生じ得る。磁石に存在する高電流のため、超伝導体の小さな部分が抵抗性になっても、急激に温度が上昇する。前述のように、超伝導ワイヤには、クエンチ保護のため、ある銅の安定化材が提供される。超伝導体が通常状態になった際に、銅は、電流の代替経路を提供する。含まれる銅が多くなると、クエンチされた導体の領域の周囲に形成されるホットスポットでの温度の上昇は、より遅くなる。 Another problem that can occur with superconducting magnets is quenching. Quenches occur when a portion of the superconducting wire or coil enters a resistive state. This can occur due to temperature or magnetic field fluctuations, or due to physical damage or defects in the superconductor (e.g., due to neutron radiation if the magnet is used in a melting reactor). Due to the high currents present in the magnet, even a small portion of the superconductor becoming resistive will cause a rapid temperature rise. As mentioned above, superconducting wires are provided with some copper stabilizer for quench protection. The copper provides an alternative path for the current when the superconductor goes into its normal state. The more copper present, the slower the temperature rises in the hot spots that form around the area of the quenched conductor.
従って、これらの問題の一部または全てを回避し、または抑制するHTS磁石に対するニーズがある。 Therefore, there is a need for HTS magnets that avoid or mitigate some or all of these problems.
本発明の目的は、前述の問題に対処し、または少なくとも軽減するHTS磁石を提供することである。 The object of the present invention is to provide an HTS magnet that addresses or at least mitigates the aforementioned problems.
本発明の第1の態様では、HTS磁石が提供される。当該HTS磁石は、入れ子状同心巻き線で形成されたコイルであって、各巻き線は、HTS材料を有する、コイルと、前記巻き線の少なくとも一つの一部に電流を供給する電気コンタクト表面を有する導体素子と、を有する。前記表面は、前記巻き線の前記少なくとも一つの経路の略周囲において、前記導体素子と前記コイルの軸端部の間に、電気的コンタクトを提供する。 In a first aspect of the invention, an HTS magnet is provided. The HTS magnet includes a coil formed of nested concentric windings, each winding having an HTS material, and a conductive element having an electrical contact surface for supplying electrical current to at least a portion of the windings. The surface provides electrical contact between the conductive element and an axial end of the coil substantially around the at least one path of the windings.
各巻き線は、HTSテープと、該HTSテープに電気的に接続されたクラッドとを有し、前記電気コンタクトは、前記クラッドに提供されてもよい。 Each winding may have an HTS tape and a cladding electrically connected to the HTS tape, and the electrical contacts may be provided to the cladding.
前記電気コンタクト表面は、前記巻き線の前記少なくとも一つの前記経路の20%超、50%超、または80%超にわたって、前記コイルの前記軸端部に電気コンタクトを提供してもよい。前記電気コンタクト表面は、リング形状であってもよい。 The electrical contact surface may provide electrical contact to the axial end of the coil over more than 20%, more than 50%, or more than 80% of the path of the at least one winding. The electrical contact surface may be ring-shaped.
当該HTS磁石は、他の巻き線の1または2以上にわたって延在する板を有し、前記導体素子は、前記板と一体的に、または前記板の上に形成されてもよい。前記導体素子は、前記板の面から突出し、前記板は、さらに、前記他の巻き線の1または2以上の一部から、前記板の前記面を電気的に絶縁する誘電体層または電気抵抗層を有してもよい。 The HTS magnet may have a plate extending across one or more of the other windings, and the conductive element may be formed integrally with or on the plate. The conductive element may protrude from a face of the plate, and the plate may further have a dielectric or resistive layer that electrically insulates the face of the plate from a portion of one or more of the other windings.
本願において、「電気抵抗」層とは、導体素子とコイルの間の電気抵抗、およびコイルの巻きの間の電気抵抗(すなわち、コイルの半径方向の電気抵抗)よりも大きな電気抵抗を有する層を意味する。電気抵抗層は、熱電伝導性であってもよく、従って、熱は、コイルから(またはコイルに)、より効率的に伝導してもよい。電気抵抗層は、誘電体層であっても、そうでなくてもよい。非誘電体の電気抵抗層は、誘電体が放射線損傷を受ける場合、例えば、コイルがトカマク核融合炉の一部である場合に好ましい。 In this application, an "electrically resistive" layer means a layer that has an electrical resistance greater than the electrical resistance between the conductive element and the coil and between the turns of the coil (i.e., the radial electrical resistance of the coil). The electrically resistive layer may be thermoelectrically conductive, so that heat may be conducted more efficiently from (or to) the coil. The electrically resistive layer may or may not be a dielectric layer. A non-dielectric electrically resistive layer is preferred when the dielectric is subject to radiation damage, for example, when the coil is part of a Tokamak fusion reactor.
当該HTS磁石は、前記1または2以上の他の巻き線にわたって延在する界面導体層を有し、前記巻き線または各巻き線の前記端部から、熱および/または電流が移動してもよい。前記界面導体層は、黄銅および/またはステンレス鋼であってもよい。他の「はんだ付け可能な」金属、すなわちはんだが付着する金属も使用可能であり、電気コンタクトが提供される。前記界面導体層は、厚さを変化させることにより、パターン化されてもよく、例えば、「蜘蛛の巣状」パターンが形成される。 The HTS magnet may have an interface conductor layer extending across the one or more other windings to transfer heat and/or current from the end of the or each winding. The interface conductor layer may be brass and/or stainless steel. Other "solderable" metals, i.e. metals to which solder will adhere, may also be used to provide electrical contact. The interface conductor layer may be patterned by varying thickness, for example to form a "spider web" pattern.
前記コイルは、前記巻き線の間に電気絶縁体を有してもよい。 The coil may have electrical insulation between the windings.
当該HTS磁石は、前記板と前記コイルの間に配置された、1もしくは2以上のセンサおよび/または1もしくは2以上のヒータを有してもよい。 The HTS magnet may have one or more sensors and/or one or more heaters disposed between the plate and the coil.
前記電気コンタクト表面は、前記コイルの最も内側の巻き線または最も外側の巻き線のいずれかに、電気コンタクトを提供してもよい。前記電気コンタクト表面は、前記巻き線にわたって、不連続な電気コンタクトを提供してもよい。例えば、2つの全長のHTSテープからコイルが形成される場合、電気コンタクト表面は、テープを直列で接続する、電気的接合として機能してもよい。 The electrical contact surface may provide electrical contact to either the innermost or outermost winding of the coil. The electrical contact surface may provide discontinuous electrical contact across the windings. For example, if a coil is formed from two lengths of HTS tape, the electrical contact surface may act as an electrical junction connecting the tapes in series.
当該HTS磁石は、さらに、別の導体素子を有し、該別の導体素子は、前記巻き線の別の少なくとも一つの一部からの電流を受容する電気コンタクト表面を有してもよい。前記表面は、実質的に、前記巻き線の別の少なくとも一つの経路の周りに、前記コイルの前記軸端部または別の軸端部に対する電気コンタクトを提供する。 The HTS magnet may further include another conductive element having an electrical contact surface for receiving current from at least one other portion of the winding, the surface providing electrical contact to the axial end or another axial end of the coil substantially around at least one other path of the winding.
前記電気コンタクト表面は、前記コイルの対向する面に電気コンタクトを提供してもよい。 The electrical contact surfaces may provide electrical contact on opposing faces of the coil.
当該HTS磁石は、さらに、1または2以上の追加のコイルを有し、前記または各追加のコイルは、前記コイルの対向する面に電気コンタクトを提供する導体素子を有し、前記コイルは、軸方向に積層され、それぞれの導体素子を介して相互に電気的に接続されてもよい。前記隣接する軸方向に積層されたコイルは、反対方向に巻き回されてもよい。 The HTS magnet may further include one or more additional coils, the or each additional coil having conductive elements providing electrical contacts on opposing faces of the coil, the coils being axially stacked and electrically connected to each other via their respective conductive elements. Adjacent axially stacked coils may be wound in opposite directions.
当該HTS磁石は、各々がそれぞれの導体素子を有する、2または3以上の同心入れ子状コイルを有し、各コイルは、前記コイルのそれぞれの導体素子の間の電気的接続により、隣接するコイルと電気的に接続されてもよい。電気的接続は、フレキシブルであり、相互に対するコイルの動きに適合してもよい。当該HTS磁石は、半径方向の力を遮断するため、隣接するコイルの間に配置された、1または2以上の介在支持体を有してもよい。 The HTS magnet may have two or more concentric nested coils, each having a respective conductive element, and each coil may be electrically connected to an adjacent coil by an electrical connection between the respective conductive elements of the coil. The electrical connections may be flexible to accommodate movement of the coils relative to one another. The HTS magnet may have one or more intervening supports disposed between adjacent coils to provide radial force isolation.
隣接するコイルのそれぞれのHTSテープは、厚さ、組成、幅、および数の1または2以上が異なってもよい。 The HTS tapes of each of the adjacent coils may differ in one or more of the following: thickness, composition, width, and number.
本発明の第2の態様では、HTS磁石であって、第1および第2のコイルであって、各コイルは、入れ子状同心巻き線で構成され、各巻き線は、HTS材料を有する、第1および第2のコイルと、第1および第2の導体素子であって、各導体素子は、前記コイルの間に電気的接続を提供する、第1および第2の導体素子と、を有する、HTS磁石が提供される。各導体素子は、第1の電気コンタクト表面であって、前記第1のコイルの前記巻き線の少なくとも一つの一部に、または前記第1のコイルの前記巻き線の少なくとも一つの一部から、電流が移動する、第1の電気コンタクト表面と、第2の電気コンタクト表面であって、前記第2のコイルの前記巻き線の少なくとも一つの一部に、または前記第2のコイルの前記巻き線の少なくとも一つの一部から、電流が移動する、第2の電気コンタクト表面と、を有する。各表面は、実質的に、前記巻き線の少なくとも一部の経路の周りに沿って、それぞれの導体素子と前記それぞれのコイルの軸端部の間に電気コンタクトを提供する。 In a second aspect of the invention, an HTS magnet is provided having first and second coils, each coil being composed of nested concentric windings, each winding having an HTS material, and first and second conductive elements, each conductive element providing an electrical connection between the coils. Each conductive element has a first electrical contact surface through which current travels to or from at least one portion of the winding of the first coil, and a second electrical contact surface through which current travels to or from at least one portion of the winding of the second coil. Each surface provides electrical contact between a respective conductive element and an axial end of the respective coil substantially along the path of at least a portion of the winding.
前記第2の導体素子により提供される前記電気的接続の電気抵抗により除算された、前記第1の導体素子により提供される前記電気的接続の電気抵抗は、1.5よりも大きく、3よりも大きく、または10よりも大きくてもよい。前記第2の導体素子の前記電気コンタクト表面の面積は、前記第1の導体素子の前記電気コンタクト表面の面積よりも大きくてもよい。 The electrical resistance of the electrical connection provided by the first conductive element divided by the electrical resistance of the electrical connection provided by the second conductive element may be greater than 1.5, greater than 3, or greater than 10. The area of the electrical contact surface of the second conductive element may be greater than the area of the electrical contact surface of the first conductive element.
前記第1の導体素子は、前記第2の導体素子から半径方向外側に配置されてもよい。この場合、第1の導体素子を、磁場の低い領域に配置することが可能になる。 The first conductive element may be positioned radially outward from the second conductive element. In this case, it is possible to position the first conductive element in an area of low magnetic field.
前記第1または第2の導体素子は、可変レジスタまたはスイッチを有してもよい。可変レジスタまたはスイッチは、HTSテープを有してもよい。 The first or second conductive element may include a variable resistor or a switch. The variable resistor or switch may include an HTS tape.
本発明の第3の態様では、前述のHTS磁石を有するトカマクが提供される。前記HTS磁石は、トロイダル磁場またはポロイダル磁場を提供するように構成される。 In a third aspect of the present invention, there is provided a tokamak having an HTS magnet as described above, the HTS magnet being configured to provide a toroidal or poloidal magnetic field.
本発明の第4の態様では、前述のHTS磁石において、半持続電流を形成する方法が提供される。当該方法は、超伝導状態における前記コイルの各々を調製するステップと、前記コイルにわたって並列に電源を接続するステップと、前記電源を切断するステップと、を有する。 In a fourth aspect of the invention, there is provided a method of forming a semi-sustaining current in the HTS magnet described above, the method comprising the steps of preparing each of the coils in a superconducting state, connecting a power source in parallel across the coils, and disconnecting the power source.
前記第2の導体素子は、HTS材料を有してもよく、当該方法は、前記コイルにわたって並列に電源を接続するステップの後に、通常状態から超伝導状態に、前記HTS材料を切り換えるステップを有してもよい。 The second conductive element may comprise an HTS material, and the method may include switching the HTS material from a normal state to a superconducting state after the step of connecting a power source in parallel across the coil.
本発明の第5の態様では、入れ子状同心巻き線で構成されたコイルを有するHTS磁石に電気的接続を形成する方法であって、各巻き線は、HTS材料を有する、方法が提供される。当該方法は、前記コイルの面を部分的に覆う、誘電体層または電気抵抗層を設置するステップと、前記誘電体層または電気抵抗層に、導体板を設置するステップと、前記巻き線の前記少なくとも一つの経路の略周囲において、前記導体板と前記コイルの軸端部との間に電気コンタクトを形成するステップと、を有する。 In a fifth aspect of the invention, a method of forming an electrical connection in an HTS magnet having a coil composed of nested concentric windings, each winding comprising an HTS material, is provided. The method includes providing a dielectric or resistive layer partially covering a face of the coil, providing a conductive plate on the dielectric or resistive layer, and forming an electrical contact between the conductive plate and an axial end of the coil substantially around the at least one path of the winding.
当該方法は、さらに、前記誘電体層または電気抵抗層と前記コイルの間に、界面導体層を設置するステップを有し、前記界面導体層は、他の巻き線の1または2以上にわたって延在し、前記巻き線または各巻き線の端部から、熱または電流を移動させてもよい。 The method may further include providing an interfacial conductor layer between the dielectric layer or resistive layer and the coil, the interfacial conductor layer extending across one or more of the other windings and transferring heat or current away from the end of the or each winding.
本発明の第6の態様では、入れ子状同心巻き線で構成されたコイルの軸端部に電流を供給する導体板が提供される。当該導体板は、当該板と一体形成された、または当該板に提供されたリング状導体素子を有する。前記導体素子は、前記導体素子と前記コイルの間に電気コンタクトを提供する電気コンタクト表面を有する。前記導体素子は、さらに、前記電気コンタクト表面に隣接する電気絶縁バリアを提供する、当該導体板上の誘電体層または電気抵抗層を有する。 In a sixth aspect of the invention, a conductive plate is provided for supplying current to an axial end of a coil formed of nested concentric windings. The conductive plate has a ring-shaped conductive element formed integrally with or provided on the plate. The conductive element has an electrical contact surface providing electrical contact between the conductive element and the coil. The conductive element further has a dielectric or electrically resistive layer on the conductive plate providing an electrical insulating barrier adjacent to the electrical contact surface.
当該導体板は、さらに、前記誘電体層または電気抵抗層にわたって、部分的にまたは完全に延在する、界面導体層を有してもよい。前記界面導体層は、前記巻き線または各巻き線の端部から、熱または電流を移動させるように構成される。 The conductive plate may further include an interfacial conductive layer extending partially or completely across the dielectric layer or the resistive layer. The interfacial conductive layer is configured to transfer heat or current away from the end of the or each winding.
本発明の第7の態様では、入れ子状同心巻き線で構成されたコイルの軸端部に電流を供給する導体板を製造する方法が提供される。当該方法は、前記板と一体化形成された、または前記板上に提供されたリング状導体素子を提供するステップであって、前記導体素子は、前記導体素子と前記コイルの間に電気コンタクトを提供する電気コンタクト表面を有する、ステップと、前記導体板上で繊維と樹脂の複合体を硬化させ、前記導体板上に、前記電気コンタクト表面と隣接する電気絶縁バリアを提供する誘電体層または電気抵抗層を形成するステップと、を有する。 In a seventh aspect of the invention, a method is provided for manufacturing a conductive plate for supplying current to an axial end of a coil composed of nested concentric windings. The method includes the steps of providing a ring-shaped conductive element integrally formed with or provided on the plate, the conductive element having an electrical contact surface providing electrical contact between the conductive element and the coil, and curing a fiber-resin composite on the conductive plate to form a dielectric or electrically resistive layer on the conductive plate that provides an electrical insulating barrier adjacent to the electrical contact surface.
前記硬化させるステップは、前記複合体を対象温度まで加熱して、所定の時間、前記複合体を前記対象温度に維持し、前記複合体を冷却するステップを有してもよい。 The curing step may include the steps of heating the composite to a target temperature, maintaining the composite at the target temperature for a predetermined period of time, and cooling the composite.
前記加熱の速度は、1℃/分未満であり、好ましくは0.3℃/分未満であってもよい。前記冷却の速度は、1℃/分未満であり、好ましくは0.4℃/分未満であってもよい。前記対象温度は、180℃以上であってもよい。前記所定の時間は、1時間超であり、好ましくは2時間超であってもよい。 The heating rate may be less than 1°C/min, preferably less than 0.3°C/min. The cooling rate may be less than 1°C/min, preferably less than 0.4°C/min. The target temperature may be 180°C or greater. The predetermined time may be greater than 1 hour, preferably greater than 2 hours.
また、銅表面に、電気的なおよび/または熱的な接続を形成する方法が記載され、当該方法は、銅の表面に銀の層を提供するステップと、銀の表面にインジウムの層を提供するステップと、を有し、これにより、インジウムの層に、電気的なおよび/または熱的な接続が形成される。また、銅の表面、銀の層、およびインジウムの層を有する、電気的なおよび/または熱的な接続が記載され、銀の層は、銅の表面とインジウムの層の間に直接配置される。 Also described is a method of forming an electrical and/or thermal connection to a copper surface, the method comprising the steps of providing a layer of silver on the copper surface and providing a layer of indium on the silver surface, whereby an electrical and/or thermal connection is formed to the indium layer. Also described is an electrical and/or thermal connection having a copper surface, a layer of silver, and a layer of indium, where the layer of silver is disposed directly between the copper surface and the layer of indium.
本願では、前述の問題に対する解決策が提案される。コイルの軸端部を通るHTS磁石コイルに対して、電気的接続が行われる。従って、電流は、コイルの面を介して、供給されまたは受容される。この接続の形態では、HTSテープの緻密な巻き線パックが保護され、HTSテープのいずれの箇所も、コイルから離れない。例えば、電気的接続は、コイルの面の上部に配置されたリングの形状の導体により提供され、導体は、コイルの外周の周囲における巻き線の上向きの端部と接触する。この配置または「リングジョイント」を使用することにより、組立時および作動時の双方において、磁石の不具合のリスクを最小限に抑制することができる。また、フライングリードを必要とせずに、電流を、HTSコイルから供給し、または抽出することができ、多くの補助部品の必要性が排除され、HTS磁石のコストおよび複雑性が抑制され、製造が単純化される。また、以降に示すように、そのような接続または接合では、HTS磁石の特性が改善される。 In this application, a solution to the aforementioned problem is proposed. An electrical connection is made to the HTS magnet coil through the axial end of the coil. Thus, current is supplied or received through the face of the coil. This form of connection protects the dense winding pack of the HTS tape and does not leave any part of the HTS tape separate from the coil. For example, the electrical connection is provided by a conductor in the shape of a ring placed on top of the face of the coil, which contacts the upturned ends of the windings around the circumference of the coil. By using this arrangement or "ring joint", the risk of failure of the magnet can be minimized both during assembly and during operation. Also, current can be supplied or extracted from the HTS coil without the need for flying leads, eliminating the need for many auxiliary parts, reducing the cost and complexity of the HTS magnet and simplifying its manufacture. Also, as will be shown below, such a connection or joint improves the properties of the HTS magnet.
本願において、ある方向(例えば上、下)または相対的用語(例えば、上部、上側、下方など)が参照されるが、これらの用語は、単に、本願に記載の概念の例を提供する目的で使用されることを理解する必要がある。同様に、本開示では、例示的に「パンケーキ」コイル、すなわち、入れ子状の同心巻き線で形成された大きな平坦コイルが参照されるが、以下の議論から、本開示は、そのようなコイルの限定されないことが理解される。 Although references are made in this application to certain directions (e.g., up, down) or relative terms (e.g., top, upper, lower, etc.), it should be understood that these terms are used merely for the purpose of providing examples of the concepts described in this application. Similarly, although references are made in this disclosure to exemplary "pancake" coils, i.e., large flat coils formed with nested concentric windings, it will be understood from the discussion below that this disclosure is not limited to such coils.
また、大きな構造へのリングジョイントの一体化により(以下、電気-熱インターフェース「ETI」板と称される)、しばしば、伝統的に別個に磁石に設置される熱接続、電気的絶縁、およびセンサを、単一のユニットとして提供できる。これにより、組立プロセスを単純化し、HTSコイルとは独立して、これらの部材を製造することが可能となる。 Additionally, the integration of the ring joint into the larger structure (hereafter referred to as the Electrical-Thermal Interface (ETI) plate) allows the thermal connections, electrical insulation, and sensors that are often traditionally installed separately on the magnet to be provided as a single unit, simplifying the assembly process and allowing these components to be manufactured independently of the HTS coil.
図3Aおよび3Bには、パンケーキコイル301用のリングジョイント300A、300Bの2つの想定される実施形態の概略的な正面図を示す。
Figures 3A and 3B show schematic front views of two possible embodiments of
コイル301は、大部分が平坦に配置された、HTSテープ100の入れ子状の同心巻き線を有する。HTSテープ100は、「向かい合わせ」で巻き付けられ、テープ100の対向する端部は、コイルの軸303に沿って突出する。各完全な巻き線は、コイル軸303の周囲のHTSテープ100の完全な旋回(回転)に対応する。最も外側の巻き線の始点および終点は、図3Aにおいて、301Aおよび301Bで符号化されている。
リングジョイント300A、300Bは、それぞれのリング導体304A、304Bにより形成される。コイルの巻き線を示す明確化のため、例えば、リング導体304A、304Bは、コイル301の背後に示されている。各リング導体304A、304Bは、導電性材料で構成された環またはリングを有し、好ましくは銅のような金属で構成される。リング導体200A、200Bは、巻き線の上側および下側の端部で接触し、コイル201に電気的接続が提供される。リング導体300Aは、コイル201の外径に配置され、一方、リング導体200Bは、コイル201の内径に配置される。
The ring joints 300A, 300B are formed by
各リング導体200A、200Bは、巻き線の一部のみを覆い、従って、電流は、コイル201の一端に供給することができ、これにより、巻き線を介して循環できる。
Each ring conductor 200A, 200B covers only a portion of the winding, so that current can be supplied to one end of the
リング導体300A、300Bは、各々、HTSテープ100の異なる端部に電気コンタクトを提供し、これらは、コイル301の外側から内側(またはその逆)に、半径方向に電流を駆動する組として、使用されてもよい。例えば、コイル201は、リング導体304A、304Bの組の間に提供され(挟まれ)、磁場を発生させるため、一つのリング導体304Aにより、電流がコイル301の一つの面(例えば上)に供給され、コイル301の巻き線を介して流れる。その後、他のリング導体304Bにより、電流は、コイルの別の面から受容される。
The
リング導体304A、304Bの半径方向の幅の選定は、接合の間の巻き数の数と、接続抵抗のトレードオフとなる。接続抵抗は、リング導体304A、304Bを広げ、コイル301のより多くの巻き数を覆うことにより低下する。ただし、その結果、単位電流当たりの磁石により生じる磁場は、減少する。完全な磁石電流を搬送する巻きの数が減少するからである。半径方向の幅が減少する場合、逆も正である。
The selection of the radial width of the
リングジョイントは、コイルの周のオーダの長さを定めることができるため、通常、磁石により生じる磁場があまり低下しない、半径方向に狭いリング導体304A、304Bを用いて、低抵抗接続が構成される。図3A、3Bにおけるリング導体304A、304Bは、コイル301の外端/内端の外方に、僅かに延在するように示されているが、その代わりに、リング導体の形状を、コイル301の半径方向のプロファイルに近づくように整合させ、コイル301、およびリングジョイント300A、300Bの半径方向の面積を最小限に抑制してもよい。
Because the ring joint can define a length on the order of the circumference of the coil, a low resistance connection is typically made using radially
リングジョイント300A、300Bの特徴を表すため、図3Aおよび3Bでは、環状「パンケーキ」コイルが使用されているが、これらの種類の接合は、トカマクに使用されているような、「D」型のトロイダル磁場コイルのような、コイルの他の形状に適用されてもよいことは、容易に理解できる。そのような場合、リングジョイント300A、300Bは、環状である必要はなく、コイル巻き線の経路に従うように形状化されてもよい。同様に、「リング導体」304A、304Bは、コイル巻き線の経路の周囲に完全に延在することは必要ではなく、代わりに、これらは、コイル巻き線の経路の周囲に、一部のみが延在してもよい。例えば、大きな半径および/または厚いHTSテープを有する磁石の場合、巻き線の経路の周囲に、20%、50%、または80%だけ延在するリング導体を用いて、低抵抗接合を形成することが可能になってもよい。すなわち、リング導体は、360゜未満の角度で、範囲を定めてもよい。リング導体に「ブレーク部」を導入することにより(巻き線の経路の周囲に完全に延在しないようにすることにより)、リング導体内における寄生電流ループの形成が優先的に回避されてもよい。これは、核磁気共鳴(NMR)、または磁気共鳴結像(MRI)のような用途に有益である。別の用途では、例えばトカマク(以下参照)のような、形状的制限および/または他の部材の存在が、そのようなブレークに必要となり得る。 3A and 3B to illustrate the features of the ring joints 300A, 300B, it is readily apparent that these types of joints may be applied to other shapes of coils, such as "D" shaped toroidal field coils, such as those used in tokamaks. In such cases, the ring joints 300A, 300B need not be annular, but may be shaped to follow the path of the coil windings. Similarly, the "ring conductors" 304A, 304B need not extend completely around the path of the coil windings, instead, they may extend only partially around the path of the coil windings. For example, for magnets with large radii and/or thick HTS tapes, it may be possible to form low resistance joints with ring conductors that extend only 20%, 50%, or 80% around the path of the windings. That is, the ring conductors may subtend an angle less than 360°. By introducing a "break" in the ring conductor (by not extending completely around the path of the windings), the formation of parasitic current loops within the ring conductor may be preferentially avoided. This is beneficial for applications such as nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI). In other applications, such as tokamaks (see below), geometrical constraints and/or the presence of other components may necessitate such a break.
リングジョイントは、大きな構造の一部として提供されてもよく、これは、導体板、または電気-熱インターフェース(ETI)板と称されてもよい。ETI板は、通常、複合体金属/絶縁体/センサ板であり、以下に示すように、HTSコイルの端面に取り付けられ、多くの役割を発揮する:
・HTSコイルに対する、および/またはHTSコイルの間に、電気的接続を形成する手段。
・HTSコイルと平行に制御レジスタを導入して、「部分絶縁」を達成する手段。レジスタの形状は、コイルの動的電気-熱挙動を調整するように定められる。
・冷却のため、HTSコイルに対する熱インターフェースを形成する手段。
・HTSコイルの間に、薄い電気絶縁部を導入し、該絶縁部を損傷から機械的に保護する手段。
・HTS巻き線を妨害することなく、HTS磁石に付属物品(センサまたはヒータ)を含有させる手段。
The ring joint may be provided as part of a larger structure, which may be referred to as a conductor plate, or an Electrical-Thermal Interface (ETI) plate. The ETI plate is typically a composite metal/insulator/sensor plate that is attached to the end faces of the HTS coil and serves a number of functions:
- Means for making electrical connections to and/or between the HTS coils.
- A means to achieve "partial insulation" by introducing a control resistor in parallel with the HTS coil. The resistor's geometry is determined to tailor the dynamic electro-thermal behavior of the coil.
- A means of providing a thermal interface to the HTS coil for cooling.
- Introducing thin electrical insulation between the HTS coils and a means to mechanically protect the insulation from damage.
- A means to include accessories (sensors or heaters) in the HTS magnet without disturbing the HTS windings.
図4には、一例としての磁石400の断面を示す。磁石は、単一のパンケーキコイル401に設置された、2つのETI板400A、400Bを有する。この例では、コイル401は、磁石軸303の周囲に相互に巻き回された、HTSテープ100の2つの全長を有する。テープ100は、「タイプ0組」としての銅101のクラッドであり(例えば、WO2018/078326号に記載されている)、各巻き線は、2つのテープを有する。HTSテープ100の巻き線の間には、絶縁体402が提供され、HTSテープの面にわたって電流が流れることが回避される。すなわち、HTSテープ100の一端に注入された電流は、コイル401の巻き線を循環することを余儀なくされる。ETI板400A、400Bは、各々、HTSテープ100の一方の端部にリングジョイントを形成する、それぞれのリング導体404A、404Bを有する。この例では、電流は、底部ETI板400Bを用いて、HTSテープ100の半径方向の最も内側の端部を介して、コイル401に供給される。電流は、リング導体404Aを介して、HTSテープ100の半径方向の最外側の端部で、上部のETI板400Aにより受容される前に、コイル301の一連の巻き線を回って流れる。
4 shows a cross section of an
ETI板400A、400Bは、リング導体404A、404Bのみを介してコイル401と電気的に接触しているが、板自身が、コイルにわたって半径方向に延在し、「ベース導体」層405A、405Bを形成し、これを介して、リングジョイントに電流が供給され(または、これから電流が受容され)、コイル301から熱が伝導する経路が提供される。この例では、ベース導体405A、405Bは、銅で構成されるが、他の導電性材料(例えば金属)も使用可能である。リング導体404A、404Bは、ベース導体405A、405Bと一体化して形成されてもよく、あるいは、例えばはんだにより、これらに固定されてもよい。
The
ETI板400A、400B上に(またはこれらと一体化して)リング導体404A、404Bを形成することにより、半径方向の寸法にわたって、これらを極めて狭くすることができる一方(必要な場合、サブmm)、依然として取り扱いを容易なままにすることができる。これは、リング導体が独立部材の場合には、達成することが難しい。ベース導体405A、405Bにより提供される大きな表面積により、熱は、コイル401から効率的に除去され、より柔軟に、磁石との電気的接続を配置することが可能となる。
By forming the
ETI板400A、400Bにおけるベース導体405A、405Bは、薄く構成して、それを横断する温度上昇を最小限に抑制できる。磁場強度が弱まることを避けるため、コイルを軸方向にあまり離間されないようにすることができる。あるいは、熱は、コイル401の外側直径または内側直径において、冷却バスに容易に抽出され、この場合、ベース導体405A、405Bは、温度要求が満たされるように十分に厚く形成される必要がある。また、ETI板400A、400Bは、コイル401の面の1または2以上が十分効果的に冷却されるように(すなわち、コイルの半径方向端部に熱伝導を依存しないように)、構造化されてもよい。例えば、ETI板400A、400Bは、チャネルまたはパイプを有し、これを介して、ガスまたは液体クーラントが流れ、熱がコイル401から移動してもよい。好ましくは、チャネルまたはパイプは、ベース導体405A、405Bの1または2以上の上、あるいは内部に提供されてもよい。
The
冷却用のETI板400A、400Bの使用により、熱伝導性ペーストを使用するような方法に対する、別のアプローチが提供される。熱伝導性ペーストは、はんだに比べて熱伝導の点で劣り、薄い層に好適に適用することが難しく、製造プロセスが複雑になる。
The use of
また、ETI板400A、400Bは、誘電体層406A、406Bを有し、これらは、HTSテープ100の端部を、板のベース導体405A、405Bの部分から電気的に絶縁する。誘電体層406A、406Bは、誘電体材料で構成され、例えば、「プレプレグ」のような、ガラス繊維/樹脂複合体で構成される。
The
さらに、ETI板400A、400Bは、界面導体層407A、407Bを有し、これらは、優れた熱および電気的コンタクトのため、コイル401にはんだ付けすることができる。この層は、半径方向のレジスタとして機能し、コイル401の熱的および電気的挙動を制御する。そのような「部分絶縁」、すなわち制御された「ターンツーターン」レジスタの導入により、HTSコイルにおける熱安定性とコイルのランプ時間の間に、所望のバランスが提供される。界面導体層は、導電性材料で構成され、好ましくは黄銅または鋼で形成される。これらの材料は、はんだ付けすることができ、銅よりも大きな電気抵抗率を有するからである。これにより、厚くすることが可能となり、従って、より容易に厚さを制御することが可能となる。そのような「部分絶縁」、(PI)、すなわち、制御された「ターンツーターン」レジスタの導入により、HTSコイルにおいて、熱安定性と、コイルのランプ時間の間に、所望のバランスが提供される。特に、コイルの巻き線にわたって延在する層の使用により、他の形態の部分絶縁の必要性が排除され、ステンレス鋼のような金属の「巻き付け」層の必要性が排除される。
Additionally, the
ある場合には、界面導体層407A、407Bは、接着剤により、誘電体層406A、406Bに結合される。しかしながら、接着剤は、構造的に弱められることなく、はんだ付け温度に耐える必要がある。そうでなければ、はんだ付けの間、層が剥離する傾向にある。この問題を解決する一方法は、誘電体および接合媒体の両方として、「プレプレグ」のような、ガラス繊維/樹脂複合体を使用することである。例えば、「SHD社」により製造されている「プレプレグMTC400」のような複合体を使用することができる。比較的長い硬化プロセスを実施することにより、複合体のガラス転移温度(Tg)を、通常のコイルのはんだ付け温度よりも高めることが可能となる。例えば、複合体は、約0.3℃/分の速度で180℃まで加熱し、2時間保持した後、0.3℃/分の速度で冷却することにより、「事後硬化」されてもよい。この手順では、例えば、200℃のTgを得ることができる。これにより、複合体は、より低い温度で生じるほとんどのはんだ付け処理に耐え得るようになる。ただし、in-situで、コイル上のETI板に対して、そのような硬化処理を実施することは、難しい場合がある。加熱の温度および時間は、(温度と時間の関数として生じるHTSテープの連続的な劣化により)コイルに損傷を与え、既に構成されている任意のはんだ付け接続部が損傷し、または劣化する可能性があるからである。
In some cases, the interface conductor layers 407A, 407B are bonded to the
ただし、非絶縁コイルを使用して、絶縁体402の含有によって、HTSテープ100の銅クラッドを介した、巻き線の間の代替低抵抗経路をブロックすることにより、「ターンツーターン」抵抗の効果を高めることも可能である。
However, it is also possible to use a non-insulated coil to enhance the effect of "turn-to-turn" resistance by blocking the alternative low resistance path between the windings through the copper cladding of the
ETI板400A、400Bの厚さ(すなわち、リング導体を含む全体厚さ)は、通常、0.25~1.00mmの範囲であり、誘電体層の厚さ(存在する場合)は、通常、10~100μmの範囲であり、界面導層の厚さ(存在する場合)は、通常、10~100μmの範囲である。
The thickness of the
界面層407、407Bを、コイル401の巻き線に接合する際に使用されるはんだは、通常PbSnである。しかしながら、この材料は、高導電性であり、界面層407A、407B上のPbSnの薄いコーティングでも、十分に低抵抗な電流経路が提供され、これにより、電流は、界面層407A、407Bをバイパスするようになる。この問題を回避するため、はんだ材料は、高抵抗率を有するものから選定され、PbSnよりも高い抵抗率を有することが好ましく、例えば、ReBCOテープの臨界温度よりも低い温度において、コイルが磁石に使用された際に、PbSnの抵抗率の10倍以上の抵抗率を有するはんだ材料が好ましい。例えば、はんだ材料は、PbBiで構成されてもよく、この材料は、PbSnよりも約50倍大きな抵抗率を有する。同様に、PbBiSnも使用可能である。(PbSnはんだコーティングに比べて)PbBi(またはPbBiSn)のコーティングの高抵抗率はんだでは、界面層407A、407B内により多くの電流が流れることを意味する。
The solder used to join the interface layers 407, 407B to the windings of the
部分的に絶縁されたETI板は、しばしば、高い可撓性を有するという利点を有する。ターンツーターン抵抗は、界面導体の厚さおよび組成により制御することができる。長い範囲の半径方向の電流、またはインピーダンスを提供する誘導性スパイラルを遮断するため、界面導体層の形状は、細分化した蜘蛛の巣状パターンをエッチングするなど、リソグラフィの使用により、変更できる。これらのいずれにおいても、充電時間と、熱-電気安定性の間でバランスを得ることができる。 Partially insulated ETI plates often have the advantage of being highly flexible. The turn-to-turn resistance can be controlled by the thickness and composition of the interface conductor. The shape of the interface conductor layer can be modified using lithography, such as by etching a finely divided spider web pattern, to interrupt long range radial currents, or inductive spirals that provide impedance. In either case, a balance can be obtained between charge time and thermal-electrical stability.
パンケーキコイルの間の薄い電気的絶縁は、そこに流れる熱により生じる大きな温度上昇を発生させずに、必要な誘電特性が提供される点で好ましい。しかしながら、多くの一般的な誘電体材料(ポリイミドシートなど)は、柔らかいため、これらは、磁石の作動および組立の間に受ける電磁応力下での破損に弱い。ETI板の内部に絶縁体を埋設し、両側の絶縁体を金属シートで保護することにより、破損のリスクが最小化される。 A thin electrical insulation between the pancake coils is preferable because it provides the necessary dielectric properties without causing a large temperature rise caused by heat flowing through it. However, many common dielectric materials (such as polyimide sheets) are soft, making them vulnerable to failure under the electromagnetic stresses experienced during magnet operation and assembly. By embedding the insulation inside the ETI plate and protecting the insulation on both sides with metal sheets, the risk of failure is minimized.
ETI板は、コイルに対して別の部材であるため、コイルの挙動を変更するため、置換することができる。例えば、最初は、コイルを安全に作動させるため、厚い界面導体層を有するETI板を取り付け、その臨界電流を定めてもよい。いったん最大作動電流が定められると、ETI板は、磁石の既知の特性範囲内で、より迅速に磁石をランピングする機能を提供するものに変更できる。 Because the ETI plate is a separate component to the coil, it can be substituted to change the coil's behavior. For example, an ETI plate with a thick interfacial conductor layer may be installed initially to allow the coil to operate safely and determine its critical current. Once the maximum operating current is determined, the ETI plate can be changed to one that provides the ability to ramp the magnet more quickly within the magnet's known characteristics.
図5には、磁石500の断面を示す。磁石500は、2つの軸方向に積層された磁石400を有し、各々は、パンケーキコイル401A、401Bを有する。コイル401A、401Bの間の熱的および電気的接続は、積層後に、隣接するETI板402A、402Bのベース銅層を相互に接続することにより行われる。これは、磁石400を軸方向に(すなわち磁石の軸503に沿って)押し付け、必要に応じて、磁石400の間に、インジウム層のような弾性導電層504を追加することにより、あるいははんだ付けすることにより(ただし、これには、磁石全体の加熱が必要となる)、行われ得る。また、「NanoBond」(RTM)技術を用いてもよく、この場合、ETI板402A、402Bの間に多層構造の箔が挿入され、箔内で化学反応が開始され、熱が発生し、板の各々に箔がはんだ付けされる。
Figure 5 shows a cross section of a magnet 500. The magnet 500 has two axially stacked
隣接するETI板402A、402Bの間の熱的および/または電気的接続は、効果的であるため、板の表面状態は、良好であり、例えば酸化物がないことが好ましい。これを達成するための一方法は、銀のような貴金属の層(例えばコーティング)を有するETI板402A、402Bのベース銅層を提供することである。銀の層は、銀が酸素に対する親和力が低く、化学的にインジウムに匹敵する点で好ましい。この場合、柔軟性のあるインジウム層504を用いて、高品質でプレスされた接続部が形成される。 For the thermal and/or electrical connection between adjacent ETI plates 402A, 402B to be effective, it is preferable that the surface condition of the plates is good, e.g. free of oxides. One way to achieve this is to provide the base copper layer of the ETI plates 402A, 402B with a layer (e.g. coating) of a noble metal such as silver. A layer of silver is preferred as silver has a low affinity for oxygen and is chemically comparable to indium. In this case, a high quality pressed connection is made using a flexible indium layer 504.
磁石500の軸方向のいずれかの端部に、銅板のような、追加の板505A、505Bが提供され、磁石500に、追加の冷却が提供され、または電気的接続が提供されてもよい。 Additional plates 505A, 505B, such as copper plates, may be provided at either axial end of magnet 500 to provide additional cooling or electrical connections to magnet 500.
板505A、505Bにわたって電源(図示されていない)が接続され、磁石500に電流が供給される。この例では、磁石の面の各々に対するリングジョイントは、コイルの半径方向の最も外側の端部に配置される一方、2つのコイルを接続するリングジョイントは、コイルの半径方向の最も内側の端部に配置される。従って、電流は、コイルの一つの巻き線を介して、半径方向内側に向かって流れ、その後、軸方向にコイルの間に流れ、その後、外側のコイルの巻き線を介して、半径方向外側に流れる。各コイルを介して、対向する方向に電流が流れると、コイル401A、401Bは、反対方向に巻かれ(すなわち、時計方向/反時計方向)、その結果、磁石400の各々により生じる磁場は、同じ極性を有するようになり、これにより、十分に大きな磁場を発生させることができる。例えば、コイル401A、401Bは、同様に調製され(すなわち、同じ方向に巻き回され)、コイルの一方は、積層前に、他方に対して「反転」され、磁石500が形成される。この方法では、これらの間に別のETI板を配置して、別のパンケーキコイルを積層できることは明らかである。
A power supply (not shown) is connected across plates 505A, 505B to provide current to magnet 500. In this example, the ring joints for each of the magnet faces are located at the radially outermost ends of the coils, while the ring joint connecting the two coils is located at the radially innermost ends of the coils. Thus, current flows radially inward through one winding of the coil, then axially between the coils, and then radially outward through the outer coil winding. With current flowing in opposite directions through each coil, coils 401A, 401B are wound in opposite directions (i.e., clockwise/counterclockwise) so that the magnetic field generated by each of
前述のように、ETI板は、チャネルまたはパイプを有し、これらを介して、ガスまたは液体が流れ、コイル方熱が移動してもよい。そのような配置は、特に、図5に示したような、軸方向に積層された磁石400の冷却に有効である。特に、コイルの間に配置されたETI板402A、402Bに冷却チャネルまたはパイプを提供することにより、コイル401A、401Bの「本体」から、熱を有効に移動させることができる。
As mentioned above, the ETI plates may have channels or pipes through which gas or liquid may flow to transfer heat to and from the coils. Such an arrangement is particularly useful for cooling axially stacked
また、ETI板におけるリング導体を使用して、入れ子状/同心のパンケーキコイルの間に、電気的接続を形成できる。すなわち、前述のように、軸方向ではなく、半径方向に電流を搬送する接合部を形成できる。例えば、パンケーキコイルは、その周囲にHTSテープの第2の長さを巻き付けることにより、拡張してもよい。この場合、リング導体を用いて、好ましくはETI板において、2つのHTSテープの端部の間に、電気的接合を形成することができる。すなわちリング導体は、巻線の不連続部または断線部を横断する接合を提供するために使用される。これが有益な例は、深いコイルの応力低減である(外径を内径で除した値が大きく、例えば、約3倍よりも大きい場合)。そのような状況では、コイルを複数の入れ子状コイルにサブ分割し、それぞれにより生じる力を遮断して、巻線に応力が蓄積することを抑制することが有益である。この場合、入れ子状コイルの間の半径方向の接続は、ETI板内の好適なリング導体により行うことができる。 Also, a ring conductor in the ETI plate can be used to make an electrical connection between nested/concentric pancake coils, i.e., to make a joint that carries current radially, rather than axially, as described above. For example, the pancake coil may be expanded by wrapping a second length of HTS tape around it. In this case, a ring conductor can be used to make an electrical joint between the ends of the two HTS tapes, preferably in the ETI plate. That is, the ring conductor is used to provide a joint across a discontinuity or break in the winding. An example where this is beneficial is stress reduction in deep coils (when the outer diameter divided by the inner diameter is large, e.g., greater than about 3 times). In such a situation, it is beneficial to sub-divide the coil into multiple nested coils and isolate the forces caused by each to reduce stress build-up in the winding. In this case, the radial connection between the nested coils can be made by a suitable ring conductor in the ETI plate.
図6には、HTS磁石600の半径方向の断面を示す。HTS磁石600は、2つのリング導体604A、604Bを有し、内側コイル601と外側コイル602の間に半径方向の接続が提供される。内側コイル601と外側コイル602の間には、シリンダのような機械的支持体607が提供され、これらの間の半径方向の力が遮断される。
Figure 6 shows a radial cross section of an
図7には、HTS磁石600の半径方向の断面を示す。HTS磁石600は、コンパクトで、ロバストで、直進的な高磁場を生成することができる。
Figure 7 shows a radial cross section of the
HTS磁石700は、前述のHTS磁石400の半径方向に入れ子状スタック701、702、703を有する。例えば、半径方向の最も外側のスタックは、軸方向に配列されたHTS磁石400A~Fを有し、隣接する磁石は、それらのETI板を介して電気的に接続される。ETI板により形成されたリングジョイントは、電流が、軸方向の流れ(隣接するコイル同士)と、半径方向の流れ(各コイルの巻き線の回り)と間で交互に流れるように配置され、これは、図6において、HTS磁石400A~Fに重ねられた矢印で表されている。図4を参照して示したようなHTS磁石400の場合、隣接する磁石のコイルは、反対方向に巻かれており、磁石の軸704に沿った磁場は、最大化される。他の2つの入れ子状の磁石スタック702、703は、同様の構成を有し、外側スタック701により生じる磁場を補強する。半径方向の接合/接続705、706は、隣接するスタックの終端ETI板の間に形成され、電流は、あるスタックから次のスタックに流れることができる。図6に示した例では、電流は、外側スタック701の最上部のHTS磁石400Aの上部ETI板を介して、磁石700に供給される。前述のように、電流は、スタック701を介して流れた後、接合705を介して半径方向に流れ、外側入れ子状スタック702に入る。同様に、このスタック702を介して流れた後、電流は、半径方向に流れ、接合706を介して、内側の入れ子状スタック703に入る。最後に、電流は、内側の入れ子状スタック703を介して流れた後、内側の入れ子状スタック703の最下部のHTS磁石の底部ETI板を介して、磁石700から導出される。
The HTS magnet 700 has radially nested stacks 701, 702, 703 of the
図7に示した一例としての磁石700では、各々が6個のHTSコイルを有する、3つのスタック701、702、703が存在するが、当然のことながら、任意の数のスタックおよび/またはコイルを使用してもよい。また、スタックは、異なる数のコイルを有し、磁石の設計に、さらなる自由度が提供されてもよい。 In the example magnet 700 shown in FIG. 7, there are three stacks 701, 702, 703, each with six HTS coils, but it should be appreciated that any number of stacks and/or coils may be used. Also, the stacks may have different numbers of coils, providing additional freedom in the magnet design.
多くの小さなHTS磁石(「コイルサブ分割」)から、HTS磁石700を構成することにより、多くの利点が提供される。特に、以下に示すように、コイルサブ分割により、HTSテープの応力制限に関する課題が克服され、磁石700内の配置によるサブ分割コイルの「等級化」により、より最適な磁石設計が可能となる。 Compiling the HTS magnet 700 from many smaller HTS magnets ("coil sub-segments") provides many advantages. In particular, as shown below, the coil sub-segments overcome challenges related to stress limitations of the HTS tape, and the "grading" of the sub-segment coils by their placement within the magnet 700 allows for a more optimal magnet design.
HTSテープの応力制限を考慮すると、HTSテープ100の許容可能な最大横方向引張強度は、通常、約10~50MPaであり、これにより、使用され得る巻き線の半径方向の深さに、実際的な限界が提供される。しかしながら、図7に示すように、コイルをいくつかの半径方向の入れ子状コイルにサブ分割するコイルサブ分割し、コイルの間に機械的支持体707、708を導入することにより、この課題は、回避することができる。同様に、軸方向の力は、磁石の軸に沿ったサブ分割、および軸方向の支持構造(図示されていない)を導入することにより、遮断できる。
Considering the stress limitations of HTS tapes, the maximum allowable transverse tensile strength of
サブ分割コイルの「等級化」を考慮すると、高磁場磁石において、磁場ベクトルは、磁石の半径方向および/または軸方向の配置に応じて、大きく変化し得る。HTS磁石の場合、これは、臨界電流のような、超伝導体としての磁石の作動を特徴化するパラメータもまた、配置に依存することを意味する。従って、磁石700の最適設計は、磁石の配置場所に従って、HTSテープ100を等級化することにより得ることができる。例えば、最大の磁場を達成する場合、およびクエンチ磁石の場合、磁石の全ての箇所で、臨界電流に対する電流の比(ガンマ)(I/Ic)を最大化することが望ましい。等級化は、単位回転/巻き数当たりのHTSテープの数、テープ幅もしくは厚さ、またはテープ種(すなわち製造会社もしくは使用HTS材料)、を変更することより行われ得る。
Considering the "grading" of the sub-segment coils, in high field magnets the magnetic field vector can vary significantly depending on the radial and/or axial configuration of the magnet. In the case of HTS magnets, this means that the parameters characterizing the operation of the magnet as a superconductor, such as the critical current, also depend on the configuration. Thus, an optimal design of the magnet 700 can be obtained by grading the
しばしば、モニター目的で、HTS磁石に(温度または歪みプローブのような)センサを埋設することが必要となる。急冷保護のため、ヒータのような別の部品が必要となる場合もある。HTSコイルと付属部品は、別個の物であり、不具合の際に、2つの物は、別個に製造され、個々に交換できることが望ましい。好適な適合性ETI板は、多くのセンサ、またはHTSコイルの巻き線に直接埋設される必要のない他の部品を収容するように製造できる。 Often it is necessary to embed sensors (such as temperature or strain probes) in the HTS magnet for monitoring purposes. Other components, such as heaters, may be required for quench protection. The HTS coil and ancillary components are separate items, and it is desirable that in the event of a failure, the two items be manufactured separately and individually replaceable. A suitable compatible ETI plate can be manufactured to accommodate many sensors or other components that do not need to be embedded directly into the windings of the HTS coil.
図8には、HTS磁石800の断面を示す。この磁石は、図5に示したHTS磁石500と同様であるが、隣接するETI板801A、801Bの各々が、内側リング導体804A、804Bと、外側リング導体805A、805Bとを有する点が異なっている。
Figure 8 shows a cross section of an
図9に示すように、各板に2つのリング導体の導入することにより、電源907がコイルの組に接続された際に、磁石800を通って流れる電流の2つの代替経路908、909が提供される。一つの経路908は、図4を参照して記載した経路と同じであり、すなわち電流は、内側リング導体805A、805Bを介して、各コイル400の巻き線の周りを流れる。別の経路909は、コイル400の外側巻き線の間に電気的接続を提供することにより、経路908を「短絡」または回避する。この場合、電流は、外側巻き線を介して、コイル400の一方に流れ、コイルの他の巻き線の周りを通過する代わりに、外側リング導体804Bを介して、コイルから導出される。同様に、電流は、他のコイルの他の巻線の周りを通過することなく、外側リング導体804Aを介して、他のコイルの外側巻線を通り、それらの軸方向の端部の間を流れ、コイルから導出される。
As shown in FIG. 9, the introduction of two ring conductors on each plate provides two
各経路908、909に沿って流れる電流の割合は、経路の相対的な電気抵抗により支配され、これは、外側および内側リング導体804A、804B、805A、805Bの電気抵抗、および/またはコイル400の巻き線に対するリング導体により形成される電気的コンタクトに関する電気抵抗を変更することにより制御できる。直接的な経路909の電気抵抗を遠回りの経路908よりも大きくすることにより、大部分の電流がコイル400に、およびコイルから半径方向に流れ、より長く遠回りの経路908を、より短く直接的な経路909よりも有意にすることができる。これは、例えば、内側リング導体805A、805Bの面積よりも小さな外側リング導体804A、804Bの面積を形成することにより実現される。経路909を介して少量のリーク電流が流れ、これが、コイル400の巻き線を介した電流の循環により生成される磁場に寄与しない場合でも、コイル400は、内側巻き線において完全な臨界電流まで充電され、追加のリーク電流は、外側巻き線により搬送される。なぜなら、これらは、この低磁場領域において、高い臨界電流を有するためである。いったん磁石800が充電されると、電源907が非接続にされ、電流は、閉止ループにおいて、コイル400の周りを流れる。
The percentage of current flowing along each
図10には、電源907が非接続にされた後に、磁石800内を流れる「トラップされた」電流の経路1010を示す。この場合、電流は、コイル400の巻き線を介して、閉止ループの周囲を通り、リング導体805B、805A、804A、804Bの各々を通る。コイル400は、超伝導であるため、電流は、減衰するまで、長期間、経路1010の周りに流れることが可能となり、すなわち循環電流となり、それにより形成されるする磁場は、「半持続的」となる。
Figure 10 shows the
循環電流の減衰に関する時定数は、コイルの磁気自己インダクタンス(L)とその電気抵抗(R)の比(L/R)により定められる。例えば、内径が50mmで外径が98mmのコイルを有する磁石を考慮した場合、自己インダクタンスは、~2mHとなり、通常、電気的接合は、液体窒素下において、抵抗が約1~5nΩとなる(すなわち、~10nΩの内側と外側の電気的接合の組み合わされた推定抵抗)。この磁石のL/R時定数は、約200,000秒、すなわち、2.3日となる。 The time constant for the decay of the circulating current is determined by the ratio (L/R) of the coil's magnetic self-inductance (L) to its electrical resistance (R). For example, considering a magnet with a coil of inner diameter 50 mm and outer diameter 98 mm, the self-inductance is ~2 mH and the electrical junctions typically have a resistance of about 1-5 nΩ under liquid nitrogen (i.e., an estimated combined resistance of the inner and outer electrical junctions of ~10 nΩ). The L/R time constant for this magnet is about 200,000 seconds, or 2.3 days.
また、大きな時定数は、大きな「充電」時間、すなわち電源が接続された際の、経路908、909の間に電流の定常状態分布が構築される時間に関連する。充電時間を最小化するため、充電中の経路908(すなわち図9に示した構成)の抵抗を高めることが有益である。これは、外側リング導体804A、804Bにより提供された外側電気的接合に導入された、可変レジスタまたはスイッチにより達成され得る。例えば、外側リング導体804A、804Bの間に、HTS材料を有するHTSスイッチが提供されてもよい。充電の間、スイッチは「オフ」にされ(非超伝導状態)、大きな抵抗が提供され、その結果、迅速な充電が可能となる。これは、例えば、臨界温度を超える温度にHTS材料を加熱することにより、達成される。スイッチは、その後、「オン」に切り換えられ(例えば、それ以上加熱がなされず、あるいは冷却され)、電流経路1010が閉止され、電源が非接続にされる。
A large time constant also correlates with a large "charging" time, i.e., the time for a steady-state distribution of current to build up between
前述のようなHTS磁石のある重要な用途は、トカマクとして知られる核融合炉のタイプである。トカマクは、強いトロイダル磁場、高いプラズマ電流、および通常は大きなプラズマ体積と大きな予備加熱の組み合わせを特徴とし、高温の安定なプラズマが提供される。これにより、トカマクは、核融合が生じ得る条件を作り出すことができる。(例えば、高エネルギー水素、重水素、またはトリチウムの数十メガワットの中性子ビーム入射による)予備加熱は、核融合の発生に必要な十分に高い値まで温度を高めるため、および/またはプラズマ電流を維持するため、必要となる。 One important application of HTS magnets such as those mentioned above is in a type of nuclear fusion reactor known as a tokamak. Tokamaks are characterized by a strong toroidal magnetic field, high plasma current, and a combination of a typically large plasma volume and large preheating, providing a stable plasma at high temperature. This allows them to create the conditions in which nuclear fusion can occur. Preheating (e.g., by injection of a tens of megawatts of neutron beam of high-energy hydrogen, deuterium, or tritium) is required to raise the temperature to a high enough value required for fusion to occur and/or to sustain the plasma current.
トカマクの磁石コイルは、2つのグループに分割できる。ポロイダル磁場コイルは、中心がトカマクの中央柱(column)に置かれるように巻かれた水平円形コイルであり、ポロイダル磁場(すなわち、中央柱に実質的に平行)を形成する。トロイダル磁場コイルは、中央柱を介して垂直に巻かれ、プラズマチャンバの外側(「戻りリム」)の周囲に巻かれ、トロイダル磁場(すなわち、中央柱の周囲に循環)が形成される。ポロイダル場とトロイダル場の組み合わせにより、プラズマチャンバ内にらせん場が形成され、これにより閉じ込められたプラズマが維持される。 The magnet coils in a tokamak can be divided into two groups. Poloidal field coils are horizontal circular coils wound so that their centres are placed on the tokamak's central column, creating a poloidal magnetic field (i.e. substantially parallel to the central column). Toroidal field coils are wound vertically through the central column and around the outside of the plasma chamber (the "return limb"), creating a toroidal magnetic field (i.e. circular around the central column). The combination of the poloidal and toroidal fields creates a helical field within the plasma chamber, which sustains the confined plasma.
トロイダル場の形成に必要な電流は、極めて大きい。従って、トカマクの設計では、磁場コイルにおける超伝導材料の使用が益々高まっている。小型の球形トカマクでは、中央柱の直径は、できる限り小さくする必要がある。超電導材料であっても、達成できる電流密度には限界があるため、これは相反する要求を提示する。 The currents required to generate the toroidal field are extremely large. Tokamak designs therefore increasingly use superconducting materials in the field coils. In small spherical tokamaks, the diameter of the central column needs to be as small as possible. This presents a conflicting requirement, since even with superconducting materials there is a limit to the current density that can be achieved.
本願に記載のHTS材料は、例えば、ポロイダル場またはトロイダル場のいずれか(または両方)を形成する際の、トカマク、特に球形トカマクにおける使用に特に好適である。 The HTS materials described herein are particularly suitable for use in tokamaks, particularly spherical tokamaks, for example, in generating either poloidal or toroidal fields (or both).
前述のように、本発明の各種実施形態について説明したが、これらは、一例を示すためのものであり、限定するためのものではないことを理解する必要がある。本発明の思想および範囲から逸脱することなく、形態および詳細の各種変更を行い得ることは、当業者には明らかである。例えば、前述のコイルは、「タイプ0」の構成で配置されたHTSテープ100を有するように記載されているが、例えば、「タイプ1」および「タイプ2」のような他の構成を使用することも可能である(例えば、国際公開WO2018/078326号に記載されている)。同様に、前述の一例では、コイルは、電源にわたって略直列に接続されているが、コイルは、電源にわたって並列に接続することも可能である。従って、本発明は、前述のいかなる実施形態にも限定されるものではなく、添付の特許請求の範囲およびその均等物のみにより、定められる。
As described above, various embodiments of the present invention have been described by way of example only, and should be understood to be illustrative and not limiting. It will be apparent to those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the present invention. For example, while the coils described above are described as having
Claims (19)
軸の周りに巻き付けられた入れ子状同心巻き線を含むコイルであって、各巻き線は、HTS材料を有する、コイルと、
第1および第2の導体素子であって、各々は、それぞれの電気コンタクト表面を有し、該電気コンタクト表面を介して、前記巻き線の少なくとも一つのそれぞれの一部に電流が供給され、または電流が受容され、各電気コンタクト表面は、前記それぞれの導体素子と前記コイルの軸方向端面の間で、前記巻き線の前記少なくとも一つのそれぞれの周囲の少なくとも一部に、電気コンタクトを提供し、
前記第1の導体素子の前記電気コンタクト表面は、前記第2の導体素子の前記電気コンタクト表面よりも前記軸に近接して配置され、これにより、前記第1の導体素子を介して前記コイルに供給される電流は、前記第2の導体素子により受容される前に、前記コイルを循環し、または前記第2の導体素子を介して前記コイルに供給される電流は、前記第1の導体素子により受容される前に、前記コイルを循環する、第1および第2の導体素子と、
を有する、HTS磁石。 A high temperature superconductor (HTS) magnet,
a coil including nested concentric windings wound about an axis, each winding having an HTS material;
first and second conductive elements each having a respective electrical contact surface through which current is supplied to or received from a respective portion of at least one of the windings, each electrical contact surface providing electrical contact about at least a portion of a circumference of a respective one of the at least one of the windings between the respective conductive element and an axial end face of the coil;
first and second conductive elements, the electrical contact surface of the first conductive element being disposed closer to the axis than the electrical contact surface of the second conductive element, such that a current supplied to the coil via the first conductive element circulates through the coil before being received by the second conductive element, or a current supplied to the coil via the second conductive element circulates through the coil before being received by the first conductive element;
An HTS magnet having
前記電気コンタクトは、前記クラッドに提供される、請求項1に記載のHTS磁石。 Each winding includes an HTS tape and a cladding electrically connected to the HTS tape;
The HTS magnet of claim 1 , wherein the electrical contact is provided to the cladding.
前記第1または第2の導体素子は、前記板と一体的に、または前記板の上に形成される、請求項1乃至4のいずれか一項に記載のHTS磁石。 having at least one plate extending across one or more of the other windings different from the winding on which the electrical contacts are provided ;
5. The HTS magnet of claim 1, wherein the first or second conductive element is formed integrally with or on the plate.
前記板は、さらに、前記他の巻き線の1または2以上の一部から、前記板の前記面を電気的に絶縁する誘電体層または電気抵抗層を有する、請求項5に記載のHTS磁石。 the first or second conductive element protrudes from a surface of the plate;
6. The HTS magnet of claim 5, wherein the plate further comprises a dielectric or electrically resistive layer that electrically insulates the face of the plate from one or more portions of the other windings.
前記1または2以上の他の巻き線の軸方向端面から、熱および/または電流が移動する、請求項6に記載のHTS磁石。 an interface conductor layer extending across the one or more other windings;
7. The HTS magnet of claim 6, wherein heat and/or current transfer from an axial end face of the one or more other windings.
前記追加のコイルは、該追加のコイルの軸の周りに巻き付けられた入れ子状同心巻き線を有し、
前記追加のコイルは、該追加のコイルの対向する2つの面に電気コンタクトを提供する、第1および第2の導体素子を有し、
前記コイルおよび前記追加のコイルは、軸方向に積層され、それぞれの導体素子を介して相互に電気的に接続される、請求項1乃至13のいずれか一項に記載のHTS磁石。 Further, it has an additional coil,
the additional coil having nested concentric windings wound about an axis of the additional coil;
the additional coil having first and second conductive elements providing electrical contacts on two opposing sides of the additional coil;
14. The HTS magnet of claim 1, wherein the coil and the further coil are axially stacked and electrically connected to each other via respective conductive elements.
前記内側のサブ分割コイルを定める前記巻き線は、さらなる第1および第2の導体素子により、前記外側のサブ分割コイルを定める前記巻き線に電気的に接続される、請求項1乃至15のいずれか一項に記載のHTS磁石。 the coil is divided into an outer sub- coil and an inner sub- coil, the inner sub- coil being concentrically nested within the outer sub- coil;
16. The HTS magnet according to claim 1 , wherein the windings defining the inner sub-segment coil are electrically connected to the windings defining the outer sub-segment coil by further first and second conductor elements.
前記HTS磁石は、トロイダル磁場またはポロイダル磁場を提供するように構成される、トカマク。 A tokamak comprising an HTS magnet according to any one of claims 1 to 18,
The HTS magnets are configured to provide a toroidal or poloidal magnetic field.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022125469A JP2022172106A (en) | 2018-10-15 | 2022-08-05 | high temperature superconductor magnet |
JP2024069916A JP2024097809A (en) | 2018-10-15 | 2024-04-23 | High-temperature superconducting magnet |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1816762.7 | 2018-10-15 | ||
GBGB1816762.7A GB201816762D0 (en) | 2018-10-15 | 2018-10-15 | High temperature superconductor magnet |
GB1900177.5 | 2019-01-07 | ||
GB201900177 | 2019-01-07 | ||
PCT/GB2019/052926 WO2020079412A1 (en) | 2018-10-15 | 2019-10-14 | High temperature superconductor magnet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022125469A Division JP2022172106A (en) | 2018-10-15 | 2022-08-05 | high temperature superconductor magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021535622A JP2021535622A (en) | 2021-12-16 |
JP7479370B2 true JP7479370B2 (en) | 2024-05-08 |
Family
ID=68296532
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021533417A Active JP7479370B2 (en) | 2018-10-15 | 2019-10-14 | High-Temperature Superconducting Magnets |
JP2022125469A Pending JP2022172106A (en) | 2018-10-15 | 2022-08-05 | high temperature superconductor magnet |
JP2024069916A Pending JP2024097809A (en) | 2018-10-15 | 2024-04-23 | High-temperature superconducting magnet |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022125469A Pending JP2022172106A (en) | 2018-10-15 | 2022-08-05 | high temperature superconductor magnet |
JP2024069916A Pending JP2024097809A (en) | 2018-10-15 | 2024-04-23 | High-temperature superconducting magnet |
Country Status (25)
Country | Link |
---|---|
US (1) | US20220028591A1 (en) |
EP (2) | EP3864679B1 (en) |
JP (3) | JP7479370B2 (en) |
KR (2) | KR20210153147A (en) |
CN (1) | CN112912973B (en) |
AU (3) | AU2019360423B2 (en) |
BR (1) | BR112021007011A2 (en) |
CA (1) | CA3116306A1 (en) |
DK (1) | DK3864679T3 (en) |
ES (1) | ES2938711T3 (en) |
FI (1) | FI3864679T3 (en) |
HR (1) | HRP20230164T1 (en) |
HU (1) | HUE061469T2 (en) |
IL (1) | IL281992B (en) |
LT (1) | LT3864679T (en) |
MX (1) | MX2021004249A (en) |
NZ (1) | NZ775906A (en) |
PH (1) | PH12021550835A1 (en) |
PL (1) | PL3864679T3 (en) |
PT (1) | PT3864679T (en) |
SA (1) | SA521421746B1 (en) |
SG (2) | SG11202103543TA (en) |
SI (1) | SI3864679T1 (en) |
WO (1) | WO2020079412A1 (en) |
ZA (1) | ZA202103215B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7247080B2 (en) * | 2019-12-09 | 2023-03-28 | 株式会社東芝 | Superconducting coil device |
GB202117049D0 (en) | 2021-11-25 | 2022-01-12 | Tokamak Energy Ltd | High saturation HTS magnet ramp-up |
GB202206446D0 (en) | 2022-05-03 | 2022-06-15 | Tokamak Energy Ltd | Superconductor magnet systems and methods for generating magnetic fields |
GB202206445D0 (en) | 2022-05-03 | 2022-06-15 | Tokamak Energy Ltd | Rapid dump of superconductor magnets |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191538A (en) | 2003-12-02 | 2005-07-14 | Nippon Steel Corp | Working method of oxide superconductor, oxide superconductive element and superconducting magnet |
JP2009049036A (en) | 2007-08-13 | 2009-03-05 | Sumitomo Electric Ind Ltd | Terminal for superconducting wire and superconducting coil with the same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237094A (en) * | 1989-03-03 | 1991-10-22 | Hitachi Ltd | High temperature oxide superconductor, superconducting wire, coil using the wire and production of them |
US6133814A (en) * | 1996-08-30 | 2000-10-17 | Hitachi, Ltd. | Oxide superconductor wire material and method for jointing the same together |
JPH11329823A (en) * | 1998-05-19 | 1999-11-30 | Hitachi Ltd | Magnetic system |
DE10033869C2 (en) * | 2000-07-12 | 2003-07-31 | Karlsruhe Forschzent | HTS cryomagnet and magnetization process |
US6745059B2 (en) * | 2001-11-28 | 2004-06-01 | American Superconductor Corporation | Superconductor cables and magnetic devices |
JP2007080940A (en) * | 2005-09-12 | 2007-03-29 | Toshiba Corp | Superconducting coil apparatus |
US8195260B2 (en) * | 2008-07-23 | 2012-06-05 | American Superconductor Corporation | Two-sided splice for high temperature superconductor laminated wires |
ES2533225T3 (en) * | 2010-07-30 | 2015-04-08 | Babcock Noell Gmbh | High temperature superconducting magnetic system |
CN102810378B (en) * | 2012-07-13 | 2014-09-17 | 中国科学院电工研究所 | Superconducting magnet and manufacturing method thereof |
GB201313392D0 (en) * | 2013-07-26 | 2013-09-11 | Mcdougall Ian L | Conductor for superconducting magnets |
GB2510447B (en) * | 2013-09-13 | 2015-02-18 | Tokamak Energy Ltd | Toroidal field coil for use in a fusion reactor |
JP6180963B2 (en) * | 2014-02-26 | 2017-08-16 | 株式会社東芝 | High temperature superconducting coil |
JP6353674B2 (en) * | 2014-03-19 | 2018-07-04 | 株式会社東芝 | High temperature superconducting magnet device and high temperature superconducting magnet demagnetizing method |
JP6567334B2 (en) * | 2015-06-16 | 2019-08-28 | 株式会社東芝 | Multilayer superconducting coil device |
KR102494710B1 (en) * | 2015-09-04 | 2023-02-02 | 한국전기연구원 | Smart Insulation of Superconductive Coil, Superconductive Wires Used Therefor And Manufacturing Methods Thereof |
WO2017061563A1 (en) * | 2015-10-08 | 2017-04-13 | 古河電気工業株式会社 | Superconducting coil |
JP6486817B2 (en) * | 2015-12-02 | 2019-03-20 | 株式会社東芝 | Superconducting coil and superconducting coil device |
GB201618334D0 (en) | 2016-10-31 | 2016-12-14 | Tokamak Energy Ltd | Cable design in hts tokamaks |
RU2754574C2 (en) * | 2016-12-21 | 2021-09-03 | Токемек Энерджи Лтд | Protection against superconductivity disruption in superconducting magnets |
CN108461248B (en) * | 2018-02-08 | 2022-10-25 | 中国电力科学研究院有限公司 | Composite superconductor coil |
-
2019
- 2019-10-14 PL PL19790761.1T patent/PL3864679T3/en unknown
- 2019-10-14 LT LTEPPCT/GB2019/052926T patent/LT3864679T/en unknown
- 2019-10-14 FI FIEP19790761.1T patent/FI3864679T3/en active
- 2019-10-14 SI SI201930454T patent/SI3864679T1/en unknown
- 2019-10-14 US US17/285,172 patent/US20220028591A1/en active Pending
- 2019-10-14 CA CA3116306A patent/CA3116306A1/en active Pending
- 2019-10-14 EP EP19790761.1A patent/EP3864679B1/en active Active
- 2019-10-14 AU AU2019360423A patent/AU2019360423B2/en active Active
- 2019-10-14 CN CN201980068145.6A patent/CN112912973B/en active Active
- 2019-10-14 PT PT197907611T patent/PT3864679T/en unknown
- 2019-10-14 KR KR1020217040008A patent/KR20210153147A/en not_active Application Discontinuation
- 2019-10-14 DK DK19790761.1T patent/DK3864679T3/en active
- 2019-10-14 WO PCT/GB2019/052926 patent/WO2020079412A1/en active Search and Examination
- 2019-10-14 SG SG11202103543TA patent/SG11202103543TA/en unknown
- 2019-10-14 EP EP22212720.1A patent/EP4167256A1/en active Pending
- 2019-10-14 MX MX2021004249A patent/MX2021004249A/en unknown
- 2019-10-14 SG SG10202112214RA patent/SG10202112214RA/en unknown
- 2019-10-14 JP JP2021533417A patent/JP7479370B2/en active Active
- 2019-10-14 HR HRP20230164TT patent/HRP20230164T1/en unknown
- 2019-10-14 BR BR112021007011-7A patent/BR112021007011A2/en unknown
- 2019-10-14 ES ES19790761T patent/ES2938711T3/en active Active
- 2019-10-14 KR KR1020217014769A patent/KR20210064384A/en active IP Right Grant
- 2019-10-14 NZ NZ775906A patent/NZ775906A/en unknown
- 2019-10-14 HU HUE19790761A patent/HUE061469T2/en unknown
-
2021
- 2021-04-02 IL IL281992A patent/IL281992B/en unknown
- 2021-04-13 SA SA521421746A patent/SA521421746B1/en unknown
- 2021-04-14 PH PH12021550835A patent/PH12021550835A1/en unknown
- 2021-05-12 ZA ZA2021/03215A patent/ZA202103215B/en unknown
- 2021-09-28 AU AU2021240133A patent/AU2021240133B2/en active Active
-
2022
- 2022-08-05 JP JP2022125469A patent/JP2022172106A/en active Pending
-
2024
- 2024-01-31 AU AU2024200590A patent/AU2024200590A1/en active Pending
- 2024-04-23 JP JP2024069916A patent/JP2024097809A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191538A (en) | 2003-12-02 | 2005-07-14 | Nippon Steel Corp | Working method of oxide superconductor, oxide superconductive element and superconducting magnet |
JP2009049036A (en) | 2007-08-13 | 2009-03-05 | Sumitomo Electric Ind Ltd | Terminal for superconducting wire and superconducting coil with the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7479370B2 (en) | High-Temperature Superconducting Magnets | |
KR102631117B1 (en) | Partially insulated high-temperature superconducting coils | |
JP2022508189A (en) | High-temperature superconductor magnet system and high-temperature superconductor field coil lamp-down or heating method | |
US20230395296A1 (en) | High temperature superconductor field coil | |
US20230146164A1 (en) | Passive quench protection techniques for non-insulated superconducting magnets | |
US20230010097A1 (en) | Hts linked partial insulation for hts field coils | |
EA040624B1 (en) | MAGNET WITH HIGH-TEMPERATURE SUPERCONDUCTOR | |
RU2818160C1 (en) | Hts-related partial insulation for hts excitation coils | |
KR102715485B1 (en) | Fast dump of partially insulated superconducting magnet | |
WO2024118671A1 (en) | High-temperature superconductor magnets with quench damage resiliency | |
KR20230133874A (en) | Stacked plate, joint structure for non-insulated superconducting magnets | |
US11937519B1 (en) | Permanent magnets using high temperature superconductor tapes and methods of charging same | |
EA039430B1 (en) | High temperature superconducting field coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210611 |
|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A529 Effective date: 20210611 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210611 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220805 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220805 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220815 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220816 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20221007 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20221018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7479370 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |