JP7477159B2 - Optical deflection device, optical scanning device, and optical scanning distance measuring device - Google Patents

Optical deflection device, optical scanning device, and optical scanning distance measuring device Download PDF

Info

Publication number
JP7477159B2
JP7477159B2 JP2020136402A JP2020136402A JP7477159B2 JP 7477159 B2 JP7477159 B2 JP 7477159B2 JP 2020136402 A JP2020136402 A JP 2020136402A JP 2020136402 A JP2020136402 A JP 2020136402A JP 7477159 B2 JP7477159 B2 JP 7477159B2
Authority
JP
Japan
Prior art keywords
optical
optical deflection
plate
vibrator
deflection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020136402A
Other languages
Japanese (ja)
Other versions
JP2022032538A (en
Inventor
規裕 ▲浅▼田
直希 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2020136402A priority Critical patent/JP7477159B2/en
Publication of JP2022032538A publication Critical patent/JP2022032538A/en
Application granted granted Critical
Publication of JP7477159B2 publication Critical patent/JP7477159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光偏向装置、光走査装置及び光走査式測距装置に関する。 The present invention relates to an optical deflection device, an optical scanning device, and an optical scanning distance measuring device.

ミラーを用いて光を偏向する光偏向子として、電動モータにより駆動するポリゴンミラーやガルバノミラーが実用化されている。
近年、微細加工技術を用いたMEMS(Micro Electro Mechanical Systems)ミラーと呼ばれるモータを使用しない共振型の光偏向子が登場してきた。この共振型の光偏向子はモータを用いるものと比較して走査周波数が高速で小型、省電力を図ることができるという特徴がある。
As optical deflectors that use mirrors to deflect light, polygon mirrors and galvanometer mirrors driven by electric motors have been put to practical use.
In recent years, a resonant optical deflector that does not use a motor, called a MEMS (Micro Electro Mechanical Systems) mirror, has been developed using microfabrication technology. This resonant optical deflector has the advantages of a high scanning frequency, small size, and low power consumption compared to those that use a motor.

共振型の光偏向子は駆動方法で大きく3種類に分けることが出来る。静電力を用いるもの、圧電効果または磁歪効果を用いるもの、電磁力を用いるものである。
静電力を用いるものは、1対の電極間に働く静電力を使用するため、高精度に電極を形成する必要がある。静電力は電極間の距離の二乗に反比例し、面積と印加電圧に比例するため、できる限り大きな電極をできる限り接近させ、電極間に高電圧を印加することが理想とされる。
Resonant type optical deflectors can be roughly divided into three types according to the driving method: those that use electrostatic force, those that use the piezoelectric effect or magnetostrictive effect, and those that use electromagnetic force.
In devices that use electrostatic force, the electrostatic force acting between a pair of electrodes is used, and therefore the electrodes must be formed with high precision. Since the electrostatic force is inversely proportional to the square of the distance between the electrodes and proportional to the area and applied voltage, it is considered ideal to place as large electrodes as possible as close as possible to each other and apply a high voltage between the electrodes.

しかし、電極を接近させ過ぎたり電圧をかけ過ぎたりすると放電する虞があるためミラーの揺動角度に限度があり、駆動力及び揺動角度が小さな超小型ミラーをアレイ化した例以外にはあまり普及していない。 However, there is a risk of discharge if the electrodes are brought too close together or if too much voltage is applied, so there is a limit to the mirror's oscillation angle, and it has not become widespread except in cases where ultra-small mirrors with small driving force and oscillation angle are arrayed.

電磁力を用いるものは、比較的大きな駆動力を得ることができるため、ミラーを大きくできる利点がある。しかし、ミラーを含む可動部にコイルまたは永久磁石を形成しなければならないため可動部の質量が大きくなり、可動部の質量(慣性モーメント)と反比例の関係にある共振周波数はあまり高くはできない。また、永久磁石や磁束を逃さないためのヨークには比重が大きな材料を使用することになり、デバイスの小型化が難しくかつ重くなるという問題もある。 Devices that use electromagnetic force have the advantage that a relatively large driving force can be obtained, allowing the mirror to be made large. However, because a coil or permanent magnet must be formed in the moving part including the mirror, the mass of the moving part becomes large, and the resonant frequency, which is inversely proportional to the mass of the moving part (moment of inertia), cannot be made very high. In addition, materials with a high specific gravity must be used for the permanent magnets and the yoke that prevents magnetic flux from escaping, which makes it difficult to miniaturize the device and makes it heavy.

特許文献1には、基板に捻れ梁部を形成し、該捻れ梁部により支持されたミラー部を揺動させてなる光走査装置において、前記基板の捻れ梁部と支持部材との間に圧電体、磁歪体又は永久磁石体を固定あるいは形成し、該圧電体、磁歪体又は永久磁石体に電圧あるいは磁界を印加して基板に誘起される板波を利用して捻れ梁部に支持されたミラー部を励振させることを特徴とする光走査装置が提案されている。 Patent Document 1 proposes an optical scanning device in which a torsion beam is formed on a substrate and a mirror supported by the torsion beam is oscillated, in which a piezoelectric body, a magnetostrictive body, or a permanent magnet is fixed or formed between the torsion beam of the substrate and a support member, and a voltage or magnetic field is applied to the piezoelectric body, magnetostrictive body, or permanent magnet body to excite the mirror supported by the torsion beam using plate waves induced in the substrate.

詳述すると、当該光走査装置は、基板と、前記基板に振動の腹と振動の節とを有する板波振動を発生させるための、該基板の一部に固定あるいは形成してなる圧電体、磁歪体又は永久磁石体と、前記圧電体、磁歪体又は永久磁石体から離れた位置において前記基板に形成され、ミラー部を支持する捻れ梁部と、前記ミラー部に走査ビームを照射する走査ビーム源と、を備え、前記捻れ梁部と前記基板との接続箇所より僅かにずれた位置にミラー部近傍に形成される基板振動の最小振幅箇所(節)を形成し、前記基板に誘起される板波を利用してミラー部に捻れ振動を生じさせ、ミラー部で反射した走査ビームを所定の角度で振れさせるように構成されている。 In more detail, the optical scanning device includes a substrate, a piezoelectric body, a magnetostrictive body, or a permanent magnet body fixed to or formed on a part of the substrate to generate plate wave vibrations having vibration loops and vibration nodes on the substrate, a torsion beam section formed on the substrate at a position away from the piezoelectric body, magnetostrictive body, or permanent magnet body and supporting a mirror section, and a scanning beam source that irradiates a scanning beam onto the mirror section, and is configured to form a minimum amplitude point (node) of substrate vibration formed near the mirror section at a position slightly shifted from the connection point between the torsion beam section and the substrate, generate a torsional vibration in the mirror section by utilizing the plate waves induced in the substrate, and deflect the scanning beam reflected by the mirror section at a predetermined angle.

さらに、前記ミラー部の重心位置と前記捻れ梁部の基板との接続個所とのずれ量;ΔLは、0≦ΔL≦0.2(ΔL=(L1-L2)/(L1+L2)、(L1;捻れ梁部の中心線からミラー部の一端までの距離、L2;捻れ梁部の中心線からミラー部の他端までの距離))に設定されている。 Furthermore, the deviation amount ΔL between the center of gravity of the mirror section and the connection point of the torsion beam section with the substrate is set to 0≦ΔL≦0.2 (ΔL=(L1-L2)/(L1+L2), (L1: distance from the center line of the torsion beam section to one end of the mirror section, L2: distance from the center line of the torsion beam section to the other end of the mirror section)).

特開2006-293116号公報JP 2006-293116 A

上述した光走査装置は、基板に板波振動を発生させる必要がある。効率よく共振周波数で板波振動を発生させるためには、基板を支持する固着部の位置と、ミラー部に対する振動源となる磁歪体又は永久磁石を正確に基板に配置することが重要である。そのため梁部、振動源、基板の固着部の位置ばらつきにより、ミラーの共振周波数と板波の共振周波数のずれや、板波振動の腹部、節部の位置ずれが生じるため、安定した共振周波数を得ることが難しいという問題があった。 The optical scanning device described above needs to generate plate wave vibrations in the substrate. In order to efficiently generate plate wave vibrations at the resonant frequency, it is important to accurately position the fixing parts that support the substrate and the magnetostrictive body or permanent magnet that serves as the vibration source for the mirror part on the substrate. Therefore, there is a problem that it is difficult to obtain a stable resonant frequency because variations in the positions of the beam part, the vibration source, and the fixing parts of the substrate cause a shift between the resonant frequency of the mirror and the resonant frequency of the plate wave, and a shift in the positions of the loops and nodes of the plate wave vibration.

また、上述した光走査装置は、捻れ梁部と基板との接続箇所より僅かにずれた位置に基板振動の最小振幅箇所(節)が形成されるため、捻れ梁部が板波によって基板の振動に伴って基板の厚み方向に位置が変動し、しかもミラー部の重心位置を捻れ梁部の基板との接続個所からずらせる必要があったため、ミラーへの走査ビームの入射位置が変動し、結果として走査ビームの走査速度の変動や走査角度の変動による影響を回避できないという問題があった。 In addition, in the above-mentioned optical scanning device, the minimum amplitude point (node) of the substrate vibration is formed at a position slightly shifted from the connection point between the torsion beam section and the substrate, so the position of the torsion beam section fluctuates in the thickness direction of the substrate as the substrate vibrates due to plate waves, and since it was necessary to shift the position of the center of gravity of the mirror section from the connection point between the torsion beam section and the substrate, the incident position of the scanning beam on the mirror fluctuates, resulting in the problem that it was impossible to avoid the effects of fluctuations in the scanning speed and scanning angle of the scanning beam.

さらに、基板を歪ませることによって定在波を発生させ、梁の両端が節の近傍に位置するように設計されるため、基板に設置した圧電素子を固定することができず、基板に歪が生じると圧電素子の設置位置で発生応力にばらつきが生じる、或いは、本来の梁の変形に要する応力に歪み応力が付加されて、総合で振幅応力設計値よりも大きくなり、振幅の設計度が原理的に下がり、投入電力の効率および共振周波数に影響する、という問題もあった。そこで、圧電素子を厚く積層形成して剛性を高めると小型軽量化を図ることができなくなるという問題もあった。 Furthermore, because standing waves are generated by distorting the substrate and both ends of the beam are designed to be located near the nodes, the piezoelectric element placed on the substrate cannot be fixed, and when distortion occurs in the substrate, the generated stress varies depending on the installation position of the piezoelectric element; or, the distortion stress is added to the stress required to originally deform the beam, making the total larger than the amplitude stress design value, which in principle reduces the design degree of the amplitude and affects the efficiency of the input power and the resonance frequency. Therefore, there is also the problem that if the piezoelectric element is formed into a thick layer to increase rigidity, it becomes impossible to achieve a small and lightweight design.

本発明の目的は、上述した問題点に鑑み、薄層の圧電素子を用いながらも基板の歪みや製造ばらつきに起因する振動ばらつきを低減し、小型軽量で長寿命の光偏向装置、光走査装置及び光走査式測距装置を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to provide a small, lightweight, long-life optical deflection device, optical scanning device, and optical scanning distance measuring device that uses thin-layer piezoelectric elements while reducing vibration variations caused by substrate distortion and manufacturing variations.

上述の目的を達成するため、本発明による光偏向装置の第一の特徴構成は、板状体の一端側に形成された開口部に、直線上に位置する一対の梁部を介して両側から支持される光偏向ミラーを備えた光偏向子と、前記板状体の一端側が自由端となる片持ち構造で、前記板状体の他端側から一端側に向けた延出方向が前記梁部の延在方向と交差する姿勢となるように、前記板状体の他端側を支持する振動子と、前記振動子を支持する基部と、備え、前記振動子の主面に前記板状体の主面が重畳する重畳部を介して前記板状体が前記振動子に支持されている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the optical deflection device according to the present invention is that it comprises an optical deflector having an optical deflection mirror supported from both sides via a pair of beams located in a straight line at an opening formed on one end side of a plate-like body, a vibrator that supports the other end side of the plate-like body in a cantilever structure in which one end side of the plate-like body is the free end, and in a position in which the extension direction from the other end side of the plate-like body to the one end side intersects with the extension direction of the beams, and a base that supports the vibrator, and the plate-like body is supported by the vibrator via an overlapping portion in which the main surface of the plate-like body overlaps the main surface of the vibrator.

振動子の主面に重畳するように他端側が支持された片持ち構造の板状体に、振動子によって板状体の厚み方向への振動が作用して、板状体の自由端である一端側に形成された開口部が同相で加振される。片持ち構造の板状体の支持端となる他端側から自由端となる一端側に向けた延出方向に対して姿勢が交差するように配置された一対の梁部によって支持される光偏向ミラーには、振動子に支持された板状体の他端側から梁部に到る距離よりも近接側と離隔側とで距離の相違に起因した異なる値の速度および加速度が作用するため、当該振動によって梁部を軸にして揺動モーメントが作用する。 The vibrator vibrates a cantilevered plate, the other end of which is supported so as to overlap the main surface of the vibrator, in the thickness direction of the plate, causing an opening formed on one end, which is the free end, of the plate to vibrate in phase. The optical deflection mirror is supported by a pair of beams arranged so that their orientation intersects with the direction of extension from the other end, which is the supported end of the cantilevered plate, toward the one end, which is the free end. Due to the difference in distance between the near side and the far side, different values of speed and acceleration act on the optical deflection mirror, which is supported by a pair of beams arranged so that their orientation intersects with the direction of extension from the other end, which is the supported end of the cantilevered plate, toward the one end, which is the free end, and therefore a swing moment acts on the beams as an axis due to the vibration.

その結果、光偏向ミラーは梁部を軸にして回転運動を始め、梁部の捻じれによりバネに蓄積される力とモーメントが釣り合うところまで回転して停止し、次に逆方向に回転する、という揺動動作を振動子の振動周期と同周期で繰り返し、梁のバネ定数とミラーの慣性質量で求まる共振点でミラーが最大振幅で揺動する。重畳部を構成する振動子と板状体との間に相対的な位置ばらつきが生じても、振動子の振動周波数を梁部の断面積、長さ、光偏向ミラーの形状などで定まる光偏向ミラーの共振周波数に近い値で振動子を駆動することで、振幅が大きく安定した振動周期で光偏向ミラーの揺動が実現できる。 As a result, the optical deflection mirror begins to rotate around the beam, rotates until the force and moment accumulated in the spring due to the torsion of the beam balances, stops, and then rotates in the opposite direction. This oscillation is repeated in the same period as the oscillator's vibration cycle, and the mirror oscillates with maximum amplitude at the resonance point determined by the spring constant of the beam and the inertial mass of the mirror. Even if there is a relative positional variation between the oscillator and the plate-shaped body that make up the overlapping part, the optical deflection mirror can be oscillated with a large amplitude and stable oscillation cycle by driving the oscillator with a vibration frequency close to the resonance frequency of the optical deflection mirror, which is determined by the cross-sectional area and length of the beam and the shape of the optical deflection mirror.

同第二の特徴構成は、上述した第一の特徴構成に加えて、前記光偏向子の重心が前記直線上に位置する点にある。 The second characteristic configuration has the same features as the first characteristic configuration described above, in that the center of gravity of the optical deflector is located on the straight line.

光偏向ミラーへ走査ビームを入射させる場合に、揺動軸心上に光偏向ミラーの重心が位置するので、入射位置の変動が生じない。 When a scanning beam is incident on the optical deflection mirror, the center of gravity of the optical deflection mirror is located on the oscillation axis, so there is no fluctuation in the incident position.

同第三の特徴構成は、上述した第一または第二の特徴構成に加えて、前記振動子の主面の面積が前記重畳部の面積以上に設定されている点にある。 The third characteristic configuration is that, in addition to the first or second characteristic configuration described above, the area of the main surface of the vibrator is set to be equal to or larger than the area of the overlapping portion.

板状体の他端側と振動子との重畳部の面積以上になるように振動子の面積が設定されているので、板状体を安定した振動状態で加振することができる。 The area of the vibrator is set to be greater than or equal to the area of the overlapping portion between the other end of the plate and the vibrator, so the plate can be vibrated in a stable manner.

同第四の特徴構成は、上述した第一から第三の何れかの特徴構成に加えて、前記板状体は弾性部材を用いて前記振動子に支持されている点にある。 The fourth characteristic configuration is that, in addition to any one of the first to third characteristic configurations described above, the plate-like body is supported by the vibrator using an elastic member.

振動子に板状体の振動などの外乱による歪発生要因が、弾性部材によって吸収され、板状体を安定した振動状態で加振することができ、機械的な破損に対しても耐性の強化が図られる。 The elastic member absorbs distortions that occur in the vibrator due to disturbances such as the vibration of the plate, allowing the plate to vibrate in a stable vibration state, and also improves resistance to mechanical damage.

同第五の特徴構成は、上述した第四の特徴構成に加えて、前記弾性部材は前記振動子の主面に前記板状体の主面を接着する弾性接着剤であり、少なくとも前記重畳部の所定面積以上が接着されている点にある。 The fifth characteristic feature of the present invention is that, in addition to the fourth characteristic feature described above, the elastic member is an elastic adhesive that bonds the main surface of the plate-shaped body to the main surface of the vibrator, and at least a predetermined area of the overlapping portion is bonded.

弾性接着剤は硬化後にゴム状弾性体となる性状をもつため、弾性部材として好適に用いることができる。例えば、シリコーン樹脂系の接着剤、変成シリコーン樹脂系の接着剤、変性アクリル系の接着剤、ポリオロールとポリイソジンアネート硬化剤で構成されるウレタン樹脂系の接着剤などが例示できる。振動子の主面における重畳部の所定面積以上を弾性部材を介して接着することで、接着される板状体の主面にその厚み方向に振動させる力を作用させることができる。 Since elastic adhesives have the property of becoming a rubber-like elastic body after curing, they can be suitably used as elastic members. Examples include silicone resin adhesives, modified silicone resin adhesives, modified acrylic adhesives, and urethane resin adhesives composed of polyol and polyisocyanate hardener. By adhering a certain area or more of the overlapping portion on the main surface of the vibrator via an elastic member, a force can be applied to the main surface of the adhered plate-like body to vibrate it in the thickness direction.

同第六の特徴構成は、上述した第四の特徴構成に加えて、前記弾性部材は前記振動子と前記板状体を挟持する弾性クリップである点にある。 The sixth characteristic feature of the present invention is that, in addition to the fourth characteristic feature described above, the elastic member is an elastic clip that clamps the vibrator and the plate-shaped body.

弾性部材として、振動子と板状体を挟持する弾性クリップであっても、外乱による歪発生要因を吸収できる。 Even if the elastic member is an elastic clip that clamps the vibrator and the plate-shaped body, it can absorb distortion-causing factors caused by external disturbances.

同第七の特徴構成は、上述した第四の特徴構成に加えて、前記振動子は前記弾性部材を用いて前記基部に支持されている点にある。 The seventh characteristic feature of the present invention is that, in addition to the fourth characteristic feature described above, the vibrator is supported on the base using the elastic member.

弾性部材が、振動子と基部との間に配されていることで、振動子で発生する機械的ストレス、例えば、線膨張率の相違による熱ストレスなどを抑制することができる。 By disposing the elastic member between the vibrator and the base, mechanical stresses that occur in the vibrator, such as thermal stresses caused by differences in linear expansion coefficients, can be suppressed.

同第八の特徴構成は、上述した第一から第七の何れかの特徴構成に加えて、光偏向子は冷間圧延材または単結晶半導体を用いた一体形成体で構成されている点にある。 The eighth characteristic configuration of the same is that, in addition to any one of the first to seventh characteristic configurations described above, the optical deflector is composed of an integrally formed body using cold-rolled material or single crystal semiconductor.

部品寿命を伸ばす点で冷間圧延材または単結晶半導体を用いた一体形成体で光偏向子を構成することが好ましい。 To extend the life of the components, it is preferable to construct the optical deflector from an integrally formed body using cold-rolled material or single crystal semiconductor.

同第九の特徴構成は、上述した第一から第八の何れかの特徴構成に加えて、前記振動子は圧電素子または磁歪素子で構成されている点にある。 The ninth characteristic configuration of the present invention is that, in addition to any one of the first to eighth characteristic configurations described above, the vibrator is composed of a piezoelectric element or a magnetostrictive element.

本発明による光走査装置の第一の特徴構成は、上述した第一から第九の何れかの特徴構成を備えた光偏向装置と、前記光偏向ミラーに光ビームを照射する光源部と、を備えている点にある。 The first characteristic configuration of the optical scanning device according to the present invention is that it is equipped with an optical deflection device having any one of the first to ninth characteristic configurations described above, and a light source unit that irradiates a light beam onto the optical deflection mirror.

本発明による光走査式測距装置の第一の特徴構成は、上述した第一から第九の何れかの特徴構成を備えた光偏向装置と、前記光偏向ミラーに光ビームを照射する光源部と、前記光偏向装置で走査された光ビームに対する反射光を検出する受光部と、を備えている点にある。 The first characteristic configuration of the optical scanning distance measuring device according to the present invention is that it is equipped with an optical deflection device having any one of the first to ninth characteristic configurations described above, a light source unit that irradiates a light beam onto the optical deflection mirror, and a light receiving unit that detects reflected light from the light beam scanned by the optical deflection device.

以上、説明した通り、本発明によれば、薄層の圧電素子を用いながらも基板の歪みや製造ばらつきに起因する振動ばらつきを低減し、小型軽量で長寿命の光偏向装置、光走査装置及び光走査式測距装置を提供することができるようになった。 As described above, according to the present invention, it is possible to provide a small, lightweight, long-life optical deflection device, optical scanning device, and optical scanning distance measuring device that uses a thin piezoelectric element while reducing vibration variations caused by substrate distortion and manufacturing variations.

本発明による光偏向装置の説明図FIG. 1 is an explanatory diagram of an optical deflection device according to the present invention; 光偏向子、振動子、基部を含む光偏向装置の分解斜視図An exploded perspective view of an optical deflection device including an optical deflector, an oscillator, and a base. (a)~(d)は光偏光装置の動作説明図1A to 1D are diagrams for explaining the operation of a light deflection device. 光走査装置及び光走査式測距装置の説明図FIG. 1 is an explanatory diagram of an optical scanning device and an optical scanning distance measuring device. (a),(b)は試作品の特性図(a) and (b) are characteristic diagrams of the prototype.

以下、本発明による光偏向装置、光走査装置及び光走査式測距装置を図面に基づいて説明する。 The optical deflection device, optical scanning device, and optical scanning distance measuring device according to the present invention will be described below with reference to the drawings.

図1及び図2に示すように、光偏向装置1は、光偏向子10と、振動子20と、基部30とを備えている。 As shown in Figures 1 and 2, the optical deflection device 1 includes an optical deflector 10, an oscillator 20, and a base 30.

光偏向子10は、矩形形状の薄板でなる板状体11の一端側に形成された矩形形状の開口部12の中央部に位置するように一対の梁部13,14で支持された矩形形状の光偏向ミラー15を備えている。 The optical deflector 10 has a rectangular optical deflection mirror 15 supported by a pair of beams 13, 14 so as to be positioned at the center of a rectangular opening 12 formed on one end of a plate-shaped body 11 made of a rectangular thin plate.

一対の梁部13,14は開口部12の中央部に位置する平面視正方形の光偏向ミラー15を支持すべく、対向辺12a,12bの中点間と光偏向ミラー15の対向辺15a,15bの中点とを接続するように、対向辺12a,12bの中点間同士を接続する直線上に配置されて、当該直線上に光偏向ミラー15の重心が位置するように配置されている。即ち、梁部13,14を捻り軸心として光偏向ミラー15が揺動自在に支持されている。 The pair of beams 13, 14 are arranged on a straight line connecting the midpoints of the opposing sides 12a, 12b to the midpoints of the opposing sides 15a, 15b of the optical deflection mirror 15, so as to support the optical deflection mirror 15, which is square in plan view and located in the center of the opening 12, and are arranged so that the center of gravity of the optical deflection mirror 15 is located on the straight line. In other words, the optical deflection mirror 15 is supported so that it can freely swing around the beams 13, 14 as the torsion axis.

光偏向子10として、例えば、ばね材、SUSなどの冷間圧延材、即ちステンレス材、炭素工具鋼材、磨き鋼材などのテンションアニール処理材、またはシリコンなど単結晶半導体でなる弾性板状体が用いられる。何れの材料を用いる場合でも、エッチング法など、機械的な損傷が加わらない製法を用いて一体に形成される。 The optical deflector 10 may be made of, for example, a spring material, a cold-rolled material such as SUS, i.e., a tension-annealed material such as stainless steel, carbon tool steel, or polished steel, or an elastic plate made of a single crystal semiconductor such as silicon. Regardless of the material used, it is integrally formed using a manufacturing method that does not cause mechanical damage, such as an etching method.

振動子20として、薄板状の圧電素子または磁歪素子が用いられる。本実施形態では平面視で20mm×10mm程度の大きさで、厚さ0.5mm程度の圧電素子21が用いられている。 A thin plate-shaped piezoelectric element or magnetostrictive element is used as the vibrator 20. In this embodiment, a piezoelectric element 21 with a size of about 20 mm x 10 mm in plan view and a thickness of about 0.5 mm is used.

図には示されていないが、圧電素子21には表裏両方の主面を挟むように上下電極パターンが形成されており、圧電素子21の下部側に外部電極引き出し用のリード線基板22が、圧電素子21の一辺から外側に延出するように配されている。リード線基板22には圧電素子21の上下各電極パターンに交番電圧を印加するための配線パターンが形成されている。圧電素子21にはスルーホールが形成され、リード線基板22に形成された配線からスルーホールを介して圧電素子21の上部電極パターンに電気的に接続されている。 Although not shown in the figure, upper and lower electrode patterns are formed on both the front and back main surfaces of the piezoelectric element 21, and a lead wire substrate 22 for external electrode extraction is disposed on the lower side of the piezoelectric element 21 so as to extend outward from one side of the piezoelectric element 21. A wiring pattern for applying an alternating voltage to each of the upper and lower electrode patterns of the piezoelectric element 21 is formed on the lead wire substrate 22. Through holes are formed in the piezoelectric element 21, and the wiring formed on the lead wire substrate 22 is electrically connected to the upper electrode pattern of the piezoelectric element 21 via the through holes.

圧電素子21は厚み方向への振動を発生させる特性を備えていればよく、薄板状の厚み方向に伸縮する積層型の圧電素子であることが好ましい。圧電素子21は厚み方向に伸縮するのに伴って薄板の延在方向(縦または横方向)に伸縮してもよい。また、圧電素子21は薄板が反るように変形することで主面の中央付近が上下するように振動する振動素子であってもよい。磁歪素子についても同様である。 The piezoelectric element 21 only needs to have the property of generating vibration in the thickness direction, and is preferably a laminated piezoelectric element in the form of a thin plate that expands and contracts in the thickness direction. The piezoelectric element 21 may expand and contract in the extension direction of the thin plate (vertical or horizontal direction) as it expands and contracts in the thickness direction. The piezoelectric element 21 may also be a vibration element in which the thin plate deforms in a warping manner, causing the center of the main surface to vibrate up and down. The same applies to magnetostrictive elements.

基部30は、例えばポリカーボネート樹脂やアクリル樹脂のような硬質樹脂で構成され、中央部にリード線基板22を収容する凹部31が形成されている。 The base 30 is made of a hard resin such as polycarbonate resin or acrylic resin, and has a recess 31 formed in the center to accommodate the lead wire substrate 22.

図2に示すように、基部30の表面に、硬化後にゴム状弾性体となる性状をもつ弾性接着剤層51を介して振動子20が接着固定され、振動子20の上面(主面)に同様の弾性接着剤層52を介して光偏向子10を構成する板状体11の主面が接着固定されている。振動子20の主面に板状体11の主面が重畳する重畳部の所定面積以上が弾性接着剤層52を介して接着されていることが好ましく、振動子20から板状体11の主面にその厚み方向に振動させる力を良好に作用させることができる。所定面積以上とは、少なくとも50%以上であればよく、70%以上であることが好ましく、100%であることがさらに好ましい。 As shown in FIG. 2, the vibrator 20 is bonded to the surface of the base 30 via an elastic adhesive layer 51 that has properties that become a rubber-like elastic body after hardening, and the main surface of the plate-like body 11 constituting the optical deflector 10 is bonded to the upper surface (main surface) of the vibrator 20 via a similar elastic adhesive layer 52. It is preferable that a predetermined area or more of the overlapping portion where the main surface of the plate-like body 11 overlaps the main surface of the vibrator 20 is bonded via the elastic adhesive layer 52, so that the force from the vibrator 20 to vibrate the main surface of the plate-like body 11 in the thickness direction can be effectively applied. The predetermined area or more may be at least 50%, preferably 70% or more, and more preferably 100%.

弾性接着剤層51,52として、例えばシリコーン樹脂系の接着剤、変成シリコーン樹脂系の接着剤、変性アクリル系の接着剤、ポリオロールとポリイソジンアネート硬化剤で構成されるウレタン樹脂系の接着剤などが好適に用いられる。また、弾性接着剤層51,52は、薄いシート状、フィルム状、あるいは、テープ状の接着剤、粘着剤を用いることができる。 As the elastic adhesive layers 51 and 52, for example, a silicone resin adhesive, a modified silicone resin adhesive, a modified acrylic adhesive, or a urethane resin adhesive composed of polyol and a polyisocyanate hardener, etc., can be suitably used. In addition, the elastic adhesive layers 51 and 52 can be made of a thin sheet-like, film-like, or tape-like adhesive or pressure-sensitive adhesive.

弾性接着剤は硬化後にゴム状弾性体となる性状をもつため、弾性部材として好適に用いることができる。例えば、シリコーン樹脂系の接着剤、変成シリコーン樹脂系の接着剤、変性アクリル系の接着剤、ポリオロールとポリイソジンアネート硬化剤で構成されるウレタン樹脂系の接着剤などが例示できる。 Elastic adhesives have the property of becoming rubber-like elastic bodies after curing, so they can be used favorably as elastic materials. Examples include silicone resin adhesives, modified silicone resin adhesives, modified acrylic adhesives, and urethane resin adhesives made of polyol and polyisocyanate hardeners.

図1に示すように、光偏向子10を構成する板状体11の一端側が自由端となる片持ち構造で、板状体11の他端側から一端側に向けた延出方向が梁部13,14の延在方向と直交する姿勢となるように、板状体11の他端側で開口部12を除く全面が振動子20と重畳するように接着固定されている。つまり、振動子20により一対の梁部13,14及び光偏向ミラー15が支持されている。 As shown in FIG. 1, one end of the plate-like body 11 constituting the optical deflector 10 is a cantilever structure in which the free end is the one end, and the entire surface of the plate-like body 11, except for the opening 12, is glued and fixed to overlap with the vibrator 20 at the other end so that the extension direction from the other end of the plate-like body 11 to the one end is perpendicular to the extension direction of the beams 13 and 14. In other words, the pair of beams 13 and 14 and the optical deflector mirror 15 are supported by the vibrator 20.

弾性接着剤層51はリード線基板22を除いて振動子20の面積以上の面積となるように配され、接着剤層52は板状体11と振動子20との重畳部53の面積以上の面積となるように配されている。換言すると、接着剤層52は板状体11の幅方向の長さより長くなるように配されている。 The elastic adhesive layer 51 is arranged so that its area is equal to or greater than the area of the vibrator 20 excluding the lead wire substrate 22, and the adhesive layer 52 is arranged so that its area is equal to or greater than the area of the overlapping portion 53 between the plate-like body 11 and the vibrator 20. In other words, the adhesive layer 52 is arranged so that its length is longer than the width of the plate-like body 11.

光偏向子10を構成する板状体11の形状は正方形であっても長方形であってもよく、角部が曲線状に削られていてもよい。また、先端側が次第に幅狭となる矩形形状や三角形状であってもよい。開口部12の形状も矩形形状に限るものではなく、正方形形状、楕円形状、円形状であってもよく、一端が解放されていてもよい。少なくとも他端側を支持した片持ち構造で一端側が延出する板状体11の延出方向に対して左右対称形に形成されていればよい。そして、一対の梁部13,14及び光偏向ミラー15の延在方向が自由端に向けた板状体11の延出方向と交差する方向、好ましくは直交または略直交する方向に配されていればよい。 The plate-like body 11 constituting the optical deflector 10 may be square or rectangular in shape, and the corners may be rounded. It may also be rectangular or triangular with a gradually narrower tip. The shape of the opening 12 is not limited to a rectangle, and may be square, elliptical, or circular, and may have one end open. It is sufficient that the opening 12 is formed symmetrically with respect to the extension direction of the plate-like body 11, with at least one end supported by a cantilever structure. The extension direction of the pair of beams 13, 14 and the optical deflection mirror 15 is arranged in a direction that intersects with the extension direction of the plate-like body 11 toward the free end, preferably in a direction perpendicular or nearly perpendicular.

図3(a)から(d)に示すように、振動子20の主面に重畳するように配された板状体11に、振動子20によって板状体11の厚み方向への振動が作用して、一端側を自由端とする片持ち構造で支持された板状体11の他端側がほぼ同相で加振される。一対の梁部13,14(図1参照。)で支持された光偏向ミラー15には、当該振動によって梁部13,14を軸にして揺動モーメントが作用する。 As shown in Figures 3(a) to (d), the vibrator 20 vibrates the plate 11 in the thickness direction of the plate 11, which is arranged so as to overlap the main surface of the vibrator 20, and the other end of the plate 11, which is supported in a cantilever structure with one end as a free end, is vibrated in approximately the same phase. The vibration causes an oscillation moment to act on the optical deflection mirror 15, which is supported by a pair of beams 13, 14 (see Figure 1), with the beams 13, 14 as its axis.

このとき、振動子20による支持位置から梁部13,14より近接側と離隔側とで光偏向ミラー15に付与されるモーメントに差が生じる。片持ち板状に支持された板状体11では、光偏向ミラー15の梁部13,14より近接側と離隔側とで、それぞれの速度および加速度が異なることになり、その結果モーメントにも差が生じるからである。 At this time, a difference occurs in the moment applied to the optical deflection mirror 15 on the near side and far side of the beams 13, 14 from the support position of the vibrator 20. This is because, in the plate-like body 11 supported in a cantilevered manner, the speed and acceleration are different on the near side and far side of the beams 13, 14 of the optical deflection mirror 15, and as a result, a difference also occurs in the moment.

この差がミラーのミラーを支えている梁部13,14を中心軸とした両側に作用すると、梁部13,14を中心とした回転モーメントが発生する。この回転モーメントは光偏向ミラー15を回転させるとともに梁部13,14にねじりのバネによる力を蓄積させる。 When this difference acts on both sides of the mirror with the beams 13, 14 supporting the mirror as the central axis, a rotational moment is generated around the beams 13, 14. This rotational moment rotates the light deflection mirror 15 and accumulates a torsional spring force in the beams 13, 14.

その結果、梁部13,14の捻じれにより光偏向ミラー15が振動子20の振動周期と同周期で揺動することになる。これを連続で行うと梁のバネ定数とミラーの慣性質量で計算される共振点でミラーの振幅は最大となる。 As a result, the twisting of the beams 13 and 14 causes the optical deflection mirror 15 to oscillate with the same period as the vibration period of the oscillator 20. If this is done continuously, the amplitude of the mirror will be maximized at the resonance point calculated by the spring constant of the beam and the inertial mass of the mirror.

振動子20に印加される交番電圧は、梁部13,14及び光偏向ミラー15の共振周波数の近傍周波数に設定され、その結果、光偏向ミラーの揺動振幅を大きく、かつ、安定させることができる。振動子20の支持位置が多少ずれたとしても、振動子20に印加される交番電圧の周波数を共振周波数の近傍に設定すれば光偏向ミラーを共振周波数で振動させることができるため、支持位置の組み立て精度に大きく影響されることなく安定した周波数で光偏向ミラーを揺動することができる。 The alternating voltage applied to the oscillator 20 is set to a frequency close to the resonant frequency of the beams 13, 14 and the optical deflection mirror 15, and as a result, the oscillation amplitude of the optical deflection mirror can be made large and stable. Even if the support position of the oscillator 20 is slightly shifted, the optical deflection mirror can be made to oscillate at the resonant frequency by setting the frequency of the alternating voltage applied to the oscillator 20 close to the resonant frequency, so that the optical deflection mirror can be oscillated at a stable frequency without being significantly affected by the assembly accuracy of the support position.

以上説明したように、光偏向装置100は、板状体の一端側に形成された開口部に、直線上に位置する一対の梁部を介して両側から支持される光偏向ミラーを備えた光偏向子と、板状体の一端側が自由端となる片持ち構造で、板状体の他端側から一端側に向けた延出方向が梁部の延在方向と交差する姿勢となるように、板状体の他端側を支持する振動子と、振動子を支持する基部と、を備え、振動子の主面に前記板状体の主面が重畳する重畳部を介して板状体が振動子に支持されている。 As described above, the optical deflection device 100 includes an optical deflector having an optical deflection mirror supported from both sides via a pair of beams positioned in a straight line in an opening formed on one end side of a plate-like body, a cantilever structure in which one end side of the plate-like body is the free end, a vibrator that supports the other end side of the plate-like body so that the extension direction from the other end side of the plate-like body to the one end side intersects with the extension direction of the beams, and a base that supports the vibrator, and the plate-like body is supported by the vibrator via an overlapping portion where the main surface of the plate-like body overlaps the main surface of the vibrator.

光偏向ミラーの重心が梁部をつなぐ直線上に位置するように構成され、振動子の主面の面積や形状は重畳部が上下方向に振動するように適した任意の形状をとることができる。重畳部が安定した上下振動を得るために、振動子の主面の面積は重畳部の面積以上に設定されていることが好ましい。 The optical deflection mirror is configured so that its center of gravity is located on the straight line connecting the beam sections, and the area and shape of the main surface of the vibrator can be any shape suitable for the overlapping section to vibrate in the vertical direction. In order for the overlapping section to obtain stable vertical vibration, it is preferable that the area of the main surface of the vibrator is set to be equal to or larger than the area of the overlapping section.

前記板状体は弾性部材を用いて振動子に支持されていることが好ましく、弾性部材として振動子の主面に板状体の主面を接着する弾性接着剤を採用することが好ましい。板状体の主面がほぼ均等に上下振動するように、少なくとも重畳部の所定面積以上が弾性接着剤により接着されていることが好ましい。例えば、重畳部の全面または振動モードに応じて適切な部位が接着されていればよい。 The plate-like body is preferably supported by the vibrator using an elastic member, and an elastic adhesive is preferably used as the elastic member to bond the main surface of the plate-like body to the main surface of the vibrator. It is preferable that at least a predetermined area of the overlapping portion is bonded with the elastic adhesive so that the main surface of the plate-like body vibrates up and down almost evenly. For example, the entire surface of the overlapping portion or an appropriate portion depending on the vibration mode may be bonded.

弾性部材50は振動子と板状体を挟持する弾性クリップで構成することも可能である。 The elastic member 50 can also be configured as an elastic clip that clamps the vibrator and the plate-shaped body.

光偏向子はステンレス材、炭素工具鋼材、磨き鋼材などをテンションアニール処理した冷間圧延材または単結晶半導体などの弾性変形可能な薄板材を用いて、エッチングなどのストレスフリーな方法で一体形成体で構成されていることが好ましく、振動子は圧電素子または磁歪素子で構成されていることが好ましい。 The optical deflector is preferably constructed as an integral body formed by a stress-free method such as etching using cold-rolled materials that have been tension-annealed, such as stainless steel, carbon tool steel, or polished steel, or elastically deformable thin plate materials such as single crystal semiconductors, and the vibrator is preferably constructed of a piezoelectric element or magnetostrictive element.

図4には、光走査式測距装置100の基本的な構成が示されている。光走査式測距装置100は、上述した光偏向装置1と、光偏向ミラー15に光ビームを照射する光源部2と、光偏向装置2で走査された光ビームに対する反射光を検出する受光部3と、を備えている。光偏向装置1と光源部2とによる光走査装置4が構成される。 Figure 4 shows the basic configuration of the optical scanning distance measuring device 100. The optical scanning distance measuring device 100 includes the optical deflection device 1 described above, a light source unit 2 that irradiates an optical beam onto the optical deflection mirror 15, and a light receiving unit 3 that detects the reflected light of the optical beam scanned by the optical deflection device 2. The optical deflection device 1 and the light source unit 2 constitute an optical scanning device 4.

光源部2として発光波長領域が近赤外域のレーザダイオードや発光ダイオードが好適に用いられ、受光部3としてアバランシェフォトダイオードやSPAD(Single Photon Avalanche Diode )が好適に用いられる。 A laser diode or light-emitting diode with an emission wavelength region in the near-infrared region is preferably used as the light source unit 2, and an avalanche photodiode or SPAD (Single Photon Avalanche Diode) is preferably used as the light receiving unit 3.

光源部2から出射された測定光が半透過ミラー5によって光偏向ミラー15に入射し、光偏向ミラー15によって測定光が測定対象空間に向けて走査される。測定対象空間からの反射光が光偏向ミラー15に入射し、半透過ミラー5を透過した後に集光レンズ6によって集光されて受光部3で検出される。測定対象空間からの反射光を、光偏向ミラー15を介せず別の受光光学系を介して検出するように構成してもよい。 The measurement light emitted from the light source unit 2 is incident on the optical deflection mirror 15 by the semi-transparent mirror 5, and the measurement light is scanned toward the measurement target space by the optical deflection mirror 15. The reflected light from the measurement target space is incident on the optical deflection mirror 15, passes through the semi-transparent mirror 5, and is then focused by the focusing lens 6 and detected by the light receiving unit 3. The reflected light from the measurement target space may be detected via a separate light receiving optical system without passing through the optical deflection mirror 15.

光偏向ミラー15は、その重心位置が一対の梁部13,14の直線上に位置し、基板との接続個所からずれていないので、光偏向ミラー15への走査ビームの入射位置が光学的に影響するような変動を生じない利点がある。その結果として、走査ビームの走査速度の変動や走査角度の変動も生じにくい利点がある。 The optical deflection mirror 15 has a center of gravity located on the straight line between the pair of beams 13 and 14, and is not displaced from the connection point with the substrate, so there is an advantage that there is no variation that would optically affect the incident position of the scanning beam on the optical deflection mirror 15. As a result, there is an advantage that there is little variation in the scanning speed or scanning angle of the scanning beam.

測定光と反射光との物理関係として光源部2からの測定光の出射時期と受光部3による反射光の検出時期との時間差に基づいて距離を算出することができる。測定光をAM変調された連続光として、測定光と反射光との位相差を用いて距離を算出することも可能である。 The distance can be calculated based on the time difference between the emission of the measurement light from the light source unit 2 and the detection of the reflected light by the light receiving unit 3, which is the physical relationship between the measurement light and the reflected light. It is also possible to calculate the distance using the phase difference between the measurement light and the reflected light by treating the measurement light as AM-modulated continuous light.

冷間圧延材の一例として、板厚0.1mm±5μmのSUS304のテンションアニール処理材を用いて、1mm角の光偏向ミラーを備えた光偏向子を、エッチング法を用いて試作し、シミュレーション結果と比較した。
シミュレーションによる共振周波数11,341Hzに対して、実際に試作した光偏向ミラーの共振周波数は11,276Hz、振幅光学角10度となった。シミュレーションと実際の試作品の共振周波数のずれ量はわずか0.6%であることが確認できた。
SUS304の板厚の製造上のばらつきとして0.1mm±5μmが見込まれ、この条件でシミュレーションを実施したところ、板厚0.1mm+5μmのSUS304では共振周波数が11,667Hz、板厚0.1mm-5μmのSUS304では共振周波数が10,922Hzと算出でき、共振周波数の製造ばらつきは+2.8%から-3.7%の範囲に入る。
As an example of cold-rolled material, a tension-annealed SUS304 material with a thickness of 0.1 mm±5 μm was used to prototype an optical deflector equipped with a 1 mm square optical deflection mirror using an etching method, and the results were compared with the simulation results.
The resonance frequency of the simulated light deflection mirror was 11,341 Hz, whereas the resonance frequency of the prototype was 11,276 Hz, with an amplitude optical angle of 10 degrees. It was confirmed that the deviation in the resonance frequency between the simulation and the actual prototype was only 0.6%.
The expected manufacturing variation in the thickness of SUS304 is 0.1 mm ± 5 μm. When a simulation was performed under these conditions, the resonant frequency was calculated to be 11,667 Hz for SUS304 with a thickness of 0.1 mm + 5 μm, and 10,922 Hz for SUS304 with a thickness of 0.1 mm - 5 μm, meaning that the manufacturing variation in the resonant frequency is in the range of +2.8% to -3.7%.

単結晶半導体として板厚520±0.8μmのシリコンウェハを想定し、シミュレーションした。光偏向ミラーの共振周波数は19.5KHz、光学振幅40度となった。 The simulation was performed assuming a silicon wafer with a thickness of 520±0.8μm as the single crystal semiconductor. The resonant frequency of the optical deflection mirror was 19.5KHz, and the optical amplitude was 40 degrees.

上述したSUS304を用いた試作品に関して、図5(a)に電圧振幅特性、図5(b)に周波数振幅特性を示す。本試作品では、振動子への入力電圧にほぼ比例する大きな光学振幅度を得ることができ、最も大きな光学振幅度を得る共振周波数は約11.9kHzである。本実施例の場合には、本来の梁の変形に要する応力に歪み応力が付加されることがないので、光学振幅度の設計度および共振周波数が原理的に下がることを回避でき、投入電力を効率よく利用することができる。 Figure 5(a) shows the voltage amplitude characteristics and Figure 5(b) shows the frequency amplitude characteristics for the prototype using SUS304 mentioned above. With this prototype, a large optical amplitude degree that is almost proportional to the input voltage to the vibrator can be obtained, and the resonance frequency at which the largest optical amplitude degree is obtained is about 11.9 kHz. In the case of this embodiment, since no distortion stress is added to the stress required for the original deformation of the beam, it is possible in principle to avoid a decrease in the design degree of optical amplitude degree and the resonance frequency, and input power can be used efficiently.

1:光偏向装置
10:光偏向子
11:板状体
12:開口部
13.14:梁部
15:光偏向ミラー
20:振動子
21:圧電素子
22:リード線基板
30:基部
31:凹部
50:弾性部材
51,52:弾性接着剤層
1: Optical deflection device 10: Optical deflector 11: Plate-like body 12: Opening 13, 14: Beam 15: Optical deflection mirror 20: Vibrator 21: Piezoelectric element 22: Lead wire substrate 30: Base 31: Recess 50: Elastic members 51, 52: Elastic adhesive layer

Claims (9)

板状体の一端側に形成された開口部に、直線上に位置する一対の梁部を介して両側から支持される光偏向ミラーを備えた光偏向子と、
前記板状体の一端側が自由端となる片持ち構造で、前記板状体の他端側から一端側に向けた延出方向が前記梁部の延在方向と交差する姿勢となるように、前記板状体の他端側を支持する振動子と、
前記振動子を支持する基部と、
を備え、
前記振動子の主面に前記板状体の主面が重畳する重畳部を介して前記板状体が 弾性部材を用いて前記振動子に支持され、前記弾性部材は前記振動子と前記板状体を挟持する弾性クリップである、
光偏向装置。
an optical deflector including an optical deflection mirror supported on both sides of an opening formed on one end of a plate-like body via a pair of beams positioned on a straight line;
a vibrator that supports one end of the plate-like body in a cantilever structure in which one end is a free end, and in which an extension direction from the other end of the plate-like body toward the one end intersects with an extension direction of the beam portion;
A base for supporting the transducer;
Equipped with
the plate-shaped body is supported by the vibrator using an elastic member via an overlapping portion where a main surface of the plate-shaped body overlaps a main surface of the vibrator , and the elastic member is an elastic clip that holds the vibrator and the plate-shaped body together.
Optical deflection device.
前記光偏向ミラーの重心が前記直線上に位置する請求項1記載の光偏向装置。 The optical deflection device according to claim 1, wherein the center of gravity of the optical deflection mirror is located on the straight line. 前記振動子の主面の面積が前記重畳部の面積以上に設定されている請求項1または2記載の光偏向装置。 The optical deflection device according to claim 1 or 2, wherein the area of the main surface of the oscillator is set to be equal to or larger than the area of the overlapping portion. 前記弾性部材は前記振動子の主面に前記板状体の主面を接着する弾性接着剤をさらに備え、少なくとも前記重畳部の所定面積以上が接着されている請求項1から3の何れかに記載の光偏向装置。 4. An optical deflection device as described in any one of claims 1 to 3, wherein the elastic member further comprises an elastic adhesive for adhering the main surface of the plate-shaped body to the main surface of the vibrator, and at least a predetermined area of the overlapping portion is adhered. 前記振動子は前記弾性部材を用いて前記基部に支持されている請求項からの何れかに記載の光偏向装置。 5. The optical deflection device according to claim 1 , wherein the vibrator is supported on the base by using the elastic member. 光偏向子は冷間圧延材または単結晶半導体を用いた一体形成体で構成されている請求項1からの何れかに記載の光偏向装置。 6. The optical deflection device according to claim 1, wherein the optical deflector is an integrally formed body made of a cold-rolled material or a single crystal semiconductor. 前記振動子は圧電素子または磁歪素子で構成されている請求項1からの何れかに記載の光偏向装置。 7. The optical deflection device according to claim 1, wherein the vibrator is made of a piezoelectric element or a magnetostrictive element. 請求項1からの何れかに記載の光偏向装置と、前記光偏向ミラーに光ビームを照射する光源部と、を備えている光走査装置。 8. An optical scanning device comprising: an optical deflection device according to claim 1 ; and a light source unit for irradiating the optical deflection mirror with a light beam. 請求項1からの何れかに記載の光偏向装置と、前記光偏向ミラーに光ビームを照射する光源部と、前記光偏向装置で走査された光ビームに対する反射光を検出する受光部と、を備えている光走査式測距装置。 An optical scanning distance measuring device comprising: an optical deflection device as described in any one of claims 1 to 7 ; a light source unit that irradiates an optical beam onto the optical deflection mirror; and a light receiving unit that detects reflected light of the optical beam scanned by the optical deflection device.
JP2020136402A 2020-08-12 2020-08-12 Optical deflection device, optical scanning device, and optical scanning distance measuring device Active JP7477159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020136402A JP7477159B2 (en) 2020-08-12 2020-08-12 Optical deflection device, optical scanning device, and optical scanning distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020136402A JP7477159B2 (en) 2020-08-12 2020-08-12 Optical deflection device, optical scanning device, and optical scanning distance measuring device

Publications (2)

Publication Number Publication Date
JP2022032538A JP2022032538A (en) 2022-02-25
JP7477159B2 true JP7477159B2 (en) 2024-05-01

Family

ID=80349936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020136402A Active JP7477159B2 (en) 2020-08-12 2020-08-12 Optical deflection device, optical scanning device, and optical scanning distance measuring device

Country Status (1)

Country Link
JP (1) JP7477159B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023128289A (en) 2022-03-03 2023-09-14 パナソニックIpマネジメント株式会社 Monitoring device, monitoring system and monitoring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231069A (en) 1999-02-10 2000-08-22 Seiko Epson Corp Optical scanner
JP2001004952A (en) 1999-06-24 2001-01-12 Victor Co Of Japan Ltd Optical deflector
JP2006293116A (en) 2005-04-13 2006-10-26 National Institute Of Advanced Industrial & Technology Optical scanning apparatus
JP2011150038A (en) 2010-01-20 2011-08-04 Brother Industries Ltd Optical scanner and method of manufacturing optical scanner
JP2016535269A (en) 2013-07-31 2016-11-10 グーグル インコーポレイテッド Photodetector array on a curved substrate
US20200014892A1 (en) 2017-03-07 2020-01-09 Goertek Inc. Laser projection device and laser projection system
JP2020020703A (en) 2018-08-02 2020-02-06 パイオニア株式会社 Scanner, method for controlling scanner, program, recording medium, and distance measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231069A (en) 1999-02-10 2000-08-22 Seiko Epson Corp Optical scanner
JP2001004952A (en) 1999-06-24 2001-01-12 Victor Co Of Japan Ltd Optical deflector
JP2006293116A (en) 2005-04-13 2006-10-26 National Institute Of Advanced Industrial & Technology Optical scanning apparatus
US20060245023A1 (en) 2005-04-13 2006-11-02 National Institute Of Advanced Industrial Science And Technology Light-beam scanning device
JP2011150038A (en) 2010-01-20 2011-08-04 Brother Industries Ltd Optical scanner and method of manufacturing optical scanner
JP2016535269A (en) 2013-07-31 2016-11-10 グーグル インコーポレイテッド Photodetector array on a curved substrate
US20200014892A1 (en) 2017-03-07 2020-01-09 Goertek Inc. Laser projection device and laser projection system
JP2020020703A (en) 2018-08-02 2020-02-06 パイオニア株式会社 Scanner, method for controlling scanner, program, recording medium, and distance measuring device

Also Published As

Publication number Publication date
JP2022032538A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP5229704B2 (en) Optical scanning device
JP4691704B2 (en) Optical scanning device
US7355774B2 (en) Optical deflector and optical apparatus using the same
US7557972B2 (en) Oscillator device, optical deflector and optical instrument using the same
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP2007322466A (en) Optical deflector and optical equipment using the same
JPH10325935A (en) Integrated optical resonator, optical scanner engine and method for generating scanning light beam suitably used therein
JP5500016B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP4982814B2 (en) Optical beam scanning device
KR101030847B1 (en) Method for producing oscillator device
JP3759598B2 (en) Actuator
US20120008185A1 (en) Light beam scanning device
JP2008170565A (en) Oscillating body apparatus and image forming apparatus using the same
JP4766353B2 (en) Optical beam scanning device
JP7477159B2 (en) Optical deflection device, optical scanning device, and optical scanning distance measuring device
KR100939499B1 (en) Oscillating device, light deflector, and image forming apparatus using the light deflector
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP2007171929A (en) Oscillating device, optical deflector and optical instrument using the same
JPH0646207A (en) Piezoelectric drive micro scanner
JP2016114715A (en) Oscillation element, optical scanning device, image formation device, image projection device and image reading device
JP2009031643A (en) Rocking body device, light deflector and image forming apparatus using it
JP2006081320A (en) Actuator
JP5084385B2 (en) Torsion spring, optical deflector, and image forming apparatus using the same
JP2006075944A (en) Actuator
JP2003029191A (en) Optical deflector and optical apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7477159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150