JP7478519B2 - Wireless relay device, wireless LAN system using the same, and wireless relay method - Google Patents

Wireless relay device, wireless LAN system using the same, and wireless relay method Download PDF

Info

Publication number
JP7478519B2
JP7478519B2 JP2019103130A JP2019103130A JP7478519B2 JP 7478519 B2 JP7478519 B2 JP 7478519B2 JP 2019103130 A JP2019103130 A JP 2019103130A JP 2019103130 A JP2019103130 A JP 2019103130A JP 7478519 B2 JP7478519 B2 JP 7478519B2
Authority
JP
Japan
Prior art keywords
wireless relay
wireless
unit
master
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019103130A
Other languages
Japanese (ja)
Other versions
JP2020198518A (en
Inventor
浩 川崎
卓司 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icom Inc
Original Assignee
Icom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icom Inc filed Critical Icom Inc
Priority to JP2019103130A priority Critical patent/JP7478519B2/en
Publication of JP2020198518A publication Critical patent/JP2020198518A/en
Application granted granted Critical
Publication of JP7478519B2 publication Critical patent/JP7478519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線中継装置およびそれを用いる無線LANシステムならびに無線中継方法に関し、特に無線LANシステムは、無線中継親機となり、複数機が一体で運用される上記の無線中継装置と、前記無線中継親機に無線接続される1または複数の無線中継子機と、好ましくは前記無線中継子機に接続される多数の有線または無線の通信端末とを備えて構成される無線LANシステムに関する。 The present invention relates to a wireless relay device and a wireless LAN system and wireless relay method using the same, and in particular to a wireless LAN system that is configured with the above-mentioned wireless relay device that serves as a wireless relay master device and in which multiple devices are operated together, one or more wireless relay slave devices that are wirelessly connected to the wireless relay master device, and preferably a large number of wired or wireless communication terminals that are connected to the wireless relay slave devices.

無線LANシステムで使用される周波数は、混雑の回避や、より高速なデータ転送を可能にするために、当初の2.4GHzの帯域に加えて、5GHzの帯域が使用されるようになっている。しかしながら、その5GHzの帯域は、従来から、気象レーダーなどの他の用途でも、既に使用されている。 In order to avoid congestion and enable faster data transfer, the frequencies used by wireless LAN systems are expanding to the 5 GHz band in addition to the original 2.4 GHz band. However, the 5 GHz band has already been used for other purposes, such as weather radar.

そのため、たとえば無線LANのIEEE802.11a規格では、W53やW56と称される周波数帯(チャンネル)を使用する場合、前記気象レーダーなどの他の用途との干渉を防ぐために、DFS(Dynamic Frequency Selection)と呼ばれる制御が行われている。前記DFS制御は、前記他の用途での電波を検知すると、チャンネル移行して干渉を回避するものであり、さらに、移行先のチャンネルでも、前記他の用途での電波が検知されないかどうかを、所定期間監視して判定するCAC(Channel Availability Check)も行われる。したがって、これらの間、無線LANの通信ができなくなる。また、CACを行った際、再度、前記他の用途での電波が検知されると、さらに別のチャンネルを捜す作業を繰返すことになり、その間は引続き、通信できない。 For this reason, for example, in the IEEE 802.11a standard for wireless LAN, when using frequency bands (channels) called W53 or W56, a control called DFS (Dynamic Frequency Selection) is performed to prevent interference with other uses such as the weather radar. The DFS control avoids interference by switching channels when radio waves for the other uses are detected, and also performs a CAC (Channel Availability Check) to monitor the channel to which the channel has been switched for a specified period of time to determine whether radio waves for the other uses are being detected. Therefore, wireless LAN communication is not possible during this time. Furthermore, if radio waves for the other uses are detected again after CAC has been performed, the task of searching for another channel will be repeated, and communication will continue to be impossible during that time.

そこで、特許文献1には、無線LANアクセスポイントに、それぞれ異なるSSIDを持った複数の無線インターフェイスを備え、気象レーダーによって一の無線インターフェイスが使用していたチャンネルが使えなくなると、他の無線インターフェイスが、1つの無線インターフェイスで複数のSSIDを扱うことのできるマルチSSID機能によって、使えなくなった無線インターフェイスのSSIDを提供することで、配下の通信端末のセッションが途切れないようにした無線LANアクセスポイントが提案されている。 Patent Document 1 proposes a wireless LAN access point that is equipped with multiple wireless interfaces, each with a different SSID, and when a channel used by one wireless interface becomes unusable due to weather radar, another wireless interface uses a multi-SSID function that allows one wireless interface to handle multiple SSIDs to provide the SSID of the unusable wireless interface, thereby preventing sessions of subordinate communication terminals from being interrupted.

特開2009-100210号公報JP 2009-100210 A

しかしながら、上述の従来技術では、通信端末の接続先は同じSSIDであるが、その同じSSIDを捜すために周波数をスキャンする必要があり、再接続に時間が掛るという問題がある。 However, in the above-mentioned conventional technology, even though the communication terminal connects to the same SSID, it is necessary to scan frequencies to search for that same SSID, which results in a problem that reconnection takes time.

本発明の目的は、無線中継装置を無線中継親機として、その無線中継親機に無線中継子機が接続される場合に、無線中継親機がDFS、CACによって現在使用しているチャンネルが使用不可となり、無線LANの通信ができなくなっても、無線中継子機側の通信端末などの通信が可能になる無線中継装置およびそれを用いる無線LANシステムならびに無線中継方法を提供することである。 The object of the present invention is to provide a wireless relay device, a wireless LAN system using the same, and a wireless relay method that, when a wireless relay slave is connected to a wireless relay master, enables communication with a communication terminal on the wireless relay slave side even if the channel currently being used by the wireless relay master becomes unavailable due to DFS or CAC, making wireless LAN communication impossible.

本発明の無線中継装置は、一体で運用されて相互に情報を通信可能に構成される複数の無線中継親機と、前記無線中継親機ごとに無線接続される1または複数の無線中継子機とを備えて構成される無線LANシステムに、前記無線中継親機として用いられる無線中継装置であって、電波状況に応じてチャンネル移行を判定する判定部と、前記判定部で前記チャンネル移行が判定されると、前記一体で運用される他の無線中継装置の情報を、自身に接続されている前記無線中継子機に与えて該無線中継子機の接続先を切換えさせる切換部と、前記チャンネル移行が完了すると、前記一体で運用される他の無線中継装置にその移行完了を送信する完了送信部と、前記チャンネルの移行完了の連絡を受けると、自身に接続されている前記無線中継子機のうち、前記切換部から、自身に接続されている前記一体で運用される元の無線中継装置の前記切換部によって接続先を切換えさせられた前記無線中継子機にのみ、前記一体で運用される元の無線中継装置の情報を与えさせることで、該無線中継子機の接続先を前記一体で運用される元の無線中継装置に再度切換えさせる完了受信部とを含むことを特徴とする。 The wireless relay device of the present invention is a wireless relay device used as a wireless relay master in a wireless LAN system comprising a plurality of wireless relay masters operated together and configured to be able to communicate information with each other, and one or more wireless relay slaves wirelessly connected to each of the wireless relay masters, the wireless relay device including: a determination unit which determines a channel transition depending on radio wave conditions; a switching unit which, when the determination unit determines the channel transition, provides information of the other wireless relay devices operated together to the wireless relay slave connected to the wireless relay device, thereby switching the connection destination of the wireless relay slave; a completion transmitting unit which, when the channel transition is completed, transmits the completion of the transition to the other wireless relay devices operated together; and a completion receiving unit which, when notified of the completion of the channel transition, provides information of the original wireless relay device operated together from the switching unit only to the wireless relay slave devices connected to the wireless relay device, the connection destination of which has been switched by the switching unit of the original wireless relay device operated together, thereby switching the connection destination of the wireless relay slave device back to the original wireless relay device operated together.

また、本発明の無線中継方法は、一体で運用されて相互に情報を通信可能に構成される複数の無線中継親機と、前記無線中継親機ごとに無線接続される1または複数の無線中継子機とを備えて構成される無線LANシステムに、前記無線中継親機として用いられる無線中継装置における無線中継方法であって、電波状況に応じてチャンネル移行を判定する判定ステップと、前記判定ステップで前記チャンネル移行が判定されると、前記一体で運用される他の無線中継装置の情報を、自身に接続されている前記無線中継子機に与えて該無線中継子機の接続先を切換えさせる切換ステップと、前記チャンネル移行が完了すると、前記一体で運用される他の無線中継装置にその移行完了を送信する完了送信ステップと、前記チャンネルの移行完了の連絡を受けると、自身に接続されている前記無線中継子機のうち、前記切換部から、自身に接続されている前記一体で運用される元の無線中継装置の前記切換部によって接続先を切換えさせられた前記無線中継子機にのみ、前記一体で運用される元の無線中継装置の情報を与えさせることで、該無線中継子機の接続先を前記一体で運用される元の無線中継装置に再度切換えさせる完了受信ステップとを含むことを特徴とする。 Furthermore, the wireless relay method of the present invention is a wireless relay method in a wireless relay device used as a wireless relay master in a wireless LAN system comprising a plurality of wireless relay masters operated as a unit and configured to be able to communicate information with each other, and one or more wireless relay slaves wirelessly connected to each of the wireless relay masters, the wireless relay method including the steps of: determining a channel transition in accordance with radio wave conditions; a switching step, when the channel transition is determined in the determining step, providing information of the other wireless relay devices operated as a unit to the wireless relay slave connected to the wireless relay device itself, thereby switching the connection destination of the wireless relay slave device; a completion sending step, when the channel transition is completed, transmitting the completion of the transition to the other wireless relay devices operated as a unit; and a completion receiving step, when notified of the completion of the channel transition , causing the switching unit to provide information of the original wireless relay device operated as a unit only to the wireless relay slave devices connected to the wireless relay device itself, the wireless relay slave devices whose connection destination has been switched by the switching unit of the original wireless relay device operated as a unit connected to the wireless relay device itself, thereby switching the connection destination of the wireless relay slave device back to the original wireless relay device operated as a unit.

上記の構成によれば、無線中継親機と、該無線中継親機に無線接続される1または複数の無線中継子機と、好ましくは、前記無線中継子機に接続される多数の通信端末とを備えて構成される無線LANシステムに、前記無線中継親機として用いられる無線中継装置およびその無線中継方法において、たとえば無線LANのIEEE802.11a規格におけるW53やW56の周波数帯(チャンネル)を使用し、気象レーダーとの干渉を防ぐためのDFS(Dynamic Frequency Selection)制御を行う場合のように、その無線中継親機が電波状況に応じてチャンネル移行しようとすると、無線中継子機や、該無線中継子機の配下の通信端末は、そのチャンネルで他の用途の電波が検知されるか否かを判定するCAC(Channel Availability Check)の間、通信ができなくなる。また、CACを行った際、再度、他の用途の電波が検知されると、さらに別のチャンネルを捜す作業を繰返すことになり、その間、通信できなくなる。 According to the above configuration, in a wireless LAN system comprising a wireless relay master, one or more wireless relay slaves wirelessly connected to the wireless relay master, and preferably a large number of communication terminals connected to the wireless relay slaves, a wireless relay device used as the wireless relay master and a wireless relay method thereof, for example, when using the frequency bands (channels) W53 and W56 in the IEEE802.11a standard for wireless LAN and performing DFS (Dynamic Frequency Selection) control to prevent interference with weather radar, when the wireless relay master tries to change channels depending on the radio wave conditions, the wireless relay slaves and the communication terminals under the wireless relay slaves cannot communicate during CAC (Channel Availability Check), which determines whether radio waves for other purposes are detected on that channel. Also, if radio waves for other purposes are detected again when CAC is performed, the task of searching for another channel will be repeated, and communication will be disabled during that time.

そこで、本発明では、無線中継親機は、複数機が一体で運用され、相互に情報を通信可能に構成されており、通常は、干渉を避けるため、互いに可能な限り離れたチャンネルを選択するように調整されている。好ましくは、一体で運用される無線中継親機同士が、特別なコントローラ無しで、互いの通信端末のトラヒック量・電波強度・通信エラー状況などを交換し、自律的に負荷分散を行い、通信状態を最適にすることができるようになっている。 In this invention, therefore, multiple wireless relay master units are operated as one unit and are configured to be able to communicate information with each other, and are usually adjusted to select channels as far apart as possible from each other to avoid interference. Preferably, the wireless relay master units operated as one unit exchange information such as the traffic volume, radio wave strength, and communication error status of each communication terminal without a special controller, autonomously distributing the load and optimizing the communication state.

そして、判定ステップにおいて、判定部が前記電波状況に応じてチャンネル移行を判定すると、通常は無線中継子機が、スキャンによって親局となる無線中継親機を捜すことになるところ、本発明では、切換ステップにおいて、切換部が、前記一体で運用される他の無線中継親機の情報を無線中継子機に与えて、つまり紹介を行い、該無線中継子機の接続先の無線中継親機を切換え(ローミング)させる。 In the determination step, when the determination unit determines that a channel should be changed based on the radio wave conditions, the wireless relay slave unit normally searches for a wireless relay master unit that will become a master station by scanning. In the present invention, however, in the switching step, the switching unit provides the wireless relay slave unit with information about the other wireless relay master units that are operated in unison, i.e., introduces the wireless relay slave unit, and switches (roams) the wireless relay master unit to which the wireless relay slave unit is connected.

したがって、無線中継親機がDFS、CACによって無線中継子機との間の無線LANの通信ができなくなっても、無線中継子機は、サーチすることなく、他の無線中継親機に接続して、自身や、配下の多数の通信端末は、連続して(切れ目無く)、ネットワークに接続できるようになる。 Therefore, even if the wireless relay master unit is unable to communicate with the wireless relay slave unit over the wireless LAN due to DFS or CAC, the wireless relay slave unit can connect to another wireless relay master unit without searching, allowing it and the numerous communication terminals under its control to connect to the network continuously (without interruption).

また、上記の構成によれば、元の無線中継親機のチャンネル移行が完了すると、完了送信ステップにおいて、完了送信部が他の無線中継親機にその移行完了を送信し、その連絡を他の無線中継装置の完了受信部が受けると、完了受信ステップにおいて、前記切換部から、前記無線中継子機に、元の無線中継親機の情報を与えさせ、その無線中継子機の接続先の無線中継親機を元の無線中継親機に再度切換えさせる。 Furthermore, according to the above configuration, when the channel transfer of the original wireless relay master device is completed, in the completion transmitting step, the completion transmitting unit transmits the transfer completion to the other wireless relay master device, and when the completion receiving unit of the other wireless relay device receives the communication, in the completion receiving step, the switching unit provides the wireless relay slave device with information about the original wireless relay master device, and switches the wireless relay master device to which the wireless relay slave device is connected back to the original wireless relay master device.

したがって、一旦、他の無線中継親機に接続先を移行しても、元の無線中継親機が中継可能になると、無線中継子機に、元の無線中継親機への接続を促し、所謂切戻しの動作を行わせることで、他の無線中継親機のトラヒックが過剰になったままとなるような不具合も無い。 Therefore, even if the connection destination is once shifted to another wireless relay base station, when the original wireless relay base station becomes available for relaying, the wireless relay slave station is prompted to connect to the original wireless relay base station, and a so-called switchback operation is performed, so that there is no problem of excessive traffic on the other wireless relay base station remaining.

また、本発明の無線中継装置では、前記無線中継親機と無線中継子機とは、ビル間通信ユニットを構成することを特徴とする。 The wireless relay device of the present invention is also characterized in that the wireless relay master and the wireless relay slave constitute an inter-building communication unit.

上記の構成によれば、ビル間通信ユニットは、社内ネットワークなどを構成するので、接続に障害が出ないようにすることは、効果的で、好適である。 With the above configuration, the inter-building communication unit constitutes an in-house network, etc., so it is effective and desirable to prevent connection failures.

さらにまた、本発明の無線LANシステムは、前記の無線中継装置を前記無線中継親機として用い、前記無線中継子機は、前記他の無線中継装置の情報に応じて、接続先の無線中継親機を切換える接続親機決定制御部を備えることを特徴とする。 Furthermore, the wireless LAN system of the present invention is characterized in that the wireless relay device is used as the wireless relay master, and the wireless relay slave is equipped with a connection master determination control unit that switches the wireless relay master to which it is connected in accordance with information from the other wireless relay device.

上記の構成によれば、無線LANシステムにおいて、DFS、CACによる無線中継親機のチャンネル切換に伴う無線中継子機の接続先の切換えに対して、パケットを切れ目無く転送できるシステムを実現することができる。 The above configuration makes it possible to realize a system in a wireless LAN system that can transfer packets without interruption when the connection destination of a wireless relay slave device is changed due to channel switching of the wireless relay master device by DFS or CAC.

本発明の無線中継装置および無線中継方法は、以上のように、無線中継親機となる無線中継装置において、電波状況に応じてチャンネル移行する際に、一体で運用される他の無線中継装置の情報を無線中継子機に与えて、該無線中継子機を、サーチさせることなく接続先を切換えさせる。 As described above, in the wireless relay device and wireless relay method of the present invention, when a channel is changed in response to radio wave conditions in a wireless relay device that serves as a wireless relay master, information about other wireless relay devices that are operated in unison is provided to the wireless relay slave device, allowing the wireless relay slave device to switch the connection destination without having to search.

それゆえ、無線中継子機自身や、その配下の通信端末が、連続して(切れ目無く)、ネットワークに接続できるようになる。 This allows the wireless relay device itself and the communication terminals under it to be connected to the network continuously (without interruption).

本発明の実施の一形態に係る無線中継装置である無線中継親機を用いる無線LANシステムの構成を示すブロック図である。1 is a block diagram showing a configuration of a wireless LAN system using a wireless relay master unit which is a wireless relay device according to an embodiment of the present invention; 前記無線中継親機による無線中継子機の切換え動作を説明するための図である。10A and 10B are diagrams for explaining a switching operation of the wireless relay slave device by the wireless relay master device; 図2のフローチャートである。3 is a flow chart of FIG. 2. 無線中継親機のDFS制御による無線中継子機の親機切換え動作を説明するためのフローチャートであり、従来の動作を示す。10 is a flowchart for explaining a master unit switching operation of a wireless relay slave unit under DFS control of a wireless relay master unit, showing a conventional operation. 無線中継親機のDFS制御による無線中継子機の親機切換え動作を説明するためのフローチャートであり、本実施形態の動作を示す。5 is a flowchart for explaining a master device switching operation of a wireless relay slave device under DFS control of the wireless relay master device, showing the operation of this embodiment.

図1は、本発明の実施の一形態の無線LANシステム10のブロック図である。この無線LANシステム10は、本発明の実施の一形態の無線中継装置である無線中継親機1,2と、無線中継子機3とを備えて構成される。この無線LANシステム10は、たとえばビル間を無線通信して、社内LANなどを構築するために好適に用いられる。 Figure 1 is a block diagram of a wireless LAN system 10 according to an embodiment of the present invention. This wireless LAN system 10 is configured with wireless relay masters 1 and 2, which are wireless relay devices according to an embodiment of the present invention, and a wireless relay slave 3. This wireless LAN system 10 is preferably used, for example, for wireless communication between buildings to build an in-house LAN, etc.

無線中継親機1,2は、有線LAN6を介して相互に通信可能に構成されるとともに、その有線LAN6から外部ネットワーク7に接続されている。無線中継親機2は、無線中継親機1と同様の構成であり、それらは無線通信エリアが相互に重なるように設置されて冗長構成を成すものであり、一体で運用され、またその同じエリアに3台以上が設置されてもよい。 The wireless relay master units 1 and 2 are configured to be able to communicate with each other via a wired LAN 6, and are connected from the wired LAN 6 to an external network 7. The wireless relay master unit 2 has a similar configuration to the wireless relay master unit 1, and they are installed so that their wireless communication areas overlap each other to form a redundant configuration, and are operated together, and three or more units may be installed in the same area.

図1では図面の簡略化のために省略しているが、無線中継親機1,2の配下となる無線中継子機3は、1または複数であり、その無線中継子機3には、1または複数段のスイッチングハブ5を介して、有線、無線のネットワーク8が接続される。ネットワーク8には、図示しない多数の通信端末が接続される。無線中継子機3は、無線中継親機1,2と同様の構成の場合もあり、その場合、設定によって、親機になるか子機になるかは切換え可能である。 Although omitted in FIG. 1 for simplicity, there are one or more wireless relay slaves 3 subordinate to the wireless relay masters 1 and 2, and the wireless relay slaves 3 are connected to a wired and wireless network 8 via one or more stages of switching hubs 5. A large number of communication terminals (not shown) are connected to the network 8. The wireless relay slave 3 may have the same configuration as the wireless relay masters 1 and 2, in which case it can be switched between acting as a master or slave depending on the settings.

したがって、ネットワーク8に接続される通信端末は、スイッチングハブ5および無線中継子機3から、無線中継親機1または2を介してネットワーク7に接続され、パケットの送受信が可能になっている。その無線中継子機3と無線中継親機1,2との間が、IEEE802.11規格などの無線LANによる接続である。また、ネットワーク8と通信端末との間は、前記IEEE802.11規格などの無線LANによる接続や、有線LANによる接続であってもよい。 Therefore, the communication terminal connected to the network 8 is connected to the network 7 from the switching hub 5 and the wireless relay slave 3 via the wireless relay master 1 or 2, and is capable of sending and receiving packets. The connection between the wireless relay slave 3 and the wireless relay masters 1 and 2 is by a wireless LAN such as the IEEE802.11 standard. The connection between the network 8 and the communication terminal may also be by a wireless LAN such as the IEEE802.11 standard, or a wired LAN.

以下、無線中継親機1について説明し、無線中継親機2も同様に構成されている。無線中継親機1内では、有線LAN6側の有線LAN通信部11と、無線中継子機3側の無線通信部12との間でデータが転送されて、前記有線LAN6と無線中継子機3との間でパケットの双方向での送受信が可能になっている。無線中継親機1,2は、2機一対で運用され、そのペア親機通信部13が、有線LAN通信部11から有線LAN6を介して相互に情報を通信可能に構成されている。これによって、その対を成す無線中継親機1,2同士が、特別なコントローラ無しで、通常は、干渉を避けるため、互いに可能な限り離れたチャンネルを選択するように調整されているとともに、互いの通信端末のトラヒック量・電波強度・通信エラー状況などを交換し、自律的に負荷分散を行い、通信状態を最適にすることができるようになっている。 The wireless relay master 1 will be described below, and the wireless relay master 2 is configured in the same way. In the wireless relay master 1, data is transferred between the wired LAN communication unit 11 on the wired LAN 6 side and the wireless communication unit 12 on the wireless relay slave 3 side, enabling bidirectional transmission and reception of packets between the wired LAN 6 and the wireless relay slave 3. The wireless relay masters 1 and 2 are operated in pairs, and the pair master communication units 13 are configured to be able to communicate information to each other from the wired LAN communication unit 11 via the wired LAN 6. As a result, the pair of wireless relay masters 1 and 2 are adjusted to select channels as far apart as possible from each other without a special controller, usually to avoid interference, and can exchange traffic volume, radio wave strength, communication error status, etc. of each communication terminal, autonomously distribute the load, and optimize the communication state.

そして、無線通信部12の通信には、2.45GHz帯と、前記5GHz帯とが用いられることがあり、該無線通信部12の電波状況は、レーダー検出部15でモニターされている。このレーダー検出部15が、前記IEEE802.11a規格におけるW53やW56の周波数帯(チャンネル)の使用時における気象レーダー波を検知すると、親機チャンネル決定制御部16が、干渉を防ぐためのDFS制御を実現するために、チャンネル移行を行う。 The 2.45 GHz band and the 5 GHz band may be used for communication by the wireless communication unit 12, and the radio wave conditions of the wireless communication unit 12 are monitored by the radar detection unit 15. When the radar detection unit 15 detects weather radar waves while using the frequency bands (channels) W53 and W56 in the IEEE802.11a standard, the parent unit channel determination control unit 16 performs a channel transition to achieve DFS control to prevent interference.

その移行にあたっては、移行先のチャンネルでも、気象レーダー波が検知されないかどうかを判定するCACを、予め定める時間、たとえば1分間行わなければならず、またCAC中に再度レーダー波が検知された場合、レーダー検出部15から親機チャンネル決定制御部16は、さらに別のチャンネルを捜す作業を繰返すことになる。そのため、無線中継子機3自身およびその配下の通信端末は、その間、通信できなくなる。 When making this transition, CAC must be performed for a predetermined period of time, for example one minute, to determine whether weather radar waves are detected on the new channel. If radar waves are detected again during CAC, the radar detection unit 15 and the parent channel determination control unit 16 will repeat the process of searching for yet another channel. As a result, the wireless relay slave unit 3 itself and its subordinate communication terminals will be unable to communicate during that time.

そこで注目すべきは、本実施形態の無線中継親機1は、無線通信部12に関連して、前記親機チャンネル決定制御部16と共に切換部を構成する子機切換先チャンネル通知送信部17が設けられている。判定部となるレーダー検出部15における判定ステップでレーダー波が検知されると、DFS制御により通信停止となるまでの猶予期間、たとえば10秒の間に、前記親機チャンネル決定制御部16は、切換ステップにおいて、前記ペア親機通信部13に予め記憶している他の無線中継親機2の情報(MACアドレスおよび使用チャンネル)を読出し、前記子機切換先チャンネル通知送信部17に与えて、無線通信部12から無線中継子機3へ送信する。つまり、無線中継子機3に、次に接続すべき先の紹介を行い、接続先を切換えさせる。これによって、無線中継子機3およびその配下の通信端末が、連続して(切れ目無く)、ネットワーク7に接続できるようにする。 It should be noted that the wireless relay master 1 of this embodiment is provided with a slave switching destination channel notification transmission unit 17 that constitutes a switching unit together with the master channel determination control unit 16 in association with the wireless communication unit 12. When radar waves are detected in the judgment step of the radar detection unit 15, which serves as the judgment unit, the master channel determination control unit 16 reads out information (MAC address and channel used) of the other wireless relay master 2 pre-stored in the pair master communication unit 13 during the grace period, for example 10 seconds, until communication is stopped by DFS control in the switching step, provides it to the slave switching destination channel notification transmission unit 17, and transmits it from the wireless communication unit 12 to the wireless relay slave 3. In other words, the wireless relay slave 3 is introduced to the next destination to be connected to, and the connection destination is switched. This allows the wireless relay slave 3 and its subordinate communication terminals to be connected to the network 7 continuously (without interruption).

一方、無線中継子機3も、前述のように設定によって無線中継親機1,2となることも可能であるので、基本構成は類似しており、前記スイッチングハブ5からネットワーク8に接続される有線LAN通信部31と、無線中継親機1,2側の無線通信部32と、前述の接続先通知を受けるチャンネル通知受信部37とを備えて構成される。 As described above, the wireless relay slave 3 can also be configured to become the wireless relay masters 1 and 2, so the basic configuration is similar, and includes a wired LAN communication unit 31 connected to the network 8 from the switching hub 5, a wireless communication unit 32 on the wireless relay masters 1 and 2 side, and a channel notification receiving unit 37 that receives the connection destination notification described above.

通常時は、後に詳述するように、無線通信部32内のスキャン制御部35が、予め定める周期で、無線中継親機からのビーコン信号のスキャンを行い、そのスキャンの結果に応じて、接続親機決定制御部36が、電波状況の良い無線中継親機を接続先に決定する。一方、上述のように、現在接続中の無線中継親機1から、新たな無線中継親機2の情報(MACアドレスおよび使用チャンネル)を、無線通信部32を介して、チャンネル通知受信部37が受信すると、接続親機決定制御部36が、その情報に従い、接続先の無線中継親機を参照符号1から2へ切換える。 Normally, as described in detail below, the scan control unit 35 in the wireless communication unit 32 scans for beacon signals from wireless relay masters at a predetermined cycle, and depending on the results of the scan, the connection master determination control unit 36 determines the wireless relay master with the best radio wave conditions as the connection destination. On the other hand, as described above, when the channel notification receiving unit 37 receives information (MAC address and channel used) of a new wireless relay master 2 from the currently connected wireless relay master 1 via the wireless communication unit 32, the connection master determination control unit 36 switches the connection destination wireless relay master from reference number 1 to 2 in accordance with the information.

その様子を、図1に加えて、図2および図3を用いて説明する。図2は、無線中継親機1,2による無線中継子機3の切換え動作を説明するための図であり、図3は、そのフローチャートである。無線中継親機1,2は、2機一対で運用され、有線LAN6を介して、ペア親機通信部13が、相互に情報を通信可能に構成されている。そのため、その対を成す無線中継親機1,2同士は、特別なコントローラ無しで、ステップS11で通信(中継)を開始すると、通常は、干渉を避けるため、図2(a)で示すように、親機チャンネル決定制御部16によって、互いに可能な限り離れたチャンネルを選択するように調整されているとともに、互いの通信端末のトラヒック量・電波強度・通信エラー状況などを交換し、自律的に負荷分散を行い、通信状態を最適にすることができるようになっている。図2(a)では、無線中継子機3として、無線中継子機3A,3B,3C,3Dの4台を示しており(以下、総称する際は、前記の参照符号3で示す)、無線中継子機3A,3Bが無線中継親機1の配下となっており、無線中継子機3C,3Dが無線中継親機2の配下となっている。 The state will be described using Fig. 2 and Fig. 3 in addition to Fig. 1. Fig. 2 is a diagram for explaining the switching operation of the wireless relay slave 3 by the wireless relay masters 1 and 2, and Fig. 3 is a flowchart thereof. The wireless relay masters 1 and 2 are operated in pairs, and the pair master communication unit 13 is configured to be able to communicate information with each other via the wired LAN 6. Therefore, when the pair of wireless relay masters 1 and 2 start communication (relay) in step S11 without a special controller, as shown in Fig. 2(a), they are usually adjusted to select channels as far away from each other as possible by the master channel determination control unit 16 to avoid interference, and they exchange the traffic volume, radio wave strength, communication error status, etc. of each communication terminal, autonomously distribute the load, and optimize the communication state. In FIG. 2(a), four wireless relay slaves 3A, 3B, 3C, and 3D are shown as wireless relay slaves 3 (hereinafter, when collectively referred to, they are indicated by the above-mentioned reference number 3). Wireless relay slaves 3A and 3B are subordinate to wireless relay master 1, and wireless relay slaves 3C and 3D are subordinate to wireless relay master 2.

そして、ステップS12において、図2(b)の参照符号F1で示すように、レーダー検出部15がレーダー波を検出し、親機チャンネル決定制御部16がチャンネル移行を判定すると、通常は、配下にある無線中継子機3A,3Bは、通信途絶となり、スキャンによって親局となる無線中継親機2を捜すことになる。これに対して、本実施形態では、ステップS13で示すように、子機切換先チャンネル通知送信部17が、無線通信部12から、対を成すもう1つの無線中継親機2の情報を乗せたビーコン信号を送信させ、無線中継子機3A,3Bの無線通信部32からチャンネル通知受信部37に、紹介を行う。これによって、ステップS21において、該無線中継子機3A,3Bがそれを受信すると、ステップS22において、参照符号F2で示すように、使用する無線中継親機を、参照符号1から参照符号2に切換える。 Then, in step S12, as shown by reference character F1 in FIG. 2(b), when the radar detection unit 15 detects radar waves and the master channel determination control unit 16 determines channel transition, the subordinate wireless relay slave units 3A and 3B usually lose communication and search for the wireless relay master unit 2 that will become the master station by scanning. In contrast, in this embodiment, as shown by step S13, the slave switching destination channel notification transmission unit 17 causes the wireless communication unit 12 to transmit a beacon signal carrying information on the other paired wireless relay master unit 2, and the wireless communication unit 32 of the wireless relay slave units 3A and 3B introduces it to the channel notification reception unit 37. As a result, when the wireless relay slave units 3A and 3B receive it in step S21, they switch the wireless relay master unit to be used from reference character 1 to reference character 2 in step S22 as shown by reference character F2.

その後、元の無線中継親機1において、ステップS14で、親機チャンネル決定制御部16によるチャンネル移行(DFS)が行われ、ステップS15で、レーダー検出部15によって、空きチャンネルの判定(CAC)が終了し、該親機チャンネル決定制御部16によるチャンネル移行が完了すると、ステップS16で、完了送信部となるペア親機通信部13が、参照符号F3で示すように、有線LAN通信部11から有線LAN6を介して、対を成すもう1つの無線中継親機2にその移行完了を送信する。 Then, in step S14, in the original wireless relay master 1, the master channel determination control unit 16 performs a channel transition (DFS), and in step S15, the radar detection unit 15 finishes determining an available channel (CAC), and when the master channel determination control unit 16 completes the channel transition, in step S16, the pair master communication unit 13, which serves as the completion transmission unit, transmits the completion of the transition to the other paired wireless relay master 2 from the wired LAN communication unit 11 via the wired LAN 6, as shown by reference symbol F3.

その連絡を、もう1つの無線中継親機2において、有線LAN6から有線LAN通信部11を介して、完了受信部となるペア親機通信部13が受けると、ステップS31において、親機チャンネル決定制御部16は、無線通信部12を介して、先に切換えさせられた無線中継子機3A,3Bそれぞれに、対を成す元の無線中継親機1の情報を与え、ステップS23において、参照符号F4で示すように、それらの無線中継子機3A,3Bが使用する接続先を、元の無線中継親機1に再度切換えさせ、図2(a)の状態に戻す。 When the other wireless relay master 2 receives this communication from the wired LAN 6 via the wired LAN communication unit 11 to the pair master communication unit 13, which serves as the completion receiving unit, in step S31, the master channel determination control unit 16 provides information about the original paired wireless relay master 1 to each of the previously switched wireless relay slaves 3A and 3B via the wireless communication unit 12, and in step S23, as shown by reference symbol F4, switches the connection destination used by those wireless relay slaves 3A and 3B back to the original wireless relay master 1, returning to the state shown in FIG. 2(a).

このようにして、各無線中継子機3A,3B,3C,3Dの配下の多数の通信端末は、連続して(切れ目無く)、外部ネットワーク7に接続できるようになる。また、一旦、もう1つの無線中継親機(上述の例では2)に接続先を移行しても、元の無線中継親機(上述の例では1)が中継可能になると、無線中継子機(上述の例では3A,3B)に、元の無線中継親機(上述の例では1)への接続を促し、所謂切戻しの動作を行わせることで、もう1つの無線中継親機(上述の例では2)のトラヒックが、図2(b)のように過剰になったままとなるような不具合も無い。 In this way, many communication terminals under each of the wireless relay slaves 3A, 3B, 3C, and 3D can be connected to the external network 7 continuously (without interruption). Even if the connection destination is once shifted to another wireless relay master (2 in the above example), once the original wireless relay master (1 in the above example) becomes capable of relaying, the wireless relay slaves (3A and 3B in the above example) are prompted to connect to the original wireless relay master (1 in the above example) and a so-called switchback operation is performed, so that the traffic of the other wireless relay master (2 in the above example) does not remain excessive as shown in FIG. 2(b).

ここで、図4および図5を参照して、図2の無線中継親機1,2のDFS制御による無線中継子機3の親機切換え動作を比較する。図4で示す従来の切換え動作では、無線中継子機3が、接続している無線中継親機1がレーダー検出によってチャンネル移行し、外部ネットワーク7への接続が途絶された段階で、ステップS51において他の無線中継親機からのビーコン信号のスキャンを開始し、ステップS52においてチャンネル移動して、ステップS53で、そのチャンネルにおいてビーコン信号を受信すると、ステップS54において、接続を要求するプローブリクエストを送信する。ステップS55において、他の無線中継親機から、それに応答するプローブレスポンスを受信し、ステップS56において、元の無線中継親機1のチャンネル以外の全チャンネルについてスキャンを終了したか否かを判断し、終了していないときにはステップS52に戻ってスキャンを継続する。 Now, referring to Figures 4 and 5, the host switching operation of the wireless relay slave 3 by the DFS control of the wireless relay masters 1 and 2 in Figure 2 will be compared. In the conventional switching operation shown in Figure 4, when the wireless relay master 1 connected to the wireless relay slave 3 changes channels due to radar detection and the connection to the external network 7 is cut off, in step S51, the wireless relay slave 3 starts scanning for beacon signals from other wireless relay masters, in step S52 changes channels, and in step S53, when it receives a beacon signal on that channel, in step S54, it transmits a probe request requesting connection. In step S55, it receives a probe response in response to that from the other wireless relay master, and in step S56, it determines whether scanning has been completed for all channels other than the channel of the original wireless relay master 1, and if not, it returns to step S52 and continues scanning.

ステップS56において、全チャンネルのスキャンを終了しているとステップS57に移り、プローブレスポンスを受信したチャンネルの内、電波強度やトラヒックなど、最も条件の良い無線中継親機を選択して、ステップS58で、その無線中継親機に接続する。ステップS53で、ビーコン信号が受信されない場合は、ステップS59において、ステップS52のチャンネル移動から所定時間以内か否かを判断し、以内であればステップS53に戻って受信を継続し、タイムアウトであれば、ステップS56の全チャンネル完了判定を行う。 If scanning of all channels is completed in step S56, the process proceeds to step S57, where the wireless relay master unit with the best conditions, such as radio wave strength and traffic, is selected from among the channels on which the probe response was received, and in step S58, a connection is made to that wireless relay master unit. If a beacon signal is not received in step S53, a determination is made in step S59 as to whether or not a predetermined time has passed since the channel change in step S52, and if so, the process returns to step S53 to continue reception, and if a timeout has occurred, a determination is made as to whether scanning of all channels is completed in step S56.

一方、図5で示す本実施形態の切換え動作では、無線中継親機1がDFS制御によるチャンネル移行前に、ステップS61で、無線中継子機3は、切換わり先の無線中継親機2の情報を受信しており、ステップS62で、その情報に従いチャンネル移動する。ステップS63,S69では、ステップS53,S59と同様に、そのチャンネルにおいてビーコン信号を受信するまで待機し、受信するとステップS64で、そのままその無線中継親機2への接続を開始する。これに対して、ステップS59において、タイムアウトとなると、その無線中継親機2への接続は失敗したものと判定し、図4のステップS51~S59の、通常の接続手続を行う。 On the other hand, in the switching operation of this embodiment shown in Figure 5, before the wireless relay master 1 changes channels by DFS control, in step S61 the wireless relay slave 3 receives information about the destination wireless relay master 2, and in step S62 moves the channel according to that information. In steps S63 and S69, similar to steps S53 and S59, it waits until it receives a beacon signal on that channel, and when it does, in step S64 it starts connecting to that wireless relay master 2. In contrast, if a timeout occurs in step S59, it is determined that the connection to that wireless relay master 2 has failed, and the normal connection procedure of steps S51 to S59 in Figure 4 is performed.

したがって、図4と図5とを比較すると、従来の切換え動作では、通信が途絶する無線中継親機1が使用していたチャンネル以外の全てのチャンネルのビーコン信号をスキャンする必要があるのに対して、本実施形態の切換え動作では、情報を受けたチャンネルのみのビーコン信号を受信すれば良く、通信が途絶する時間を、極めて小さくすることができる。 Comparing Figures 4 and 5, the conventional switching operation requires scanning beacon signals on all channels other than the channel used by the wireless relay master unit 1 where communication is interrupted, whereas the switching operation of this embodiment requires receiving beacon signals only on the channel from which information was received, making it possible to greatly reduce the time during which communication is interrupted.

このようにして、本実施形態の無線LANシステム10は、無線中継装置として上記のような無線中継親機1,2を用い、DFSなどによる無線中継親機1,2のチャンネル切換えなどに伴う無線中継子機3の接続先の切換えに対して、通信端末へのパケットを切れ目無く転送することができる。つまり、上述の無線LANシステム10は、無線中継子機3の接続先として、2機一対で運用される無線中継親機1,2を用い、たとえば、一方を常用とし、他方を非常用とするような冗長構成を実現することができる。冗長性を高める場合など、無線中継親機は、3台以上が一体で運用されてもよい。 In this way, the wireless LAN system 10 of this embodiment uses the wireless relay masters 1 and 2 as described above as wireless relay devices, and can seamlessly transfer packets to a communication terminal when the connection destination of the wireless relay slave 3 is changed due to channel switching of the wireless relay masters 1 and 2 by DFS or the like. In other words, the wireless LAN system 10 described above uses the wireless relay masters 1 and 2 operated as a pair as the connection destination of the wireless relay slave 3, and can realize a redundant configuration in which, for example, one is used normally and the other is used in an emergency. In cases such as when increasing redundancy, three or more wireless relay masters may be operated together.

或いは、無線中継親機1,2は、その2機の運用で、常時は、負荷(通信端末)を分散するようにしてもよい。これによって、負荷(通信端末)の増大に対応しつつ、非常時に通信が途切れないシステムを実現することができる。 Alternatively, the wireless relay master units 1 and 2 may be operated in pairs to distribute the load (communication terminals) at all times. This makes it possible to realize a system that can handle an increase in the load (communication terminals) while still allowing communication to continue uninterrupted in an emergency.

また、無線中継装置1,2は、無線LANアクセスポイントのように屋内に設置される無線中継装置であってもよく、特に上述のように2機一対で運用される場合、ビル間通信を行うために屋外に設置される無線中継装置であってもよい。 In addition, the wireless relay devices 1 and 2 may be wireless relay devices installed indoors, such as wireless LAN access points, or may be wireless relay devices installed outdoors to enable communication between buildings, particularly when two devices are operated as a pair as described above.

本発明について、実施例に基づいて説明したが、本発明は、こうした実施例に限定されるものではなく、その要旨を逸脱しない範囲内において、様々な形態で実施することができる。たとえば、実施例では、無線中継装置を無線中継親機1,2として、さらに無線中継装置となる無線中継子機3と通信端末とが接続される多段構成としたが、無線中継装置にそのまま通信端末が無線接続される構成としてもよい。その場合、DFS制御時には、無線中継装置は通信端末に他の無線中継装置の情報を与えて、それを受取った通信端末が、上述の無線中継子機3のように、接続を切換える動作を行うことになる。 Although the present invention has been described based on the embodiments, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the spirit of the present invention. For example, in the embodiments, the wireless relay devices are wireless relay masters 1 and 2, and a wireless relay slave 3, which is a wireless relay device, is connected to a communication terminal in a multi-stage configuration, but the communication terminal may be wirelessly connected directly to the wireless relay device. In that case, during DFS control, the wireless relay device provides the communication terminal with information about other wireless relay devices, and the communication terminal that receives this performs an operation to switch the connection, as with the wireless relay slave 3 described above.

1,2 無線中継親機(無線中継装置)
10 無線LANシステム
11 有線LAN通信部
12 無線通信部
13 ペア親機通信部
15 レーダー検出部
16 親機チャンネル決定制御部
17 子機切換先チャンネル通知送信部
3 無線中継子機
31 有線LAN通信部
32 無線通信部
35 スキャン制御部
36 接続親機決定制御部
37 チャンネル通知受信部
5 スイッチングハブ
6 有線LAN
7 外部ネットワーク
8 ネットワーク
1, 2 Wireless relay base station (wireless relay device)
10 Wireless LAN system 11 Wired LAN communication unit 12 Wireless communication unit 13 Pair parent communication unit 15 Radar detection unit 16 Parent channel determination control unit 17 Child switching channel notification transmission unit 3 Wireless relay child 31 Wired LAN communication unit 32 Wireless communication unit 35 Scan control unit 36 Connection parent determination control unit 37 Channel notification reception unit 5 Switching hub 6 Wired LAN
7 External network 8 Network

Claims (4)

一体で運用されて相互に情報を通信可能に構成される複数の無線中継親機と、前記無線中継親機ごとに無線接続される1または複数の無線中継子機とを備えて構成される無線LANシステムに、前記無線中継親機として用いられる無線中継装置であって、
電波状況に応じてチャンネル移行を判定する判定部と、
前記判定部で前記チャンネル移行が判定されると、前記一体で運用される他の無線中継装置の情報を、自身に接続されている前記無線中継子機に与えて該無線中継子機の接続先を切換えさせる切換部と、
前記チャンネル移行が完了すると、前記一体で運用される他の無線中継装置にその移行完了を送信する完了送信部と、
前記チャンネルの移行完了の連絡を受けると、自身に接続されている前記無線中継子機のうち、前記切換部から、自身に接続されている前記一体で運用される元の無線中継装置の前記切換部によって接続先を切換えさせられた前記無線中継子機にのみ、前記一体で運用される元の無線中継装置の情報を与えさせることで、該無線中継子機の接続先を前記一体で運用される元の無線中継装置に再度切換えさせる完了受信部と
を含むことを特徴とする無線中継装置。
A wireless LAN system including a plurality of wireless relay master units that are operated together and capable of communicating information with each other, and one or more wireless relay slave units that are wirelessly connected to each of the wireless relay master units, comprising: a wireless relay device that is used as the wireless relay master unit;
A determination unit that determines a channel change according to radio wave conditions;
a switching unit that, when the determining unit determines that the channel has been changed, provides information on the other wireless relay device that is operated in unison with the wireless relay device to the wireless relay slave unit connected to the switching unit, thereby switching a connection destination of the wireless relay slave unit;
a completion transmission unit that transmits the completion of the channel transition to the other wireless relay device that is operated integrally when the channel transition is completed;
and a completion receiving unit which, upon receiving notification of the completion of the channel transfer, causes the switching unit to provide information about the original wireless relay device connected to the wireless relay device itself only to those wireless relay devices whose connection destination has been switched by the switching unit of the original wireless relay device connected to the wireless relay device itself, thereby switching the connection destination of the wireless relay device back to the original wireless relay device connected to the wireless relay device.
前記無線中継親機と無線中継子機とは、ビル間通信ユニットを構成することを特徴とする請求項1記載の無線中継装置。 The wireless relay device according to claim 1, characterized in that the wireless relay master and the wireless relay slave constitute an inter-building communication unit. 前記請求項1記載の無線中継装置を前記無線中継親機として用い、前記無線中継子機は、前記他の無線中継装置の情報に応じて、接続先の無線中継親機を切換える接続親機決定制御部を備えることを特徴とする無線LANシステム。 A wireless LAN system using the wireless relay device according to claim 1 as the wireless relay master, and the wireless relay slave having a connection master determination control unit that switches the wireless relay master to which it is connected in accordance with information on the other wireless relay devices. 一体で運用されて相互に情報を通信可能に構成される複数の無線中継親機と、前記無線中継親機ごとに無線接続される1または複数の無線中継子機とを備えて構成される無線LANシステムに、前記無線中継親機として用いられる無線中継装置における無線中継方法であって、
電波状況に応じてチャンネル移行を判定する判定ステップと、
前記判定ステップで前記チャンネル移行が判定されると、前記一体で運用される他の無線中継装置の情報を、
自身に接続されている前記無線中継子機に与えて該無線中継子機の接続先を切換えさせる切換ステップと、
前記チャンネル移行が完了すると、前記一体で運用される他の無線中継装置にその移行完了を送信する完了送信ステップと、
前記チャンネルの移行完了の連絡を受けると、自身に接続されている前記無線中継子機のうち、前記切換部から、自身に接続されている前記一体で運用される元の無線中継装置の前記切換部によって接続先を切換えさせられた前記無線中継子機にのみ、前記一体で運用される元の無線中継装置の情報を与えさせることで、該無線中継子機の接続先を前記一体で運用される元の無線中継装置に再度切換えさせる完了受信ステップとを含むことを特徴とする無線中継方法。
A wireless LAN system including a plurality of wireless relay master units that are operated together and capable of communicating information with each other, and one or more wireless relay slave units that are wirelessly connected to each of the wireless relay master units, comprising: a wireless relay method in a wireless relay device used as the wireless relay master unit, the wireless relay method comprising:
A determination step for determining a channel change according to radio wave conditions;
When the channel transition is determined in the determining step, information of the other wireless relay device operated integrally is
a switching step of providing the signal to the wireless relay slave device connected to the wireless relay slave device to switch the connection destination of the wireless relay slave device;
a completion transmission step of transmitting the completion of the channel transition to the other wireless relay devices operated integrally when the channel transition is completed;
a completion receiving step of, upon receiving notification of the completion of the channel transfer, causing the switching unit to provide information of the original wireless relay device that is operated integrally to only those of the wireless relay slave devices connected to the wireless relay slave device itself that have had their connection destination switched by the switching unit of the original wireless relay device that is operated integrally, thereby switching the connection destination of the wireless relay slave device back to the original wireless relay device that is operated integrally.
JP2019103130A 2019-05-31 2019-05-31 Wireless relay device, wireless LAN system using the same, and wireless relay method Active JP7478519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019103130A JP7478519B2 (en) 2019-05-31 2019-05-31 Wireless relay device, wireless LAN system using the same, and wireless relay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103130A JP7478519B2 (en) 2019-05-31 2019-05-31 Wireless relay device, wireless LAN system using the same, and wireless relay method

Publications (2)

Publication Number Publication Date
JP2020198518A JP2020198518A (en) 2020-12-10
JP7478519B2 true JP7478519B2 (en) 2024-05-07

Family

ID=73649332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019103130A Active JP7478519B2 (en) 2019-05-31 2019-05-31 Wireless relay device, wireless LAN system using the same, and wireless relay method

Country Status (1)

Country Link
JP (1) JP7478519B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252981A (en) 2004-03-08 2005-09-15 Hitachi Kokusai Electric Inc Wireless communications system
WO2013168197A1 (en) 2012-05-10 2013-11-14 三菱電機株式会社 Wireless communication system and wireless communication device
JP2017163236A (en) 2016-03-08 2017-09-14 Necプラットフォームズ株式会社 Radio communication device, radio communication method, and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899665B2 (en) * 2006-06-30 2012-03-21 富士通株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and wireless communication program
JP6059637B2 (en) * 2013-11-13 2017-01-11 日本電信電話株式会社 Wireless communication system, wireless communication terminal, system base station, wireless LAN base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252981A (en) 2004-03-08 2005-09-15 Hitachi Kokusai Electric Inc Wireless communications system
WO2013168197A1 (en) 2012-05-10 2013-11-14 三菱電機株式会社 Wireless communication system and wireless communication device
JP2017163236A (en) 2016-03-08 2017-09-14 Necプラットフォームズ株式会社 Radio communication device, radio communication method, and program

Also Published As

Publication number Publication date
JP2020198518A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US8040791B2 (en) Coordinated channel change in mesh networks
JP4002837B2 (en) Method and apparatus for facilitating handoff in a wireless local area network
EP3130174B1 (en) Method of controlling handover in mobile communication networks and apparatus implementing the method
WO2015012208A1 (en) Access point, wireless communication method, and program
JP5573571B2 (en) Wireless communication apparatus, wireless communication system, program, and wireless communication method
EP1727312B1 (en) A method for achieving load balance between access point devices in the wireless local area network
KR101719736B1 (en) Method and system for ad-hoc communications over millimeter wave wireless channels in wireless systems
JP3382806B2 (en) Slave station
EP3817437B1 (en) Establishment of communication links between a base station with a function of configuring a network and another base station, as well as notification to a control apparatus
JP2008512953A (en) Accelerate access point discovery in wireless local area networks
WO2006013533A1 (en) System and method for load balancing in a wireless lan
KR102066769B1 (en) Automatic reconfiguration of network devices
JP6738266B2 (en) Wireless communication system
US20110222522A1 (en) Radio Station System for a Wireless Network
JP7478519B2 (en) Wireless relay device, wireless LAN system using the same, and wireless relay method
KR102077110B1 (en) Method for avoiding interference in wireless local access networks and appratus using thereof
US8159937B2 (en) Seamless tree creation and movement
WO2021024400A1 (en) Wireless communication system, control station, base station, and wireless communication method
CN101237682A (en) Wireless network system and its connection method
JP4013061B2 (en) Radio frequency selection method, radio communication system, radio terminal station apparatus, and radio base station apparatus
JP6317217B2 (en) Wireless communication system, wireless LAN access point, server device, wireless communication method, and wireless communication program
JP2018148279A (en) Communication device, control method of communication device, and program
JP6112838B2 (en) Mobile communication system, mobile communication device, fixed relay device, and concentrator
JP7311757B2 (en) Wireless relay device, wireless LAN system using the same, and wireless relay method
JP6361013B2 (en) Radio base station apparatus, radio communication system, and radio base station apparatus control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231018

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422