JP7478399B2 - Method for producing scintillator and single crystal for scintillator - Google Patents

Method for producing scintillator and single crystal for scintillator Download PDF

Info

Publication number
JP7478399B2
JP7478399B2 JP2022505168A JP2022505168A JP7478399B2 JP 7478399 B2 JP7478399 B2 JP 7478399B2 JP 2022505168 A JP2022505168 A JP 2022505168A JP 2022505168 A JP2022505168 A JP 2022505168A JP 7478399 B2 JP7478399 B2 JP 7478399B2
Authority
JP
Japan
Prior art keywords
scintillator
single crystal
less
light
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022505168A
Other languages
Japanese (ja)
Other versions
JPWO2021177153A1 (en
Inventor
健太 村上
健之 柳田
範明 河口
大介 中内
雅紀 赤塚
宏之 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Nara Institute of Science and Technology NUC
Original Assignee
Kyocera Corp
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Nara Institute of Science and Technology NUC filed Critical Kyocera Corp
Publication of JPWO2021177153A1 publication Critical patent/JPWO2021177153A1/ja
Application granted granted Critical
Publication of JP7478399B2 publication Critical patent/JP7478399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Description

本開示は、放射線の計測に使用されるシンチレータおよびシンチレータ用単結晶の製造方法に関する。 The present disclosure relates to a scintillator used to measure radiation and a method for manufacturing a single crystal for the scintillator.

シンチレータは、X線やγ線などの放射線を照射すると発光する物質のことであり、光検出器と組み合わせて、放射線の計測に使用される。シンチレータの主要な特性として、発光量とシンチレーション減衰時定数がある。特に、CT(computed tomography)、PET(positron emission tomography)などの医用画像診断用途には、画質の向上、被験者の被ばく量低減、検査時間の短縮のため、発光量が高くてシンチレーション減衰時定数が短いシンチレータが求められる。 Scintillators are materials that emit light when exposed to radiation such as X-rays or gamma rays, and are used in combination with photodetectors to measure radiation. The main characteristics of scintillators are the amount of light emitted and the scintillation decay time constant. In particular, for medical imaging diagnostic applications such as computed tomography (CT) and positron emission tomography (PET), scintillators with high light emission and short scintillation decay time constants are required to improve image quality, reduce the amount of radiation exposure to subjects, and shorten examination times.

シンチレータ用材料の候補として、ガーネット系材料が着目されている。非特許文献1では、FZ(フローティングゾーン)法により、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)とTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)とを作製し、特性を評価している。Garnet-based materials are attracting attention as candidates for scintillator materials. In Non-Patent Document 1, TAG (terbium aluminum garnet) and TAGG (terbium aluminum gallium garnet) doped with Ce are produced by the FZ (floating zone) method, and their properties are evaluated.

D.Nakauchi,G.Okada,N.Kawano,N.Kawaguchi,T.Yanagida,Effects of Ga substitution in Ce:Tb3GaxAl5-xO12single crystals for scintillator applications,Jpn. J. Appl. Phys. 57,02CB02 (2018).D. Nakauchi, G. Okada, N. Kawano, N. Kawaguchi, T. Yanagida, Effects of Ga substitution in Ce:Tb3GaxAl5-xO12 single crystals for scintillator applications, Jpn. J. Appl. Phys. 57, 02CB02 (2018). T.Yanagida,Y.Fujimoto,T.Ito,K.Uchiyama,K.Mori,Development of X-ray induced afterglow characterization system, Appl. Phys. Exp. 7, 062401 (2014).T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Development of X-ray induced afterglow characterization system, Appl. Phys. Exp. 7, 062401 (2014).

本開示のシンチレータは、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含む。単結晶は、Gaを実質的に含まず、構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下である。The scintillator of the present disclosure includes a TAG (terbium aluminum garnet) single crystal doped with Ce. The single crystal is substantially free of Ga, and the atomic ratio Ce/(Tb+Ce+RE) of the constituent elements (Ce, Tb, RE (RE is a constituent element of the Tb site other than Tb and Ce)) is 0.4% or more and 0.7% or less.

本開示のシンチレータは、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含む。単結晶の構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)は1%以上6%以下、Ce/(Tb+Ce+RE)は0.3%以上1.4%以下である。The scintillator of the present disclosure includes a TAGG (terbium aluminum gallium garnet) single crystal doped with Ce. The atomic ratio Ga/(Ga+Al) of the constituent elements of the single crystal (Ce, Tb, RE (RE is a constituent element of the Tb site other than Tb and Ce), Al, and Ga) is 1% or more and 6% or less, and Ce/(Tb+Ce+RE) is 0.3% or more and 1.4% or less.

本開示のシンチレータ用単結晶の製造方法は、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素))の原子数の比率Ce/(Tb+Ce+RE)が1.5%以上2.5%以下であるGaを実質的に含まない酸化物原料を用いて製造する。The manufacturing method of the scintillator single crystal disclosed herein produces a Ce-doped TAG (terbium aluminum garnet) single crystal using an oxide raw material that is substantially free of Ga and in which the atomic number ratio Ce/(Tb+Ce+RE) of the elements (Ce, Tb, RE (RE is the constituent element of the Tb site other than Tb and Ce)) in the raw material is 1.5% or more and 2.5% or less.

本開示のシンチレータ用単結晶の製造方法は、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が2%以上10%以下、Ce/(Tb+Ce+RE)が1%以上5%以下である酸化物原料を用いて製造する。The manufacturing method of the scintillator single crystal disclosed herein produces a Ce-doped TAGG (terbium aluminum gallium garnet) single crystal using an oxide raw material in which the atomic ratio Ga/(Ga+Al) of the elements in the raw material (Ce, Tb, RE (RE is a constituent element of the Tb site other than Tb and Ce), Al and Ga), Al and Ga) is 2% or more and 10% or less, and Ce/(Tb+Ce+RE) is 1% or more and 5% or less.

本開示に係るシンチレータ用単結晶の発光量とシンチレーション減衰時定数とを示すグラフである。1 is a graph showing the amount of light emitted and the scintillation decay time constant of a scintillator single crystal according to the present disclosure. パルス波高スペクトルの例を示すグラフである。1 is a graph showing an example of a pulse height spectrum.

以下、本開示に係るシンチレータについて説明する。シンチレータとは、X線やγ線などの放射線を照射すると発光する物質のことであり、光検出器と組み合わせて、放射線の計測に使用される。The scintillator according to the present disclosure is described below. A scintillator is a substance that emits light when irradiated with radiation such as X-rays or gamma rays, and is used to measure radiation in combination with a photodetector.

本開示の一実施形態に係るシンチレータは、Ceを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を含む。TAG系単結晶はガーネット構造の結晶構造を有し、主成分元素としてTb、AlおよびO(酸素)を有しており、Gaを実質的に含まない。TAG系単結晶は、副成分元素として結晶中に固溶可能な元素を1種以上、例えば、Tbと置換固溶可能な元素REを含む。元素REは、TbおよびCe以外のTbサイトの構成元素であり、例えば、Y、Gd、Luなどの希土類元素が挙げられる。単結晶の構成元素(Ce、TbおよびRE)の原子数の比率Ce/(Tb+Ce+RE)は、0.4%以上0.7%以下である。REは、結晶中に含有されていなくてもよいし、2種以上含有されていてもよい。REが2種以上含有されている場合、REの原子数は、REに該当する原子の総数となる。A scintillator according to an embodiment of the present disclosure includes a TAG (terbium aluminum garnet) single crystal to which Ce has been added. The TAG single crystal has a garnet crystal structure, contains Tb, Al, and O (oxygen) as main component elements, and does not substantially contain Ga. The TAG single crystal contains one or more elements capable of forming a solid solution in the crystal as a secondary component element, for example, an element RE capable of forming a solid solution by substitution with Tb. The element RE is a constituent element of the Tb site other than Tb and Ce, and examples thereof include rare earth elements such as Y, Gd, and Lu. The ratio of the number of atoms of the constituent elements (Ce, Tb, and RE) of the single crystal, Ce/(Tb+Ce+RE), is 0.4% or more and 0.7% or less. RE may not be contained in the crystal, or two or more types may be contained. When two or more types of RE are contained, the number of atoms of RE is the total number of atoms corresponding to RE.

本開示の他の実施形態のシンチレータは、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含む。TAGG系単結晶は、ガーネット構造の結晶構造を有し、主成分元素として、Tb、Al、GaおよびO(酸素)を有する。TAGG系単結晶は、副成分元素として、結晶中に固溶可能な元素を1種以上、例えば、Tbと置換固溶可能な元素REを含む。元素REは、TbおよびCe以外のTbサイトの構成元素であり、例えば、Y、Gd、Luなどの希土類元素が挙げられる。単結晶の構成元素(Ce、Tb、RE、AlおよびGa)の原子数の比率が、Ga/(Ga+Al)が1%以上6%以下、Ce/(Tb+Ce+RE)が0.3%以上1.4%以下である。REは、結晶中に含有されていなくてもよいし、2種以上含有されていてもよい。REが2種以上含有されている場合、REの原子数は、REに該当する原子の総数となる。 The scintillator of another embodiment of the present disclosure includes a TAGG (terbium aluminum gallium garnet) single crystal to which Ce is added. The TAGG single crystal has a garnet crystal structure and contains Tb, Al, Ga, and O (oxygen) as main component elements. The TAGG single crystal contains one or more elements capable of forming a solid solution in the crystal as a secondary component element, for example, an element RE capable of forming a solid solution by substitution with Tb. The element RE is a constituent element of the Tb site other than Tb and Ce, and examples thereof include rare earth elements such as Y, Gd, and Lu. The atomic ratio of the constituent elements (Ce, Tb, RE, Al, and Ga) of the single crystal is Ga/(Ga+Al) 1% to 6%, and Ce/(Tb+Ce+RE) 0.3% to 1.4%. RE may not be contained in the crystal, or two or more types may be contained. When two or more kinds of RE are contained, the number of atoms of RE is the total number of atoms corresponding to RE.

TAG系結晶およびTAGG系結晶は、Ce以外の共添加元素を少なくとも1種含んでいてもよい。このような共添加元素としては、例えば、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Zr、Hf、Nb、Ta、Mo、W、Zn、Cd、B、In、C、Si、Ge、Teなどが挙げられる。The TAG-based crystals and TAGG-based crystals may contain at least one co-doped element other than Ce. Examples of such co-doped elements include Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Zr, Hf, Nb, Ta, Mo, W, Zn, Cd, B, In, C, Si, Ge, and Te.

シンチレータの主要な特性として、発光量とシンチレーション減衰時定数がある。特に、CT(computed tomography)、PET(positron emission tomography)などの医用画像診断用途に使用されるシンチレータには、画質の向上、被験者の被ばく量低減、および検査時間の短縮のため、発光量が高く、シンチレーション減衰時定数の短いシンチレータが求められる。The main characteristics of a scintillator are its light emission output and its scintillation decay time constant. In particular, scintillators used in medical imaging diagnostics such as computed tomography (CT) and positron emission tomography (PET) require a high light emission output and a short scintillation decay time constant in order to improve image quality, reduce the subject's exposure to radiation, and shorten examination times.

シンチレータの発光量(Light Yield)とは、照射した放射線の単位エネルギーあたりにシンチレータから生じる光子数のことを表す。発行量の単位としては、photons/MeVを用いることができる。発光量は、放射線を照射したシンチレータからの発光を単一光子計数法によって評価することで測定できる。一実施形態に係るシンチレータにおいて、発光量は、137Cs線源からの約662keVのガンマ線をシンチレータに照射して測定した発光量のことを示す。 The light yield of a scintillator refers to the number of photons generated from the scintillator per unit energy of the irradiated radiation. The unit of emission may be photons/MeV. The light yield can be measured by evaluating the light emitted from the scintillator irradiated with radiation by a single photon counting method. In the scintillator according to one embodiment, the light yield refers to the light yield measured by irradiating the scintillator with gamma rays of about 662 keV from a 137 Cs source.

シンチレーション減衰時定数は、放射照射時のシンチレータの蛍光減衰曲線(シンチレーション減衰曲線)から得られる。シンチレータの発光強度は、一般に指数関数的に減衰する。シンチレーション減衰曲線は、例えば励起源としてパルスX線を用いた時間相関単一光子計数法(Time-Correlated Single Photon Counting、TCSPC)によって測定することができる。シンチレーション減衰曲線は単一成分の指数関数、または複数成分の指数関数の和で近似することができる。近似式として下記の式を用いることができる。
Y(t)=Σ{Aexp(-t/τ)}+C ・・・式[1]
The scintillation decay time constant can be obtained from the fluorescence decay curve (scintillation decay curve) of the scintillator when irradiated with radiation. The luminescence intensity of the scintillator generally decays exponentially. The scintillation decay curve can be measured, for example, by time-correlated single photon counting (TCSPC) using pulsed X-rays as an excitation source. The scintillation decay curve can be approximated by an exponential function of a single component or the sum of exponential functions of multiple components. The following formula can be used as an approximation formula.
Y(t) = Σ{A i exp(-t/τ i )} + C ... formula [1]

式中、Y(t)は時間tにおけるシンチレータの発光強度を表す。iは正の整数で1、2、3・・・を示し、単一成分の指数関数の場合にiは1に、2成分の指数関数の場合にiは2になる。Σは数学記号で、iが1からn(成分の数)になる時の括弧内の関数の和を計算することを意味する。Aは減衰曲線全体に対するi成分目の関数の占める割合に関係する値で、Cは定数を示す。τがi成分目のシンチレーション減衰時定数になる。 In the formula, Y(t) represents the luminescence intensity of the scintillator at time t. i is a positive integer that indicates 1, 2, 3, etc., and i is 1 in the case of a single-component exponential function, and i is 2 in the case of a two-component exponential function. Σ is a mathematical symbol that means calculating the sum of the functions in the brackets when i goes from 1 to n (the number of components). A i is a value related to the proportion of the function of the i-th component to the entire decay curve, and C is a constant. τ i is the scintillation decay time constant of the i-th component.

本発明におけるシンチレーション減衰時定数は、パルスX線を用いた時間相関単一光子計数法によって得られたシンチレーション減衰曲線から、装置応答関数(Instrument Response Function、IRF)に相当する発光強度の減衰の開始から3ナノ秒以内の成分を除いた部分について、2成分で近似し、得られた早い成分および遅い成分の2つのシンチレーション減衰時定数の内、早い成分のシンチレーション減衰時定数のことを示す。The scintillation decay time constant in this invention refers to the scintillation decay time constant of the faster component of the two scintillation decay time constants, fast and slow, obtained by approximating the portion of the scintillation decay curve obtained by time-correlated single photon counting using pulsed X-rays, excluding the component within 3 nanoseconds from the start of decay of the luminescence intensity, which corresponds to the instrument response function (IRF), with two components.

本開示のシンチレータ用結晶は単結晶からなる。単結晶は、FZ(フローティングゾーン)法、CZ(チョクラルスキ)法などの方法で製造できる。本開示では、FZ法を用いて単結晶を製造した。FZ法は、原材料を棒状に成形し、鉛直方向にぶら下げて保持し、その一部を加熱溶融させて融液部を形成する。融液部を一方向に移動させることにより融液から単結晶を析出させることで単結晶を製造する方法である。The scintillator crystal of the present disclosure is made of a single crystal. Single crystals can be manufactured by methods such as the FZ (floating zone) method and the CZ (Czochralski) method. In the present disclosure, single crystals were manufactured using the FZ method. In the FZ method, raw materials are formed into a rod shape, hung vertically, and a part of it is heated and melted to form a molten liquid portion. This method manufactures single crystals by precipitating a single crystal from the melt by moving the molten liquid portion in one direction.

本開示の一実施形態のシンチレータ用単結晶の製造方法は、Gaが実質的に含まれないCeを添加したTAG(テルビウム・アルミニウム・ガーネット)系単結晶を、原料中の元素の比率Ce/(Tb+Ce+RE)が1.5%以上2.5%以下であるGaを実質的に含まない酸化物原料を用いて製造する。In one embodiment of the present disclosure, a method for producing a scintillator single crystal is used to produce a Ce-doped TAG (terbium aluminum garnet) single crystal that is substantially free of Ga, using an oxide raw material that is substantially free of Ga and in which the element ratio Ce/(Tb+Ce+RE) in the raw material is 1.5% or more and 2.5% or less.

本開示の他の実施形態のシンチレータ用単結晶の製造方法は、Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素の比率Ga/(Ga+Al)が2%以上10%以下、Ce/(Tb+Ce+RE)が1%以上5%以下である酸化物原料を用いて製造する。In another embodiment of the present disclosure, a method for producing a scintillator single crystal is provided for producing a Ce-doped TAGG (terbium aluminum gallium garnet) single crystal using an oxide raw material in which the element ratio Ga/(Ga+Al) in the raw material is 2% or more and 10% or less, and Ce/(Tb+Ce+RE) is 1% or more and 5% or less.

1次原料としてCe、Tb、AlおよびGaの酸化物(例えば、CeO、Tb、Al、およびGa)、ならびに副成分元素の酸化物、共添加元素の酸化物を使用する。各元素が所望の比率となるように混合および焼成して得られたTAG系多結晶またはTAGG系多結晶を含む2次原料を原料として、単結晶を製造してもよい。原料中に、結晶中でTbと置換固溶可能な構成元素(例えばY、Gd、Luなどの希土類元素)の酸化物を含んでいてもよい。さらに、Ce以外の共添加元素の酸化物を含んでいてもよい。 The primary raw materials are oxides of Ce, Tb, Al and Ga (e.g. CeO2, Tb4O7 , Al2O3 and Ga2O3 ), as well as oxides of auxiliary components and oxides of co-additive elements. A single crystal may be manufactured using a secondary raw material containing TAG- based polycrystals or TAGG -based polycrystals obtained by mixing and firing each element to a desired ratio. The raw material may contain oxides of constituent elements (e.g. rare earth elements such as Y, Gd and Lu) that can be substituted for Tb in the crystal and form a solid solution. Furthermore, it may contain oxides of co-additive elements other than Ce.

上記構成により、発光量が高く、シンチレーション減衰時定数の短いシンチレータを提供することができる。すなわち、TAG系結晶中の各元素の比率Ce/(Tb+Ce+RE)が0.4%以上0.7%以下、特に好ましくは0.6%以上0.7%以下であれば発光量が高く、シンチレーション減衰時定数の短いシンチレータとなる。TAGG系結晶中の各元素の比率Ga/(Ga+Al)が1%以上6%以下、特に好ましくは1%以上3%以下で、Ce/(Tb+Ce+RE)が0.3%以上1.4%以下、特に好ましくは0.4%以上0.8%以下であれば発光量が高く、シンチレーション減衰時定数の短いシンチレータとなる。The above configuration makes it possible to provide a scintillator with a high light emission and a short scintillation decay time constant. That is, if the ratio of each element in the TAG crystal, Ce/(Tb+Ce+RE), is 0.4% or more and 0.7% or less, and particularly preferably 0.6% or more and 0.7% or less, the scintillator has a high light emission and a short scintillation decay time constant. If the ratio of each element in the TAG crystal, Ga/(Ga+Al), is 1% or more and 6% or less, and particularly preferably 1% or more and 3% or less, and Ce/(Tb+Ce+RE) is 0.3% or more and 1.4% or less, and particularly preferably 0.4% or more and 0.8% or less, the scintillator has a high light emission and a short scintillation decay time constant.

本開示に係るシンチレータはシリコンフォトダイオードなどの任意の受光素子と組み合わせてガンマ線検出器とすることができる。すなわち、シンチレータから発せられた光を、受光素子によって電気信号に変換することによって、ガンマ線の有無および量を電気信号として捉えることができる。The scintillator according to the present disclosure can be combined with any light receiving element such as a silicon photodiode to form a gamma ray detector. In other words, the light emitted from the scintillator can be converted into an electrical signal by the light receiving element, thereby capturing the presence and amount of gamma rays as an electrical signal.

本開示に係るシンチレータは、受光素子との組み合わせに適した形状に加工して用いることができる。加工に際しては、公知のブレードソー、ワイヤーソーなどの切断機、研削機、あるいは研磨盤を何ら制限無く用いる事ができる。形状は特に制限されない。受光素子に対向する光出射面を有し、当該光出射面は平坦であることが望ましく、光学研磨が施してもよい。光出射面を有することによって、シンチレータから生じた光を効率よく受光素子に入射できる。The scintillator according to the present disclosure can be used after being processed into a shape suitable for combination with a light receiving element. For processing, a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing disk can be used without any restrictions. There are no particular restrictions on the shape. It has a light exit surface facing the light receiving element, and it is desirable that the light exit surface is flat, and may be optically polished. By having a light exit surface, light generated from the scintillator can be efficiently incident on the light receiving element.

光出射面の形状は限定されず、一辺の長さが数mm~数百mm角の四角形、あるいは直径が数mm~数百mmの円形など、用途に応じた形状を適宜選択して用いることができる。シリコンフォトダイオードの受光面の大きさよりも小さい方が、受光面に届かずに散逸する発光が少なくなるため好ましい。受光素子に対向しない面に、アルミニウム、硫酸バリウム、ポリテトラフルオロエチレンなどからなる光反射膜を施すことにより、シンチレータで生じた光の散逸を防止することができる。 The shape of the light exit surface is not limited, and can be selected from shapes appropriate for the application, such as a square with sides measuring several mm to several hundred mm, or a circle with a diameter of several mm to several hundred mm. A smaller size than the light receiving surface of the silicon photodiode is preferable, since less light is emitted without reaching the light receiving surface and dissipates. By applying a light reflective film made of aluminum, barium sulfate, polytetrafluoroethylene, etc. to the surface not facing the light receiving element, it is possible to prevent the light generated by the scintillator from dissipating.

受光素子には任意のものを用いることができる。大きな利得が実現できるガイガーモードAPD(アバランシェ・フォトダイオード)を用いることで高感度にシンチレータの光を受光できる。一例を挙げると浜松ホトニクス社製MPPC(Multi-Pixel Photon Counter)を用いることができる。MPPCはSiPM(Si-Photo-Multiplier)とも呼ばれる素子で、ガイガーモードAPDをマルチピクセル化したものである。Any light receiving element can be used. By using a Geiger mode APD (Avalanche Photodiode) that can achieve a large gain, the light from the scintillator can be received with high sensitivity. One example is the MPPC (Multi-Pixel Photon Counter) made by Hamamatsu Photonics. The MPPC is an element also known as a SiPM (Si-Photo-Multiplier), and is a Geiger mode APD made into a multi-pixel.

本開示のシンチレータは受光素子の受光面に任意の光学接着剤や工学グリースで接合して、ガンマ線検出器として用いることができる。シンチレータを接着した受光素子は、環境中の光の入射を防ぐ目的で、光を通しにくい任意の材質の遮光材で覆ってもよい。The scintillator of the present disclosure can be bonded to the light receiving surface of a light receiving element with any optical adhesive or engineering grease and used as a gamma ray detector. The light receiving element to which the scintillator is bonded may be covered with any light-shielding material that is difficult for light to pass through in order to prevent the incidence of light from the environment.

受光素子は、電圧を印加することで高感度に用いることができ、出力される電気信号を観測することで、ガンマ線の検出を確認できる。受光素子から出力される電気信号は、前置増幅器、波形成形増幅器、多重波高分析器等に入力し、単一光子計数法によって測定してもよい。任意の電流測定器(例えばピコアンメーター)に接続して電流値の変化を調べ、受光量の変化を電流値の変化によって確認することもできる。 The photodetector can be used with high sensitivity by applying a voltage, and the detection of gamma rays can be confirmed by observing the electrical signal that is output. The electrical signal output from the photodetector can be input to a preamplifier, waveform shaping amplifier, multiple pulse height analyzer, etc., and measured by single photon counting. It can also be connected to any current measuring device (e.g. a picoammeter) to examine changes in the current value, and changes in the amount of light received can be confirmed by the change in the current value.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。The present invention will be explained in detail below with reference to examples, but the present invention is not limited in any way to these examples.

条件1~条件13のシンチレータ用単結晶を表1に示す原料組成で、FZ法により作製した。このうち、条件1、5、14は比較例である。条件5は、非特許文献1に記載のTAGG単結晶で、条件14は市販のCeドープLYSO(ルテチウム・イットリウム・シリケート)単結晶である。 Scintillator single crystals under conditions 1 to 13 were produced by the FZ method with the raw material compositions shown in Table 1. Of these, conditions 1, 5, and 14 are comparative examples. Condition 5 is a TAGG single crystal described in Non-Patent Document 1, and condition 14 is a commercially available Ce-doped LYSO (lutetium yttrium silicate) single crystal.

FZ法によるシンチレータ用単結晶の作製は次の手順で行った。表1に示す組成の原料粉末を乳鉢で混合後、棒状に成形して静水圧プレスにより、20kNの圧力で10分間加圧した。次に電気炉により、1400℃、8時間の条件で焼結して原料棒を得た。原料棒は、ハロゲンランプによる加熱機構を備えたFZ法卓上型単結晶育成装置(キヤノンマシナリー製、Desktop IR Furnace)により単結晶化した。原料棒をカメラ画像で確認しながら溶融し、固溶界面が確認できる程度のランプ出力に設定しながら単結晶育成を行った。その際の原料棒の回転数は3rpm、引き下げ速度は3mm/hとした。得られた単結晶棒は、切断、研磨し、厚み2mm薄板状に加工し、評価用サンプルとした。The scintillator single crystal was produced by the FZ method in the following procedure. The raw material powders with the composition shown in Table 1 were mixed in a mortar, then molded into a rod shape and pressed with a hydrostatic press at a pressure of 20 kN for 10 minutes. The raw material rod was then sintered in an electric furnace at 1400°C for 8 hours to obtain a raw material rod. The raw material rod was single crystallized using an FZ method tabletop single crystal growth device (Canon Machinery, Desktop IR Furnace) equipped with a heating mechanism using a halogen lamp. The raw material rod was melted while checking the camera image, and single crystal growth was performed while setting the lamp output to a level where the solid solution interface could be confirmed. The rotation speed of the raw material rod was 3 rpm, and the pulling speed was 3 mm/h. The obtained single crystal rod was cut, polished, and processed into a thin plate with a thickness of 2 mm to be used as an evaluation sample.

各単結晶の発光量とシンチレーション減衰時定数、ICP-OES(IPC発光分析)による、条件8の結晶組成の分析結果、およびそれから予測される各条件の結晶組成を表1に記載した。比較例として、市販のCeドープLYSO単結晶(条件14)の測定も行った。The light emission and scintillation decay time constant of each single crystal, the analysis results of the crystal composition under condition 8 by ICP-OES (IPC optical emission analysis), and the crystal composition predicted from the results under each condition are shown in Table 1. As a comparative example, a commercially available Ce-doped LYSO single crystal (condition 14) was also measured.

発光量は単一光子計数法により測定した。試作した評価用サンプルは、光電子増倍管(浜松ホトニクス製、R7600U-200)の光学窓に、光学グリース(応用光研製、TSK5353)を用いて接着した。サンプルに137Cs線源によるガンマ線を照射して発光させた。光電子増倍管からの信号は、前置増幅器(ORTEC製、Model 113 Scintillation Preamplifier)、波形整形増幅器(ORTEC製、Model 570 Spectroscopy Amplifier)によって増幅整形し、マルチチャネルアナライザ(AMPTEK製、Pocket MCA8000A)を通してパルス波高スペクトルを得た。得られたパルス波高スペクトルにおいて観察された光電吸収ピークのピーク位置を、条件5のTAG単結晶の光電吸収ピークのピーク位置と比較することで、発光量を測定した。 The amount of light emitted was measured by single photon counting. The prototype evaluation sample was attached to the optical window of a photomultiplier tube (Hamamatsu Photonics, R7600U-200) using optical grease (Applied Photonics, TSK5353). The sample was irradiated with gamma rays from a 137 Cs source to emit light. The signal from the photomultiplier tube was amplified and shaped by a preamplifier (ORTEC, Model 113 Scintillation Preamplifier) and a waveform shaping amplifier (ORTEC, Model 570 Spectroscopy Amplifier), and a pulse height spectrum was obtained through a multichannel analyzer (AMPTEK, Pocket MCA8000A). The amount of light emitted was measured by comparing the peak position of the photoelectric absorption peak observed in the obtained pulse height spectrum with the peak position of the photoelectric absorption peak of the TAG single crystal under condition 5.

基準として用いた条件5のTAG単結晶の発光量は、20℃に保持したシリコンAPDを用いたパルス波高スペクトル測定によって得られた光電吸収ピークを、59Fe線源によるガンマ線を同シリコンAPDで直接検出して得られたピークと比較する方法により算出した。Si中で1個の電子正孔対を作るのに必要な光子のエネルギーは3.6eVであることから、55Fe線源からの5.9keVのガンマ線を照射すると、5900/3.6=1640個の電子正孔対が生成する。この直接検出ピークの値との比較により、発生した電子正孔対の数を求め、用いたシリコンAPDの波長感度特性から発光量を測定した。 The amount of light emitted from the TAG single crystal under condition 5 used as a reference was calculated by comparing the photoelectric absorption peak obtained by pulse height spectrum measurement using a silicon APD held at 20°C with the peak obtained by directly detecting gamma rays from a 59Fe source using the same silicon APD. Since the photon energy required to create one electron-hole pair in Si is 3.6 eV, irradiation with 5.9 keV gamma rays from a 55Fe source generates 5900/3.6 = 1640 electron-hole pairs. The number of electron-hole pairs generated was determined by comparing with the value of this directly detected peak, and the amount of light emitted was measured from the wavelength sensitivity characteristics of the silicon APD used.

シンチレーション減衰時定数は、励起源としてパルスX線を用いた時間相関単一光子計数法装置(浜松フォトニクス、非特許文献2)により得られたシンチレーション減衰曲線を式[1]の指数関数に近似することで得られた。ここで得られたシンチレーション減衰時定数は、指数関数への近似において、シンチレーション減衰曲線から装置応答関数に相当する発光強度の減衰の開始から3ナノ秒以内の成分を除いた部分について、2成分で近似して得られた早い成分及び遅い成分の2つのシンチレーション減衰時定数の内、早い成分のシンチレーション減衰時定数のことを指す。The scintillation decay time constant was obtained by approximating the scintillation decay curve obtained by a time-correlated single photon counting device (Hamamatsu Photonics, non-patent document 2) using pulsed X-rays as an excitation source to the exponential function of formula [1]. The scintillation decay time constant obtained here refers to the scintillation decay time constant of the faster component out of the two scintillation decay time constants, fast and slow, obtained by approximating the part of the scintillation decay curve excluding the component within 3 nanoseconds from the start of decay of the emission intensity corresponding to the instrument response function in the approximation to the exponential function.

図1に、各単結晶の発光量とシンチレーション減衰時定数とを示す。条件2~4、6~13は、条件1の単結晶および公知の比較例である条件5(非特許文献1)および条件14(市販のLYSO単結晶)よりも、シンチレーション減衰時定数および発光量の少なくともいずれかが優れていることがわかる。特に、条件2~4、8~10および12は、発光量が高く(50000以上)、条件7~12はシンチレーション減衰時定数が小さい(29以下)。したがって、条件8~10および12はシンチレーション減衰時定数および発光量ともに特に優れていることがわかる。 Figure 1 shows the amount of light emitted and the scintillation decay time constant for each single crystal. It can be seen that conditions 2 to 4 and 6 to 13 are superior in at least one of the scintillation decay time constant and amount of light emitted to the single crystal under condition 1 and the well-known comparative examples, condition 5 (Non-Patent Document 1) and condition 14 (commercially available LYSO single crystal). In particular, conditions 2 to 4, 8 to 10 and 12 have high amounts of light emitted (50,000 or more), while conditions 7 to 12 have small scintillation decay time constants (29 or less). It can therefore be seen that conditions 8 to 10 and 12 are particularly superior in both scintillation decay time constant and amount of light emitted.

次に、本開示のガンマ線検出器の実施例について説明する。Next, an example of the gamma ray detector disclosed herein will be described.

表1の条件9のシンチレータ用単結晶とシリコン受光素子を組み合わせることとで本開示のガンマ線検出器を試作した。シリコン受光素子には、複数のガイガーモードAPDで構成されるMPPC(浜松ホトニクス製、S13360-6075CS)を用いた。条件9のシンチレータ用単結晶の研磨面を、MPPCの受光面に光学グリース(応用光研、TSK5353)を用いて接着し、受光面に対向しない面をポリテトラフルオロエチレンからなる光反射膜で覆うことで、検出部とした。A gamma ray detector according to the present disclosure was fabricated by combining the scintillator single crystal of condition 9 in Table 1 with a silicon light receiving element. For the silicon light receiving element, an MPPC (manufactured by Hamamatsu Photonics, S13360-6075CS) consisting of multiple Geiger mode APDs was used. The polished surface of the scintillator single crystal of condition 9 was bonded to the light receiving surface of the MPPC using optical grease (Applied Koken, TSK5353), and the surface not facing the light receiving surface was covered with a light reflective film made of polytetrafluoroethylene to form the detection section.

検出部のMPPCは、電圧印加、信号読み出しが可能な市販の回路系(ANSeeN製)に接続し、全体を遮光した。MPPCのゲイン(電圧利得)は温度変化によって変動する。当該回路系は室温付近における温度変化に対し、MPPCへの印加電圧をわずかに変化させることで、ゲインが一定になるように制御する機能を有している。当該回路系からの信号線は、前置増幅器(ORTEC製、Model 113 Scintillation Preamplifier)、波形整形増幅器(ORTEC製、Model 570 Spectroscopy Amplifier)、マルチチャネルアナライザ(AMPTEK製、Pocket MCA8000A)の順で接続し、本開示のガンマ線検出器の実施例とした。The MPPC of the detection section was connected to a commercially available circuit system (manufactured by ANSeeN) capable of applying voltage and reading out signals, and the entire system was shielded from light. The gain (voltage gain) of the MPPC varies with temperature changes. This circuit system has the function of controlling the gain to be constant by slightly changing the voltage applied to the MPPC in response to temperature changes around room temperature. The signal line from this circuit system was connected in the following order to a preamplifier (Model 113 Scintillation Preamplifier, manufactured by ORTEC), a waveform shaping amplifier (Model 570 Spectroscopy Amplifier, manufactured by ORTEC), and a multichannel analyzer (Pocket MCA8000A, manufactured by AMPTEK), forming an example of a gamma ray detector according to the present disclosure.

作製したガンマ線検出器に、約53Vの電圧を印加しながら、137Cs線源による662keVのエネルギーを有するガンマ線および241Amからの59.5keVのエネルギーを有するガンマ線を照射し、得られた信号からそれぞれ波高分布スペクトルを作成した。その際、高強度の信号が波高分布スペクトルの描画範囲に収まるように、波形整形増幅器の増幅率を適宜調整した。その結果、得られた波高分布スペクトルから、それぞれ明瞭な光電吸収ピークが確認できた。いずれのエネルギーのガンマ線の場合も、ピーク面積が照射時間(照射線量)に比例して増加することが確認できた。これらのことから本開示のガンマ線検出器が、662keVといった比較的高いエネルギーおよび59.5keVといった比較的低いエネルギーのガンマ線の計測に、好適に使用できることがわかる。 The gamma ray detector thus fabricated was irradiated with gamma rays having an energy of 662 keV from a 137 Cs source and gamma rays having an energy of 59.5 keV from 241 Am while applying a voltage of about 53 V, and pulse-height distribution spectra were created from the obtained signals. At that time, the amplification factor of the waveform shaping amplifier was appropriately adjusted so that the high-intensity signal fell within the drawing range of the pulse-height distribution spectrum. As a result, a clear photoelectric absorption peak was confirmed from each of the obtained pulse-height distribution spectra. In the case of gamma rays of any energy, it was confirmed that the peak area increased in proportion to the irradiation time (exposure dose). From these facts, it can be seen that the gamma ray detector of the present disclosure can be suitably used for measuring gamma rays of relatively high energy such as 662 keV and relatively low energy such as 59.5 keV.

Claims (5)

Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を含み、該単結晶の構成元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が1%以上%以下、Ce/(Tb+Ce+RE)が0.6%以上0.8%以下である、シンチレータ。 A scintillator comprising a TAGG (terbium aluminum gallium garnet) single crystal doped with Ce, in which the atomic ratio of the constituent elements of the single crystal (Ce, Tb, RE (RE is a constituent element of the Tb site other than Tb and Ce), Al and Ga) Ga/(Ga+Al) is 1% or more and 3 % or less, and Ce/(Tb+Ce+RE) is 0.6 % or more and 0.8 % or less. 請求項1に記載のシンチレータと受光素子を組み合わせたガンマ線検出器。 A gamma ray detector combining the scintillator according to claim 1 with a light receiving element. 前記受光素子が、ガイガーモードAPDである、請求項に記載のガンマ線検出器。 3. The gamma ray detector according to claim 2 , wherein the light receiving element is a Geiger mode APD. Ceを添加したTAGG(テルビウム・アルミニウム・ガリウム・ガーネット)系単結晶を、原料中の元素(Ce、Tb、RE(REはTbおよびCe以外のTbサイトの構成元素)、AlおよびGa)の原子数の比率Ga/(Ga+Al)が2%以上%以下、Ce/(Tb+Ce+RE)が%以上%以下である酸化物原料を用いて製造する、シンチレータ用単結晶の製造方法。 A method for producing a Ce-doped TAGG (terbium aluminum gallium garnet) single crystal using an oxide raw material in which the atomic ratio Ga/(Ga+Al) of the elements in the raw material (Ce, Tb, RE (RE is an element constituting the Tb site other than Tb and Ce), Al and Ga) is 2% or more and 5 % or less, and Ce/(Tb+Ce+RE) is 2 % or more and 3 % or less. FZ法により前記TAG系単結晶または前記TAGG系単結晶を製造する、請求項記載のシンチレータ用単結晶の製造方法。 5. The method for producing a scintillator single crystal according to claim 4 , wherein the TAG type single crystal or the TAGG type single crystal is produced by a FZ method.
JP2022505168A 2020-03-05 2021-02-26 Method for producing scintillator and single crystal for scintillator Active JP7478399B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020037477 2020-03-05
JP2020037477 2020-03-05
PCT/JP2021/007278 WO2021177153A1 (en) 2020-03-05 2021-02-26 Scintillator, and method for producing single crystal for scintillator

Publications (2)

Publication Number Publication Date
JPWO2021177153A1 JPWO2021177153A1 (en) 2021-09-10
JP7478399B2 true JP7478399B2 (en) 2024-05-07

Family

ID=77613071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022505168A Active JP7478399B2 (en) 2020-03-05 2021-02-26 Method for producing scintillator and single crystal for scintillator

Country Status (2)

Country Link
JP (1) JP7478399B2 (en)
WO (1) WO2021177153A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BI Jun et al.,Co-Precipitated Synthesis and Photoluminescence Properties of Ce3+ Activated Terbium Aluminum Garnet,Key Engineering Materials,2014年03月12日,Vol.602-603,pp.1028-1033
MENG Qinghuan et al.,Synthesis and luminescent properties of Tb3Al5O12:Ce3+ phosphors for warm white light emitting diode,Journal of Molecular Structure,2017年09月14日,Vol.1151, No.5,pp.112-116
NAKAUCHI Daisuke et al.,Effects of Ga substitution in Ce:Tb3GaxAl5-xO12 single crystals for scintillator applications,Japanese Journal of Applied Physics,日本,2017年12月01日,Vol.57, 02CB02,pp.1-5
ONISHI Yuya et al.,Photoluminescence properties of Tb3Al5O12:Ce3+ garnet synthesized by the metal organic decomposition,Optical Materials,2017年01月21日,Vol.64,pp.557-563

Also Published As

Publication number Publication date
WO2021177153A1 (en) 2021-09-10
JPWO2021177153A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
Shah et al. LaBr/sub 3: Ce scintillators for gamma-ray spectroscopy
JP6092732B2 (en) High-density, high-speed scintillator material with little afterglow
RU2622124C2 (en) Garnet-structured crystal for scintillator and radiation detector using same
Shah et al. CeBr/sub 3/scintillators for gamma-ray spectroscopy
JP6697490B2 (en) Radiation detector for imaging applications with stabilized light output
RU2670919C2 (en) Phosphor and radiation detector
RU2666445C1 (en) Crystalline material, method of crystal manufacture, radiation detector, non-infringing device and visualization device
US20060124854A1 (en) Lu1-xI3:Cex-a scintillator for gamma-ray spectroscopy and time-of-flight pet
US10150913B2 (en) Scintillator, preparing method thereof, and application thereof
Gordienko et al. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield
JP6078223B2 (en) Garnet-type single crystal for scintillator and radiation detector using the same
Prusa et al. Tailoring and optimization of LuAG: Ce epitaxial film scintillation properties by Mg co-doping
Yanagida et al. Phosphors for radiation detectors
JP7478399B2 (en) Method for producing scintillator and single crystal for scintillator
US20220363988A1 (en) Scintillator and method for manufacturing the same
KR20100105045A (en) Radiation sensor scintillator, and method of fabricating and applying the same
KR101641946B1 (en) Scintillator and method for manufacturing the same
US10101471B2 (en) Characterization apparatus for characterizing scintillator material
Kim et al. Scintillation Properties of CsI: Na, $^{133} $ Ba Crystal
JP5737974B2 (en) Neutron detection scintillator and neutron beam detector
Shah et al. LaBr/sub 3: Ce scintillators for gamma ray spectroscopy
Yanagida Ionizing Radiation Induced Luminescence
Wang et al. X-Ray Phosphors and Scintillators
JP5737978B2 (en) Neutron detection scintillator and neutron beam detector
Rooh et al. The growth and characterization of the cerium contained inorganic halide scintillators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7478399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150