JP7472474B2 - Method and device for dissolving metals from lithium-ion battery positive electrode material - Google Patents

Method and device for dissolving metals from lithium-ion battery positive electrode material Download PDF

Info

Publication number
JP7472474B2
JP7472474B2 JP2019212243A JP2019212243A JP7472474B2 JP 7472474 B2 JP7472474 B2 JP 7472474B2 JP 2019212243 A JP2019212243 A JP 2019212243A JP 2019212243 A JP2019212243 A JP 2019212243A JP 7472474 B2 JP7472474 B2 JP 7472474B2
Authority
JP
Japan
Prior art keywords
positive electrode
acidic solution
electrode material
lithium
cathode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212243A
Other languages
Japanese (ja)
Other versions
JP2021085042A (en
Inventor
進 寺地
悟 金森
茂 大槻
鉄太郎 古橋
典子 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2019212243A priority Critical patent/JP7472474B2/en
Publication of JP2021085042A publication Critical patent/JP2021085042A/en
Application granted granted Critical
Publication of JP7472474B2 publication Critical patent/JP7472474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明はリチウムイオン電池正極材に含まれる金属の溶解方法及び溶解装置に関する。 The present invention relates to a method and device for dissolving metals contained in positive electrode materials for lithium-ion batteries.

リチウムイオン電池は、スマートフォンや電気自動車のバッテリー等として広く使用されており、小型民生用(シリンダ型、角型、ラミネート型)、EV用、ESS、UPS及びBTS用合計で、2021年の世界市場は4兆円に達すると予想されている。 Lithium-ion batteries are widely used in smartphones, electric vehicles, etc., and the global market for small consumer batteries (cylindrical, rectangular, laminated), EVs, ESS, UPS, and BTS is expected to reach 4 trillion yen in 2021.

リチウムイオン電池に用いられている正極材料の種類としては、コバルト系(コバルト酸リチウム(LiCoO))、ニッケル系(ニッケル酸リチウム(LiNiO))、マンガン系(マンガン酸リチウム(LiMn))、リン酸鉄系(リン酸鉄リチウム(LiFePO))、及び、三元系のNCA(LiNi0.8Co0.15Al0.05)、NMC(LiNi1/3Mn1/3Co1/3)等が挙げられる。 Positive electrode materials used in lithium-ion batteries include cobalt-based (lithium cobalt oxide ( LiCoO2 )), nickel-based (lithium nickel oxide ( LiNiO2 )), manganese-based (lithium manganese oxide ( LiMn2O4 )), iron phosphate-based ( lithium iron phosphate ( LiFePO4 )), and ternary materials such as NCA ( LiNi0.8Co0.15Al0.05O2 ) and NMC (LiNi1 / 3Mn1 / 3Co1 /3O2 ) .

このように、リチウムイオン電池の正極材には、レアメタルであるリチウム、コバルト、ニッケル、マンガン等が含まれており、これらのレアメタルは産出国が限られ、埋蔵量も少ないことから価格の高騰や枯渇が懸念されている。レアメタルの安定確保のためには、リチウムイオン電池のリサイクル技術の開発が急務である。 As such, the cathode material of lithium-ion batteries contains rare metals such as lithium, cobalt, nickel, and manganese. These rare metals are only produced in a limited number of countries, and reserves are small, raising concerns about price hikes and depletion. To ensure a stable supply of rare metals, there is an urgent need to develop recycling technology for lithium-ion batteries.

リチウムイオン電池のリサイクル方法としては、電池を溶融した後、磁選あるいは精錬によりCo、Ni、Cu等の金属成分を金属として回収する乾式法と、電池を各部材に解体・分別した後、正極材を化学物質で処理して金属成分を溶解して浸出させ、抽出あるいは電解等で回収する湿式法がある。 There are two methods for recycling lithium-ion batteries: the dry method, in which the batteries are melted and then the metal components such as Co, Ni, and Cu are recovered as metals through magnetic separation or refining, and the wet method, in which the batteries are disassembled and separated into their individual components, and then the positive electrode material is treated with chemicals to dissolve and leach the metal components, which are then recovered through extraction or electrolysis.

金属及び金属化合物を含む材料から金属を回収する場合は、通常、酸を添加して加温する操作を行うことが一般的である。この場合、金属の回収効率を上げるためには、できるだけ多くの金属を短時間で溶解させることが求められる。しかし、リチウムイオン電池の正極材中の金属成分は金属酸化物であり、イオン化し難いので酸水溶液中に簡単には溶け出さないので、湿式法での金属の回収は容易でない。 When recovering metals from materials that contain metals or metal compounds, it is common to add acid and heat the material. In this case, to increase the efficiency of metal recovery, it is necessary to dissolve as much metal as possible in a short period of time. However, the metal components in the positive electrode material of lithium-ion batteries are metal oxides, which are difficult to ionize and do not easily dissolve in an acid solution, making it difficult to recover metals using wet methods.

そこで、湿式法でリチウムイオン電池の正極材から金属を回収するための工夫として、例えば、特許文献1には、Li、Co、Ni、Mn酸化物のスクラップを硫酸で処理する際に、浸出対象の金属よりも卑な遷移金属化合物(硫酸マンガン)を添加してMnを不溶化し、Li、Ni、Coを90重量%以上溶解させる方法が開示されている。 As a way to recover metals from the positive electrode material of lithium-ion batteries using a wet method, for example, Patent Document 1 discloses a method in which, when treating scrap of Li, Co, Ni, and Mn oxides with sulfuric acid, a transition metal compound (manganese sulfate) that is less noble than the metal to be leached is added to insolubilize the Mn, dissolving 90% by weight or more of the Li, Ni, and Co.

特許文献2には、スクラップから金属を効率よく回収する方法として、Li、Co、Ni、Mn酸化物のスクラップを0.3当量の硫酸で処理してLiを溶解させた後、濾過を行って濾液からLiを回収し、濾過残渣に0.7当量の硫酸を添加してCo、Niを溶解させる方法が開示されている。 Patent Document 2 discloses a method for efficiently recovering metals from scrap, in which scrap of Li, Co, Ni, and Mn oxides is treated with 0.3 equivalents of sulfuric acid to dissolve the Li, then filtered to recover the Li from the filtrate, and 0.7 equivalents of sulfuric acid is added to the filtration residue to dissolve the Co and Ni.

しかしながら、特許文献1の方法では、硫酸マンガンのような金属化合物を別途添加する必要があり、回収対象の金属量の増加に繋がるので、簡便に金属を溶解する方法とは言えない。また、特許文献2の方法では、硫酸による処理を2段階に渡って行わねばならず、操作が煩雑であり、やはり簡便に金属を溶解する方法とは言えない。 However, the method of Patent Document 1 requires the separate addition of a metal compound such as manganese sulfate, which leads to an increase in the amount of metal to be recovered, and therefore cannot be said to be a simple method for dissolving metals. Furthermore, the method of Patent Document 2 requires the treatment with sulfuric acid to be carried out in two stages, which makes the operation complicated, and therefore cannot be said to be a simple method for dissolving metals.

特開2015-178642号公報JP 2015-178642 A 特開2016-69706号公報JP 2016-69706 A

本発明は、前記の課題に鑑みてなされたものであり、リチウムイオン電池正極材から金属を酸性溶液に効率よく、かつ簡便に溶解させる方法及び装置を提供することを課題とする。 The present invention was made in consideration of the above problems, and aims to provide a method and apparatus for efficiently and easily dissolving metals from lithium ion battery positive electrode materials into an acidic solution.

本発明者らは、前記課題を解決するため鋭意検討した結果、正極材に酸性溶液存在下でマイクロ波を照射して加熱することにより、酸性溶液中への金属浸出量が増えることを見出し、本発明を完成するに至った。 As a result of intensive research into solving the above problems, the inventors discovered that by irradiating a positive electrode material with microwaves in the presence of an acidic solution and heating it, the amount of metal leaching into the acidic solution increases, which led to the completion of the present invention.

すなわち、本発明は以下のとおりである。 In other words, the present invention is as follows.

(1)リチウムイオン電池の正極材に含まれる金属を酸性溶液に溶解させる際に、
前記酸性溶液として1~3mol/Lの塩酸水溶液を用い、
前記酸性溶液を、正極材に接触流通させながら、マイクロ波を照射して加熱することにより、接触流通時の液温を60~80℃の範囲に保持することを特徴とする溶解方法。
(2)正極材が、コバルト、マンガン、ニッケルからなる群から選択される1種以上の金属とリチウム金属とを含む正極材である前記(1)に記載の溶解方法。
(1) When dissolving the metal contained in the positive electrode material of a lithium-ion battery in an acidic solution,
As the acidic solution, a 1 to 3 mol/L aqueous hydrochloric acid solution is used,
The dissolving method is characterized in that the acidic solution is heated by irradiating it with microwaves while being in contact with the cathode material , thereby maintaining the liquid temperature during contact in the range of 60 to 80°C .
(2) The method for dissolving according to (1) above, wherein the positive electrode material is a positive electrode material containing one or more metals selected from the group consisting of cobalt, manganese, and nickel, and lithium metal.

(3)リチウムイオン電池の正極材に含まれる金属を酸性溶液に溶解させるための溶解装置であって、
前記酸性溶液を貯留する貯液槽と、
前記正極材粉体を充填する正極材充填装置と、
該正極材充填装置に、前記酸性溶液の存在下でマイクロ波を照射し、前記酸性溶液を加熱するマイクロ波反応装置と
前記貯液槽内の酸性溶液を前記正極材充填装置に循環させる液循環系統と、
を具備し、
前記マイクロ波反応装置は、PID制御機能付きの温度制御盤を具備しており、前記マイクロ波反応装置の出力をPID制御するとともに、
前記酸性溶液を加温する加温槽を有しない、ことを特徴とする溶解装置。
(3) A dissolving apparatus for dissolving a metal contained in a positive electrode material of a lithium ion battery in an acidic solution, comprising:
A storage tank for storing the acidic solution;
a cathode material filling device for filling the cathode material powder;
a microwave reaction device that irradiates the cathode material filling device with microwaves in the presence of the acidic solution to heat the acidic solution ;
a liquid circulation system that circulates the acidic solution in the storage tank to the cathode material filling device;
Equipped with
The microwave reactor is equipped with a temperature control panel with a PID control function, and the output of the microwave reactor is PID controlled,
A dissolution apparatus characterized in that it does not have a heating tank for heating the acidic solution.

本発明によれば、正極材に、酸性溶液存在下でマイクロ波を照射して加熱することにより、誘電損失等により加熱が進行するため、コバルト、マンガン及びニッケル金属を、ヒーター加熱よりも多量(約2~5倍量)に浸出させることができる。これにより、希少金属を低コストで回収することが可能になる。 According to the present invention, by irradiating the positive electrode material with microwaves in the presence of an acidic solution, heating proceeds due to dielectric loss, etc., and it is possible to leach cobalt, manganese, and nickel metals in larger amounts (approximately 2 to 5 times the amount) than when heated with a heater. This makes it possible to recover rare metals at low cost.

本発明の溶解装置の一実施形態を説明する概略図である。FIG. 1 is a schematic diagram illustrating an embodiment of a dissolution apparatus of the present invention. 正極材(LiCoO)の試験結果を示す図である。FIG. 13 is a diagram showing test results of a positive electrode material (LiCoO 2 ). 正極材(LiMnO)の試験結果を示す図である。FIG. 1 is a diagram showing test results of a positive electrode material (LiMnO 4 ). 正極材(LiNiO)の試験結果を示す図である。FIG. 13 is a diagram showing test results of a positive electrode material (LiNiO 2 ).

[溶解方法]
本発明の溶解方法は、リチウムイオン電池正極材を解体して得られる正極材に含まれる金属を酸性溶液に溶解させる溶解方法であって、前記正極材に酸性溶液存在下でマイクロ波を照射して加熱することを特徴とする。
[Dissolution method]
The dissolution method of the present invention is a method for dissolving metals contained in a positive electrode material obtained by dismantling a lithium-ion battery positive electrode material in an acidic solution, and is characterized in that the positive electrode material is heated by irradiating it with microwaves in the presence of the acidic solution.

リチウムイオン電池正極材としては、公知の正極材を制限なく用いることができる。具体的には、コバルト酸リチウム(LiCoO)等のコバルト系正極材、ニッケル酸リチウム(LiNiO)等のニッケル系正極材、マンガン酸リチウム(LiMn)等のマンガン系正極材、リン酸鉄リチウム(LiFePO)等の鉄系正極材、LiNi0.8Co0.15Al0.05等のNCA系正極材、LiNi1/3Mn1/3Co1/3)等のNMC系正極材等が挙げられる。 The lithium ion battery positive electrode material may be any known positive electrode material without limitation. Specifically, cobalt-based positive electrode materials such as lithium cobalt oxide (LiCoO 2 ), nickel-based positive electrode materials such as lithium nickel oxide (LiNiO 2 ), manganese-based positive electrode materials such as lithium manganese oxide (LiMn 2 O 4 ), iron-based positive electrode materials such as lithium iron phosphate (LiFePO 4 ), NCA-based positive electrode materials such as LiNi 0.8 Co 0.15 Al 0.05 O 2 , and NMC-based positive electrode materials such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 , may be used.

これらの正極材の中でも、本発明が対象とする好ましい正極材は、組成が比較的単純であり、廃電池から金属を回収するニーズが早期に訪れる可能性がある、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム及びリン酸鉄リチウムである。なかでも、さらに好ましいのは、価格が最も高価であるコバルト系正極材、安全性が比較的高く国内での普及率が高いマンガン系正極材であり、特に好ましいのはコバルト系正極材である。 Among these positive electrode materials, the preferred positive electrode materials targeted by the present invention are lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphate, which have a relatively simple composition and are likely to be in demand soon for the recovery of metals from waste batteries. Among these, the most preferred are cobalt-based positive electrode materials, which are the most expensive, and manganese-based positive electrode materials, which are relatively safe and have a high prevalence in Japan, and the most preferred is cobalt-based positive electrode materials.

金属の溶解対象となる正極材としては、廃棄物として回収した廃リチウムイオン電池の解体品、スクラップ品等、または、リチウムイオン電池の製造工程の中間品等が挙げられ、廃リチウムイオン電池由来の正極材であれば特に制限はない。また、正極材が篩選別されたもの等であり、粉体として入手可能なものであればより好ましい。 The positive electrode material to be the target of metal dissolution may be dismantled or scrapped waste lithium-ion batteries collected as waste, or intermediate products in the manufacturing process of lithium-ion batteries. There are no particular limitations on the positive electrode material as long as it is derived from waste lithium-ion batteries. It is more preferable if the positive electrode material is one that has been sieved and is available as a powder.

本発明では、正極材から金属を溶解させる場合に、前記正極材に酸性溶液存在下で、マイクロ波を照射して加熱する。マイクロ波照射方法は限定されるものではなく、連続的または断続的に実施することができ、迅速溶解処理の観点からは連続照射が好ましい。 In the present invention, when dissolving metal from a cathode material, the cathode material is heated by irradiating it with microwaves in the presence of an acidic solution. The microwave irradiation method is not limited and can be performed continuously or intermittently, with continuous irradiation being preferred from the viewpoint of rapid dissolution processing.

マイクロ波による物質の加熱機構は、下記式で求められるマイクロ波エネルギーに依存するため、誘電加熱の影響が大きいことが知られている。
マイクロ波エネルギー=誘電加熱+磁性加熱(比透磁率≒1)+ジュール加熱
The mechanism by which a substance is heated by microwaves depends on the microwave energy, which is calculated using the following formula, and it is known that the effect of dielectric heating is significant.
Microwave energy = dielectric heating + magnetic heating (relative permeability ≒ 1) + Joule heating

即ち、比誘電損失が大きい物質ほどマイクロ波で加熱され易いと考えられている。比誘電損失の大きい溶媒としては、水、メタノール、アセトン等が挙げられ、比誘電損失の小さい溶媒としては、ベンゼン、トルエン等が挙げられる。 In other words, it is believed that the larger the dielectric loss of a substance is, the easier it is to heat it with microwaves. Examples of solvents with large dielectric loss include water, methanol, and acetone, while examples of solvents with small dielectric loss include benzene and toluene.

また、主な固体に対するマイクロ波加熱効果は、堀越智等の著書“マイクロ波化学”(三共出版2013年12月発行)によれば、コバルト酸化物が最も高く、ニッケル酸化物、マンガン酸化物が同等であることが知られている(表1参照)。この点、コバルト酸化物は、マンガン酸化物やニッケル酸化物よりもマイクロ波で加熱し易い物質である。 In addition, according to the book "Microwave Chemistry" by Satoshi Horikoshi et al. (published by Sankyo Publishing in December 2013), the microwave heating effect on major solids is known to be highest for cobalt oxide, followed by nickel oxide and manganese oxide at similar levels (see Table 1). In this respect, cobalt oxide is a substance that is easier to heat with microwaves than manganese oxide and nickel oxide.

本発明では、正極材に含まれる金属を酸性溶液に溶解させる。酸性溶液の酸としては、塩酸、硫酸または硝酸と言った強酸が好ましく、生成塩(塩化物)の溶解性が良好である点からは塩酸が好ましい。酸性溶液の溶媒としては、比誘電損失の大きい溶媒である水、メタノール、アセトンが好ましい。前記のメタノール(沸点約65℃)及びアセトン(沸点約56℃)は、低沸点であるため常圧では溶解処理時の液温を上げることができない、溶解処理後の溶媒回収が必要である等の不都合がある。水は、より高温での溶解処理が可能で溶媒回収が不要であるため、より好ましい溶媒である。酸性溶液としては、塩酸水溶液が最も好ましい。 In the present invention, the metal contained in the positive electrode material is dissolved in an acidic solution. As the acid of the acidic solution, strong acids such as hydrochloric acid, sulfuric acid, or nitric acid are preferable, and hydrochloric acid is preferable because it has good solubility of the salt (chloride) produced. As the solvent of the acidic solution, water, methanol, and acetone, which are solvents with large relative dielectric loss, are preferable. The above-mentioned methanol (boiling point of about 65°C) and acetone (boiling point of about 56°C) have disadvantages such as the inability to increase the liquid temperature during dissolution treatment at normal pressure due to their low boiling points and the need to recover the solvent after dissolution treatment. Water is a more preferable solvent because it allows dissolution treatment at a higher temperature and does not require solvent recovery. As the acidic solution, an aqueous hydrochloric acid solution is the most preferable.

塩酸水溶液の濃度としては、1~3mol/Lが好ましく、より好ましくは1.2~2.8mol/L、さらに好ましくは1.5~2.5mol/Lである。また、塩酸の使用量は、対象とする正極材(金属酸化物)に対する当量で、2~5倍当量用いることが好ましい。より好ましくは2.2~4.8倍当量、特に好ましくは2.5~4.5倍当量である。酸の使用量が少なすぎる場合は、単位時間当たりの金属溶解量が減少するため非効率となり、一方、酸の使用量が多すぎる場合は、単位時間当たりの金属溶解量が頭打ちになるだけでなく、余剰の酸を中和するための後処理が煩雑になり、コスト高になる恐れがある。 The concentration of the hydrochloric acid solution is preferably 1 to 3 mol/L, more preferably 1.2 to 2.8 mol/L, and even more preferably 1.5 to 2.5 mol/L. The amount of hydrochloric acid used is preferably 2 to 5 times the equivalent of the target cathode material (metal oxide). More preferably, it is 2.2 to 4.8 times equivalent, and particularly preferably 2.5 to 4.5 times equivalent. If the amount of acid used is too small, the amount of metal dissolved per unit time decreases, resulting in inefficiency. On the other hand, if the amount of acid used is too large, not only will the amount of metal dissolved per unit time reach a plateau, but post-processing to neutralize the excess acid will become complicated, which may result in high costs.

本発明の溶解方法において、溶解時間は通常1~10時間である。溶解方法は、バッチ式、連続式を問わず、マイクロ波照射可能な方法であれば良い。 In the dissolution method of the present invention, the dissolution time is usually 1 to 10 hours. The dissolution method may be batch or continuous, as long as it is a method that can be irradiated with microwaves.

[溶解装置]
図1は、本発明の溶解装置の一実施形態を説明する概略図である。溶解装置1は、正極材2を充填する正極材充填装置3、正極材2に対してマイクロ波を照射するマイクロ波反応装置4、正極材を溶解する酸性溶液を貯留する貯液槽5、該貯液槽5の酸性溶液を正極材充填装置3に送液した後、該液に溶解させた金属を含む酸性溶液を貯液槽5に戻すための液循環系統6、を少なくとも具備している。前記貯液槽5は、撹拌装置11を具備していることが好ましい。
[Dissolving apparatus]
1 is a schematic diagram illustrating one embodiment of the dissolving apparatus of the present invention. The dissolving apparatus 1 includes at least a cathode material filling device 3 for filling a cathode material 2, a microwave reaction device 4 for irradiating microwaves to the cathode material 2, a liquid storage tank 5 for storing an acidic solution for dissolving the cathode material, and a liquid circulation system 6 for returning the acidic solution containing the metal dissolved in the liquid to the liquid storage tank 5 after sending the acidic solution in the liquid storage tank 5 to the cathode material filling device 3. The liquid storage tank 5 is preferably equipped with a stirring device 11.

図1では、液循環系統6は、送液用配管6a、液流方向を調整するための三方弁6b、ストップバルブ6c、及び送液用のポンプ6d等を備えている。前記の液循環系統6は、溶解装置1内で酸性溶液を循環させるためのものであり、図1に示す例に制限されるものではなく、また、配管、ポンプ、バルブ、その他要素についても一般的な装置における構成及び組合せを用いることができる。 In FIG. 1, the liquid circulation system 6 includes a liquid delivery pipe 6a, a three-way valve 6b for adjusting the liquid flow direction, a stop valve 6c, and a liquid delivery pump 6d. The liquid circulation system 6 is for circulating the acidic solution within the dissolution device 1, and is not limited to the example shown in FIG. 1. Furthermore, the configurations and combinations of the pipes, pumps, valves, and other elements in general devices can be used.

本発明において、マイクロ波反応装置4は、正極材充填装置3内の正極材2にマイクロ波を照射するためのものである。マイクロ波反応装置4は、マイクロ波照射量を平準化するため、該装置3内の酸性溶液の温度測定用の温度計12(温度センサ)と、温度制御用のマイクロ波反応装置温度制御盤7(PID制御機能付き)を具備していることが好ましい。温度計12により検出した酸性溶液の温度データと、制御盤7の設定温度に基づき、マイクロ波反応装置4の出力をPID制御することにより、マイクロ波を連続照射しながら、酸性溶液の液温をほぼ一定温度に保持することができる。 In the present invention, the microwave reactor 4 is for irradiating microwaves to the cathode material 2 in the cathode material filling device 3. In order to level out the amount of microwave irradiation, the microwave reactor 4 is preferably equipped with a thermometer 12 (temperature sensor) for measuring the temperature of the acidic solution in the device 3, and a microwave reactor temperature control panel 7 (with PID control function) for temperature control. By PID controlling the output of the microwave reactor 4 based on the temperature data of the acidic solution detected by the thermometer 12 and the set temperature of the control panel 7, the liquid temperature of the acidic solution can be maintained at a substantially constant temperature while continuously irradiating microwaves.

照射するマイクロ波の周波数としては、1~6GHzが好ましく、1.5~4GHzがより好ましい。1GHz未満及び6GHz超では、正極材の比誘電損失が小さいため正極材からの金属溶解量が減少し、効率的な回収を行うことが困難になる。 The frequency of the microwaves to be irradiated is preferably 1 to 6 GHz, and more preferably 1.5 to 4 GHz. At frequencies below 1 GHz and above 6 GHz, the dielectric loss of the positive electrode material is small, so the amount of metal dissolved from the positive electrode material decreases, making it difficult to efficiently recover the metal.

マイクロ波照射時の正極材近傍の液温は、金属の溶解効率を向上させるため、60℃以上に保持することが好ましく、60℃~80℃の範囲に保持することがより好ましい。温度が60℃未満では、金属の溶解速度が低下し長時間の処理が必要となるため、溶解効率が低くなる。一方、温度が80℃を超えると、気化する塩酸ガスの量が増え液中の塩酸濃度が低下する結果、やはり金属の溶解速度が低下し、溶解効率が低くなる。 The liquid temperature near the cathode material during microwave irradiation is preferably kept at 60°C or higher, and more preferably in the range of 60°C to 80°C, in order to improve the efficiency of metal dissolution. If the temperature is below 60°C, the metal dissolution rate decreases and a long period of treatment is required, resulting in low dissolution efficiency. On the other hand, if the temperature exceeds 80°C, the amount of hydrochloric acid gas that vaporizes increases and the hydrochloric acid concentration in the liquid decreases, which also results in a slower metal dissolution rate and lower dissolution efficiency.

正極材2は、正極材充填装置3の内部に充填される。正極材2は、リチウムイオン電池からの回収方法によって形態が異なるが、例えばスクラップ状、固体状、粉体状等の任意の形態であって良い。正極材の溶解効率を向上させる点からは表面積が大きい形態であることが好ましい。例えば、粗粉砕品、微粉砕品、粉状品等が好ましい形態である。粗粉砕品等の場合は、さらに微粉砕して溶解装置に供しても良い。 The cathode material 2 is filled inside the cathode material filling device 3. The form of the cathode material 2 varies depending on the method of recovery from the lithium ion battery, but it may be in any form, such as scrap, solid, or powder. In order to improve the efficiency of dissolving the cathode material, a form with a large surface area is preferable. For example, coarsely pulverized products, finely pulverized products, powder products, etc. are preferred forms. In the case of coarsely pulverized products, etc., they may be further pulverized and then fed to the dissolving device.

正極材充填装置3は、正極材2に対する酸性溶液の接触時間を確保しマイクロ波照射による金属の溶解効率を高めるためには、正極材2に対して、装置3の下方から酸性溶液を流通させ、装置3の上方から酸性溶液を排出する構成が好ましい。そして、装置3外に排出された金属を溶解した酸性溶液は、再び、貯液槽5に戻すように構成することで、短時間の浸出操作で大量の金属を溶解させることができる。 In order to ensure the contact time of the acidic solution with the cathode material 2 and to increase the efficiency of dissolving the metal by microwave irradiation, the cathode material filling device 3 is preferably configured so that the acidic solution is circulated through the cathode material 2 from below the device 3 and discharged from above the device 3. The acidic solution that has dissolved the metal and is discharged outside the device 3 is then returned to the liquid storage tank 5, making it possible to dissolve a large amount of metal in a short leaching operation.

貯液槽5に戻された酸性溶液は、貯液槽5から再び、正極材充填装置3に供給されることにより、貯液槽5と正極材充填装置3の間を循環することになる。正極材充填装置3を流通させた酸性溶液を装置外に排出する場合は、三方弁6bを閉じ、ストップバルブ6cを開く。貯液槽5から酸性溶液を正極材充填装置3に供給する場合及び酸性溶液を液循環する場合は、ストップバルブ6c、三方弁6bを開く。 The acidic solution returned to the storage tank 5 is again supplied from the storage tank 5 to the cathode material filling device 3, so that it circulates between the storage tank 5 and the cathode material filling device 3. When discharging the acidic solution that has circulated through the cathode material filling device 3 to the outside of the device, the three-way valve 6b is closed and the stop valve 6c is opened. When supplying the acidic solution from the storage tank 5 to the cathode material filling device 3 and when circulating the acidic solution, the stop valve 6c and the three-way valve 6b are opened.

酸性溶液の装置1内での循環は、酸性溶液中の金属濃度が所定濃度以上になるまで実施する。液循環系統内に適宜なサンプリング場所を設け、そこから酸性溶液を適時サンプリングして分析することにより、酸性溶液中の金属濃度を測定するのが良い。 The acid solution is circulated within the device 1 until the metal concentration in the acid solution reaches a predetermined concentration or higher. It is advisable to measure the metal concentration in the acid solution by providing an appropriate sampling location within the liquid circulation system and sampling and analyzing the acid solution from that location at appropriate times.

循環系統おける酸性溶液の循環速度は、金属の溶解効率の点より、約5ml/min~20ml/minに設定することが好ましい。循環速度が前記の範囲であれば、金属の溶解速度が極端に遅くなることがない。 The circulation rate of the acid solution in the circulation system is preferably set to approximately 5 ml/min to 20 ml/min in terms of the efficiency of dissolving the metal. If the circulation rate is within this range, the dissolution rate of the metal will not become extremely slow.

以上の溶解処理を行うことにより、正極材に含まれているCo、Ni、Mn等の有価金属を回収することができる。 By carrying out the above dissolution process, valuable metals such as Co, Ni, and Mn contained in the positive electrode material can be recovered.

本発明の溶解方法及び溶解装置は、車載用、電力貯蔵用等のリチウムイオン電池から回収した正極材の溶解方法として好適である。また、リチウムイオン電池は、液状電解質、ゲル状電解質、ポリマー電解質、固体電解質等であって良く、電解質の種類も制限されない。 The dissolution method and dissolution device of the present invention are suitable as a method for dissolving positive electrode materials recovered from lithium ion batteries for vehicle use, power storage, etc. In addition, the lithium ion battery may be a liquid electrolyte, gel electrolyte, polymer electrolyte, solid electrolyte, etc., and the type of electrolyte is not limited.

次に、本発明を実施例により具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
図1に示す溶解装置(1)を使用した。
正極材(2)を充填する正極材充填装置(3)をマイクロ波反応装置(4)の内部に設置した。該装置とは別に、貯液槽(5)として、リービッヒ冷却管(10)とマグネチックスターラー(11)を備えた内容量200mlの5つ口フラスコを用意した。貯液槽(5)と正極材充填装置(3)を、配管(6a)、三方弁(6b)及びストップバルブ(6c)を備えた液循環系統(6)で接続し、ポンプ(6d)を介して、貯液槽(5)から正極材充填装置(3)の底部に液を流入させ、該装置の上部から液を流出させ、流出させた液を再び貯液槽に戻すことにより、液が貯液槽(5)と正極材充填装置(3)との間を循環させるようにした。
マイクロ波反応装置温度制御盤(7)の温度を70℃に設定し、周波数2.45GHz、最大出力700Wのマイクロ波をPID制御しながら連続的に照射する。その間、液温を70℃に維持した。温度計(12)の計測温度をデータロガー(8)及びPC(9)に保存する。
Example 1
The dissolution apparatus (1) shown in FIG. 1 was used.
A cathode material filling device (3) for filling the cathode material (2) was installed inside a microwave reaction device (4). A 200 ml five-neck flask equipped with a Liebig cooling tube (10) and a magnetic stirrer (11) was prepared as a liquid storage tank (5) separately from the device. The liquid storage tank (5) and the cathode material filling device (3) were connected by a liquid circulation system (6) equipped with a pipe (6a), a three-way valve (6b) and a stop valve (6c). The liquid was flowed from the liquid storage tank (5) to the bottom of the cathode material filling device (3) via a pump (6d), the liquid was discharged from the top of the device, and the discharged liquid was returned to the liquid storage tank again, so that the liquid was circulated between the liquid storage tank (5) and the cathode material filling device (3).
The temperature of the microwave reactor temperature control panel (7) was set to 70° C., and microwaves with a frequency of 2.45 GHz and a maximum output of 700 W were continuously irradiated under PID control. During this time, the liquid temperature was maintained at 70° C. The temperature measured by the thermometer (12) was stored in the data logger (8) and the PC (9).

正極材充填装置(3)に粉末状正極材LiCoO(試薬)3g(0.031モル)を入れ、5つ口フラスコ(貯液槽)に2mol/Lの塩酸水溶液180mL(HCl:0.36モル、約3倍当量対正極材)を入れた。塩酸水溶液の循環を開始するともにマイクロ波を所定時間照射した後、フラスコ内の塩酸水溶液に溶解しているCo濃度を、測定装置:東亜ディーケーケー株式会社製PCIIを用い、1-(2-ピリジルアゾ)-2-ナフトール(PAN)法により測定した。測定結果を図2に示す。
なお、マイクロ波照射時間は1時間、2時間及び5時間の3条件としたが、図2では、照射時間の替わりに消費した電力量を用いてCo溶解量との関係を図示した。
3 g (0.031 mol) of powdered positive electrode material LiCoO 2 (reagent) was placed in the positive electrode material filling device (3), and 180 mL of 2 mol/L hydrochloric acid solution (HCl: 0.36 mol, approximately 3 times equivalent to the positive electrode material) was placed in a five-neck flask (liquid storage tank). After starting circulation of the hydrochloric acid solution and irradiating it with microwaves for a predetermined time, the Co concentration dissolved in the hydrochloric acid solution in the flask was measured by the 1-(2-pyridylazo)-2-naphthol (PAN) method using a measuring device: PCII manufactured by DKK-TOA Corporation. The measurement results are shown in Figure 2.
The microwave irradiation time was set to three conditions of 1 hour, 2 hours, and 5 hours. In FIG. 2, the relationship between the amount of dissolved Co and the amount of consumed electric power is shown instead of the irradiation time.

(実施例2)
正極材充填装置(3)に粉末状正極材LiMnO(試薬)3g(0.032モル)を入れ、塩酸水溶液180mL(約2.8倍当量対正極材)を入れた他は、実施例1と同様に操作した。マイクロ波照射後に塩酸水溶液に溶解しているMn濃度を、測定装置:ハンナ インスツルメンツ・ジャパン株式会社製HI709を用い、過ヨウ素酸塩酸化法により測定した。測定結果を図3に示す。
Example 2
The same operation as in Example 1 was carried out except that 3 g (0.032 mol) of powdered positive electrode material LiMnO 2 (reagent) and 180 mL of hydrochloric acid solution (about 2.8 times equivalent to the positive electrode material) were placed in the positive electrode material filling device (3). The Mn concentration dissolved in the hydrochloric acid solution after microwave irradiation was measured by the periodate oxidation method using a measuring device: HI709 manufactured by Hanna Instruments Japan Co., Ltd. The measurement results are shown in FIG.

(実施例3)
正極材充填装置(3)に板状正極材LiNiO(板状品を約10mm×10mm角に切断して使用)2g(0.021モル)を入れ、塩酸水溶液180mL(約4.4倍当量対正極材)を入れた他は、実施例1と同様に操作した。マイクロ波照射後に塩酸水溶液に溶解しているNi濃度を、実施例1と同様の装置及び方法により測定した。測定結果を図4に示す。
Example 3
The same operation as in Example 1 was carried out except that 2 g (0.021 mol) of plate-shaped positive electrode material LiNiO 2 (cut into a plate-shaped product of about 10 mm × 10 mm square) was placed in the positive electrode material filling device (3) and 180 mL of hydrochloric acid solution (about 4.4 times equivalent to the positive electrode material) was placed in the positive electrode material filling device (3). The Ni concentration dissolved in the hydrochloric acid solution after microwave irradiation was measured using the same device and method as in Example 1. The measurement results are shown in FIG.

(比較例1~3)
実施例1~3において、マイクロ波反応装置からマイクロ波を照射する替わりに、正極材充填装置の周囲にリボンヒーターを巻き加熱した以外は、実施例1~3と同様にして、塩酸水溶液の循環を開始するともに所定時間加熱した後、フラスコ内の塩酸水溶液に溶解しているCo、Ni及びMnの濃度を測定した。測定結果を図2~図4に示す。
なお、比較例1~3の加熱時間は1時間、2時間、5時間の3条件としたが、実施例1~3と同様、加熱時間の替わりに消費した電力量を用いて各金属の溶解量との関係を図示した。
(Comparative Examples 1 to 3)
In Examples 1 to 3, except that a ribbon heater was wrapped around the cathode material filling device for heating instead of irradiating microwaves from the microwave reactor, circulation of the hydrochloric acid solution was started and heating was performed for a predetermined period of time, and then the concentrations of Co, Ni, and Mn dissolved in the hydrochloric acid solution in the flask were measured in the same manner as in Examples 1 to 3. The measurement results are shown in Figures 2 to 4.
In Comparative Examples 1 to 3, the heating time was set to three conditions of 1 hour, 2 hours, and 5 hours. As in Examples 1 to 3, the relationship between the amount of dissolved metal and the amount of power consumed was shown in the figure instead of the heating time.

上記の実験結果より、マイクロ波加熱とヒーター加熱とでは、電力量に対する金属溶解量に差が認められた。
マイクロ波照射の場合には、照射時間と消費電力量は必ずしも正比例しないが、マイクロ波照射の場合の溶解金属量の最大値とヒーター加熱の場合の溶解金属量の最大値を比較すると、Coの場合、マイクロ波照射では11,000ppm(試験に供試したCoの109%に相当)であるのに対し、ヒーター加熱では4,800ppm(試験に供試したCoの48%に相当)であり、マイクロ波照射ではヒーター加熱の約2倍量のCoが溶解することがわかる。
From the above experimental results, it was found that there was a difference in the amount of metal dissolved per unit of electric power between microwave heating and heater heating.
In the case of microwave irradiation, the irradiation time and power consumption are not necessarily directly proportional, but when the maximum amount of dissolved metal in the case of microwave irradiation is compared with the maximum amount of dissolved metal in the case of heater heating, in the case of Co, the amount was 11,000 ppm (equivalent to 109% of the Co tested) in the case of microwave irradiation, whereas the amount was 4,800 ppm (equivalent to 48% of the Co tested) in the case of heater heating, which shows that about twice the amount of Co dissolved in the case of heater heating was dissolved in the case of microwave irradiation.

また、消費電力量が同じである約150WhでのCoの溶解量を比較すると、マイクロ波照射では10,000ppm(試験に供試したCoの99%に相当)であるのに対し、ヒーター加熱では最大で4,800ppm(試験に供試したCoの48%に相当)であり、やはりマイクロ波照射ではヒーター加熱の約2倍量のCoが溶解しており、マイクロ波照射はヒーター加熱と比較して、使用エネルギーの面からも有利であることがわかる。 In addition, when comparing the amount of Co dissolved at the same power consumption of about 150 Wh, microwave irradiation dissolved 10,000 ppm (equivalent to 99% of the Co tested), whereas heater heating dissolved a maximum of 4,800 ppm (equivalent to 48% of the Co tested). This also shows that microwave irradiation dissolved about twice the amount of Co as heater heating, and that microwave irradiation is more advantageous in terms of energy usage than heater heating.

Mnの場合も、溶解金属量の最大値を比較すると、マイクロ波照射では4,700ppm(試験に供試したMnの47%に相当)、ヒーター加熱では2,200ppm(試験に供試したMnの23%に相当)であり、Coの場合と同様、マイクロ波照射ではヒーター加熱の約2倍量となる。
消費電力量が同じ場合の溶解量の比較では、Coの場合ほど顕著ではないが、消費電力量約60Whで、マイクロ波照射が2,300ppm(試験に供試したMnの24%に相当)、ヒーター加熱が2,000ppm(試験に供試したMnの20%に相当)であり、マイクロ波加熱の方がエネルギー面でも有利であることを示している。
In the case of Mn, when comparing the maximum amount of dissolved metal, the microwave irradiation yielded 4,700 ppm (corresponding to 47% of the Mn tested) and the heater heating yielded 2,200 ppm (corresponding to 23% of the Mn tested). As in the case of Co, the microwave irradiation yielded approximately twice the amount of dissolved metal as the heater heating.
When comparing the amount of dissolution when the power consumption is the same, the difference is not as significant as in the case of Co, but with a power consumption of about 60 Wh, microwave irradiation resulted in 2,300 ppm (equivalent to 24% of the Mn tested), while heater heating resulted in 2,000 ppm (equivalent to 20% of the Mn tested), indicating that microwave heating is also advantageous in terms of energy.

Niの場合には、CoやMnの場合ほど差はないが、溶解金属量の最大値では、マイクロ波照射では5,200ppm(試験に供試したNiの78%に相当)、ヒーター加熱では5,000ppm(試験に供試したNiの75%に相当)であり、マイクロ波照射の方がヒーター加熱よりもやや溶解量が多い。
また、消費電力量が同じ場合の溶解量では、消費電力量約70Whで、マイクロ波照射が4,300ppm(試験に供試したNiの63%に相当)、ヒーター加熱が最大で3,500ppm(試験に供試したNiの51%に相当)であり、マイクロ波加熱の方がエネルギー面で有利であることを示している。
In the case of Ni, the difference was not as great as in the cases of Co and Mn, but the maximum amount of dissolved metal was 5,200 ppm (equivalent to 78% of the Ni tested) with microwave irradiation and 5,000 ppm (equivalent to 75% of the Ni tested) with heater heating, meaning that the amount dissolved was slightly greater with microwave irradiation than with heater heating.
In addition, when the power consumption was the same, the amount of dissolution was 4,300 ppm (equivalent to 63% of the Ni tested) with microwave irradiation at a power consumption of approximately 70 Wh, while the amount of dissolution was a maximum of 3,500 ppm (equivalent to 51% of the Ni tested) with heater heating, indicating that microwave heating is more advantageous in terms of energy.

本発明の溶解方法によれば、正極材に含まれる金属がマイクロ波で加熱されるため、比誘電損失が大きいLiCoOにおいて、特に良好な結果が得られた。また、LiMnOでも従来のヒーター加熱と比べて有意差が認められた。LiNiOでも従来のヒーター加熱と比べてLiCoOやLiMnOの場合程ではないが、マイクロ波照射がヒーター加熱より有利であることが認められた。 According to the dissolution method of the present invention, since the metal contained in the positive electrode material is heated by microwaves, particularly good results were obtained for LiCoO2 , which has a large relative dielectric loss. Also, a significant difference was observed for LiMnO2 compared to conventional heater heating. It was also found that microwave irradiation is more advantageous than heater heating for LiNiO2 , although not as much as for LiCoO2 and LiMnO2 .

以上、本発明を説明したが、本発明は、1台のマイクロ波反応装置内に複数の正極材充填装置を設置する、あるいは、マイクロ波反応装置を複数台用いて行うことも可能であり、本発明の範囲内で種々の変更が可能であることは言うまでもない。 The present invention has been described above, but it goes without saying that the present invention can be modified in various ways within the scope of the present invention, such as by installing multiple cathode material filling devices in one microwave reactor or by using multiple microwave reactors.

本発明によれば、廃リチウムイオン電池等から正極材に使用されている有価金属を低コストで回収することができる。 According to the present invention, valuable metals used in the positive electrode material can be recovered from waste lithium-ion batteries and the like at low cost.

1 溶解装置
2 正極材
3 正極材充填装置
4 マイクロ波反応装置
5 貯液槽
6 液循環系統
6a 配管
6b 三方弁
6c ストップバルブ
6d ポンプ
7 マイクロ波反応装置温度制御盤
8 データロガー
9 PC
10 冷却管
11 撹拌装置
12 温度計
REFERENCE SIGNS LIST 1 Dissolving device 2 Cathode material 3 Cathode material filling device 4 Microwave reactor 5 Liquid storage tank 6 Liquid circulation system 6a Piping 6b Three-way valve 6c Stop valve 6d Pump 7 Microwave reactor temperature control panel 8 Data logger 9 PC
10 Cooling pipe 11 Stirring device 12 Thermometer

Claims (3)

リチウムイオン電池の正極材に含まれる金属を酸性溶液に溶解させる際に、
前記酸性溶液として1~3mol/Lの塩酸水溶液を用い、
前記酸性溶液を、正極材に接触流通させながら、マイクロ波を照射して加熱することにより、接触流通時の液温を60~80℃の範囲に保持することを特徴とする溶解方法。
When the metals contained in the positive electrode material of a lithium-ion battery are dissolved in an acidic solution,
As the acidic solution, a 1 to 3 mol/L aqueous hydrochloric acid solution is used,
The dissolving method is characterized in that the acidic solution is heated by irradiating it with microwaves while being in contact with the cathode material , thereby maintaining the liquid temperature during contact in the range of 60 to 80°C .
正極材が、コバルト、マンガン、ニッケルからなる群から選択される1種以上の金属とリチウム金属とを含む正極材である請求項1に記載の溶解方法。 The dissolution method according to claim 1, wherein the positive electrode material is a positive electrode material containing one or more metals selected from the group consisting of cobalt, manganese, and nickel, and lithium metal. リチウムイオン電池の正極材に含まれる金属を酸性溶液に溶解させるための溶解装置であって、
前記酸性溶液を貯留する貯液槽と、
前記正極材粉体を充填する正極材充填装置と、
該正極材充填装置に、前記酸性溶液の存在下でマイクロ波を照射し、前記酸性溶液を加熱するマイクロ波反応装置と
前記貯液槽内の酸性溶液を前記正極材充填装置に循環させる液循環系統と、
を具備し、
前記マイクロ波反応装置は、PID制御機能付きの温度制御盤を具備しており、前記マイクロ波反応装置の出力をPID制御するとともに、
前記酸性溶液を加温する加温槽を有しない、ことを特徴とする溶解装置。
A dissolving apparatus for dissolving metals contained in a positive electrode material of a lithium ion battery in an acidic solution,
A storage tank for storing the acidic solution;
a cathode material filling device for filling the cathode material powder;
a microwave reaction device that irradiates the cathode material filling device with microwaves in the presence of the acidic solution to heat the acidic solution ;
a liquid circulation system that circulates the acidic solution in the storage tank to the cathode material filling device;
Equipped with
The microwave reactor is equipped with a temperature control panel with a PID control function, and the output of the microwave reactor is PID controlled,
A dissolution apparatus characterized in that it does not have a heating tank for heating the acidic solution.
JP2019212243A 2019-11-25 2019-11-25 Method and device for dissolving metals from lithium-ion battery positive electrode material Active JP7472474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212243A JP7472474B2 (en) 2019-11-25 2019-11-25 Method and device for dissolving metals from lithium-ion battery positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212243A JP7472474B2 (en) 2019-11-25 2019-11-25 Method and device for dissolving metals from lithium-ion battery positive electrode material

Publications (2)

Publication Number Publication Date
JP2021085042A JP2021085042A (en) 2021-06-03
JP7472474B2 true JP7472474B2 (en) 2024-04-23

Family

ID=76086909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212243A Active JP7472474B2 (en) 2019-11-25 2019-11-25 Method and device for dissolving metals from lithium-ion battery positive electrode material

Country Status (1)

Country Link
JP (1) JP7472474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339312A1 (en) * 2021-09-30 2024-03-20 Asaka Riken Co., Ltd. Method for dissolving battery powder in hydrochloric acid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198103A (en) 2000-12-22 2002-07-12 Toshiba Electronic Engineering Corp Recovery method of electrode-constituting metals
JP2003073751A (en) 2001-08-27 2003-03-12 Taiheiyo Cement Corp Method for microwave acidolysis, and method for highly concentrating metal with use of supercritical fluid extraction
WO2012102384A1 (en) 2011-01-27 2012-08-02 住友金属鉱山株式会社 Valuable metal leaching method, and valuable metal collection method employing the leaching method
JP2014062307A (en) 2012-09-24 2014-04-10 Sumitomo Metal Mining Co Ltd Acid leaching apparatus and acid leaching method of metal
JP2015137393A (en) 2014-01-22 2015-07-30 Jx日鉱日石金属株式会社 Lithium ion battery waste treatment method, and metal recovery method using the same
JP2016006769A (en) 2007-08-24 2016-01-14 ビーエーエスエフ コーポレーション System for continuous extraction of precious metals from fuel cells
JP3209015U (en) 2012-05-15 2017-03-02 ソンシエン エクスプロイター モリブデン カンパニー リミテッドSongxian Exploiter Molybdenum Co.,Ltd. Industrial microwave ultrasonic reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198103A (en) 2000-12-22 2002-07-12 Toshiba Electronic Engineering Corp Recovery method of electrode-constituting metals
JP2003073751A (en) 2001-08-27 2003-03-12 Taiheiyo Cement Corp Method for microwave acidolysis, and method for highly concentrating metal with use of supercritical fluid extraction
JP2016006769A (en) 2007-08-24 2016-01-14 ビーエーエスエフ コーポレーション System for continuous extraction of precious metals from fuel cells
WO2012102384A1 (en) 2011-01-27 2012-08-02 住友金属鉱山株式会社 Valuable metal leaching method, and valuable metal collection method employing the leaching method
JP3209015U (en) 2012-05-15 2017-03-02 ソンシエン エクスプロイター モリブデン カンパニー リミテッドSongxian Exploiter Molybdenum Co.,Ltd. Industrial microwave ultrasonic reactor
JP2014062307A (en) 2012-09-24 2014-04-10 Sumitomo Metal Mining Co Ltd Acid leaching apparatus and acid leaching method of metal
JP2015137393A (en) 2014-01-22 2015-07-30 Jx日鉱日石金属株式会社 Lithium ion battery waste treatment method, and metal recovery method using the same

Also Published As

Publication number Publication date
JP2021085042A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Yue et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching
Zhang et al. Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes
Zhang et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries
Chan et al. Closed-loop recycling of lithium, cobalt, nickel, and manganese from waste lithium-ion batteries of electric vehicles
Li et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system
Shuva et al. Hydrometallurgical recovery of value metals from spent lithium ion batteries
Gao et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process
Refly et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes
CN107994288B (en) Method for recovering valuable metals in anode material of waste nickel cobalt lithium manganate ternary battery
Lu et al. Sustainable and convenient recovery of valuable metals from spent Li-ion batteries by a one-pot extraction process
Nan et al. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction
Cai et al. Process development for the recycle of spent lithium ion batteries by chemical precipitation
Chen et al. Sustainable recovery of metals from spent lithium-ion batteries: a green process
CN107699692A (en) A kind of recovery and the method for regenerating waste used anode material for lithium-ion batteries
CN104868190B (en) The leaching of metal and recovery method in a kind of lithium ion cell anode waste
CN102751549B (en) Full-component resource reclamation method for waste positive electrode materials of lithium ion batteries
Chu et al. Synthesis of LiNi0. 6Co0. 2Mn0. 2O2 from mixed cathode materials of spent lithium-ion batteries
CN101831548B (en) Method for recovering valuable metals from waste lithium manganese oxide battery
CN105742744B (en) A kind of method that lithium is extracted in the waste liquid containing lithium produced from waste and old lithium ion battery removal process
Zheng et al. Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps
CN108394919A (en) Application of the complexing of metal ion agent in waste lithium iron phosphate battery removal process
CN104103870A (en) Method for recovering cobalt lithium aluminum from positive pole plate of scrap lithium ion battery
CN104078719A (en) Method for preparing nickel lithium manganate by using waste lithium manganate battery
He et al. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent
Luo et al. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150