JP7477841B2 - Non-contact power supply structure - Google Patents

Non-contact power supply structure Download PDF

Info

Publication number
JP7477841B2
JP7477841B2 JP2020138711A JP2020138711A JP7477841B2 JP 7477841 B2 JP7477841 B2 JP 7477841B2 JP 2020138711 A JP2020138711 A JP 2020138711A JP 2020138711 A JP2020138711 A JP 2020138711A JP 7477841 B2 JP7477841 B2 JP 7477841B2
Authority
JP
Japan
Prior art keywords
power
coil
magnetic field
power transmitting
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020138711A
Other languages
Japanese (ja)
Other versions
JP2022034827A (en
Inventor
美郷 秋山
宏靖 佐野
秀勝 佐々木
敬久 鈴木
昌生 多氣
真 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI), Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2020138711A priority Critical patent/JP7477841B2/en
Publication of JP2022034827A publication Critical patent/JP2022034827A/en
Application granted granted Critical
Publication of JP7477841B2 publication Critical patent/JP7477841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本開示は、例えば、二次電池を備えた機器等に2つの受電コイルを設け、この2つの受電コイルを、送電側の回路に設けられた2つの送電コイルで挟み込むように配置し、各送受電コイル間で電力を伝送する非接触給電構造に関する。 This disclosure relates to a non-contact power supply structure in which, for example, two receiving coils are provided in a device equipped with a secondary battery, and these two receiving coils are arranged so as to be sandwiched between two transmitting coils provided in a circuit on the power transmitting side, and power is transmitted between each of the transmitting and receiving coils.

電力を用いて動作する機器に二次電池を備え、充電器等を直接接触(接続)させることなく、非接触状態で二次電池に充電電力を供給する技術がある。
非接触状態で電力を伝送する場合には、上記の機器等である給電対象に設置された受電コイル等と、充電機器等に設置された送電コイル等とを対向配置して近接させ、電磁誘導などを用いて電力を伝送する。
非接触状態において電力の伝送効率を高めるため、例えば、二次電池等の負荷を有する給電対象側(受電側の回路)に2つの受電コイルを備え、また、各受電コイルに対向配置される2つの送電コイルを充電器等の電力供給側(送電側の回路)に備え、2対の送受電コイルを用いることが考えられる。
2. Description of the Related Art There is a technology in which a secondary battery is provided in a device that operates using electric power, and charging power is supplied to the secondary battery in a non-contact state without direct contact (connection) with a charger or the like.
When transmitting power in a non-contact manner, a receiving coil or the like installed in the power supply target, which is the above-mentioned device, and a transmitting coil or the like installed in a charging device, etc. are arranged opposite and close to each other, and power is transmitted using electromagnetic induction or the like.
In order to improve the efficiency of power transmission in a non-contact state, it is possible to use two pairs of transmitting and receiving coils, for example, by providing two receiving coils on the power supply target side (power receiving circuit) having a load such as a secondary battery, and two transmitting coils arranged opposite each receiving coil on the power supply side (power transmitting circuit) of a charger, etc.

2対の送受信コイルを用いて非接触給電を行う技術(非接触給電構造)として、例えば、次のようなものがある。バッテリ(二次電池)を備えた電動自転車の前輪に、一の受電コイルと他の受電コイルとを設ける。また、一の受電コイルと対向配置される一の送電コイルと、他の受電コイルと対向配置される他の送電コイルとを、電力供給側となる駐輪施設の支持部材に設ける。
この非接触給電構造は、駐輪施設に設けられた一の送電コイルと他の送電コイルとの間に、電動自転車の前輪を挟み込むように駐輪し、挟み込まれた前輪に設けられた一の受電コイルおよび他の受電コイルに対して非接触給電を行うように構成されている(例えば、特許文献1参照)。
As an example of a technology (contactless power supply structure) for contactless power supply using two pairs of transmitting and receiving coils, there is the following: One power receiving coil and another power receiving coil are provided on the front wheel of an electric bicycle equipped with a battery (secondary battery). Also, one power transmitting coil arranged opposite the one power receiving coil, and another power transmitting coil arranged opposite the other power receiving coil are provided on a support member of a bicycle parking facility that serves as the power supply side.
This non-contact power supply structure is configured so that the front wheel of an electric bicycle is sandwiched between one power transmission coil and another power transmission coil provided in a bicycle parking facility, and power is supplied non-contact to one power receiving coil and another power receiving coil provided on the sandwiched front wheel (see, for example, Patent Document 1).

特開2018-143067号公報JP 2018-143067 A

非接触によって伝送される電力量を大きくするため、例えば、2対の送受電コイル(4つの送受電コイル)を備えた場合、各対の送受電コイル間に生じるそれぞれの磁界が互いに影響し合って、送受電コイルから離れた位置において磁界(不要磁界)が強め合う場所が生じる。
4つの送受電コイルを備えて非接触給電を行う場合、上記のように不要磁界が強め合う場所が生じるため、伝送電力の高出力化を図ると、周囲に存在する人体や機器などに影響が及ぶおそれがあり、電波法の準拠、および、人体等の安全性を確保することが必要になる。
For example, if two pairs of transmitting and receiving coils (four transmitting and receiving coils) are provided in order to increase the amount of power transmitted non-contact, the magnetic fields generated between each pair of transmitting and receiving coils will influence each other, resulting in locations where the magnetic fields (unwanted magnetic fields) reinforce each other at positions away from the transmitting and receiving coils.
When using four transmitting and receiving coils for contactless power supply, there will be places where unwanted magnetic fields reinforce each other, as described above. Therefore, if the transmitted power output is increased, there is a risk that it will affect human bodies and equipment in the vicinity. Therefore, it is necessary to comply with the Radio Law and ensure the safety of human bodies, etc.

本開示は、上記の問題点を解決するために行われたもので、非接触状態で電力を伝送するとき、不要な磁界を減衰させて周囲にいる人体や機器などに与える影響を抑制することができる非接触電力構造を提供する。 This disclosure has been made to solve the above problems, and provides a non-contact power structure that can attenuate unnecessary magnetic fields and suppress the effects on surrounding human bodies, equipment, etc. when transmitting power in a non-contact state.

本開示に係る非接触給電構造は、送電回路に含まれる第1送電コイルと、前記送電回路に含まれ、前記第1送電コイルから所定間隔を開けて離間される第2送電コイルと、受電回路に含まれる第1受電コイルおよび第2受電コイルと、を備え、前記第1送電コイルと前記第2送電コイルとの間に、前記第1受電コイルおよび前記第2受電コイルを内挿配置させ、前記第1送電コイルおよび前記第1受電コイルは、前記第1送電コイルから前記第1受電コイルへ電力が伝送されるように離間して対向配置され、前記第2送電コイルおよび前記第2受電コイルは、前記第2送電コイルから前記第2受電コイルへ電力が伝送されるように離間して対向配置され、前記第1送電コイルおよび前記第2送電コイルは、前記第1送電コイルから前記第1受電コイルへ電力が伝送されるときに生じる第1の磁界の漏えいする磁力線と、前記第2送電コイルから前記第2受電コイルへ電力が伝送されるときに生じる第2の磁界の漏えいする磁力線と、が打ち消し合うように前記送電回路に備える電源に接続されることを特徴とする。 The non-contact power supply structure according to the present disclosure comprises a first power transmission coil included in a power transmission circuit, a second power transmission coil included in the power transmission circuit and spaced a predetermined distance from the first power transmission coil, and a first power receiving coil and a second power receiving coil included in a power receiving circuit, the first power receiving coil and the second power receiving coil being inserted between the first power transmission coil and the second power transmission coil, and the first power transmission coil and the first power receiving coil being arranged opposite each other at a distance so that power is transmitted from the first power transmission coil to the first power receiving coil, The second power transmitting coil and the second power receiving coil are disposed facing each other at a distance so that power is transmitted from the second power transmitting coil to the second power receiving coil, and the first power transmitting coil and the second power transmitting coil are connected to a power supply provided in the power transmitting circuit so that the magnetic field lines leaking from the first magnetic field generated when power is transmitted from the first power transmitting coil to the first power receiving coil and the magnetic field lines leaking from the second magnetic field generated when power is transmitted from the second power transmitting coil to the second power receiving coil cancel each other out.

また、前記第1送電コイル、第1受電コイル、第2受電コイルおよび第2送電コイルは、各コイル中心が同一軸線に沿うように配置されていることを特徴とする。 The first power transmitting coil, the first power receiving coil, the second power receiving coil and the second power transmitting coil are also characterized in that the coil centers are arranged along the same axis.

また、前記第1送電コイルは、前記第1の磁界の漏えいする磁力線が、前記第2の磁界の漏洩する磁力線を打ち消す強さとなるように、該第1送電コイルの構造に応じた電流を前記電源から供給され、前記第2送電コイルは、前記第2の磁界の漏えいする磁力線が、前記第1の磁界の漏えいする磁力線を打ち消す強さとなるように、該第2送電コイルの構造に応じた電流を前記電源から供給されることを特徴とする。 The first power transmission coil is supplied with a current from the power source according to the structure of the first power transmission coil so that the leaking magnetic field lines of the first magnetic field are strong enough to cancel out the leaking magnetic field lines of the second magnetic field, and the second power transmission coil is supplied with a current from the power source according to the structure of the second power transmission coil so that the leaking magnetic field lines of the second magnetic field are strong enough to cancel out the leaking magnetic field lines of the first magnetic field.

本開示によれば、非接触によって電力を伝送する際に、不要な磁界を減衰させて周囲に与える影響を抑制することができる。 According to the present disclosure, when transmitting power contactlessly, it is possible to attenuate unnecessary magnetic fields and reduce the impact on the surrounding area.

本開示の発明による実施の形態の非接触給電構造を備えた非接触給電回路の概略構成を示す説明図である。1 is an explanatory diagram showing a schematic configuration of a contactless power supply circuit including a contactless power supply structure according to an embodiment of the present disclosure; 4つの送受電コイルが発生させる磁界の向きの組み合わせを示す説明図である。10 is an explanatory diagram showing combinations of the directions of magnetic fields generated by four power transmitting and receiving coils. FIG. 1対の送受電コイルが発生させる磁力線を示す説明図である。4 is an explanatory diagram showing magnetic field lines generated by a pair of power transmitting and receiving coils. FIG. 図2のタイプAの送受電コイルが発生させる磁力線を示す説明図である。3 is an explanatory diagram showing magnetic field lines generated by the power transmitting and receiving coils of type A in FIG. 2 . 図2のタイプDの送受電コイルが発生させる磁力線を示す説明図である。3 is an explanatory diagram showing magnetic field lines generated by the power transmitting and receiving coils of type D in FIG. 2 . 解析を行った従来型の送受電コイルの配置を示す説明図である。FIG. 1 is an explanatory diagram showing an arrangement of conventional power transmitting and receiving coils for which an analysis was performed. 解析を行ったタイプAの送受電コイルの配置を示す説明図である。FIG. 13 is an explanatory diagram showing the arrangement of power transmitting and receiving coils of type A for which analysis was performed. 解析を行ったタイプDの送受電コイルの配置を示す説明図である。FIG. 13 is an explanatory diagram showing the arrangement of power transmitting and receiving coils of type D for which analysis was performed. 従来型、タイプAおよびタイプDの各送受電コイルによって生じるコイルから離れた位置の磁界強度の解析結果を示す説明図である。10 is an explanatory diagram showing the analysis results of the magnetic field strength at a position away from the coil generated by each of the conventional, type A, and type D power transmitting and receiving coils. FIG. 体内誘導電界強度を解析するときに想定した状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state assumed when analyzing the induced electric field strength inside the body. 人体に生じる体内誘導電界強度の解析結果を示す説明図である。FIG. 1 is an explanatory diagram showing an analysis result of an induced electric field strength generated in the human body. 解析によって得られた体内誘導電界強度の値を示す説明図である。FIG. 11 is an explanatory diagram showing values of induced electric field strength within the body obtained by analysis.

以下、この発明の実施の一形態を説明する。
図1は、本開示の発明による実施の形態の非接触給電構造を備えた非接触給電回路1の概略構成を示す説明図である。
非接触給電回路1は、電源14から供給される電力を、受電回路3側へ送電する第1送電コイル10および第2送電コイル13を備えた送電回路2と、送電回路2から送電された電力を受電する第1受電コイル11および第2受電コイル12を備えて負荷15に給電する受電回路3とを有している。
An embodiment of the present invention will now be described.
FIG. 1 is an explanatory diagram showing a schematic configuration of a contactless power supply circuit 1 including a contactless power supply structure according to an embodiment of the present disclosure.
The non-contact power supply circuit 1 includes a power transmission circuit 2 having a first power transmission coil 10 and a second power transmission coil 13 that transmit power supplied from a power source 14 to a power receiving circuit 3, and a power receiving circuit 3 having a first power receiving coil 11 and a second power receiving coil 12 that receive power transmitted from the power transmission circuit 2 and supplies power to a load 15.

送電回路2は、第1送電コイル10と第2送電コイル13とを、受電回路3、もしくは第1受電コイル11および第2受電コイル12を挟み込むことができるように離間して配置し、電源14から第1送電コイル10および第2送電コイル13へ電力が供給されるように回路構成されている。
受電回路3は、第1送電コイル10と第2送電コイル13との間に挟み込まれるように配置された第1受電コイル11および第2受電コイル12を有し、第1受電コイル11および第2受電コイル12に伝送された電力が負荷15へ給電されるように回路構成されている。
上記の各送受電コイルは、第1送電コイル10が第1受電コイル11と対向し、第2送電コイル13が第2受電コイル12と対向して、それぞれ対を形成するように配置されている。
The power transmission circuit 2 is configured such that the first power transmission coil 10 and the second power transmission coil 13 are spaced apart so that the power receiving circuit 3 or the first power receiving coil 11 and the second power receiving coil 12 can be sandwiched between them, and power is supplied from a power source 14 to the first power transmission coil 10 and the second power transmission coil 13.
The receiving circuit 3 has a first receiving coil 11 and a second receiving coil 12 arranged so as to be sandwiched between a first transmitting coil 10 and a second transmitting coil 13, and is configured so that the power transmitted to the first receiving coil 11 and the second receiving coil 12 is supplied to a load 15.
The above-mentioned power transmitting and receiving coils are arranged so that the first power transmitting coil 10 faces the first power receiving coil 11, and the second power transmitting coil 13 faces the second power receiving coil 12, forming pairs.

また、非接触給電回路1は、第1送電コイル10と第2送電コイル13との間に、第1受電コイル11および第2受電コイル12が挟み込まれたとき、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13の各コイル中心孔が同一軸線(後述するz軸)に沿うように、換言すると、各コイル中心孔が同一の軸線上に配置されるように(z軸が各コイル中心孔を貫通するように)、好ましくは、各コイルの中心軸が同一軸線に重なるように構成されている。
なお、負荷15は、例えば、充電可能な二次電池などである。
In addition, the non-contact power supply circuit 1 is configured such that, when the first power receiving coil 11 and the second power receiving coil 12 are sandwiched between the first power transmitting coil 10 and the second power transmitting coil 13, the center holes of the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 are aligned along the same axis (the z-axis described below), in other words, the center holes of the coils are arranged on the same axis (so that the z-axis passes through each coil center hole), and preferably the center axes of the coils overlap on the same axis.
The load 15 is, for example, a rechargeable secondary battery.

次に動作について説明する。
図2は、4つの送受電コイルが発生させる磁界の向きの組み合わせを示す説明図である。図中、タイプA~Dのように配置された4つのコイルは、両端に配置された各コイルが第1送電コイル10ならびに第2送電コイル13に相当し、中央に配置された2つのコイルが第1受電コイル11ならびに第2受電コイル12に相当する。図2に示した各矢印は、各コイルに発生する磁界の向きを示している。
Next, the operation will be described.
Fig. 2 is an explanatory diagram showing combinations of the directions of magnetic fields generated by four power transmitting and receiving coils. In the figure, of the four coils arranged as types A to D, the coils arranged at both ends correspond to the first power transmitting coil 10 and the second power transmitting coil 13, and the two coils arranged in the center correspond to the first power receiving coil 11 and the second power receiving coil 12. Each arrow in Fig. 2 indicates the direction of the magnetic field generated in each coil.

第1送電コイル10と第2送電コイル13との間に、第1受電コイル11および第2受電コイル12を挟み込むように(挟み込み型に)配置する場合、図2に示したように4つの磁界配置モード(タイプA~Dの送受電コイルの配置)が考えられる。
タイプBは、例えば、第1送電コイル10が発生する磁界の向きと第2送電コイル13が発生する磁界の向きが同相となり、第1受電コイル11に発生する磁界の向きと第2受電コイル12に発生する磁界の向きが逆相となるように、各送受電コイルが配置構成されている。このように各送受電コイルを配置すると、受電回路3に電力が伝送されない。
タイプCは、例えば、第1送電コイル10が発生する磁界の向きと第2送電コイル13が発生する磁界の向きとが逆相で、第1受電コイル11に発生する磁界の向きと第2受電コイル12に発生する磁界の向きとが同相となるように、各送受電コイルが配置構成されている。このように各送受電コイルを配置すると、受電回路3に電力が伝送されない。
When the first receiving coil 11 and the second receiving coil 12 are arranged so as to be sandwiched between the first transmitting coil 10 and the second transmitting coil 13 (sandwiched type), four magnetic field arrangement modes (types A to D of transmitting and receiving coil arrangements) are possible, as shown in Figure 2.
In type B, for example, the power transmitting and receiving coils are arranged so that the direction of the magnetic field generated by the first power transmitting coil 10 and the direction of the magnetic field generated by the second power transmitting coil 13 are in phase, and the direction of the magnetic field generated by the first power receiving coil 11 and the direction of the magnetic field generated by the second power receiving coil 12 are in opposite phase. When the power transmitting and receiving coils are arranged in this manner, power is not transmitted to the power receiving circuit 3.
In Type C, for example, the power transmitting and receiving coils are arranged so that the direction of the magnetic field generated by the first power transmitting coil 10 and the direction of the magnetic field generated by the second power transmitting coil 13 are in opposite phase, and the direction of the magnetic field generated by the first power receiving coil 11 and the direction of the magnetic field generated by the second power receiving coil 12 are in phase. When the power transmitting and receiving coils are arranged in this manner, power is not transmitted to the power receiving circuit 3.

非接触給電回路1は、送電回路2から受電回路3へ電力を伝送するため、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13を、タイプAまたはタイプDのように(磁界配位を設定して)配置させることが必須になる。
以下、タイプAのように配置された第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13をタイプAの送受電コイルと記載し、タイプDのように配置された第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13をタイプDの送受電コイルと記載する。
In order for the contactless power supply circuit 1 to transmit power from the power transmission circuit 2 to the power receiving circuit 3, it is necessary to arrange the first power transmission coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmission coil 13 as type A or type D (by setting the magnetic field configuration).
Hereinafter, the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 arranged as Type A will be referred to as a type A power transmitting and receiving coil, and the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 arranged as Type D will be referred to as a type D power transmitting and receiving coil.

図3は、1対の送電コイル20および受電コイル21が発生させる磁力線100を示す説明図である。以下、図3のように1対の送電コイル20および受電コイル21を対向させた送受電コイルを、従来型の送受電コイルと記載する。
図3の送電コイル20および受電コイル21は、各コイル(コイル中心)に生じる磁界の向きが、図中、z軸方向に沿って生じるように配置構成(同相の磁界が生じるように構成)されている。
ここで例示する従来型の送受電コイルは、図中、z軸の上側(y軸方向の上側)において左回りの磁力線100が生じる。
なお、図3、および、後述する図4、図5に図示したz軸は、各コイルの中心を貫通する中心軸であり、y軸は、各コイルの径方向を示す。
図3~図5に示した各コイルの周囲に、実際に生じる磁界(磁力線)は、図示した環状の各磁力線の一部が各コイルの中心を貫通し、各コイルが配置された空間において、z軸を中心に環状の磁力線を回転させたように生じる。
Fig. 3 is an explanatory diagram showing magnetic field lines 100 generated by a pair of the power transmitting coil 20 and the power receiving coil 21. Hereinafter, the power transmitting and receiving coils in which the pair of the power transmitting coil 20 and the power receiving coil 21 face each other as shown in Fig. 3 will be referred to as a conventional power transmitting and receiving coil.
The power transmitting coil 20 and the power receiving coil 21 in FIG. 3 are arranged so that the magnetic field generated in each coil (at the center of the coil) is oriented along the z-axis direction in the figure (so that magnetic fields of the same phase are generated).
In the conventional power transmitting and receiving coil illustrated here, counterclockwise magnetic field lines 100 are generated above the z-axis (above the y-axis) in the figure.
In addition, the z-axis shown in FIG. 3 and in FIGS. 4 and 5 described below is a central axis passing through the center of each coil, and the y-axis indicates the radial direction of each coil.
The magnetic field (magnetic lines of force) that is actually generated around each coil shown in Figures 3 to 5 is generated as if a portion of each of the illustrated circular magnetic lines of force passes through the center of each coil, and the circular magnetic lines of force are rotated around the z-axis in the space in which each coil is located.

図4は、図2のタイプAの送受電コイルが発生させる磁力線を示す説明図である。タイプAのように、各送受電コイルに同相の磁界が生じる構成では、電力を伝送させる際に、例えば、図中、z軸の上側において、第1送電コイル10と第1受電コイル11との間に、左回りの磁力線101が生じる。また、第2受電コイル12と第2送電コイル13との間に、左回りの磁力線102が生じる。
なお、磁力線101は、第1送電コイル10および第1受電コイル11の近傍の磁力線(以下、各コイルの近傍に生じる磁力線をアンテナ近傍の磁力線と記載する)であり、磁力線102は、第2受電コイル12および第2送電コイル13のアンテナ近傍の磁力線である。
Fig. 4 is an explanatory diagram showing magnetic field lines generated by the power transmitting and receiving coils of Type A in Fig. 2. In a configuration in which the power transmitting and receiving coils generate magnetic fields of the same phase as in Type A, when transmitting power, for example, counterclockwise magnetic field lines 101 are generated between the first power transmitting coil 10 and the first power receiving coil 11 above the z-axis in the figure. Also, counterclockwise magnetic field lines 102 are generated between the second power receiving coil 12 and the second power transmitting coil 13.
Note that magnetic field lines 101 are magnetic field lines in the vicinity of the first transmitting coil 10 and the first receiving coil 11 (hereinafter, the magnetic field lines generated in the vicinity of each coil will be referred to as magnetic field lines in the vicinity of the antenna), and magnetic field lines 102 are magnetic field lines in the vicinity of the antenna of the second receiving coil 12 and the second transmitting coil 13.

上記のように、電力を伝送させる際に、各送受電コイル間に生じる磁力線は、それぞれのコイルから離れた位置においても存在する。第1送電コイル10と第1受電コイル11との間に生じる磁力線は、当該第1送電コイル10および第1受電コイル11から離れた位置においては磁力線103のように存在する。
第1送電コイル10から第1受電コイル11へ電力を伝送することによって生じる磁力線103は、例えば、第2受電コイル12、第2送電コイル13の設置位置(その周囲)に至る。磁力線103は、第1送電コイル10から第1受電コイル11へ伝送する電力を強くすると、さらに第2受電コイル12、第2送電コイル13を超えて存在する。
磁力線101および磁力線103は、第1送電コイル10から第1受電コイル11へ電力を伝送する際に生じることから、同一方向へ作用し、例えば、図4に示したように、z軸の上側において左回りに生じる。
As described above, when transmitting power, magnetic field lines generated between the power transmitting and receiving coils exist even at positions away from the respective coils. Magnetic field lines generated between the first power transmitting coil 10 and the first power receiving coil 11 exist as magnetic field lines 103 at positions away from the first power transmitting coil 10 and the first power receiving coil 11.
Magnetic field lines 103 generated by transmitting power from the first power transmitting coil 10 to the first power receiving coil 11 reach, for example, the installation positions (surroundings) of the second power receiving coil 12 and the second power transmitting coil 13. When the power transmitted from the first power transmitting coil 10 to the first power receiving coil 11 is strengthened, the magnetic field lines 103 are present beyond the second power receiving coil 12 and the second power transmitting coil 13.
Since magnetic field lines 101 and 103 are generated when power is transmitted from first power transmitting coil 10 to first power receiving coil 11, they act in the same direction, for example, they are generated counterclockwise above the z-axis as shown in FIG. 4 .

また、第2受電コイル12と第2送電コイル13との間に生じる磁力線は、当該第2受電コイル12および第2送電コイル13から離れた位置においては、磁力線104のように存在する。
第2送電コイル13から第2受電コイル12へ電力を伝送することによって生じる磁力線104は、例えば、第1受電コイル11、第1送電コイル10の設置位置(その周囲)に至る。磁力線104は、第2送電コイル13から第2受電コイル12へ伝送する電力を強くすると、さらに第1受電コイル11、第1送電コイル10を超えて存在する。
磁力線102および磁力線104は、第2送電コイル13から第2受電コイル12へ電力を伝送する際に生じることから、同一方向へ作用し、例えば、図4に示したように、z軸の上側において左回りに生じる。
即ち、磁力線103と磁力線104とは、同一方向に作用する磁力線であり、磁力を強め合うことになる。
Furthermore, the magnetic field lines generated between the second power receiving coil 12 and the second power transmitting coil 13 exist as magnetic field lines 104 at positions away from the second power receiving coil 12 and the second power transmitting coil 13 .
Magnetic field lines 104 generated by transmitting power from the second power transmitting coil 13 to the second power receiving coil 12 reach, for example, the installation positions (surroundings) of the first power receiving coil 11 and the first power transmitting coil 10. When the power transmitted from the second power transmitting coil 13 to the second power receiving coil 12 is strengthened, the magnetic field lines 104 are present beyond the first power receiving coil 11 and the first power transmitting coil 10.
Since the magnetic field lines 102 and 104 are generated when power is transmitted from the second power transmitting coil 13 to the second power receiving coil 12, they act in the same direction, for example, they are generated counterclockwise above the z-axis as shown in FIG. 4 .
That is, the magnetic field lines 103 and 104 act in the same direction and strengthen each other's magnetic forces.

図5は、図2のタイプDの送受電コイルが発生させる磁力線を示す説明図である。タイプDのように各コイルを配置すると、一の対を形成する第1送電コイル10および第1受電コイル11において電力を伝送するときに第1の磁界が生じ、他の対を形成する第2送電コイル13および第2受電コイル12において電力を伝送するときに、第1の磁界に対して逆相の第2の磁界が生じる。
詳しくは、タイプDの送受電コイルは、電力を伝送させる際に、例えば、第1送電コイル10と第1受電コイル11との間に、図中、z軸の上側において左回りの磁力線101が生じる。また、第2受電コイル12と第2送電コイル13との間に、右回りの磁力線105が生じる。なお、磁力線101は、第1送電コイル10および第1受電コイル11のアンテナ近傍の磁力線であり、磁力線105は、第2送電コイル13および第2受電コイル12のアンテナ近傍の磁力線である。
Fig. 5 is an explanatory diagram showing magnetic field lines generated by the power transmitting and receiving coils of type D in Fig. 2. When the coils are arranged as in type D, a first magnetic field is generated when power is transmitted between the first power transmitting coil 10 and the first power receiving coil 11 that form one pair, and a second magnetic field that is in phase opposite to the first magnetic field is generated when power is transmitted between the second power transmitting coil 13 and the second power receiving coil 12 that form another pair.
In detail, when transmitting power, the type D power transmitting and receiving coil generates, for example, counterclockwise magnetic field lines 101 above the z-axis in the figure between the first power transmitting coil 10 and the first power receiving coil 11. Also, clockwise magnetic field lines 105 are generated between the second power receiving coil 12 and the second power transmitting coil 13. Note that the magnetic field lines 101 are magnetic field lines in the vicinity of the antennas of the first power transmitting coil 10 and the first power receiving coil 11, and the magnetic field lines 105 are magnetic field lines in the vicinity of the antennas of the second power transmitting coil 13 and the second power receiving coil 12.

上記のように、電力を伝送させる際に、各送受電コイルの間に生じる磁力線は、それぞれのコイルから離れた位置においても存在する。第1送電コイル10と第1受電コイル11との間に生じる磁力線は、当該第1送電コイル10および第1受電コイル11から離れた位置においては磁力線106のように存在する。
第1送電コイル10から第1受電コイル11へ電力を伝送することによって生じる磁力線106は、例えば、第2受電コイル12、第2送電コイル13の設置位置(その周辺)に至る。磁力線106は、第1送電コイル10から第1受電コイル11へ伝送する電力を強くすると、さらに第2受電コイル12、第2送電コイル13を超えて存在する。
磁力線101および磁力線106は、第1送電コイル10から第1受電コイル11へ電力を伝送する際に生じることから、同一方向へ作用し、例えば、図5に示したように、z軸の上側において左回りに生じる。
As described above, when transmitting power, magnetic field lines generated between the power transmitting and receiving coils exist even at positions away from the respective coils. Magnetic field lines generated between the first power transmitting coil 10 and the first power receiving coil 11 exist as magnetic field lines 106 at positions away from the first power transmitting coil 10 and the first power receiving coil 11.
Magnetic field lines 106 generated by transmitting power from the first power transmitting coil 10 to the first power receiving coil 11 reach, for example, the installation positions (the vicinity thereof) of the second power receiving coil 12 and the second power transmitting coil 13. When the power transmitted from the first power transmitting coil 10 to the first power receiving coil 11 is strengthened, the magnetic field lines 106 are present beyond the second power receiving coil 12 and the second power transmitting coil 13.
Since the magnetic field lines 101 and 106 are generated when power is transmitted from the first power transmitting coil 10 to the first power receiving coil 11, they act in the same direction, for example, they are generated counterclockwise above the z-axis as shown in FIG. 5 .

また、第2受電コイル12と第2送電コイル13との間において生じる磁力線は、当該第2受電コイル12および第2送電コイル13から離れた位置においては、磁力線107のようになる。
第2送電コイル13から第2受電コイル12へ電力を伝送することによって生じる磁力線107は、例えば、第1受電コイル11、第1送電コイル10の設置位置(その周辺)に至る。磁力線107は、第2送電コイル13から第2受電コイル12へ伝送する電力を強くすると、さらに第1受電コイル11、第1送電コイル10を超えて存在する。
磁力線105および磁力線107は、第2送電コイル13から第2受電コイル12へ電力を伝送する際に生じることから、同一方向へ作用し、例えば、図5に示したように、z軸の上側において右回りに生じる。
即ち、磁力線106と磁力線107とは、互いに逆方向に作用するものとなり、磁力を打ち消し合うことになる。
Furthermore, the magnetic field lines generated between the second power receiving coil 12 and the second power transmitting coil 13 become like magnetic field lines 107 at a position away from the second power receiving coil 12 and the second power transmitting coil 13 .
Magnetic field lines 107 generated by transmitting power from the second power transmitting coil 13 to the second power receiving coil 12 reach, for example, the installation positions (the vicinity thereof) of the first power receiving coil 11 and the first power transmitting coil 10. When the power transmitted from the second power transmitting coil 13 to the second power receiving coil 12 is strengthened, the magnetic field lines 107 are present beyond the first power receiving coil 11 and the first power transmitting coil 10.
Since magnetic field lines 105 and 107 are generated when power is transmitted from second power transmitting coil 13 to second power receiving coil 12, they act in the same direction, for example, they are generated clockwise above the z-axis as shown in FIG. 5 .
That is, the magnetic field lines 106 and 107 act in opposite directions, and the magnetic forces cancel each other out.

本開示の非接触給電構造は、タイプDのように各送受電コイルを配置し、これらのコイルから離れた位置において磁力線106および磁力線107が打ち消し合うように(磁界および誘導電界を減少させるように)構成したものである。
タイプDのように、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13を配置するとき、例えば、各コイル中心をz軸上に揃えると、第1送電コイル10と第1受電コイル11との間に生じるアンテナ近傍の磁力線101の強さを維持(電力を高い効率で伝送)させて、これらのコイルから離れた位置の磁力線106(漏えいする磁力線)の強さを減少させることができる。即ち、第1送電コイル10から第1受電コイル11へ電力を伝送させる効率の劣化を抑えて、これらのコイルから離れた位置の不要な磁力線106(漏えいする磁力線)を減少させることができる。
また、上記のように各コイル中心を揃えることにより、第2送電コイル13と第2受電コイル12との間に生じるアンテナ近傍の磁力線105の強さを維持(電力を高い効率で伝送)させて、これらのコイルから離れた位置の磁力線107(漏えいする磁力線)の強さを減少させることができる。即ち、第2送電コイル13から第2受電コイル12へ電力を伝送させる効率の劣化を抑えて、これらのコイルから離れた位置の不要な磁力線107(漏えいする磁力線)を減少させることができる。
The non-contact power supply structure disclosed herein is configured such that the transmitting and receiving coils are arranged as in Type D, and the magnetic field lines 106 and 107 cancel each other out (so as to reduce the magnetic field and induced electric field) at a position away from these coils.
When arranging the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 as in Type D, for example, aligning the centers of the coils on the z-axis makes it possible to maintain the strength of the magnetic field lines 101 generated between the first power transmitting coil 10 and the first power receiving coil 11 near the antenna (transmitting power with high efficiency) and reduce the strength of the magnetic field lines 106 (leaking magnetic field lines) at positions away from these coils. In other words, it is possible to suppress deterioration in the efficiency of transmitting power from the first power transmitting coil 10 to the first power receiving coil 11 and reduce unnecessary magnetic field lines 106 (leaking magnetic field lines) at positions away from these coils.
Furthermore, by aligning the centers of the coils as described above, it is possible to maintain the strength of the magnetic field lines 105 generated between the second power transmitting coil 13 and the second power receiving coil 12 near the antenna (transmitting power with high efficiency), and reduce the strength of the magnetic field lines 107 (leaking magnetic field lines) at positions away from these coils. In other words, it is possible to suppress deterioration in the efficiency of transmitting power from the second power transmitting coil 13 to the second power receiving coil 12, and reduce unnecessary magnetic field lines 107 (leaking magnetic field lines) at positions away from these coils.

具体的には、非接触給電回路1、もしくは送電回路2は、例えば、電源14から第1送電コイル10に流れる電流の向きと、電源14から第2送電コイル13に流れる電流の向きが逆になるように、第1送電コイル10ならびに第2送電コイル13が回路接続されている。
また、上記のように第1送電コイル10ならびに第2送電コイル13にそれぞれ電流が流れたとき、第1送電コイル10から第1受電コイル11へ電力の伝送を行うときに生じる磁界(磁力線101、磁力線106)に対して、第2送電コイル13から第2受電コイル12へ電力の伝送を行うときに生じる磁界(磁力線105、磁力線107)が逆向きとなるように、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13の各極性を定めて、各送受電コイルが回路接続されている。
Specifically, in the non-contact power supply circuit 1 or the power transmission circuit 2, the first power transmission coil 10 and the second power transmission coil 13 are connected in a circuit such that, for example, the direction of the current flowing from the power source 14 to the first power transmission coil 10 is opposite to the direction of the current flowing from the power source 14 to the second power transmission coil 13.
In addition, when current flows through the first power transmission coil 10 and the second power transmission coil 13 as described above, the polarities of the first power transmission coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmission coil 13 are determined so that the magnetic field (magnetic field lines 105, 107) generated when power is transmitted from the second power transmission coil 13 to the second power receiving coil 12 is opposite to the magnetic field (magnetic field lines 101, 106) generated when power is transmitted from the first power transmission coil 10 to the first power receiving coil 11, and each power transmission and receiving coil is connected in a circuit.

第1送電コイル10へ流れる電流の大きさは、磁力線106が、磁力線107を打ち消すことができる強さとなるものである。この第1送電コイル10に流れる電流は、当該第1送電コイル10のコイルの構造に応じた値を有する。
また、第2送電コイル13に流れる電流の大きさは、磁力線107が、磁力線106を打ち消すことができる強さとなるものである。この第2送電コイル13に流れる電流は、当該第2送電コイル13のコイルの構造に応じた値を有する。即ち、第1送電コイル10および第2送電コイル13が同様なコイルの構造を有する場合には、それぞれのコイルに流れる電流は同様な値を有するものとなる。
なお、上記のコイルの構造は、前述の漏えいした磁力線を打ち消す作用を大きくするための構造であり、例えば、上記の作用が大きくなるサイズでコイルを構成し、また、上記の作用が大きくなるようにコイル厚みを薄く構成した構造である。一例として、第1送電コイル10と第1受電コイル11、および、第2受電コイル12と第2送電コイル13は、いずれも同じ直径に形成され、十分に上記の作用が生じるように構成されている構造である。
また、第1送電コイル10ならびに第2送電コイル13に流れる各電流は、いずれも送電回路2を介して電源14から供給されるものである。
The magnitude of the current flowing through the first power transmitting coil 10 is set to a strength that allows the magnetic field lines 106 to cancel out the magnetic field lines 107. The current flowing through the first power transmitting coil 10 has a value that corresponds to the coil structure of the first power transmitting coil 10.
Moreover, the magnitude of the current flowing through the second power transmitting coil 13 is such that the magnetic field lines 107 can cancel out the magnetic field lines 106. The current flowing through the second power transmitting coil 13 has a value according to the coil structure of the second power transmitting coil 13. That is, when the first power transmitting coil 10 and the second power transmitting coil 13 have similar coil structures, the current flowing through each coil has a similar value.
The coil structure described above is a structure for enhancing the effect of canceling the leaked magnetic field lines described above, and is, for example, a structure in which the coil is configured to have a size that enhances the above effect and is configured to be thin so as to enhance the above effect. As an example, the first power transmitting coil 10 and the first power receiving coil 11, and the second power receiving coil 12 and the second power transmitting coil 13 are all formed to have the same diameter, and are configured to fully generate the above effect.
The currents flowing through the first power transmitting coil 10 and the second power transmitting coil 13 are both supplied from a power source 14 via a power transmitting circuit 2 .

次に送受電コイルの各配置タイプにおける、コイルから離れた位置の磁界強度の解析(比較)結果を説明する。
図6は、解析を行った従来型の送受電コイルの配置を示す説明図、図7は、解析を行ったタイプAの送受電コイルの配置を示す説明図、図8は、解析を行ったタイプDの送受電コイルの配置を示す説明図である。
図6に示した送電コイル20と受電コイル21との間の距離d1は、5[cm]である。
また、図7および図8に示した第1送電コイル10と第1受電コイル11との間の距離d1は5[cm]である。図7および図8に示した第1受電コイル11と第2受電コイル12との間の距離d2は8[cm]であり、第1送電コイル10と第2送電コイル13との間の距離d3は、18[cm]である。
即ち、図7および図8に示した第2受電コイル12と第2送電コイル13との間の距離は5[cm]であり、第1送電コイル10と第1受電コイル11との間の距離d1と同様である。
Next, the results of an analysis (comparison) of the magnetic field strength at a position away from the coil for each type of arrangement of the power transmitting and receiving coils will be described.
Figure 6 is an explanatory diagram showing the arrangement of conventional transmitting and receiving coils for which analysis was performed, Figure 7 is an explanatory diagram showing the arrangement of type A transmitting and receiving coils for which analysis was performed, and Figure 8 is an explanatory diagram showing the arrangement of type D transmitting and receiving coils for which analysis was performed.
The distance d1 between the power transmitting coil 20 and the power receiving coil 21 shown in FIG. 6 is 5 cm.
7 and 8, the distance d1 between the first power transmitting coil 10 and the first power receiving coil 11 is 5 cm. The distance d2 between the first power receiving coil 11 and the second power receiving coil 12 is 8 cm, and the distance d3 between the first power transmitting coil 10 and the second power transmitting coil 13 is 18 cm.
That is, the distance between the second power receiving coil 12 and the second power transmitting coil 13 shown in Figures 7 and 8 is 5 cm, which is the same as the distance d1 between the first power transmitting coil 10 and the first power receiving coil 11.

上記のように各コイルの間隔を設定して、従来型、タイプAおよびタイプDの各配置について、コイルから離れた位置の磁界強度を算出した。この算出においては、電源の発振周波数を85[kHz]と設定して磁界強度を求めた。また、図6~図8に示した各配置において、コイルから離れた位置の磁界強度を求める際には、受電回路3の受電電力が500[W]となるように、それぞれ送電回路2の出力を調整(設定)して上記の算出を行った。
なお、実際に非接触給電回路1を構成する場合においても、送電回路2の出力調整を行い、即ち、第1送電コイル10に流れる電流(電源14から供給される電力)と、第2送電コイル13に流れる電流(電源14から供給される電力)とを、それぞれ適当な大きさに調整して、第1送電コイル10から第1受電コイル11へ電力を伝送するときに生じる磁界の強さと、第2送電コイル13から第2受電コイル12へ電力を伝送するときに生じる磁界の強さとを調整し、コイルから離れた位置において、磁力線106と磁力線107と(漏えいする磁力線)が打ち消し合うことができるように構成するとよい。
The interval between each coil was set as described above, and the magnetic field strength at a position away from the coil was calculated for each of the conventional, type A, and type D arrangements. In this calculation, the oscillation frequency of the power supply was set to 85 [kHz] to obtain the magnetic field strength. In addition, when obtaining the magnetic field strength at a position away from the coil in each of the arrangements shown in Figures 6 to 8, the output of the power transmitting circuit 2 was adjusted (set) so that the receiving power of the power receiving circuit 3 was 500 [W], and the above calculation was performed.
In addition, even when actually constructing the contactless power supply circuit 1, the output of the power transmission circuit 2 can be adjusted, that is, the current flowing through the first power transmission coil 10 (power supplied from the power source 14) and the current flowing through the second power transmission coil 13 (power supplied from the power source 14) can be adjusted to appropriate magnitudes, respectively, to adjust the strength of the magnetic field generated when power is transmitted from the first power transmission coil 10 to the first power receiving coil 11 and the strength of the magnetic field generated when power is transmitted from the second power transmission coil 13 to the second power receiving coil 12, so that the magnetic field lines 106 and 107 (leaking magnetic field lines) can cancel each other out at a position away from the coils.

図9は、従来型、タイプAおよびタイプDの各送受電コイルによって生じる、コイルから離れた位置の磁界強度の解析結果を示す説明図である。この図は、横軸が図3~図8に示したy軸方向の(各送受電コイルから離れた)距離を表し、縦軸が各距離における磁界強度を表している。なお、図9においては、距離がY、磁界強度がHと表記されている。
図9に実線で示した特性は、タイプAの送受電コイルが発生する磁界強度の距離特性である。また、図9に一転鎖線で示した特性は、タイプDの送受電コイルが発生する磁界強度の距離特性である。また、図9に破線で示した特性は、従来型の送受電コイルが発生する磁界強度の距離特性である。
また、図9の円で囲われた部分は、コイルから離れた位置と定めた概ねの範囲を表している。
Fig. 9 is an explanatory diagram showing the analysis results of the magnetic field strength at a position away from the coils, which is generated by each of the conventional, type A, and type D power transmitting and receiving coils. In this diagram, the horizontal axis represents the distance (away from each power transmitting and receiving coil) in the y-axis direction shown in Figs. 3 to 8, and the vertical axis represents the magnetic field strength at each distance. In Fig. 9, the distance is represented as Y, and the magnetic field strength is represented as H.
The characteristics shown by the solid line in Fig. 9 are the distance characteristics of the magnetic field strength generated by the power transmitting and receiving coil of Type A. The characteristics shown by the alternate long and short dashed lines in Fig. 9 are the distance characteristics of the magnetic field strength generated by the power transmitting and receiving coil of Type D. The characteristics shown by the dashed lines in Fig. 9 are the distance characteristics of the magnetic field strength generated by conventional power transmitting and receiving coils.
Moreover, the circled area in FIG. 9 indicates the approximate range defined as the position away from the coil.

図9に示した各特性を比較すると、タイプAの特性は、コイルから離れた位置において従来型の特性と概ね同様な程度で変化(減少)し、距離に応じて(各送受電コイルから遠くなるほど)、概ね一定の割合で磁界強度が減少することがわかる。
また、タイプDの特性は、コイルから離れた位置において、タイプA等に比べて磁化強度が大きく減少することがわかる。
Comparing the characteristics shown in Figure 9, it can be seen that the characteristics of Type A change (decrease) to a similar extent to the conventional characteristics at positions away from the coil, and that the magnetic field strength decreases at a roughly constant rate depending on the distance (the farther away from each transmitting and receiving coil).
Also, it can be seen that the characteristics of type D show a large decrease in magnetization strength at positions away from the coil compared to types A and the like.

タイプDは、前述のように図5に示した磁力線106および磁力線107が、互いに打ち消し合う。即ち、タイプDのように各送受電コイルを配置すると、コイルから離れた位置において逆向きの磁界同士が打ち消し合うため、各送受電コイルから充分離れた位置では、磁界強度が急峻に減少する。このような作用は、図9を用いて説明した各特性の解析(比較)結果と整合する。
各送受電コイルをタイプDのように配置すると、例えば、EMC設計を行う際に優位になることがわかる。
In type D, as described above, magnetic field lines 106 and 107 shown in Fig. 5 cancel each other out. That is, when the power transmitting and receiving coils are arranged as in type D, the magnetic fields of opposite directions cancel each other out at positions away from the coils, so that the magnetic field strength decreases sharply at positions sufficiently away from the power transmitting and receiving coils. This action is consistent with the analysis (comparison) results of each characteristic described with reference to Fig. 9.
It can be seen that arranging the transmitting and receiving coils as in Type D is advantageous, for example, when performing EMC design.

次に送受電コイルの各配置タイプにおける体内誘導電界強度の解析(比較)結果を説明する。
図10は、体内誘導電界強度を解析するときに想定した状態を示す説明図である。この図は、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13(または、図示されない送電コイル20および受電コイル21)を人の脚部200に近付けた状態を示している。
Next, the results of analysis (comparison) of the induced electric field strength within the body for each type of arrangement of the power transmitting and receiving coils will be described.
10 is an explanatory diagram showing a state assumed when analyzing the induced electric field strength inside the body. This diagram shows a state in which the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 (or the power transmitting coil 20 and the power receiving coil 21, not shown) are brought close to a person's leg 200.

体内誘導電界の解析を行うとき、図10に示したように、人の脚部200から水平方向の距離がd4の位置に、例えば、第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13が、タイプAまたはタイプDのように配置されていると想定した。またさらに、タイプAまたはタイプDのように配置された4つの送受電コイルに替えて、従来型の送受電コイル(図示されない送電コイル20および受電コイル21)が配置されていると想定した。
また、これらの送受電コイルは、床または地面からの高さがd5の位置に設置されていると想定した。
具体的には、例えば、距離d4は7[cm]、高さd5は33[cm]と想定して解析を行った。
When analyzing the induced electric field in the body, it was assumed that, for example, the first power transmitting coil 10, the first power receiving coil 11, the second power receiving coil 12, and the second power transmitting coil 13 were arranged as in Type A or Type D at a position horizontally distant from the person's leg 200 by a distance of d4 as shown in Fig. 10. Furthermore, it was assumed that, instead of the four power transmitting and receiving coils arranged as in Type A or Type D, conventional power transmitting and receiving coils (power transmitting coil 20 and power receiving coil 21, not shown) were arranged.
It was also assumed that these transmitting and receiving coils were installed at a height of d5 from the floor or ground.
Specifically, for example, the analysis was performed assuming that the distance d4 was 7 [cm] and the height d5 was 33 [cm].

図11は、人体300,301に生じる体内誘導電界強度の解析結果を示す説明図である。この図は、人体を縦方向(身長方向)にスライスした面における体内誘導電界の強度分布を表している。
人体300は、図示されない従来型に配置された送電コイル20および受電コイル21(1対の送受電コイル)を脚部200に近付けている。
人体301は、図示されないタイプDのように配置された第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13を脚部200に近付けている。
11 is an explanatory diagram showing the analysis results of the internal induced electric field strength generated in human bodies 300 and 301. This diagram shows the strength distribution of the internal induced electric field on a plane obtained by slicing the human body in the vertical direction (height direction).
The human body 300 has a power transmitting coil 20 and a power receiving coil 21 (a pair of power transmitting and receiving coils) arranged in a conventional manner (not shown) close to the leg 200 .
The human body 301 has the first power transmitting coil 10 , the first power receiving coil 11 , the second power receiving coil 12 , and the second power transmitting coil 13 arranged as in a type D configuration (not shown) close to the leg 200 .

人体300と人体301とを比較すると、それぞれの脚部200における体内誘導電界強度は、人体301の方が明らかに弱いことがわかる。
なお、タイプAの送受電コイルを人体に近付けた場合は、概ね従来型の送受電コイルを人体300に近付けた場合と同様な解析結果が得られる。ここでは、タイプAの送受電コイルについて、体内誘導電界強度に関する解析結果等の説明を省略する。
Comparing the human body 300 and the human body 301, it is found that the internal induced electric field strength in each leg 200 is clearly weaker in the human body 301.
When the type A power transmitting and receiving coil is brought close to the human body, analysis results are obtained that are generally similar to those when a conventional power transmitting and receiving coil is brought close to the human body 300. Here, a description of the analysis results regarding the induced electric field strength within the body for the type A power transmitting and receiving coil is omitted.

図12は、解析によって得られた体内誘導電界強度の値を示す説明図である。この図は、横軸が体内誘導電界強度の値を表し、縦軸が体内誘導電界強度の各値になる体内の範囲(電界強度が同一値になる範囲の大きさ)を表すヒストグラムである。
図12には、従来型の送受電コイルを人体に近付けた場合の体内誘導電界強度と、タイプDの送受電コイルを人体に近付けた場合の体内誘導電界強度とを示している。
なお、タイプAの送受電コイルを人体に近付けた場合の体内誘導電界強度は、従来型の送受電コイルを人体に近付けた場合と概ね同様になる。ここでは、タイプAの送受電コイルを人体に近付けた場合の体内誘導電界強度について、図示ならびに説明を省略する。
12 is an explanatory diagram showing values of the induced electric field strength in the body obtained by analysis. This diagram is a histogram in which the horizontal axis represents the value of the induced electric field strength in the body, and the vertical axis represents the range within the body where each value of the induced electric field strength in the body is reached (the size of the range where the electric field strength is the same value).
FIG. 12 shows the electric field strength induced inside the body when a conventional power transmitting and receiving coil is brought close to the human body, and the electric field strength induced inside the body when a type D power transmitting and receiving coil is brought close to the human body.
The strength of the electric field induced inside the body when the type A power transmitting and receiving coil is brought close to the human body is roughly the same as when a conventional power transmitting and receiving coil is brought close to the human body. Here, illustrations and descriptions of the strength of the electric field induced inside the body when the type A power transmitting and receiving coil is brought close to the human body are omitted.

図12のヒストグラムから、従来型の送受電コイルを人体に近付けた場合の体内誘導電界強度の平均値が86.5[dBμV/m]であることがわかり、また、タイプDの送受電コイルを人体に近付けた場合の体内誘導電界強度の平均値が79.1[dBμV/m]であることがわかる。
即ち、タイプDの送受電コイルは、従来型の送受電コイルに比べて、体内誘導電界強度が6[dB]以上小さくなり、人体に与える影響を抑えることができる。
From the histogram in Figure 12, it can be seen that the average value of the induced electric field strength inside the body when a conventional transmitting and receiving coil is brought close to the human body is 86.5 [dBμV/m], and that the average value of the induced electric field strength inside the body when a type D transmitting and receiving coil is brought close to the human body is 79.1 [dBμV/m].
That is, the type D power transmitting and receiving coil has an induced electric field strength that is 6 dB or more smaller inside the body than conventional power transmitting and receiving coils, and the effects on the human body can be reduced.

タイプAおよびタイプDの各送受電コイルを動作させた(電力の伝送が行われている)とき、例えば、10[m]離れた位置における漏えい磁界強度を測定したところ、次のような結果が得られた。
なお、漏えい磁界強度の検知にループアンテナを用い、直線状に並んでいる各送受電コイルに対して、ループ部分が対向する状態、ループ部分が直交する状態、および、ループ部分が水平になる状態において、それぞれ磁界強度の測定を行った。
When the type A and type D transmitting and receiving coils were operated (power was being transmitted), the leakage magnetic field strength was measured at a distance of, for example, 10 m, and the following results were obtained.
A loop antenna was used to detect the leakage magnetic field strength, and the magnetic field strength was measured when the loop portions of each transmitting and receiving coil arranged in a straight line faced each other, when the loop portions were perpendicular, and when the loop portions were horizontal.

(1)各受電コイル(第1受電コイル11、第2受電コイル12)の受電電力が2.5[W]となるように、各送電コイル(第1送電コイル10、第2送電コイル13)に電力(発振周波数85kHz)を供給すると、ループアンテナを対向する状態とした場合には、タイプAの漏えい磁界強度が35.1[dBμA/m]、タイプDの漏えい磁界強度が14.1[dBμA/m]となった。
また、ループアンテナを直交する状態とした場合には、タイプAの漏えい磁界強度が31.5[dBμA/m]、タイプDの漏えい磁界強度が9.1[dBμA/m]となった。
また、ループアンテナを水平状態とした場合には、タイプAの漏えい磁界強度が21.3[dBμA/m]、タイプDの漏えい磁界強度が0.6[dBμA/m]となった。
以上の各磁界強度は、実測値である。
(1) When power (oscillation frequency 85 kHz) was supplied to each transmitting coil (first transmitting coil 10, second transmitting coil 13) so that the receiving power of each receiving coil (first receiving coil 11, second receiving coil 12) was 2.5 [W], when the loop antennas were opposed to each other, the leakage magnetic field strength of Type A was 35.1 [dBμA/m] and the leakage magnetic field strength of Type D was 14.1 [dBμA/m].
When the loop antennas were arranged to intersect at right angles, the leakage magnetic field strength of type A was 31.5 [dBμA/m], and the leakage magnetic field strength of type D was 9.1 [dBμA/m].
When the loop antenna was in a horizontal position, the leakage magnetic field strength of type A was 21.3 [dBμA/m], and the leakage magnetic field strength of type D was 0.6 [dBμA/m].
The above magnetic field strengths are actual measured values.

(2)各受電コイル(第1受電コイル11、第2受電コイル12)の受電電力が500[W]となる場合(各送電コイルに発振周波数85kHzの電力が供給されるとき)の漏えい磁界強度を、換算によって求めると、ループアンテナを対向する状態とした場合には、タイプAの漏えい磁界強度が58.1[dBμA/m]、タイプDの漏えい磁界強度が37.1[dBμA/m]となった。
また、ループアンテナを直交する状態とした場合には、タイプAの漏えい磁界強度が54.5[dBμA/m]、タイプDの漏えい磁界強度が32.1[dBμA/m]となった。
また、ループアンテナを水平状態とした場合には、タイプAの漏えい磁界強度が44.3[dBμA/m]、タイプDの漏えい磁界強度が23.6[dBμA/m]となった。
(2) When the leakage magnetic field strength was calculated by conversion when the receiving power of each receiving coil (first receiving coil 11, second receiving coil 12) was 500 [W] (when power with an oscillation frequency of 85 kHz was supplied to each transmitting coil), when the loop antennas were opposed to each other, the leakage magnetic field strength of Type A was 58.1 [dBμA/m] and the leakage magnetic field strength of Type D was 37.1 [dBμA/m].
When the loop antennas were arranged to intersect at right angles, the leakage magnetic field strength of type A was 54.5 [dBμA/m], and the leakage magnetic field strength of type D was 32.1 [dBμA/m].
When the loop antenna was in a horizontal position, the leakage magnetic field strength of type A was 44.3 [dBμA/m], and the leakage magnetic field strength of type D was 23.6 [dBμA/m].

上記の(1)および(2)の測定において得られた漏えい磁界強度は、いずれも電波法において許容される(発振周波数85kHzにおいて)68.4[dBμA/m]を下回っている。
特に、500[W]の電力伝送時には、タイプAに比べてタイプDは漏えい磁界強度が相当小さくなることがわかる。
タイプDの配置構成は、漏えい磁界強度を小さくすることが可能で、特に、大電力を伝送する場合に漏えい磁界強度を有効に抑制することができる。
The leakage magnetic field strengths obtained in the above measurements (1) and (2) were both below the limit of 68.4 [dBμA/m] (at an oscillation frequency of 85 kHz) permitted by the Radio Law.
In particular, it can be seen that type D has a significantly smaller leakage magnetic field strength than type A when transmitting 500 W of power.
The type D arrangement can reduce the leakage magnetic field strength, and can effectively suppress the leakage magnetic field strength particularly when transmitting high power.

以上のように第1送電コイル10、第1受電コイル11、第2受電コイル12、第2送電コイル13をタイプDのように配置し、コイルから離れた位置において、磁力線106および磁力線107(漏えいする磁力線)が打ち消し合うように構成することにより、コイルから離れた位置の磁界強度が抑制され、上記の各送受電コイルを有する機器等の近くに配置された、他の機器などに対する電磁両立性を向上させることができる。
また、上記の各送受電コイルを有する機器等の近くに人がいる場合、この人に発生する人体誘導電界の強度を抑制することができる。
As described above, by arranging the first transmitting coil 10, the first receiving coil 11, the second receiving coil 12, and the second transmitting coil 13 as Type D and configuring them so that the magnetic field lines 106 and the magnetic field lines 107 (leaking magnetic field lines) cancel each other out at a position away from the coils, the magnetic field strength at a position away from the coils is suppressed, and electromagnetic compatibility with other equipment, etc. placed near the equipment, etc. having each of the above-mentioned transmitting and receiving coils can be improved.
Furthermore, when a person is near a device having the above-mentioned power transmitting and receiving coils, the strength of the electric field induced in the human body generated in the person can be suppressed.

1 非接触給電回路
2 送電回路
3 受電回路
10 第1送電コイル
11 第1受電コイル
12 第2受電コイル
13 第2送電コイル
14 電源
15 負荷
20 送電コイル
21 受電コイル
100~107 磁力線
200 脚部
300,301 人体
REFERENCE SIGNS LIST 1 non-contact power supply circuit 2 power transmission circuit 3 power reception circuit 10 first power transmission coil 11 first power reception coil 12 second power reception coil 13 second power transmission coil 14 power source 15 load 20 power transmission coil 21 power reception coil 100 to 107 magnetic field lines 200 leg 300, 301 human body

Claims (3)

送電回路に含まれる第1送電コイルと、
前記送電回路に含まれ、前記第1送電コイルから所定間隔を開けて離間される第2送電コイルと、
受電回路に含まれる第1受電コイルおよび第2受電コイルと、
を備え、
前記第1送電コイルと前記第2送電コイルとの間に、前記第1受電コイルおよび前記第2受電コイルを内挿配置させ、
前記第1送電コイルおよび前記第1受電コイルは、
前記第1送電コイルから前記第1受電コイルへ電力が伝送されるように離間して対向配置され、
前記第2送電コイルおよび前記第2受電コイルは、
前記第2送電コイルから前記第2受電コイルへ電力が伝送されるように離間して対向配置され、
前記第1送電コイルおよび前記第2送電コイルは、
前記第1送電コイルから前記第1受電コイルへ電力が伝送されるときに生じる第1の磁界の漏えいする磁力線と、
前記第2送電コイルから前記第2受電コイルへ電力が伝送されるときに生じる第2の磁界の漏えいする磁力線と、
が打ち消し合うように前記送電回路に備える電源に接続される、
ことを特徴とする非接触給電構造。
a first power transmitting coil included in the power transmitting circuit;
a second power transmitting coil included in the power transmitting circuit and spaced a predetermined distance from the first power transmitting coil;
a first receiving coil and a second receiving coil included in a receiving circuit;
Equipped with
The first power receiving coil and the second power receiving coil are disposed between the first power transmitting coil and the second power transmitting coil,
The first power transmitting coil and the first power receiving coil are
the first power transmitting coil and the first power receiving coil are disposed opposite to each other at a distance so that power can be transmitted from the first power transmitting coil to the first power receiving coil;
The second power transmitting coil and the second power receiving coil are
the second power transmitting coil and the second power receiving coil are disposed opposite to each other at a distance so that power can be transmitted from the second power transmitting coil to the second power receiving coil;
The first power transmitting coil and the second power transmitting coil are
a magnetic field line leaking from a first magnetic field generated when power is transmitted from the first power transmitting coil to the first power receiving coil; and
a leakage magnetic field line of a second magnetic field generated when power is transmitted from the second power transmitting coil to the second power receiving coil; and
are connected to a power source provided in the power transmission circuit so as to cancel each other out.
A non-contact power supply structure characterized by the above.
前記第1送電コイル、第1受電コイル、第2受電コイルおよび第2送電コイルは、
各コイル中心が同一軸線に沿うように配置されている、
ことを特徴とする請求項1に記載の非接触給電構造。
The first power transmitting coil, the first power receiving coil, the second power receiving coil, and the second power transmitting coil are
The coil centers are arranged along the same axis.
The non-contact power supply structure according to claim 1 .
前記第1送電コイルは、
前記第1の磁界の漏えいする磁力線が、前記第2の磁界の漏えいする磁力線を打ち消す強さとなるように、該第1送電コイルの構造に応じた電流を前記電源から供給され、
前記第2送電コイルは、
前記第2の磁界の漏えいする磁力線が、前記第1の磁界の漏えいする磁力線を打ち消す強さとなるように、該第2送電コイルの構造に応じた電流を前記電源から供給される、
ことを特徴とする請求項1または請求項2に記載の非接触給電構造。
The first power transmitting coil is
a current according to a structure of the first power transmitting coil is supplied from the power source so that the leakage magnetic field lines of the first magnetic field have a strength that cancels the leakage magnetic field lines of the second magnetic field;
The second power transmitting coil is
A current according to a structure of the second power transmitting coil is supplied from the power source so that the magnetic field lines leaking from the second magnetic field have a strength that cancels the magnetic field lines leaking from the first magnetic field.
3. The non-contact power supply structure according to claim 1 or 2.
JP2020138711A 2020-08-19 2020-08-19 Non-contact power supply structure Active JP7477841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020138711A JP7477841B2 (en) 2020-08-19 2020-08-19 Non-contact power supply structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020138711A JP7477841B2 (en) 2020-08-19 2020-08-19 Non-contact power supply structure

Publications (2)

Publication Number Publication Date
JP2022034827A JP2022034827A (en) 2022-03-04
JP7477841B2 true JP7477841B2 (en) 2024-05-02

Family

ID=80443117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020138711A Active JP7477841B2 (en) 2020-08-19 2020-08-19 Non-contact power supply structure

Country Status (1)

Country Link
JP (1) JP7477841B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280241A (en) 2001-03-21 2002-09-27 Yazaki Corp Electromagnetic induction type connector
JP2014150698A (en) 2013-02-04 2014-08-21 Sharp Corp Wireless power supply system
JP2015088673A (en) 2013-10-31 2015-05-07 パイオニア株式会社 Coil unit and power transmission system
WO2016135893A1 (en) 2015-02-25 2016-09-01 株式会社 東芝 Control device, power transmission device, power reception device, wireless power transmission device, and control method
US20170358960A1 (en) 2016-06-10 2017-12-14 Qualcomm Incorporated Apparatus and methods for reducing magnetic field emissions between wireless power transmitters
JP2018143067A (en) 2017-02-28 2018-09-13 地方独立行政法人東京都立産業技術研究センター Non-contact power supply structure and parking facility having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280241A (en) 2001-03-21 2002-09-27 Yazaki Corp Electromagnetic induction type connector
JP2014150698A (en) 2013-02-04 2014-08-21 Sharp Corp Wireless power supply system
JP2015088673A (en) 2013-10-31 2015-05-07 パイオニア株式会社 Coil unit and power transmission system
WO2016135893A1 (en) 2015-02-25 2016-09-01 株式会社 東芝 Control device, power transmission device, power reception device, wireless power transmission device, and control method
US20170358960A1 (en) 2016-06-10 2017-12-14 Qualcomm Incorporated Apparatus and methods for reducing magnetic field emissions between wireless power transmitters
JP2018143067A (en) 2017-02-28 2018-09-13 地方独立行政法人東京都立産業技術研究センター Non-contact power supply structure and parking facility having the same

Also Published As

Publication number Publication date
JP2022034827A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
Choi et al. Generalized active EMF cancel methods for wireless electric vehicles
Zhu et al. Field orientation based on current amplitude and phase angle control for wireless power transfer
Lee et al. A modularized IPT with magnetic shielding for a wide-range ubiquitous Wi-power zone
US9793045B2 (en) Contactless power transfer transformer for moving body
US10923966B2 (en) Coil structures for alignment and inductive wireless power transfer
EP2613424A1 (en) Wireless power transmission device
WO2015008662A1 (en) Foreign matter detection device and method for contactless power supply device
JP6009920B2 (en) Non-contact power receiving apparatus and vehicle including the same, non-contact power transmission apparatus, and non-contact power transmission system
JP2011010435A (en) Contactless power supply system and contactless power supply unit
JPWO2014119296A1 (en) Non-contact power transmission device
JP7477841B2 (en) Non-contact power supply structure
Dai et al. Magnetic coupling mechanism with omnidirectional magnetic shielding for wireless power transfer
Namadmalan et al. Self-aligning capability of IPT pads for high-power wireless EV charging stations
JP2012005308A (en) Wireless power transmission system
JP6537071B2 (en) External demagnetization type non-contact power supply device
Kim et al. A coil design and control method of independent active shielding system for leakage magnetic field reduction of wireless UAV charger
US20120228955A1 (en) Transmission coil for wireless power transmission
Li et al. Energy-concentrating optimization based on energy distribution characteristics of MCR WPT systems with SS/PS compensation
Kobuchi et al. Cancellation conditions of magnetic field leakage from inductive power transfer systems
KR102224621B1 (en) Wireless Power Transfer Apparatus with Receiver-Oriented Coupler Structure
Ahn et al. An active shielding control method for a wireless power transfer system under misalignment conditions
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP2013120890A (en) Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus
Liu et al. Investigation of reactive power distribution between two coils of inductive power transfer system by Poynting vector analysis
Mohammad et al. Comparison of leakage magnetic field from matched and mismatched double-D coil based wireless charging system for electric vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7477841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150