JP7465169B2 - Current Sensor - Google Patents

Current Sensor Download PDF

Info

Publication number
JP7465169B2
JP7465169B2 JP2020125702A JP2020125702A JP7465169B2 JP 7465169 B2 JP7465169 B2 JP 7465169B2 JP 2020125702 A JP2020125702 A JP 2020125702A JP 2020125702 A JP2020125702 A JP 2020125702A JP 7465169 B2 JP7465169 B2 JP 7465169B2
Authority
JP
Japan
Prior art keywords
conductors
conductor
detection element
magnetic flux
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125702A
Other languages
Japanese (ja)
Other versions
JP2022021850A (en
Inventor
浩史 清水
弘洋 一条
章人 佐々木
肇臣 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020125702A priority Critical patent/JP7465169B2/en
Publication of JP2022021850A publication Critical patent/JP2022021850A/en
Application granted granted Critical
Publication of JP7465169B2 publication Critical patent/JP7465169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、電流センサに関する。 The present invention relates to a current sensor.

特許文献1に、3相交流モータにおいて各相の出力電流を検出するために、3相交流電力を伝達する3本のバスバに対して、それぞれ1つずつ検出素子を配置する電流センサが記載されている。各検出素子は、検出対象である1本のバスバに流れる電流に起因して発生する磁界を検出するに際して、非検出対象である他の2本のバスバに流れる電流に起因する磁界の影響を受ける。特許文献1は、非検出対象であるバスバに流れる電流に起因する磁界の影響を低減し、各検出素子のSN比を向上させるために、バスバの形状と、検出素子の配置とを工夫するものである。 Patent Document 1 describes a current sensor in which a detection element is arranged for each of the three bus bars that transmit three-phase AC power in order to detect the output current of each phase in a three-phase AC motor. When detecting a magnetic field generated due to a current flowing through one bus bar that is the detection target, each detection element is affected by a magnetic field caused by currents flowing through the other two bus bars that are not the detection target. Patent Document 1 devises a bus bar shape and a detection element arrangement to reduce the influence of the magnetic field caused by currents flowing through the bus bars that are not the detection target and to improve the signal-to-noise ratio of each detection element.

特開2015-132499号公報JP 2015-132499 A

特許文献1のように、3相交流モータにおけるバスバ等の複数の導体に流れる電流をそれぞれ別々に検出するために、1つの導体に1つの検出素子を設ける技術は知られている。しかしながら、複数の導体に流れる電流を一括して1つの検出素子により検出する技術は知られておらず、この場合、複数の導体に流れる電流を複数の検出素子によりそれぞれ別々に検出する場合とは全く別の技術的思想が求められる。 As in Patent Document 1, a technique is known in which one detection element is provided for each conductor in order to separately detect the currents flowing through multiple conductors, such as bus bars in a three-phase AC motor. However, no technique is known for collectively detecting the currents flowing through multiple conductors using a single detection element, and in this case, a completely different technical concept is required than when the currents flowing through multiple conductors are detected separately using multiple detection elements.

検出素子は、導体に流れる電流により発生する磁束を感知して電流検出を行う。複数の導体に流れる電流を複数の検出素子によりそれぞれ別々に検出する場合には、導体と検出素子とは1対1で配置されるため、導体に流れる電流と、検出素子が感知する磁束との対応関係をそれぞれ適切に調整することは比較的容易である。 The detection element detects the current by sensing the magnetic flux generated by the current flowing through the conductor. When multiple detection elements are used to detect the currents flowing through multiple conductors separately, the conductors and detection elements are arranged in a one-to-one relationship, so it is relatively easy to appropriately adjust the correspondence between the current flowing through the conductors and the magnetic flux sensed by the detection elements.

これに対して、複数の導体に流れる電流を一括して1つの検出素子により検出する場合には、各導体と、検出素子との位置関係等により、各導体に流れる電流と、検出素子が感知する磁束との対応関係が相違することがある。例えば、磁束密度は、導体と検出素子との距離の二乗に反比例するため、複数の導体に同量の電流が流れていても、検出素子に近い導体において発生する磁束の磁束密度は、検出素子から遠い導体において発生する磁束の磁束密度よりも高密度になる。その結果、複数の導体に同量の電流が流れているにも関わらず、検出素子に近い導体について検出される電流値は、遠い導体について検出される電流値よりも大きくなる。 In contrast, when currents flowing through multiple conductors are detected collectively by a single detection element, the correspondence between the currents flowing through each conductor and the magnetic flux sensed by the detection element may differ depending on the relative positions of each conductor and the detection element. For example, because magnetic flux density is inversely proportional to the square of the distance between the conductor and the detection element, even if the same amount of current flows through multiple conductors, the magnetic flux density of the magnetic flux generated in a conductor close to the detection element will be higher than the magnetic flux density of the magnetic flux generated in a conductor far from the detection element. As a result, even if the same amount of current flows through multiple conductors, the current value detected in the conductor close to the detection element will be higher than the current value detected in the conductor far from the detection element.

上記に鑑み、本発明は、複数の導体に流れる電流を一括して1つの検出素子により高精度に検出する電流センサを提供することを目的とする。 In view of the above, the present invention aims to provide a current sensor that can detect currents flowing through multiple conductors simultaneously with high accuracy using a single detection element.

本発明に係る電流センサは、一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体と、前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子と、を備える。前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちに少なくともいずれか1つについて導体磁束を補正する磁束補正機構を有する。 The current sensor according to the present invention comprises a plurality of conductors, one end of which is conductively connected to a drive circuit and the other end of which is conductively connected to a rotating electric machine, and a detection element that senses the conductor magnetic flux generated by the conductor current flowing through each of the plurality of conductors and detects the currents flowing through the plurality of conductors collectively. The current sensor has a magnetic flux correction mechanism that corrects the conductor magnetic flux for at least one of the plurality of conductors based on the positional relationship between the detection element and each of the plurality of conductors so that the correspondence between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors.

本発明に係る電流センサによれば、検出素子は、複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、複数の導体に流れる電流を一括して検出する。磁束補正機構は、検出素子と、複数の導体のそれぞれとの位置関係に基づいて、導体電流と、検出素子が感知する導体磁束との対応関係が略等価となるように導体磁束を補正するように設計されている。このため、各導体と検出素子との位置関係等により、各導体に流れる電流と検出素子が感知する磁束との対応関係が相違することを、緩和することができる。その結果、複数の導体に流れる電流を一括して1つの検出素子により高精度に検出する電流センサを提供できる。 According to the current sensor of the present invention, the detection element detects the conductor magnetic flux generated by the conductor current flowing through each of the multiple conductors, and detects the currents flowing through the multiple conductors collectively. The magnetic flux correction mechanism is designed to correct the conductor magnetic flux based on the positional relationship between the detection element and each of the multiple conductors so that the correspondence between the conductor current and the conductor magnetic flux detected by the detection element is approximately equivalent. This makes it possible to alleviate the difference in the correspondence between the current flowing through each conductor and the magnetic flux detected by the detection element, which is caused by the positional relationship between each conductor and the detection element. As a result, it is possible to provide a current sensor that detects the currents flowing through multiple conductors collectively with high accuracy using a single detection element.

第1実施形態に係る電流センサが適用される駆動回路を備える、回転電機の駆動装置。A driving device for a rotating electric machine including a driving circuit to which the current sensor according to the first embodiment is applied. 第1実施形態に係る電流センサを示す図。FIG. 2 is a diagram showing a current sensor according to the first embodiment. 変形例に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a modified example. 第2実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a second embodiment. 第3実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a third embodiment. 変形例に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a modified example. 第4実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a fourth embodiment. 第5実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a fifth embodiment. 第6実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a sixth embodiment. 第7実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a seventh embodiment. 第8実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to an eighth embodiment. 変形例に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a modified example. 第9実施形態に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a ninth embodiment. 変形例に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a modified example. 変形例に係る電流センサを示す図。FIG. 13 is a diagram showing a current sensor according to a modified example.

(第1実施形態)
第1実施形態に係る検出素子は、3相交流モータである回転電機のU相、V相、W相を流れる電流を一括して検出するためのセンサであり、例えば、図1に示すような回転電機の駆動装置10における監視センサDTとして用いることができる。
First Embodiment
The detection element of the first embodiment is a sensor for collectively detecting the currents flowing through the U phase, V phase, and W phase of a rotating electric machine, which is a three-phase AC motor, and can be used, for example, as a monitoring sensor DT in a drive device 10 for a rotating electric machine as shown in Figure 1.

図1に、回転電機の駆動制御を実行する駆動装置10を示す。回転電機は、中性点が開放されたオープン巻線の3相回転電機であり、U相巻線Uと、V相巻線Vと、W相巻線Wとを備えている。駆動装置10は、駆動回路11と、制御部12と、直流電源VDCとを備えている。駆動回路11は、第1インバータINV1と、第2インバータINV2と、高電位接続線Laと、低電位接続線Lbと、接続線スイッチSCと、相電流センサDU,DV,DWと、監視センサDTとを備えている。 Figure 1 shows a drive device 10 that controls the drive of a rotating electric machine. The rotating electric machine is a three-phase open winding with an open neutral point, and includes a U-phase winding U, a V-phase winding V, and a W-phase winding W. The drive device 10 includes a drive circuit 11, a control unit 12, and a DC power supply VDC. The drive circuit 11 includes a first inverter INV1, a second inverter INV2, a high potential connection line La, a low potential connection line Lb, a connection line switch SC, phase current sensors DU, DV, and DW, and a monitoring sensor DT.

第1インバータINV1は、3相インバータであり、直流電源VDCに接続されており、回転電機のU相巻線Uの一端に接続された上アームスイッチSU1a及び下アームスイッチSU1bと、V相巻線Vの一端に接続された上アームスイッチSV1a及び下アームスイッチSV1bと、W相巻線Wの一端に接続された上アームスイッチSW1a及び下アームスイッチSW1bとを備える。 The first inverter INV1 is a three-phase inverter connected to a DC power source VDC, and includes an upper arm switch SU1a and a lower arm switch SU1b connected to one end of the U-phase winding U of the rotating electric machine, an upper arm switch SV1a and a lower arm switch SV1b connected to one end of the V-phase winding V, and an upper arm switch SW1a and a lower arm switch SW1b connected to one end of the W-phase winding W.

第2インバータINV2は、3相インバータであり、回転電機のU相巻線Uの他端に接続された上アームスイッチSU2a及び下アームスイッチSU2bと、V相巻線Vの他端に接続された上アームスイッチSV2a及び下アームスイッチSV2bと、W相巻線Wの他端に接続された上アームスイッチSW2a及び下アームスイッチSW2bとを備える。 The second inverter INV2 is a three-phase inverter and includes an upper arm switch SU2a and a lower arm switch SU2b connected to the other end of the U-phase winding U of the rotating electric machine, an upper arm switch SV2a and a lower arm switch SV2b connected to the other end of the V-phase winding V, and an upper arm switch SW2a and a lower arm switch SW2b connected to the other end of the W-phase winding W.

高電位接続線Laは、第1インバータINV1の直流高電位側と第2インバータINV2の直流高電位側とを接続する配線である。低電位接続線Lbは、第1インバータINV1の直流低電位側と前記第2インバータの直流低電位側とを接続する。 The high potential connection line La is a wiring that connects the high DC potential side of the first inverter INV1 to the high DC potential side of the second inverter INV2. The low potential connection line Lb connects the low DC potential side of the first inverter INV1 to the low DC potential side of the second inverter.

第1インバータINV1において、各相の上アームスイッチSU1a,SV1a,SW1aの高電位側端子は直流電源VDCの正極端子に接続され、各相の下アームスイッチSU1b,SV1b,SW1bの低電位側端子は直流電源VDCの負極端子に接続されている。上アームスイッチSU1a,SV1a,SW1a及び下アームスイッチSU1b,SV1b,SW1bは、それぞれ半導体スイッチング素子である。 In the first inverter INV1, the high-potential terminals of the upper arm switches SU1a, SV1a, and SW1a of each phase are connected to the positive terminal of the DC power supply VDC, and the low-potential terminals of the lower arm switches SU1b, SV1b, and SW1b of each phase are connected to the negative terminal of the DC power supply VDC. The upper arm switches SU1a, SV1a, and SW1a and the lower arm switches SU1b, SV1b, and SW1b are each a semiconductor switching element.

第2インバータINV2において、各相の上アームスイッチSU2a,SV2a,SW2aの高電位側端子は高電位接続線Laに接続され、各相の下アームスイッチSU2b,SV2b,SW2bの低電位側端子は低電位接続線Lbに接続されている。上アームスイッチSU2a,SV2a,SW2a及び下アームスイッチSU2b,SV2b,SW2bは、それぞれ半導体スイッチング素子である。なお、半導体スイッチング素子としては、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、逆並列に接続された還流ダイオードを有するIGBT(Insulated Gate Bipolar Transistor)等を例示できる。 In the second inverter INV2, the high-potential terminals of the upper arm switches SU2a, SV2a, and SW2a of each phase are connected to the high-potential connection line La, and the low-potential terminals of the lower arm switches SU2b, SV2b, and SW2b of each phase are connected to the low-potential connection line Lb. The upper arm switches SU2a, SV2a, and SW2a and the lower arm switches SU2b, SV2b, and SW2b are each a semiconductor switching element. Examples of semiconductor switching elements include MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors) having a freewheel diode connected in inverse parallel.

第1インバータINV1において、各相の上アームスイッチSU1a,SV1a,SW1aと下アームスイッチSU1b,SV1b,SW1bとの間の中間点は、それぞれ、第1相接続線LU1,LV1,LW1によって、巻線U、V、Wの一端(第2インバータINV2と接続されていない一端)と接続されている。第2インバータINV2において、各相の上アームスイッチSU2a,SV2a,SW2aと下アームスイッチSU2b,SV2b,SW2bとの間の中間点は、それぞれ、第2相接続線LU2,LV2,LW2によって、巻線U、V、Wの一端(第1インバータINV1と接続されていない一端)と接続されている。第1相接続線LU1,LV1,LW1には、相電流センサDU,DV,DWとして、それぞれ1つずつの電流センサが設置されている。さらに、3つの第1相接続線LU1,LV1,LW1に流れる全電流を一括して検出可能な1つの電流センサとして、監視センサDTが設置されている。 In the first inverter INV1, the midpoints between the upper arm switches SU1a, SV1a, SW1a and the lower arm switches SU1b, SV1b, SW1b of each phase are connected to one end of the windings U, V, W (one end not connected to the second inverter INV2) by the first phase connection lines LU1, LV1, LW1. In the second inverter INV2, the midpoints between the upper arm switches SU2a, SV2a, SW2a and the lower arm switches SU2b, SV2b, SW2b of each phase are connected to one end of the windings U, V, W (one end not connected to the first inverter INV1) by the second phase connection lines LU2, LV2, LW2. One current sensor is installed on each of the first phase connection lines LU1, LV1, LW1 as phase current sensors DU, DV, DW. In addition, a monitoring sensor DT is installed as a single current sensor that can simultaneously detect all currents flowing through the three first-phase connection lines LU1, LV1, and LW1.

接続線スイッチSCは、高電位接続線Laに設けられており、高電位接続線Laを導通または遮断することにより、第1インバータINV1と第2インバータINV2とを導通または遮断する。接続線スイッチSCが閉状態(オン状態)の場合には、駆動回路11は、Hブリッジ回路として利用することができ、回転電機のH駆動が可能となる。 The connection line switch SC is provided on the high potential connection line La, and connects or disconnects the first inverter INV1 and the second inverter INV2 by connecting or disconnecting the high potential connection line La. When the connection line switch SC is in a closed state (on state), the drive circuit 11 can be used as an H-bridge circuit, enabling H-drive of the rotating electric machine.

接続線スイッチSCが開状態(オフ状態)の場合には、駆動回路11によって回転電機のY駆動が可能となる。例えば、第2インバータINV2の全ての上アームスイッチSU2a,SV2a,SW2aを閉状態とするとともに全ての下アームスイッチSU2b,SV2b,SW2bを開状態とすることにより、回転電機のY駆動が可能となる。すなわち、回転電機のU相巻線Uと、V相巻線Vと、W相巻線WとをY結線で接続することができる。この場合、上アームスイッチSU2a,SV2a,SW2aは、Y結線(星形結線)の中性点を構成する中性点構成スイッチに相当する。 When the connection line switch SC is in an open state (off state), the drive circuit 11 enables Y-drive of the rotating electric machine. For example, by closing all the upper arm switches SU2a, SV2a, SW2a of the second inverter INV2 and opening all the lower arm switches SU2b, SV2b, SW2b, the rotating electric machine can be Y-driven. That is, the U-phase winding U, the V-phase winding V, and the W-phase winding W of the rotating electric machine can be connected by a Y-connection. In this case, the upper arm switches SU2a, SV2a, SW2a correspond to the neutral point configuration switches that configure the neutral point of the Y-connection (star connection).

制御部12は、CPUや各種メモリからなるマイコンを備えており、回転電機における各種の検出情報や、力行駆動及び発電の要求に基づいて、第1インバータINV1および第2インバータINV2における各スイッチの開閉(オンオフ)により通電制御を実施する。回転電機の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。 The control unit 12 is equipped with a microcomputer consisting of a CPU and various memories, and performs current control by opening and closing (on/off) each switch in the first inverter INV1 and the second inverter INV2 based on various detection information from the rotating electric machine and requests for power running and power generation. Detection information from the rotating electric machine includes, for example, the rotation angle (electrical angle information) of the rotor detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by a voltage sensor, and the current flowing through each phase detected by a current sensor.

制御部12は、さらに、接続線スイッチSCの開閉を制御する。制御部12は、H駆動時には、接続線スイッチSCを閉状態に制御し、Y駆動時には、接続線スイッチSCを開状態に制御する。制御部12は、第1インバータINV1および第2インバータINV2の各スイッチおよび接続線スイッチSCを操作する操作信号を生成して出力する。 The control unit 12 further controls the opening and closing of the connection line switch SC. During H drive, the control unit 12 controls the connection line switch SC to a closed state, and during Y drive, the control unit 12 controls the connection line switch SC to an open state. The control unit 12 generates and outputs operation signals that operate each switch of the first inverter INV1 and the second inverter INV2 and the connection line switch SC.

制御部12は、回転電機をH駆動する際には、接続線スイッチSCを閉状態に制御して、例えば、交互PWM駆動を実行することができる。交互PWM駆動は、第1インバータINV1と第2インバータINV2とを交互に作動させる非対称スイッチング制御の一例である。 When driving the rotating electric machine in H mode, the control unit 12 can control the connection line switch SC to a closed state, for example, to perform alternating PWM driving. Alternating PWM driving is an example of asymmetric switching control that alternately operates the first inverter INV1 and the second inverter INV2.

制御部12は、回転電機をY駆動する際には、接続線スイッチSCを開状態に制御し、第2インバータINV2の上アームスイッチSU2a,SV2a,SW2aを閉状態に制御し、第2インバータINV2の下アームスイッチSU2b,SV2b,SW2bを開状態に制御することにより、回転電機のU相巻線Uと、V相巻線Vと、W相巻線Wとは、Y結線された状態となる。より具体的には、巻線U,V,Wの第2インバータINV2側の巻線端子が、それぞれ上アームスイッチSU2a,SV2a,SW2aを介して接続されることにより、Y結線が実現される。第2インバータINV2を利用してY結線を構成するとともに、第1インバータINV1についてPWM制御等を実行することにより、回転電機をY駆動させることができる。上アームスイッチSU2a,SV2a,SW2aは、Y結線の中性点を構成する中性点構成スイッチに相当する。下アームスイッチSU2b,SV2b,SW2bは、中性点を構成しないため、非中性点構成スイッチに相当する。 When the rotating electric machine is Y-driven, the control unit 12 controls the connection line switch SC to an open state, controls the upper arm switches SU2a, SV2a, and SW2a of the second inverter INV2 to a closed state, and controls the lower arm switches SU2b, SV2b, and SW2b of the second inverter INV2 to an open state, so that the U-phase winding U, the V-phase winding V, and the W-phase winding W of the rotating electric machine are Y-connected. More specifically, the winding terminals of the windings U, V, and W on the second inverter INV2 side are connected via the upper arm switches SU2a, SV2a, and SW2a, respectively, to realize the Y-connection. The Y-connection is configured using the second inverter INV2, and the first inverter INV1 is subjected to PWM control or the like, so that the rotating electric machine can be Y-driven. The upper arm switches SU2a, SV2a, and SW2a correspond to neutral point configuration switches that configure the neutral point of the Y-connection. The lower arm switches SU2b, SV2b, and SW2b do not constitute a neutral point and are therefore equivalent to non-neutral point configuration switches.

制御部12は、回転電機のH駆動時に、相電流センサDU,DV,DWが検出する相電流IU,IV,IWと、監視センサDTが検出する全電流ITとを取得し、相電流IU,IV,IWと、全電流ITとに基づいて、駆動回路11の故障診断を実行する。より具体的には、制御部12は、相電流IU,IV,IWの総和電流IS(三相和演算値)を算出し、その電流波形を、監視センサDTの検出値である全電流ITの電流波形と比較する。回転電機のH駆動時には、相電流センサDU,DV,DWが検出するU,V,W相の相電流IU,IV,IWは同位相にならないため打ち消し合うことがない。その結果、3次成分の総和電流ISは零にはならず、正常時には正弦波形となる。なお、制御部12は、相電流センサDU,DV,DWから、相電流IU,IV,IWを取得し、3次成分の総和を演算することにより、総和電流ISを得ることができる。 During H drive of the rotating electric machine, the control unit 12 acquires the phase currents IU, IV, IW detected by the phase current sensors DU, DV, DW and the total current IT detected by the monitoring sensor DT, and performs fault diagnosis of the drive circuit 11 based on the phase currents IU, IV, IW and the total current IT. More specifically, the control unit 12 calculates the total current IS (three-phase sum calculation value) of the phase currents IU, IV, IW, and compares the current waveform with the current waveform of the total current IT, which is the detection value of the monitoring sensor DT. During H drive of the rotating electric machine, the phase currents IU, IV, IW of the U, V, and W phases detected by the phase current sensors DU, DV, and DW are not in phase with each other, so they do not cancel each other out. As a result, the total current IS of the third-order component does not become zero, and has a sine waveform under normal conditions. In addition, the control unit 12 can obtain the total current IS by acquiring the phase currents IU, IV, and IW from the phase current sensors DU, DV, and DW and calculating the sum of the third-order components.

例えば、制御部12は、総和電流ISと全電流ITとの双方が、異常波形である(正常な正弦波形ではない)場合には、素子故障(例えば、各インバータINV1,INV2を構成するスイッチング素子の故障)などの故障モードに該当し、駆動回路11において、相電流センサDU,DV,DWおよび監視センサDTではなく、他の部位の故障であると判断する。 For example, if both the sum current IS and the total current IT have abnormal waveforms (are not normal sine waveforms), the control unit 12 determines that this corresponds to a failure mode such as an element failure (for example, failure of a switching element that constitutes each inverter INV1, INV2), and that the failure is not in the phase current sensors DU, DV, DW or the monitoring sensor DT, but in another part of the drive circuit 11.

また、制御部12は、総和電流ISが異常波形であり、かつ、全電流ITが正常波形である場合には、相電流センサ故障の故障モードに該当し、相電流センサDU,DV,DWの少なくともいずれかが故障したと判断する。 In addition, when the total current IS has an abnormal waveform and the total current IT has a normal waveform, the control unit 12 determines that the failure mode corresponds to a phase current sensor failure, and that at least one of the phase current sensors DU, DV, and DW has failed.

また、制御部12は、総和電流ISが正常波形であり、かつ、全電流ITが異常波形である場合には、監視センサ故障の故障モードに該当し、監視センサDTが故障したと判断する。 In addition, if the total current IS has a normal waveform and the total current IT has an abnormal waveform, the control unit 12 determines that the failure mode corresponds to a monitoring sensor failure and that the monitoring sensor DT has failed.

また、制御部12は、総和電流ISと全電流ITとの双方が正常な正弦波形である場合には、相電流センサDU,DV,DWおよび監視センサDTの全てが正常であると判断する。 In addition, if both the sum current IS and the total current IT have normal sine waveforms, the control unit 12 determines that all of the phase current sensors DU, DV, DW and the monitoring sensor DT are normal.

図2に、第1実施形態に係る電流センサ100を示す。電流センサ100は、検出素子101と、複数の磁性体102a~102cと、複数の導体103~105と、回路基板106と、ケーシング107とを備えている。なお、図2(a)は電流センサ100の断面図であり、図2(b)は電流センサ100の導体103~105の平面図であり、導体103~105と、検出素子101および磁性体102a,102bとの平面方向における位置関係を示す図である。 Figure 2 shows the current sensor 100 according to the first embodiment. The current sensor 100 comprises a detection element 101, multiple magnetic bodies 102a-102c, multiple conductors 103-105, a circuit board 106, and a casing 107. Note that Figure 2(a) is a cross-sectional view of the current sensor 100, and Figure 2(b) is a plan view of the conductors 103-105 of the current sensor 100, showing the positional relationship in the planar direction between the conductors 103-105, the detection element 101, and the magnetic bodies 102a and 102b.

複数の導体103~105は、いわゆるバスバであり、それぞれ、その一端が駆動回路に導通接続され、他端が回転電機に導通接続されている。より具体的には、導体103は、回転電機のU相に導通接続され、導体104は、V相に導通接続され、導体105は、W相に導通接続されている。導体103~105は、xy平面を平面方向とする平板状であり、形状および大きさは略同一である。導体103~105は、その一部がケーシング107内に収容されている。 The multiple conductors 103 to 105 are so-called bus bars, one end of which is conductively connected to a drive circuit and the other end of which is conductively connected to a rotating electric machine. More specifically, conductor 103 is conductively connected to the U-phase of the rotating electric machine, conductor 104 is conductively connected to the V-phase, and conductor 105 is conductively connected to the W-phase. The conductors 103 to 105 are flat plates with the xy plane as their planar direction, and are approximately the same in shape and size. A portion of the conductors 103 to 105 is housed within the casing 107.

検出素子101は、回路基板106の上面(図2に示すz軸の正方向側の面)に設置されている。回路基板106の上面には、検出素子101に対してx軸の負方向および正方向となる位置に、それぞれ、磁性体102a,102bが設置されている。検出素子101、磁性体102a~102c、および回路基板106は、その全体がケーシング107内に収容されている。 Detection element 101 is mounted on the upper surface of circuit board 106 (the surface on the positive side of the z-axis shown in FIG. 2). Magnetic bodies 102a and 102b are mounted on the upper surface of circuit board 106 at positions that are respectively in the negative and positive directions of the x-axis relative to detection element 101. Detection element 101, magnetic bodies 102a to 102c, and circuit board 106 are entirely housed within casing 107.

3つの導体103~105は、検出素子101に対してz軸の負方向となる位置において、x軸方向にずらして配置されている。導体104は、検出素子101の真下に配置され、導体103,105は、検出素子101の真下よりもx軸の負方向および正方向にずれた位置に配置されている。導体103は、磁性体102aの真下に配置され、導体105は、磁性体102bの真下に配置されている。導体104の真下となる位置には、磁性体102cが配置されている。 The three conductors 103 to 105 are positioned in the negative direction of the z-axis relative to the detection element 101, and are shifted in the x-axis direction. Conductor 104 is positioned directly below the detection element 101, and conductors 103 and 105 are positioned in positions shifted in the negative and positive directions of the x-axis from directly below the detection element 101. Conductor 103 is positioned directly below magnetic body 102a, and conductor 105 is positioned directly below magnetic body 102b. Magnetic body 102c is positioned directly below conductor 104.

ここで、検出素子101の上下面に垂直なz軸方向を第1方向とし、第1方向に垂直なx軸方向を第2方向とすると、導体103~105は、検出素子101の第1方向となる位置で、第2方向に互いにずらして配置されているといえる。なお、第1方向および第2方向に垂直なy軸方向は、導体103~105の通電方向である。また、磁性体102a,102bは、検出素子101の第2方向に配置されたセンサ横位置磁性体に相当し、磁性体102cは、導体103~105を介して検出素子101と対向する位置に配置されたセンサ対向位置磁性体に相当する。 Here, if the z-axis direction perpendicular to the top and bottom surfaces of the detection element 101 is defined as the first direction, and the x-axis direction perpendicular to the first direction is defined as the second direction, then the conductors 103-105 can be said to be arranged offset from one another in the second direction at a position that corresponds to the first direction of the detection element 101. The y-axis direction perpendicular to the first and second directions is the direction of current flow through the conductors 103-105. The magnetic bodies 102a and 102b correspond to the sensor-side magnetic bodies arranged in the second direction of the detection element 101, and the magnetic body 102c corresponds to the sensor-opposing magnetic body arranged in a position that faces the detection element 101 via the conductors 103-105.

導体103には、導体電流として、回転電機のU相電流がy軸の正方向に流れる。導体104には、導体電流として、回転電機のV相電流がy軸の正方向に流れる。導体105には、導体電流として、回転電機のW相電流がy軸の正方向に流れる。検出素子101は、導体電流により発生する磁束を検出することにより導体電流を検出するコアレス電流素子である。検出素子101は、U相電流によって発生するU相磁束、V相電流によって発生するV相磁束、およびW相電流によって発生するW相磁束を感知し、U相電流、V相電流、W相電流を一括して検出する。y軸の正方向に流れるU相電流、V相電流、W相電流によって、検出素子101にx軸の正方向の磁束M1,M2が発生する。検出素子101は、磁束M1、M2を感知して、磁束M1,M2に応じた電圧値を回路基板106に出力する。 The conductor 103 is a U-phase current of the rotating electric machine that flows in the positive direction of the y-axis as a conductor current. The conductor 104 is a V-phase current of the rotating electric machine that flows in the positive direction of the y-axis as a conductor current. The conductor 105 is a W-phase current of the rotating electric machine that flows in the positive direction of the y-axis as a conductor current. The detection element 101 is a coreless current element that detects the conductor current by detecting the magnetic flux generated by the conductor current. The detection element 101 detects the U-phase magnetic flux generated by the U-phase current, the V-phase magnetic flux generated by the V-phase current, and the W-phase magnetic flux generated by the W-phase current, and detects the U-phase current, V-phase current, and W-phase current collectively. The U-phase current, V-phase current, and W-phase current that flow in the positive direction of the y-axis generate magnetic fluxes M1 and M2 in the positive direction of the x-axis in the detection element 101. The detection element 101 detects the magnetic fluxes M1 and M2 and outputs a voltage value according to the magnetic fluxes M1 and M2 to the circuit board 106.

磁性体102a~102cは、透磁率を調整できる磁性体を材料とする。磁性体102a~102cは、低磁気抵抗の閉回路を構成して、U相磁束とW相磁束の磁束密度と向きとを調整する。例えば、磁束密度は、導体103~105と検出素子101との距離の二乗に反比例するため、磁性体102a~102cが存在しない場合には、導体103~105に同量の電流が流れていても、検出素子101に近い導体において発生する磁束M1の磁束密度は、検出素子101から遠い導体103,105において発生する磁束M2の磁束密度よりも高密度になる。図2(a)に示すように、磁性体102a~102cを設けることにより、低磁気抵抗の閉回路が構成され、導体104に流れるV相電流と磁束M1との対応関係と、導体103,105にそれぞれ流れるU相電流、W相電流と磁束M2との対応関係とを略等価にすることができる。 The magnetic bodies 102a to 102c are made of a magnetic material whose magnetic permeability can be adjusted. The magnetic bodies 102a to 102c form a closed circuit with low magnetic resistance to adjust the magnetic flux density and direction of the U-phase magnetic flux and the W-phase magnetic flux. For example, since the magnetic flux density is inversely proportional to the square of the distance between the conductors 103 to 105 and the detection element 101, if the magnetic bodies 102a to 102c do not exist, even if the same amount of current flows through the conductors 103 to 105, the magnetic flux density of the magnetic flux M1 generated in the conductor close to the detection element 101 will be higher than the magnetic flux density of the magnetic flux M2 generated in the conductors 103 and 105 far from the detection element 101. As shown in FIG. 2(a), by providing magnetic bodies 102a-102c, a closed circuit with low magnetic resistance is formed, and the correspondence between the V-phase current flowing through conductor 104 and magnetic flux M1 can be made approximately equivalent to the correspondence between the U-phase current and W-phase current flowing through conductors 103 and 105, respectively, and magnetic flux M2.

上記のとおり、電流センサ100は、一端が駆動回路に導通接続され、他端が回転電機に導通接続された3つの導体103~105と、導体103~105にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、3つの導体103~105に流れる電流を一括して検出する1つの検出素子101とを備える。電流センサ100は、さらに、磁性体102a~102cを備える。磁性体102a~102cの配置は、検出素子101と、3つの導体103~105のそれぞれとの位置関係に基づいて、3つの導体のそれぞれにおいて、導体電流と、検出素子101が感知する導体磁束との対応関係が略等価となるように3つの導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構として機能する。このため、各導体103~105と、検出素子101との位置関係等により、各導体103~105に流れる電流と、検出素子101が感知する磁束との対応関係が相違することを緩和することができる。その結果、電流センサ100によれば、導体103~105に流れる電流を一括して1つの検出素子101により高精度に検出できる。 As described above, the current sensor 100 includes three conductors 103-105, one end of which is conductively connected to a drive circuit and the other end of which is conductively connected to a rotating electric machine, and a detection element 101 that detects the conductor magnetic flux generated by the conductor current flowing through each of the conductors 103-105 and detects the current flowing through the three conductors 103-105 collectively. The current sensor 100 further includes magnetic bodies 102a-102c. The arrangement of the magnetic bodies 102a-102c functions as a magnetic flux correction mechanism that corrects the conductor magnetic flux for at least one of the three conductors so that the correspondence between the conductor current and the conductor magnetic flux detected by the detection element 101 is approximately equivalent in each of the three conductors based on the positional relationship between the detection element 101 and each of the three conductors 103-105. This can mitigate the difference in the correspondence between the current flowing through each conductor 103-105 and the magnetic flux sensed by the detection element 101, which is caused by the positional relationship between each conductor 103-105 and the detection element 101. As a result, the current sensor 100 can detect the current flowing through the conductors 103-105 collectively with high accuracy using a single detection element 101.

電流センサ100のように、導体103~105が、検出素子101の第1方向となる位置で、第2方向に互いにずらして配置されている場合には、図2に示すように、検出素子101の第2方向に配置されたセンサ横位置磁性体102a,102bと、導体103~105を介して検出素子101と対向する位置に配置されたセンサ対向位置磁性体102cとを含むように、磁性体の配置を構成する。これにより、各導体103~105に流れる電流と、検出素子101が感知する磁束との対応関係が相違することを緩和することができ、導体103~105に流れる電流を一括して1つの検出素子101により高精度に検出できる。 When the conductors 103-105 are arranged offset from one another in the second direction in a position that is the first direction of the detection element 101, as in the current sensor 100, the magnetic bodies are arranged to include the sensor-side magnetic bodies 102a and 102b arranged in the second direction of the detection element 101, and the sensor-opposing magnetic body 102c arranged in a position that faces the detection element 101 across the conductors 103-105, as shown in FIG. 2. This makes it possible to mitigate the difference in the correspondence between the current flowing through each conductor 103-105 and the magnetic flux sensed by the detection element 101, and allows the current flowing through the conductors 103-105 to be detected collectively with high accuracy by the single detection element 101.

(変形例)
図3に、変形例に係る電流センサ110を示す。電流センサ110は、検出素子111と、複数の磁性体112a~112cと、複数の導体113~115と、回路基板116と、ケーシング117とを備えている。導体113~115は、yz平面を平面方向とする平板状である点において、図2に示す導体103~105と相違している。その他の構成については、電流センサ100と同様であるため、図2に100番台で示す各構成を110番台に読み替えることにより、図3に示す各構成の説明を省略する。
(Modification)
Fig. 3 shows a current sensor 110 according to a modified example. The current sensor 110 includes a detection element 111, a plurality of magnetic bodies 112a-112c, a plurality of conductors 113-115, a circuit board 116, and a casing 117. The conductors 113-115 differ from the conductors 103-105 shown in Fig. 2 in that they are flat plates with the yz plane as their planar direction. The rest of the configuration is the same as that of the current sensor 100, and therefore the components shown in Fig. 3 will be omitted from description by replacing the components shown in Fig. 2 with the 100-series components with the 110-series components.

検出素子111の上下面に垂直なz軸方向を第1方向とし、第1方向に垂直なx軸方向を第2方向とすると、導体113~115は、検出素子111の第1方向となる位置で、第2方向に互いにずらして配置されているといえる。なお、第1方向および第2方向に垂直なy軸方向は、導体113~115の通電方向である。また、磁性体112a,112bは、検出素子111の第2方向に配置されたセンサ横位置磁性体に相当し、磁性体112cは、導体113~115を介して検出素子111と対向する位置に配置されたセンサ対向位置磁性体に相当する。 If the z-axis direction perpendicular to the top and bottom surfaces of the detection element 111 is defined as the first direction, and the x-axis direction perpendicular to the first direction is defined as the second direction, then the conductors 113-115 can be said to be arranged offset from each other in the second direction in a position that corresponds to the first direction of the detection element 111. The y-axis direction perpendicular to the first and second directions is the direction of current flow through the conductors 113-115. The magnetic bodies 112a and 112b correspond to the sensor-side magnetic bodies arranged in the second direction of the detection element 111, and the magnetic body 112c corresponds to the sensor-opposing magnetic body arranged in a position that faces the detection element 111 via the conductors 113-115.

検出素子111は、U相電流によって発生するU相磁束、V相電流によって発生するV相磁束、W相電流によって発生するW相磁束を感知し、U相電流、V相電流、W相電流を一括して検出する。検出素子111は、x軸の正方向の磁束M11,M12を感知する。 Detection element 111 senses the U-phase magnetic flux generated by the U-phase current, the V-phase magnetic flux generated by the V-phase current, and the W-phase magnetic flux generated by the W-phase current, and detects the U-phase current, V-phase current, and W-phase current collectively. Detection element 111 senses magnetic fluxes M11 and M12 in the positive direction of the x-axis.

電流センサ100と同様に、電流センサ110においても、導体113~115は、検出素子111の第1方向となる位置で、第2方向に互いにずらして配置されている。この場合には、電流センサ100と同様に、検出素子111の第2方向に配置されたセンサ横位置磁性体112a,112bと、導体113~115を介して検出素子111と対向する位置に配置されたセンサ対向位置磁性体112cとを含むように、磁性体の配置を構成することにより、各導体113~115に流れる電流と、検出素子111が感知する磁束M11,M12との対応関係が相違することを緩和することができる。導体113~115に流れる電流を一括して1つの検出素子111により高精度に検出できる。 As with the current sensor 100, in the current sensor 110, the conductors 113-115 are arranged in a position that is the first direction of the detection element 111, offset from each other in the second direction. In this case, as with the current sensor 100, the magnetic bodies are arranged to include the sensor-side magnetic bodies 112a and 112b arranged in the second direction of the detection element 111, and the sensor-opposing magnetic body 112c arranged in a position that faces the detection element 111 across the conductors 113-115, thereby mitigating the difference in the correspondence between the current flowing through each conductor 113-115 and the magnetic fluxes M11 and M12 sensed by the detection element 111. The currents flowing through the conductors 113-115 can be detected collectively with high accuracy by the single detection element 111.

(第2実施形態)
図4に、第2実施形態に係る電流センサ120を示す。電流センサ120は、検出素子121と、複数の磁性体122a,122bと、複数の導体123~125と、回路基板126と、ケーシング127とを備えている。電流センサ120は、導体123~125が検出素子121に対してz軸の負方向となる位置においてz軸方向にずらして配置されている点、および、磁性体122a,122bが導体123~125に対して第2方向に配置されている点において、電流センサ100と相違している。その他の構成については、電流センサ100と同様であるため、図2に100番台で示す各構成を120番台に読み替えることにより、図4に示す各構成の説明を省略する。
Second Embodiment
4 shows a current sensor 120 according to the second embodiment. The current sensor 120 includes a detection element 121, a plurality of magnetic bodies 122a and 122b, a plurality of conductors 123 to 125, a circuit board 126, and a casing 127. The current sensor 120 differs from the current sensor 100 in that the conductors 123 to 125 are shifted in the z-axis direction at a position in the negative direction of the z-axis relative to the detection element 121, and that the magnetic bodies 122a and 122b are arranged in a second direction relative to the conductors 123 to 125. The other configurations are the same as those of the current sensor 100, so that the configurations shown in FIG. 4 will not be described by replacing the configurations shown in FIG. 2 with the 120s.

3つの導体123~125は、検出素子121に対してz軸の負方向となる位置において、z軸方向にずらして配置されている。導体123~125は、検出素子121の真下において、検出素子121に近い側から遠い側に向かって、導体123,導体124,導体125の順序で配置されている。導体124,125に対してx軸の負方向および正方向となる位置に、それぞれ磁性体122a,122bが配置されている。 The three conductors 123 to 125 are arranged in a position that is in the negative direction of the z-axis relative to the detection element 121, and are shifted in the z-axis direction. The conductors 123 to 125 are arranged directly below the detection element 121 in the order of conductor 123, conductor 124, and conductor 125, from the side closer to the detection element 121 to the side farther away. The magnetic bodies 122a and 122b are arranged in positions that are in the negative and positive directions of the x-axis relative to the conductors 124 and 125, respectively.

導体123~125は、検出素子121の第1方向となる位置で、第1方向に互いにずらして配置されているといえる。なお、第1方向および第2方向に垂直なy軸方向は、導体123~125の通電方向である。また、磁性体122a,122bは、導体123~125に対して第2方向となる位置に配置された導体横位置磁性体に相当する。 The conductors 123 to 125 can be said to be arranged offset from one another in the first direction, at positions that correspond to the first direction of the detection element 121. The y-axis direction perpendicular to the first and second directions is the direction of current flow through the conductors 123 to 125. The magnetic bodies 122a and 122b correspond to conductor-lateral magnetic bodies arranged in positions that correspond to the second direction relative to the conductors 123 to 125.

検出素子121は、U相電流によって発生するU相磁束、V相電流によって発生するV相磁束、W相電流によって発生するW相磁束を感知し、U相電流、V相電流、W相電流を一括して検出する。検出素子121は、x軸の正方向の磁束M21,M22を感知する。 Detection element 121 senses the U-phase magnetic flux generated by the U-phase current, the V-phase magnetic flux generated by the V-phase current, and the W-phase magnetic flux generated by the W-phase current, and detects the U-phase current, V-phase current, and W-phase current collectively. Detection element 121 senses magnetic fluxes M21 and M22 in the positive direction of the x-axis.

上記のとおり、電流センサ120は、一端が駆動回路に導通接続され、他端が回転電機に導通接続された3つの導体123~125と、導体123~125にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、3つの導体123~125に流れる電流を一括して検出する1つの検出素子121とを備える。電流センサ120は、さらに、磁性体122a,122bを備える。磁性体122a,122bは、検出素子121と、3つの導体123のそれぞれとの位置関係に基づいて、3つの導体のそれぞれにおいて、導体電流と、検出素子121が感知する導体磁束との対応関係が略等価となるように3つの導体のうちに少なくともいずれか1つについて導体磁束を補正する磁束補正機構として機能する。このため、各導体123~125と、検出素子121との位置関係等により、各導体123~125に流れる電流と、検出素子121が感知する磁束との対応関係が相違することを緩和することができる。その結果、電流センサ120によれば、導体123~125に流れる電流を一括して1つの検出素子121により高精度に検出できる。 As described above, the current sensor 120 includes three conductors 123-125, one end of which is conductively connected to a drive circuit and the other end of which is conductively connected to a rotating electric machine, and a detection element 121 that detects the conductor magnetic flux generated by the conductor current flowing through each of the conductors 123-125 and collectively detects the current flowing through the three conductors 123-125. The current sensor 120 further includes magnetic bodies 122a and 122b. The magnetic bodies 122a and 122b function as a magnetic flux correction mechanism that corrects the conductor magnetic flux for at least one of the three conductors based on the positional relationship between the detection element 121 and each of the three conductors 123 so that the correspondence between the conductor current and the conductor magnetic flux detected by the detection element 121 is approximately equivalent in each of the three conductors. This can mitigate the difference in the correspondence between the current flowing through each conductor 123-125 and the magnetic flux sensed by the detection element 121, which is caused by the positional relationship between each conductor 123-125 and the detection element 121. As a result, the current sensor 120 can detect the current flowing through the conductors 123-125 collectively with high accuracy using a single detection element 121.

電流センサ120のように、導体123~125が、検出素子121の第1方向となる位置で、第1方向に互いにずらして配置されている場合には、図4に示すように、導体123~125に対して第2方向となる位置に配置された導体横位置磁性体122a,122bを含むように、磁性体の配置を構成する。これにより、各導体123~125に流れる電流と、検出素子121が感知する磁束との対応関係が相違することを緩和することができ、導体123~125に流れる電流を一括して1つの検出素子121により高精度に検出できる。 When the conductors 123-125 are arranged offset from one another in the first direction in a position that corresponds to the first direction of the detection element 121, as in the current sensor 120, the magnetic bodies are arranged to include conductor lateral magnetic bodies 122a and 122b arranged in a position that corresponds to the second direction relative to the conductors 123-125, as shown in FIG. 4. This makes it possible to mitigate the difference in the correspondence between the current flowing through each conductor 123-125 and the magnetic flux sensed by the detection element 121, and the current flowing through the conductors 123-125 can be detected collectively with high accuracy by the single detection element 121.

上記の各実施形態では、磁束補正機構として、検出素子と、3つの導体のそれぞれとの位置関係に基づいて設計された磁性体の配置を含む電流センサ100,110,120について説明したが、磁束補正機構としての機能を有するためには、各磁性体は、検出素子と、3つの導体のそれぞれとの位置関係に基づいて、その配置が設計され、3つの導体のうちの少なくともいずれか1つの導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正するものであればよい。 In each of the above embodiments, the current sensors 100, 110, and 120 are described as including an arrangement of magnetic bodies designed based on the positional relationship between the detection element and each of the three conductors as a magnetic flux correction mechanism. However, in order to function as a magnetic flux correction mechanism, the arrangement of each magnetic body needs to be designed based on the positional relationship between the detection element and each of the three conductors, and it is sufficient that the magnetic body corrects at least one of the magnetic flux density and the magnetic flux direction for the conductor magnetic flux of at least one of the three conductors.

(第3実施形態)
図5に、第3実施形態に係る電流センサ130を示す。電流センサ130は、検出素子131と、複数の導体133~135と、回路基板136と、ケーシング137とを備えている。電流センサ130は、導体133~135の形状および大きさが略同一でない点、および、磁性体を備えていない点において、電流センサ100と相違している。その他の構成については、電流センサ100と同様であるため、図2に100番台で示す各構成を130番台に読み替えることにより、図5に示す各構成の説明を省略する。
Third Embodiment
5 shows a current sensor 130 according to a third embodiment. The current sensor 130 includes a detection element 131, a plurality of conductors 133 to 135, a circuit board 136, and a casing 137. The current sensor 130 differs from the current sensor 100 in that the shapes and sizes of the conductors 133 to 135 are not substantially the same, and in that the current sensor 130 does not include a magnetic material. As the other configurations are the same as those of the current sensor 100, the components shown in FIG. 2 with numbers in the 100 range will be replaced with numbers in the 130 range, and a description of the components shown in FIG. 5 will be omitted.

3つの導体133~135は、検出素子131に対してz軸の負方向となる位置において、x軸方向にずらして配置されている。導体134は、検出素子131の真下に配置され、導体133,135は、検出素子101の真下よりもx軸の負方向および正方向にずれた位置に配置されている。導体133~135は、検出素子131の第1方向となる位置で、第2方向に互いにずらして配置されている。なお、第1方向および第2方向に垂直なy軸方向は、導体133~135の通電方向である。 The three conductors 133 to 135 are arranged at positions in the negative direction of the z-axis relative to the detection element 131, with a shift in the x-axis direction. The conductor 134 is arranged directly below the detection element 131, and the conductors 133 and 135 are arranged at positions shifted in the negative and positive directions of the x-axis from directly below the detection element 101. The conductors 133 to 135 are arranged at positions in the first direction of the detection element 131, with a shift in the second direction from each other. The y-axis direction, which is perpendicular to the first and second directions, is the direction in which current flows through the conductors 133 to 135.

図3(b)に示すように、導体133は、x軸方向の負方向において切り欠きが設けられた略U字状であり、y軸方向の両端部133a,133cと、y軸方向において両端部133a、133cの間に位置する中央部133bとを備えている。中央部133bのx軸方向の幅は、両端部133a,133cのx軸方向の幅よりも狭い。 As shown in FIG. 3(b), the conductor 133 is generally U-shaped with a notch in the negative x-axis direction, and has both ends 133a and 133c in the y-axis direction, and a central portion 133b located between both ends 133a and 133c in the y-axis direction. The width of the central portion 133b in the x-axis direction is narrower than the width of both ends 133a and 133c in the x-axis direction.

導体134は、x軸方向の負方向および正方向において切り欠きが設けられた略I字状であり、y軸方向の両端部134a,134cと、y軸方向において両端部134a、134cの間に位置する中央部134bとを備えている。中央部134bのx軸方向の幅は、両端部134a,134cのx軸方向の幅よりも狭い。 The conductor 134 is generally I-shaped with notches in the negative and positive directions of the x-axis, and has both ends 134a and 134c in the y-axis direction, and a central portion 134b located between both ends 134a and 134c in the y-axis direction. The width of the central portion 134b in the x-axis direction is narrower than the width of both ends 134a and 134c in the x-axis direction.

導体135は、x軸方向の正方向において切り欠きが設けられた略U字状であり、y軸方向の両端部135a,135cと、y軸方向において両端部135a、135cの間に位置する中央部135bとを備えている。中央部135bのx軸方向の幅は、両端部135a,135cのx軸方向の幅よりも狭い。導体133~135に示すように、切り欠きは、検出素子131からより遠い側に設けることが好ましい。 The conductor 135 is generally U-shaped with a notch in the positive x-axis direction, and has both ends 135a and 135c in the y-axis direction, and a central portion 135b located between both ends 135a and 135c in the y-axis direction. The width of the central portion 135b in the x-axis direction is narrower than the width of both ends 135a and 135c in the x-axis direction. As shown in conductors 133 to 135, it is preferable to provide the notch on the side farther from the detection element 131.

そして、導体134の中央部134bのx軸方向の幅は、導体133,135の中央部133b,135bのx軸方向の幅よりも広い。導体133~135は、z軸方向の厚みは同じであるため、導体134の中央部134bにおけるV相電流の流れ方向の断面積は、導体133,135の中央部133b,135bにおけるU相電流およびW相電流の流れ方向の断面積よりも広い。 The width in the x-axis direction of the central portion 134b of the conductor 134 is wider than the width in the x-axis direction of the central portions 133b and 135b of the conductors 133 and 135. Since the conductors 133 to 135 have the same thickness in the z-axis direction, the cross-sectional area in the flow direction of the V-phase current in the central portion 134b of the conductor 134 is wider than the cross-sectional areas in the flow directions of the U-phase current and W-phase current in the central portions 133b and 135b of the conductors 133 and 135.

すなわち、導体133~135は、導体電流の流れ方向(y軸方向)の両端部133a,133c,134a,134c,135a,135cの第2方向(x軸方向)の幅よりも中央部133b,134b,135bの第2方向の幅が狭くなっている。また、導体134は、検出素子131との第2方向の距離が近い近横位置導体に相当し、導体133,135は、近横位置導体よりも検出素子131との第2方向の距離が遠い遠横位置導体に相当する。そして、近横位置導体に相当する導体134の中央部134bは、遠横位置導体に相当する133,135の中央部133b,135bよりも第2方向の幅が広いことにより、導体電流の流れ方向の断面積が大きい。 That is, the width in the second direction (x-axis direction) of the central portions 133b, 134b, and 135b of the conductors 133 to 135 is narrower than the width in the second direction (x-axis direction) of both ends 133a, 133c, 134a, 134c, 135a, and 135c in the direction of conductor current flow (y-axis direction). In addition, the conductor 134 corresponds to a near-horizontal conductor that is closer to the detection element 131 in the second direction, and the conductors 133 and 135 correspond to far-horizontal conductors that are farther from the detection element 131 in the second direction than the near-horizontal conductors. The central portion 134b of the conductor 134 that corresponds to the near-horizontal conductor is wider in the second direction than the central portions 133b and 135b of the conductors 133 and 135 that correspond to the far-horizontal conductors, and therefore has a larger cross-sectional area in the direction of conductor current flow.

検出素子131は、U相電流によって発生するU相磁束、V相電流によって発生するV相磁束、W相電流によって発生するW相磁束を感知し、U相電流、V相電流、W相電流を一括して検出する。検出素子131は、x軸の正方向の磁束M31,M32を感知する。図5(b)に示すように、検出素子131と、3つの導体133~135のそれぞれとの位置関係に基づいて、導体133~135の形状を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体134に流れるV相電流と磁束M31との対応関係と、導体133,135にそれぞれ流れるU相電流、W相電流と磁束M32との対応関係とを略等価にすることができる。 Detection element 131 detects U-phase magnetic flux generated by U-phase current, V-phase magnetic flux generated by V-phase current, and W-phase magnetic flux generated by W-phase current, and detects U-phase current, V-phase current, and W-phase current collectively. Detection element 131 detects magnetic fluxes M31 and M32 in the positive direction of the x-axis. As shown in FIG. 5(b), the shape of conductors 133-135 is designed based on the positional relationship between detection element 131 and each of the three conductors 133-135, and the cross-sectional area in the flow direction of U-phase current, V-phase current, and W-phase current is adjusted, so that the correspondence between the V-phase current flowing in conductor 134 and magnetic flux M31 and the correspondence between the U-phase current and W-phase current flowing in conductors 133 and 135, respectively, and magnetic flux M32 can be made approximately equivalent.

磁束密度は、導体133~135と検出素子131との距離の2乗に反比例するため、この距離の相違による磁束密度の相違を打ち消すように、導体電流の流れ方向の断面積を設計することが好ましい。例えば、検出素子131と導体134との距離を基準として、検出素子131と導体133との距離がRu倍、検出素子131と導体135との距離がRw倍である場合には、U相電流の流路断面積Suは、Su×Ru^2=Sv、W相電流の流路断面積Swは、Sw×Rw^2=Svにより、算出できる。なお、Ru^2は、Ruの2乗であり、Rw^2は、Rwの2乗である。 Since magnetic flux density is inversely proportional to the square of the distance between conductors 133-135 and detection element 131, it is preferable to design the cross-sectional area in the direction of the flow of the conductor current so as to cancel out the difference in magnetic flux density due to this difference in distance. For example, if the distance between detection element 131 and conductor 134 is taken as the reference distance and the distance between detection element 131 and conductor 133 is Ru times, and the distance between detection element 131 and conductor 135 is Rw times, then the flow path cross-sectional area Su of the U-phase current can be calculated as Su x Ru^2 = Sv, and the flow path cross-sectional area Sw of the W-phase current can be calculated as Sw x Rw^2 = Sv. Note that Ru^2 is the square of Ru, and Rw^2 is the square of Rw.

上記のとおり、電流センサ130は、一端が駆動回路に導通接続され、他端が回転電機に導通接続された3つの導体133~135と、導体133~135にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、3つの導体133~135に流れる電流を一括して検出する1つの検出素子131とを備える。電流センサ130においては、検出素子131と、3つの導体133~135のそれぞれとの位置関係に基づいて、3つの導体133~135のそれぞれの形状および大きさが設計されている。このように設計された3つの導体133~135の組合せは、導体電流と、検出素子131が感知する導体磁束との対応関係が略等価となるように3つの導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構として機能する。このため、各導体133~135と、検出素子131との位置関係等により、各導体133~135に流れる電流と、検出素子131が感知する磁束との対応関係が相違することを緩和することができる。その結果、電流センサ130によれば、導体133~135に流れる電流を一括して1つの検出素子131により高精度に検出できる。 As described above, the current sensor 130 includes three conductors 133-135, one end of which is conductively connected to a drive circuit and the other end of which is conductively connected to a rotating electric machine, and a detection element 131 that detects the conductor magnetic flux generated by the conductor current flowing through each of the conductors 133-135 and detects the current flowing through the three conductors 133-135 collectively. In the current sensor 130, the shape and size of each of the three conductors 133-135 are designed based on the positional relationship between the detection element 131 and each of the three conductors 133-135. The combination of the three conductors 133-135 designed in this way functions as a magnetic flux correction mechanism that corrects the conductor magnetic flux for at least one of the three conductors so that the corresponding relationship between the conductor current and the conductor magnetic flux detected by the detection element 131 is approximately equivalent. This can mitigate the difference in the correspondence between the current flowing through each conductor 133-135 and the magnetic flux sensed by the detection element 131, which is caused by the positional relationship between each conductor 133-135 and the detection element 131. As a result, the current sensor 130 can detect the current flowing through the conductors 133-135 collectively with high accuracy using a single detection element 131.

電流センサ130のように、導体133~135が、検出素子131の第1方向となる位置で、第2方向に互いにずらして配置されている場合には、図5に示すように設計された導体133~135の組合せを採用できる。これにより、検出素子131に近い導体134に流れるV相電流の流れ方向の断面積を、検出素子131から遠い導体133,135に流れるU相電流、W相電流の流れ方向の断面積よりも広くすることができる。その結果、各導体133~135に流れる電流と、検出素子131が感知する磁束との対応関係が相違することを緩和することができ、導体133~135に流れる電流を一括して1つの検出素子131により高精度に検出できる。 When the conductors 133-135 are arranged offset from each other in the second direction at a position that corresponds to the first direction of the detection element 131, as in the current sensor 130, a combination of the conductors 133-135 designed as shown in FIG. 5 can be adopted. This allows the cross-sectional area in the flow direction of the V-phase current flowing through the conductor 134 close to the detection element 131 to be wider than the cross-sectional area in the flow direction of the U-phase current and W-phase current flowing through the conductors 133 and 135 far from the detection element 131. As a result, it is possible to mitigate the difference in the correspondence between the current flowing through each conductor 133-135 and the magnetic flux sensed by the detection element 131, and the current flowing through the conductors 133-135 can be detected collectively with high accuracy by a single detection element 131.

(変形例)
なお、図6に示す電流センサ140のように、導体144が導体143,145よりも下方に配置され、z軸方向に見ると導体144の一部と、導体143,145の一部とが重なっている場合にも、第3実施形態に係る技術を適用できる。すなわち、導体144は、導体134と同様の略I字状とし、導体143,145は略U字状とし、検出素子131と各導体133~135の距離の2乗に基づいて、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体144に流れるV相電流と磁束との対応関係と、導体143,145にそれぞれ流れるU相電流、W相電流と磁束との対応関係とを略等価にすることができる。
(Modification)
6, the technology according to the third embodiment can also be applied to a case where the conductor 144 is disposed below the conductors 143 and 145 and a part of the conductor 144 overlaps with a part of the conductors 143 and 145 when viewed in the z-axis direction. That is, the conductor 144 is made substantially I-shaped like the conductor 134, the conductors 143 and 145 are made substantially U-shaped, and the cross-sectional areas in the flow direction of the U-phase current, the V-phase current, and the W-phase current are adjusted based on the square of the distance between the detection element 131 and each of the conductors 133 to 135, thereby making the correspondence relationship between the V-phase current flowing in the conductor 144 and the magnetic flux substantially equivalent to the correspondence relationship between the U-phase current and the W-phase current flowing in the conductors 143 and 145 and the magnetic flux.

(第4実施形態)
図7に、第4実施形態に係る電流センサ150を示す。電流センサ150は、検出素子151と、複数の導体153~155と、回路基板156と、ケーシング157とを備えている。電流センサ150は、導体153~155が検出素子151に対してz軸の負方向となる位置においてz軸方向にずらして配置されている点、および、導体153~155が互いに相違している点において、電流センサ130と相違している。その他の構成については、電流センサ130と同様であるため、図5に130番台で示す各構成を150番台に読み替えることにより、図7に示す各構成の説明を省略する。
Fourth Embodiment
7 shows a current sensor 150 according to a fourth embodiment. The current sensor 150 includes a detection element 151, a plurality of conductors 153 to 155, a circuit board 156, and a casing 157. The current sensor 150 differs from the current sensor 130 in that the conductors 153 to 155 are arranged at positions in the negative direction of the z-axis with respect to the detection element 151, and that the conductors 153 to 155 are different from each other. As the other configurations are the same as those of the current sensor 130, the components numbered in the 130s in FIG. 5 are replaced with components numbered in the 150s, and the description of the components shown in FIG. 7 is omitted.

3つの導体153~155は、検出素子151に対してz軸の負方向となる位置において、z軸方向にずらして配置されている。導体153~155は、検出素子151の真下において、検出素子151に近い側から遠い側に向かって、導体153,導体154,導体155の順序で配置されている。導体153~155は、検出素子151の第1方向となる位置で、第1方向に互いにずらして配置されているといえる。なお、第1方向および第2方向に垂直なy軸方向は、導体153~155の通電方向である。 The three conductors 153 to 155 are arranged in a position that is in the negative direction of the z axis with respect to the detection element 151, and are shifted in the z axis direction. The conductors 153 to 155 are arranged directly below the detection element 151 in the order of conductor 153, conductor 154, and conductor 155, from the side closer to the detection element 151 to the side farther away. It can be said that the conductors 153 to 155 are arranged in a position that is in the first direction of the detection element 151, and are shifted from each other in the first direction. The y axis direction, which is perpendicular to the first and second directions, is the direction in which electricity flows through the conductors 153 to 155.

導体153~155は、導体134と同様に、x軸方向の負方向および正方向において切り欠きが設けられた略I字状である。その中央部153b,154b,155bのx軸方向の幅は、両端部153a,153c,154a,154c,155a,155cのx軸方向の幅よりも狭い。そして、中央部のx軸方向の幅は、中央部155b,中央部154b、中央部153bの順序で広くなっている。 Similar to conductor 134, conductors 153 to 155 are roughly I-shaped with notches in the negative and positive x-directions. The widths in the x-direction of central portions 153b, 154b, and 155b are narrower than the widths in the x-direction of both ends 153a, 153c, 154a, 154c, 155a, and 155c. The widths in the x-direction of the central portions increase in the order of central portion 155b, central portion 154b, and central portion 153b.

すなわち、導体153~155は、検出素子151の第1方向となる位置で、第1方向に互いにずらして配置された複数の導体の組合せに相当する。導体153~155は、導体電流の流れ方向の両端部153a,153c,154a,154c,155a,155cの第2方向の幅よりも中央部153b,154b,155bの第2方向の幅が狭くなっている。また、導体153は、検出素子151との第1方向の距離が近い近縦位置導体に相当し、導体154,155は、近縦位置導体よりも検出素子151との第1方向の距離が遠い遠縦位置導体に相当する。そして、近縦位置導体に相当する導体153の中央部153bは、遠縦位置導体に相当する154,155の中央部154b,155bよりも第2方向の幅が広いことにより、導体電流の流れ方向の断面積が大きい。 That is, the conductors 153 to 155 correspond to a combination of multiple conductors arranged at a position that is the first direction of the detection element 151, and are shifted from each other in the first direction. The width of the center portions 153b, 154b, and 155b of the conductors 153 to 155 in the second direction is narrower than the width of the ends 153a, 153c, 154a, 154c, 155a, and 155c in the second direction in the direction of the conductor current flow. The conductor 153 corresponds to a near-vertical conductor that is closer to the detection element 151 in the first direction, and the conductors 154 and 155 correspond to far-vertical conductors that are farther from the detection element 151 in the first direction than the near-vertical conductor. The center portion 153b of the conductor 153 that corresponds to the near-vertical conductor has a wider width in the second direction than the center portions 154b and 155b of the conductors 154 and 155 that correspond to the far-vertical conductors, and therefore has a larger cross-sectional area in the direction of the conductor current flow.

第3実施形態と同様に、中央部153b,154b,155bのx軸方向の幅は、導体153~155と検出素子151との距離の2乗に基づいて設計できる。例えば、検出素子151と導体153との距離を基準として、検出素子151と導体154との距離がRv倍、検出素子151と導体155との距離がRw倍である場合には、V相電流の流路断面積Svは、Sv×Rv^2=Su、W相電流の流路断面積Swは、Sw×Rw^2=Suにより、算出できる。 As in the third embodiment, the width in the x-axis direction of central portions 153b, 154b, and 155b can be designed based on the square of the distance between conductors 153-155 and detection element 151. For example, if the distance between detection element 151 and conductor 153 is taken as a reference, and the distance between detection element 151 and conductor 154 is Rv times, and the distance between detection element 151 and conductor 155 is Rw times, then the flow path cross-sectional area Sv of the V-phase current can be calculated as Sv x Rv^2 = Su, and the flow path cross-sectional area Sw of the W-phase current can be calculated as Sw x Rw^2 = Su.

上記のとおり、電流センサ150における3つの導体153~155の組合せは、導体電流と、検出素子151が感知する導体磁束との対応関係が略等価となるように3つの導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構として機能する。このため、導体153~155に流れる電流を一括して1つの検出素子151により高精度に検出できる。 As described above, the combination of the three conductors 153 to 155 in the current sensor 150 functions as a magnetic flux correction mechanism that corrects the conductor magnetic flux for at least one of the three conductors so that the correspondence between the conductor current and the conductor magnetic flux sensed by the detection element 151 is approximately equivalent. Therefore, the current flowing through the conductors 153 to 155 can be detected collectively with high accuracy by the single detection element 151.

電流センサ150のように、導体153~155が、検出素子151の第1方向となる位置で、第1方向に互いにずらして配置されている場合には、図5に示すように設計された導体153~155の組合せを採用できる。これにより、検出素子151に近い導体153に流れるU相電流の流れ方向の断面積を、検出素子151から遠い導体154,155に流れるV相電流、W相電流の流れ方向の断面積よりも広くすることができる。その結果、各導体153~155に流れる電流と、検出素子151が感知する磁束との対応関係が相違することを緩和することができ、導体153~155に流れる電流を一括して1つの検出素子151により高精度に検出できる。 When the conductors 153-155 are arranged offset from each other in the first direction at a position that corresponds to the first direction of the detection element 151, as in the current sensor 150, a combination of the conductors 153-155 designed as shown in FIG. 5 can be adopted. This allows the cross-sectional area in the flow direction of the U-phase current flowing in the conductor 153 close to the detection element 151 to be wider than the cross-sectional areas in the flow direction of the V-phase current and W-phase current flowing in the conductors 154 and 155 far from the detection element 151. As a result, it is possible to mitigate the difference in the correspondence between the current flowing in each conductor 153-155 and the magnetic flux sensed by the detection element 151, and the current flowing in the conductors 153-155 can be detected collectively with high accuracy by a single detection element 151.

(第5実施形態)
図8に、第5実施形態に係る電流センサ160を示す。電流センサ160は、検出素子161と、複数の導体163~165と、回路基板166と、ケーシング167とを備えている。導体163~165は、yz平面を平面方向とする平板状である点、および、導体163~165がいずれも略U字状である点において、図5に示す電流センサ130と相違している。その他の構成については、電流センサ130と同様であるため、図5に130番台で示す各構成を160番台に読み替えることにより、図7に示す各構成の説明を省略する。
Fifth Embodiment
Fig. 8 shows a current sensor 160 according to a fifth embodiment. The current sensor 160 includes a detection element 161, a plurality of conductors 163 to 165, a circuit board 166, and a casing 167. The current sensor 160 differs from the current sensor 130 shown in Fig. 5 in that the conductors 163 to 165 are flat with the yz plane as the planar direction, and that the conductors 163 to 165 are all substantially U-shaped. The rest of the configuration is the same as that of the current sensor 130, and therefore the components numbered in the 130s in Fig. 5 are replaced with components numbered in the 160s, and the description of the components shown in Fig. 7 will be omitted.

導体163~165は、検出素子161の第1方向(z軸方向)となる位置で、第2方向(x軸方向)に互いにずらして配置されている。なお、第1方向および第2方向に垂直なy軸方向は、導体163~165の通電方向である。 The conductors 163 to 165 are arranged in a first direction (z-axis direction) of the detection element 161, offset from one another in the second direction (x-axis direction). The y-axis direction, which is perpendicular to the first and second directions, is the direction in which electricity flows through the conductors 163 to 165.

導体163~165は、z軸方向の負方向において切り欠きが設けられた略U字状である。その中央部163b,164b,165bのz軸方向の幅は、両端部163a,163c,164a,164c,165a,165cのz軸方向の幅よりも狭い。そして、中央部164bのz軸方向の幅は、中央部163b,165bよりも広い。導体163~165は、x軸方向の厚みは同じであるため、導体164の中央部164bにおけるV相電流の流れ方向の断面積は、導体163,165の中央部163b,165bにおけるU相電流およびW相電流の流れ方向の断面積よりも広い。 The conductors 163 to 165 are generally U-shaped with a notch in the negative z-axis direction. The width in the z-axis direction of the central portions 163b, 164b, and 165b is narrower than the width in the z-axis direction of both ends 163a, 163c, 164a, 164c, 165a, and 165c. The width in the z-axis direction of the central portion 164b is wider than the central portions 163b and 165b. Since the conductors 163 to 165 have the same thickness in the x-axis direction, the cross-sectional area in the direction of the flow of the V-phase current at the central portion 164b of the conductor 164 is wider than the cross-sectional areas in the direction of the flow of the U-phase current and the W-phase current at the central portions 163b and 165b of the conductors 163 and 165.

検出素子161は、U相電流によって発生するU相磁束、V相電流によって発生するV相磁束、W相電流によって発生するW相磁束を感知し、U相電流、V相電流、W相電流を一括して検出する。検出素子161は、x軸の正方向の磁束M11,M12を感知する。 Detection element 161 senses the U-phase magnetic flux generated by the U-phase current, the V-phase magnetic flux generated by the V-phase current, and the W-phase magnetic flux generated by the W-phase current, and detects the U-phase current, V-phase current, and W-phase current collectively. Detection element 161 senses magnetic fluxes M11 and M12 in the positive direction of the x-axis.

第3実施形態と同様に、検出素子161と各導体163~165の距離の2乗に基づいて、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体164に流れるV相電流と磁束との対応関係と、導体163,165にそれぞれ流れるU相電流、W相電流と磁束との対応関係とを略等価にすることができる。 As in the third embodiment, by adjusting the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction based on the square of the distance between the detection element 161 and each of the conductors 163 to 165, the correspondence between the V-phase current flowing in the conductor 164 and the magnetic flux can be made approximately equivalent to the correspondence between the U-phase current and the W-phase current flowing in the conductors 163 and 165, respectively, and the magnetic flux.

上記のとおり、導体163~165は、検出素子161の第1方向となる位置で、第2方向に互いにずらして配置された複数の導体の組合せに相当する。導体163~165は、導体電流の流れ方向の両端部163a,163c,164a,164c,165a,165cの第1方向の幅よりも中央部163b,164b,165bの第1方向の幅が狭くなっている。また、導体164は、検出素子161との第2方向の距離が近い近横位置導体に相当し、導体163,165は、近横位置導体よりも検出素子161との第2方向の距離が遠い遠横位置導体に相当する。そして、近横位置導体に相当する導体164の中央部164bは、遠横位置導体に相当する163,165の中央部163b,165bよりも第1方向の幅が広いことにより、導体電流の流れ方向の断面積が大きい。 As described above, the conductors 163 to 165 correspond to a combination of multiple conductors arranged at a position in the first direction of the detection element 161, shifted from each other in the second direction. The width of the central portions 163b, 164b, and 165b of the conductors 163 to 165 in the first direction is narrower than the width of the ends 163a, 163c, 164a, 164c, 165a, and 165c in the first direction in the direction of the flow of the conductor current. The conductor 164 corresponds to a near-horizontal conductor that is closer to the detection element 161 in the second direction, and the conductors 163 and 165 correspond to far-horizontal conductors that are farther from the detection element 161 in the second direction than the near-horizontal conductor. The central portion 164b of the conductor 164 corresponding to the near-horizontal conductor has a wider width in the first direction than the central portions 163b and 165b of the conductors 163 and 165 corresponding to the far-horizontal conductors, and therefore has a larger cross-sectional area in the direction of the flow of the conductor current.

電流センサ160のように、導体163~165がyz平面を平面方向とする平板状である場合には、z軸方向に切り欠きを設けて、中央部163b,164b,165bを調整するように設計された導体163~165の組合せを採用できる。これにより、検出素子161に近い導体164に流れるV相電流の流れ方向の断面積を、検出素子161から遠い導体163,165に流れるU相電流、W相電流の流れ方向の断面積よりも広くすることができる。その結果、各導体163~165に流れる電流と、検出素子161が感知する磁束との対応関係が相違することを緩和することができ、導体163~165に流れる電流を一括して1つの検出素子161により高精度に検出できる。 When the conductors 163-165 are flat plates with the yz plane as the plane direction, as in the current sensor 160, a combination of conductors 163-165 designed to adjust the central portions 163b, 164b, and 165b by providing a notch in the z-axis direction can be adopted. This allows the cross-sectional area of the V-phase current flowing in the conductor 164 close to the detection element 161 to be wider than the cross-sectional areas of the U-phase current and W-phase current flowing in the conductors 163 and 165 far from the detection element 161. As a result, the difference in the correspondence between the current flowing in each conductor 163-165 and the magnetic flux sensed by the detection element 161 can be mitigated, and the current flowing in the conductors 163-165 can be detected collectively with high accuracy by a single detection element 161.

(第6実施形態)
図9に、第6実施形態に係る電流センサ170を示す。電流センサ170は、検出素子171と、複数の導体173~175と、回路基板176と、ケーシング177とを備えている。導体173~175は、導体173~175のx軸方向の幅全体を変えている点において、図5に示す電流センサ130と相違している。その他の構成については、電流センサ130と同様であるため、図5に130番台で示す各構成を170番台に読み替えることにより、図9に示す各構成の説明を省略する。
Sixth Embodiment
Fig. 9 shows a current sensor 170 according to a sixth embodiment. The current sensor 170 includes a detection element 171, a plurality of conductors 173-175, a circuit board 176, and a casing 177. The conductors 173-175 differ from the current sensor 130 shown in Fig. 5 in that the overall width of the conductors 173-175 in the x-axis direction is changed. As the other configurations are the same as those of the current sensor 130, the components numbered in the 130s in Fig. 5 are replaced with components numbered in the 170s, and a description of the components shown in Fig. 9 will be omitted.

第3実施形態と同様に、検出素子171と、3つの導体173~175のそれぞれとの位置関係に基づいて、導体173~175のx軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体174に流れるV相電流と磁束M71との対応関係と、導体173,175にそれぞれ流れるU相電流、W相電流と磁束M72との対応関係とを略等価にすることができる。 As in the third embodiment, the width of the conductors 173 to 175 in the x-axis direction is designed based on the positional relationship between the detection element 171 and each of the three conductors 173 to 175, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the correspondence between the V-phase current flowing in the conductor 174 and the magnetic flux M71 can be made approximately equivalent to the correspondence between the U-phase current and the W-phase current flowing in the conductors 173 and 175, respectively, and the magnetic flux M72.

(第7実施形態)
図10に、第7実施形態に係る電流センサ180を示す。電流センサ180は、検出素子181と、複数の導体183~185と、回路基板186と、ケーシング187とを備えている。導体183~185は、導体183~185のx軸方向の幅全体を変えている点において、図7に示す電流センサ150と相違している。その他の構成については、電流センサ150と同様であるため、図7に150番台で示す各構成を180番台に読み替えることにより、図10に示す各構成の説明を省略する。
Seventh Embodiment
Figure 10 shows a current sensor 180 according to the seventh embodiment. The current sensor 180 includes a detection element 181, a plurality of conductors 183-185, a circuit board 186, and a casing 187. The conductors 183-185 differ from the current sensor 150 shown in Figure 7 in that the overall width of the conductors 183-185 in the x-axis direction is changed. As the other configurations are the same as those of the current sensor 150, the components numbered in the 150s in Figure 7 are replaced with components numbered in the 180s, and a description of the components shown in Figure 10 will be omitted.

第4実施形態と同様に、検出素子181と、3つの導体183~185のそれぞれとの位置関係に基づいて、導体183~185のx軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体183に流れるU相電流と磁束M81との対応関係と、導体184,185にそれぞれ流れるV相電流、W相電流と磁束M82との対応関係とを略等価にすることができる。 As in the fourth embodiment, the width of the conductors 183 to 185 in the x-axis direction is designed based on the positional relationship between the detection element 181 and each of the three conductors 183 to 185, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the correspondence between the U-phase current flowing in the conductor 183 and the magnetic flux M81 can be made approximately equivalent to the correspondence between the V-phase current and the W-phase current flowing in the conductors 184 and 185, respectively, and the magnetic flux M82.

(変形例)
図11に、変形例に係る電流センサ190を示す。電流センサ190は、検出素子191と、複数の導体193~195と、回路基板196と、ケーシング197とを備えている。導体193~195は、z軸方向の幅全体を変えている点において、図8に示す電流センサ160と相違している。その他の構成については、電流センサ160と同様であるため、図8に160番台で示す各構成を190番台に読み替えることにより、図11に示す各構成の説明を省略する。
(Modification)
Fig. 11 shows a current sensor 190 according to a modified example. Current sensor 190 includes a detection element 191, a plurality of conductors 193-195, a circuit board 196, and a casing 197. Conductors 193-195 differ from current sensor 160 shown in Fig. 8 in that the overall width in the z-axis direction is changed. As the other configurations are the same as current sensor 160, the components numbered in the 160s in Fig. 8 are replaced with components numbered in the 190s, and a description of the components shown in Fig. 11 will be omitted.

第5実施形態と同様に、検出素子191と、3つの導体193~195のそれぞれとの位置関係に基づいて、導体193~195のz軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体194に流れるV相電流と磁束Mとの対応関係と、導体193,195にそれぞれ流れるU相電流、W相電流と磁束Mとの対応関係とを略等価にすることができる。 As in the fifth embodiment, the width of the conductors 193 to 195 in the z-axis direction is designed based on the positional relationship between the detection element 191 and each of the three conductors 193 to 195, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the relationship between the V-phase current flowing in the conductor 194 and the magnetic flux M can be made approximately equivalent to the relationship between the U-phase current and the W-phase current flowing in the conductors 193 and 195, respectively, and the magnetic flux M.

(第8実施形態)
図12に、第8実施形態に係る電流センサ200を示す。電流センサ200は、検出素子201と、複数の導体203~205と、回路基板206と、ケーシング207とを備えている。導体203~205は、x軸方向に替えて、z軸方向の幅全体を変えている点において、図9に示す電流センサ170と相違している。その他の構成については、電流センサ170と同様であるため、図9に170番台で示す各構成を200番台に読み替えることにより、図12に示す各構成の説明を省略する。
Eighth embodiment
Fig. 12 shows a current sensor 200 according to an eighth embodiment. The current sensor 200 includes a detection element 201, a plurality of conductors 203-205, a circuit board 206, and a casing 207. The conductors 203-205 differ from the current sensor 170 shown in Fig. 9 in that the overall width is changed in the z-axis direction instead of the x-axis direction. As the other configurations are the same as those of the current sensor 170, the components numbered in the 170s in Fig. 9 are replaced with components numbered in the 200s, and a description of the components shown in Fig. 12 will be omitted.

第6実施形態と同様に、検出素子201と、3つの導体203~205のそれぞれとの位置関係に基づいて、導体203~205のz軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体204に流れるV相電流と磁束Mとの対応関係と、導体203,205にそれぞれ流れるU相電流、W相電流と磁束Mとの対応関係とを略等価にすることができる。 As in the sixth embodiment, the width of the conductors 203 to 205 in the z-axis direction is designed based on the positional relationship between the detection element 201 and each of the three conductors 203 to 205, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the relationship between the V-phase current flowing in the conductor 204 and the magnetic flux M can be made approximately equivalent to the relationship between the U-phase current and the W-phase current flowing in the conductors 203 and 205, respectively, and the magnetic flux M.

(第9実施形態)
図13に、第9実施形態に係る電流センサ210を示す。電流センサ210は、検出素子211と、複数の導体213~215と、回路基板216と、ケーシング217とを備えている。導体213~215は、x軸方向に替えて、z軸方向の幅を変えている点において、図10に示す電流センサ180と相違している。その他の構成については、電流センサ180と同様であるため、図10に180番台で示す各構成を210番台に読み替えることにより、図13に示す各構成の説明を省略する。
Ninth embodiment
Fig. 13 shows a current sensor 210 according to the ninth embodiment. The current sensor 210 includes a detection element 211, a plurality of conductors 213-215, a circuit board 216, and a casing 217. The conductors 213-215 differ from the current sensor 180 shown in Fig. 10 in that their widths are changed in the z-axis direction instead of the x-axis direction. As the other configurations are the same as those of the current sensor 180, the components numbered in the 180s in Fig. 10 are replaced with components numbered in the 210s, and a description of the components shown in Fig. 13 will be omitted.

第7実施形態と同様に、検出素子211と、3つの導体213~215のそれぞれとの位置関係に基づいて、導体213~215のz軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体213に流れるU相電流と磁束M111との対応関係と、導体214,215にそれぞれ流れるV相電流、W相電流と磁束M112との対応関係とを略等価にすることができる。 As in the seventh embodiment, the width of the conductors 213 to 215 in the z-axis direction is designed based on the positional relationship between the detection element 211 and each of the three conductors 213 to 215, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the correspondence between the U-phase current flowing in the conductor 213 and the magnetic flux M111 can be made approximately equivalent to the correspondence between the V-phase current and the W-phase current flowing in the conductors 214 and 215, respectively, and the magnetic flux M112.

(変形例)
図14に、変形例に係る電流センサ220を示す。電流センサ220は、検出素子221と、複数の導体223~225と、回路基板226と、ケーシング227とを備えている。導体223~225は、yz平面を平面方向とする平板状である点、および、z軸方向に替えて、x軸方向の幅を変えている点において、図12に示す電流センサ200と相違している。その他の構成については、電流センサ200と同様であるため、図12に200番台で示す各構成を220番台に読み替えることにより、図14に示す各構成の説明を省略する。
(Modification)
Fig. 14 shows a current sensor 220 according to a modified example. The current sensor 220 includes a detection element 221, a plurality of conductors 223-225, a circuit board 226, and a casing 227. The conductors 223-225 are different from the current sensor 200 shown in Fig. 12 in that they are flat plates with the yz plane as the planar direction, and that their width is changed in the x-axis direction instead of the z-axis direction. The rest of the configuration is the same as the current sensor 200, so the components numbered in the 200s in Fig. 12 are replaced with components numbered in the 220s, and the description of the components shown in Fig. 14 is omitted.

第8実施形態と同様に、検出素子221と、3つの導体223~225のそれぞれとの位置関係に基づいて、導体223~225のx軸方向の幅を設計し、U相電流、V相電流、W相電流の流れ方向の断面積を調整することにより、導体224に流れるV相電流と磁束Mとの対応関係と、導体223,225にそれぞれ流れるU相電流、W相電流と磁束Mとの対応関係とを略等価にすることができる。 As in the eighth embodiment, the width of the conductors 223 to 225 in the x-axis direction is designed based on the positional relationship between the detection element 221 and each of the three conductors 223 to 225, and the cross-sectional areas of the U-phase current, V-phase current, and W-phase current in the flow direction are adjusted, so that the relationship between the V-phase current flowing in the conductor 224 and the magnetic flux M can be made approximately equivalent to the relationship between the U-phase current and the W-phase current flowing in the conductors 223 and 225, respectively, and the magnetic flux M.

(変形例)
図15に、変形例に係る電流センサ230を示す。電流センサ230は、検出素子231と、複数の導体233~235と、回路基板236と、ケーシング237とを備えている。導体233~235は、図5に示す電流センサ130と同様に導体233~235の形状を変更している点において、図12に示す電流センサ200と相違している。その他の構成については、電流センサ200と同様であるため、図12に200番台で示す各構成を230番台に読み替えることにより、図14に示す各構成の説明を省略する。
(Modification)
Fig. 15 shows a current sensor 230 according to a modified example. The current sensor 230 includes a detection element 231, a plurality of conductors 233-235, a circuit board 236, and a casing 237. The conductors 233-235 differ from the current sensor 200 shown in Fig. 12 in that the shapes of the conductors 233-235 have been changed in the same manner as the current sensor 130 shown in Fig. 5. As the other configurations are the same as those of the current sensor 200, the components numbered in the 200s in Fig. 12 are replaced with components numbered in the 230s, and a description of the components shown in Fig. 14 will be omitted.

電流センサ230は、第3実施形態に係る技術と、第8実施形態に係る技術とを併せて適用した技術に関する。検出素子231と、3つの導体233~235のそれぞれとの位置関係に基づいて、導体233~235のz軸方向の幅を設計し、その中央部におけるx軸方向の幅を設計して、U相電流、V相電流、W相電流の流れ方向の断面積を調整することができる。これにより、導体234に流れるV相電流と磁束Mとの対応関係と、導体233,235にそれぞれ流れるU相電流、W相電流と磁束Mとの対応関係とを略等価にすることができる。 The current sensor 230 relates to a technology that applies the technology according to the third embodiment together with the technology according to the eighth embodiment. Based on the positional relationship between the detection element 231 and each of the three conductors 233 to 235, the width in the z-axis direction of the conductors 233 to 235 is designed, and the width in the x-axis direction at the center is designed, so that the cross-sectional areas in the flow direction of the U-phase current, V-phase current, and W-phase current can be adjusted. This makes it possible to make the correspondence between the V-phase current flowing in the conductor 234 and the magnetic flux M approximately equivalent to the correspondence between the U-phase current and the W-phase current flowing in the conductors 233 and 235, respectively, and the magnetic flux M.

なお、上記の各実施形態において、磁束補正機構としての複数の導体の組合せについて説明したが、磁束補正機構としての機能を有するためには、複数の導体のうちの少なくともいずれか1つの導体磁束について、磁束密度、磁束の向き、および検出素子との距離との少なくともいずれか一方を補正するものであればよい。また、複数の導体は、3つの導体に限定されず、2つであってもよく、4つ以上であってもよい。 In each of the above embodiments, a combination of multiple conductors as a magnetic flux correction mechanism has been described. However, in order to function as a magnetic flux correction mechanism, it is sufficient to correct at least one of the magnetic flux density, the magnetic flux direction, and the distance from the detection element for at least one of the conductor magnetic fluxes of the multiple conductors. Furthermore, the number of multiple conductors is not limited to three, and may be two, four or more.

また、図15において具体例を挙げたように、上記に説明した各実施形態は、適宜、組み合わせて用いることができる。例えば、磁束補正機構として、磁性体の配置と、導体の組合せとの双方を備えた電流センサであってもよい。 As shown in the specific example in FIG. 15, the above-described embodiments may be used in combination as appropriate. For example, the magnetic flux correction mechanism may be a current sensor that includes both an arrangement of magnetic bodies and a combination of conductors.

上記の各実施形態によれば、下記の効果を得ることができる。 According to each of the above embodiments, the following effects can be obtained.

電流センサは、複数の導体と、1つの検出素子と、磁束補正機構とを備える。複数の導体は、一端が駆動回路に導通接続され、他端が回転電機に導通接続されている。検出素子は、複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、複数の導体に流れる電流を一括して検出する。磁束補正機構は、検出素子と、複数の導体のそれぞれとの位置関係に基づいて、複数の導体のそれぞれにおいて、導体電流と、検出素子が感知する導体磁束との対応関係が略等価となるように複数の導体のうちに少なくともいずれか1つについて導体磁束を補正する。各導体と、検出素子との位置関係等により、各導体に流れる電流と、検出素子が感知する磁束との対応関係が相違することを、磁束補正機構により緩和することができる。その結果、複数の導体に流れる電流を一括して1つの検出素子により高精度に検出する電流センサを提供できる。 The current sensor includes a plurality of conductors, a detection element, and a magnetic flux correction mechanism. One end of each of the plurality of conductors is conductively connected to a drive circuit, and the other end is conductively connected to a rotating electric machine. The detection element detects the conductor magnetic flux generated by the conductor current flowing through each of the plurality of conductors, and detects the currents flowing through the plurality of conductors collectively. The magnetic flux correction mechanism corrects the conductor magnetic flux for at least one of the plurality of conductors based on the positional relationship between the detection element and each of the plurality of conductors, so that the correspondence between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors. The magnetic flux correction mechanism can alleviate the difference in the correspondence between the current flowing through each conductor and the magnetic flux sensed by the detection element due to the positional relationship between each conductor and the detection element. As a result, a current sensor can be provided that detects the currents flowing through the plurality of conductors collectively with high accuracy using a single detection element.

磁束補正機構は、検出素子と、複数の導体のそれぞれとの位置関係に基づいて設計された磁性体の配置(例えば、磁性体102a~102c,112a~112c,122a,122bの配置)を含んでいてもよい。このような磁性体の配置は、複数の導体のうちの少なくともいずれか1つの導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正するように構成されていることが好ましい。磁性体の配置により、低磁気抵抗の閉回路が構成され、複数の導体に流れる導体電流と磁束との対応関係を、それぞれ略等価にすることができる。 The magnetic flux compensation mechanism may include an arrangement of magnetic bodies (e.g., an arrangement of magnetic bodies 102a-102c, 112a-112c, 122a, 122b) designed based on the positional relationship between the detection element and each of the multiple conductors. Such an arrangement of magnetic bodies is preferably configured to compensate for at least one of the magnetic flux density and the magnetic flux direction for at least one of the multiple conductors. The arrangement of magnetic bodies forms a closed circuit with low magnetic resistance, and the correspondence between the conductor current flowing through the multiple conductors and the magnetic flux can be made approximately equivalent.

磁束補正機構は、検出素子と、複数の導体のそれぞれとの位置関係に基づいて設計された複数の導体の組合せ(例えば、導体133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235の組合せ)を含んでいてもよい。このような複数の導体の組合せは、複数の導体のうちの少なくともいずれか1つの導体磁束について、磁束密度、磁束の向き、および検出素子との距離との少なくともいずれか一方を補正するように構成されていることが好ましい。例えば、複数の導体と検出素子との距離に基づいて設計した複数の導体の形状や大きさの組合せにより、複数の導体に流れる導体電流の流れ方向の断面積を調整することにより、複数の導体に流れる導体電流と磁束との対応関係を、それぞれ略等価にすることができる。 The magnetic flux correction mechanism may include a combination of multiple conductors (e.g., a combination of conductors 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on the positional relationship between the detection element and each of the multiple conductors. It is preferable that such a combination of multiple conductors is configured to correct at least one of the magnetic flux density, the direction of the magnetic flux, and the distance from the detection element for at least one of the conductor magnetic fluxes of the multiple conductors. For example, by adjusting the cross-sectional area in the flow direction of the conductor current flowing through the multiple conductors by combining the shapes and sizes of the multiple conductors designed based on the distance between the multiple conductors and the detection element, the correspondence between the conductor current flowing through the multiple conductors and the magnetic flux can be made approximately equivalent.

本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. In addition, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.

100,110,120,130,140,150,160,170,180,190,200,210,220,230…電流センサ、103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235…導体、101,111,121,131,141,151,161,171,181,191,201,211,221,231…検出素子、102a~102c,112a~112c,122a,122b…磁性体 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230...Current sensor, 103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 1 93-195, 203-205, 213-215, 223-225, 233-235...conductor, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231...detection element, 102a-102c, 112a-112c, 122a, 122b...magnetic body

Claims (11)

一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
前記磁束補正機構は、前記検出素子(101,111,121)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された磁性体の配置(102a~102c,112a~112c,122a,122b)を含み、
前記磁性体の配置は、前記複数の導体のうちの少なくともいずれか1つの前記導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正し、
前記複数の導体(103~105,113~115)は、前記検出素子の上下面に垂直な第1方向となる位置で、前記第1方向に垂直な第2方向に互いにずらして配置され、
前記磁性体の配置は、前記検出素子の第2方向に配置されたセンサ横位置磁性体(102a,102b,112a,112b)と、前記複数の導体を介して前記検出素子と対向する位置に配置されたセンサ対向位置磁性体(102c,112c)とを含む電流センサ(100,110)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and detects the currents flowing through the plurality of conductors collectively;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a correspondence between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
the magnetic flux correction mechanism includes an arrangement of magnetic bodies (102a to 102c, 112a to 112c, 122a, 122b) designed based on a positional relationship between the detection element (101, 111, 121) and each of the plurality of conductors,
The arrangement of the magnetic bodies corrects at least one of a magnetic flux density and a magnetic flux direction for the conductor magnetic flux of at least one of the plurality of conductors;
The plurality of conductors (103 to 105, 113 to 115) are arranged at positions in a first direction perpendicular to the top and bottom surfaces of the detection element, and are shifted from each other in a second direction perpendicular to the first direction,
The current sensor (100, 110) includes a sensor lateral magnetic body (102a, 102b, 112a, 112b) arranged in the second direction of the detection element, and a sensor opposing magnetic body (102c, 112c) arranged in a position opposite the detection element via the multiple conductors.
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
前記磁束補正機構は、前記検出素子(101,111,121)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された磁性体の配置(102a~102c,112a~112c,122a,122b)を含み、
前記磁性体の配置は、前記複数の導体のうちの少なくともいずれか1つの前記導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正し、
前記複数の導体(123~125)は、前記検出素子の第1方向となる位置で、第1方向に互いにずらして配置され、
前記磁性体の配置は、前記複数の導体に対して第2方向となる位置に配置された導体横位置磁性体(122a,122b)を含む電流センサ(120)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
the magnetic flux correction mechanism includes an arrangement of magnetic bodies (102a to 102c, 112a to 112c, 122a, 122b) designed based on a positional relationship between the detection element (101, 111, 121) and each of the plurality of conductors,
The arrangement of the magnetic bodies corrects at least one of a magnetic flux density and a magnetic flux direction for the conductor magnetic flux of at least one of the plurality of conductors;
The plurality of conductors (123 to 125) are arranged at positions corresponding to the first direction of the detection element, and are shifted from each other in the first direction;
The current sensor (120) includes conductor-side-positioning magnetic bodies (122a, 122b) arranged in a position that is in a second direction relative to the plurality of conductors.
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し
記複数の導体の組合せは、前記検出素子(171,21)の上下面に垂直な第1方向となる位置で、前記第1方向に垂直な第2方向に互いにずらして配置された前記複数の導体(173~175,223~225)であり、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体のうち、前記検出素子との前記第2方向の距離が近い近横位置導体(174,224)の前記第2方向の幅が、前記近横位置導体よりも前記検出素子との前記第2方向の距離が遠い遠横位置導体(173,175,223,225)の前記第2方向の幅よりも広いことにより、前記近横位置導体の前記断面積が、前記遠横位置導体の前記断面積よりも大きい電流センサ(170,220)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism ,
The combination of the plurality of conductors is the plurality of conductors (1 73 to 175 , 2 23 to 22 5) that are arranged at a position that is a first direction perpendicular to the top and bottom surfaces of the detection element (1 71 , 2 2 1) and are shifted from each other in a second direction perpendicular to the first direction,
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
A current sensor (170, 220) in which the width in the second direction of a near-side conductor (174, 224) that is close to the detection element in the second direction is wider than the width in the second direction of a far-side conductor (173, 175, 223, 225) that is farther from the detection element in the second direction than the near-side conductor, such that the cross-sectional area of the near-side conductor is larger than the cross-sectional area of the far-side conductor .
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
前記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し、
前記複数の導体の組合せは、前記検出素子(131,231)の上下面に垂直な第1方向となる位置で、前記第1方向に垂直な第2方向に互いにずらして配置された前記複数の導体(133~135,233~235)であり、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体は、前記第1方向及び前記第2方向と直交する方向の両端部(133a,133c,134a,134c,135a,135c)の前記第2方向の幅よりも中央部(133b,134b,135b)の前記第2方向の幅が狭くなっており、
前記複数の導体のうち、前記検出素子との前記第2方向の距離が近い近横位置導体(134,144,234)の中央部(134b)の前記第2方向の幅が前記近横位置導体よりも前記検出素子との前記第2方向の距離が遠い遠横位置導体(133,135,143,145,233,235)の中央部(133b,135b)の前記第2方向の幅よりも広いことにより、前記近横位置導体の中央部の前記断面積が、前記遠横位置導体の中央部の前記断面積よりも大きい電流センサ(130,230)
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism,
The combination of the plurality of conductors is the plurality of conductors (133 to 135, 233 to 235) that are arranged at a position that is a first direction perpendicular to the top and bottom surfaces of the detection element (131, 231) and are shifted from each other in a second direction perpendicular to the first direction,
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
The plurality of conductors have a width in the second direction at a center portion (133b, 134b, 135b) narrower than a width in the second direction at both ends (133a, 133c, 134a, 134c, 135a, 135c) in a direction perpendicular to the first direction and the second direction,
A current sensor (130, 230) in which the width in the second direction of a central portion (134b) of a near-side conductor (134, 144, 234) among the plurality of conductors, which is close to the detection element in the second direction, is wider than the width in the second direction of a central portion (133b, 135b) of a far-side conductor (133, 135, 143, 145, 233, 235) which is farther from the detection element in the second direction than the near-side conductor, so that the cross-sectional area of the central portion of the near-side conductor is larger than the cross-sectional area of the central portion of the far-side conductor .
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し
記複数の導体の組合せは、前記検出素子(11)の上下面に垂直な第1方向となる位置で、前記第1方向に垂直な第2方向に互いにずらして配置された前記複数の導体(163~165)であり、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体は、前記第1方向及び前記第2方向と直交する方向の両端部(163a,163c,164a,164c,165a,165c)の前記第1方向の幅よりも中央部(163b,164b,165b)の前記第1方向の幅が狭くなっており、
前記複数の導体のうち、前記検出素子との前記第2方向の距離が近い近横位置導体(164)の中央部(164b)の前記第1方向の幅が、前記近横位置導体よりも前記検出素子との前記第2方向の距離が遠い遠横位置導体(163,165)の中央部(163b,165b)の前記第1方向の幅よりも広いことにより、前記近横位置導体の中央部の前記断面積が、前記遠横位置導体の中央部の前記断面積よりも大きい電流センサ(160)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism ,
The combination of the plurality of conductors is the plurality of conductors ( 163 to 165) that are arranged at a position that is a first direction perpendicular to the top and bottom surfaces of the detection element ( 161 ) and are shifted from each other in a second direction perpendicular to the first direction,
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
The plurality of conductors have a width in the first direction at a center portion (163b, 164b, 165b) narrower than a width in the first direction at both ends (163a, 163c, 164a, 164c, 165a, 165c) in a direction perpendicular to the first direction and the second direction,
A current sensor (160) in which the width in the first direction of a central portion (164b) of a near-side conductor (164) among the plurality of conductors, which is close to the detection element in the second direction, is wider than the width in the first direction of a central portion (163b, 165b) of a far-side conductor (163, 165) which is farther from the detection element in the second direction than the near-side conductor, such that the cross-sectional area of the central portion of the near-side conductor is larger than the cross-sectional area of the central portion of the far-side conductor .
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し
記複数の導体の組合せは、前記検出素子(1,201)の上下面に垂直な第1方向となる位置で、前記第1方向に垂直な第2方向に互いにずらして配置された前記複数の導体(193~195,203~205)であり、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体のうち、前記検出素子との前記第2方向の距離が近い近横位置導体(194,204,234)の前記第1方向の幅が、前記近横位置導体よりも前記検出素子との前記第2方向の距離が遠い遠横位置導体(193,195,203,205,233,235)の前記第1方向の幅よりも広いことにより、前記近横位置導体の前記断面積が、前記遠横位置導体の前記断面積よりも大きい電流センサ(190,200)
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism ,
The combination of the plurality of conductors is the plurality of conductors ( 193-195 , 203-205 ) that are arranged at a position that is a first direction perpendicular to the top and bottom surfaces of the detection element ( 191, 201 ) and are shifted from each other in a second direction perpendicular to the first direction,
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
A current sensor (190, 200) in which the width in the first direction of a near-side conductor (194, 204, 234) among the plurality of conductors that is close to the detection element in the second direction is wider than the width in the first direction of a far-side conductor (193, 195, 203, 205, 233, 235) that is farther from the detection element in the second direction than the near-side conductor, so that the cross-sectional area of the near-side conductor is larger than the cross-sectional area of the far-side conductor .
前記磁束補正機構は、前記位置関係に基づいて設計された磁性体の配置(102a~102c,112a~112c,122a,122b)を含み、
前記磁性体の配置は、前記複数の導体のうちの少なくともいずれか1つの前記導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正し、
前記磁性体の配置は、前記検出素子の第2方向に配置されたセンサ横位置磁性体(102a,102b,112a,112b)と、前記複数の導体を介して前記検出素子と対向する位置に配置されたセンサ対向位置磁性体(102c,112c)とを含む請求項3~のいずれかに記載の電流センサ。
the magnetic flux compensation mechanism includes an arrangement of magnetic bodies (102a to 102c, 112a to 112c, 122a, 122b) designed based on the positional relationship,
The arrangement of the magnetic bodies corrects at least one of a magnetic flux density and a magnetic flux direction for the conductor magnetic flux of at least one of the plurality of conductors;
A current sensor as described in any one of claims 3 to 6, wherein the arrangement of the magnetic bodies includes a sensor lateral position magnetic body (102a, 102b, 112a, 112b) arranged in the second direction of the detection element, and a sensor opposing position magnetic body (102c, 112c) arranged in a position opposing the detection element via the multiple conductors.
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し
記複数の導体の組合せは、前記検出素子(11)上下面に垂直な第1方向となる位置で、前記第1方向に互いにずらして配置された複数の導体(183~185)であり、
前記第1方向と、前記複数の導体それぞれの電流流通方向とに垂直な方向を第2方向とし、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体のうち、前記検出素子との前記第1方向の距離が近い近縦位置導体(183)の前記第2方向の幅が、前記近縦位置導体よりも前記検出素子との前記第1方向の距離が遠い遠縦位置導体(184,185)の前記第2方向の幅よりも広いことにより、前記近縦位置導体の前記断面積が、前記遠縦位置導体の前記断面積よりも大きい電流センサ(180)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism ,
The combination of the plurality of conductors is a plurality of conductors ( 183 to 185) arranged at a position in a first direction perpendicular to the upper and lower surfaces of the detection element ( 181) and shifted from each other in the first direction,
a second direction is a direction perpendicular to the first direction and a direction in which current flows through each of the plurality of conductors;
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
A current sensor (180) in which the width in the second direction of a near-vertical conductor (183) among the plurality of conductors, which is close to the detection element in the first direction, is wider than the width in the second direction of a far-vertical conductor (184, 185) which is farther from the detection element in the first direction than the near-vertical conductor, such that the cross-sectional area of the near-vertical conductor is larger than the cross-sectional area of the far - vertical conductor.
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
前記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し、
前記複数の導体の組合せは、前記検出素子(151)の上下面に垂直な第1方向となる位置で、前記第1方向に互いにずらして配置された複数の導体(153~155)であり、
前記第1方向と、前記複数の導体それぞれの電流流通方向とに垂直な方向を第2方向とし、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体は、前記電流流通方向の両端部(153a,153c,154a,154c,155a,155c)の前記第2方向の幅よりも中央部(153b,154b,155b)の前記第2方向の幅が狭くなっており、
前記複数の導体のうち、前記検出素子との前記第1方向の距離が近い近縦位置導体(153)の中央部(153b)の前記第2方向の幅が、前記近縦位置導体よりも前記検出素子との前記第1方向の距離が遠い遠縦位置導体(154,155)の中央部(154b,155b)の前記第2方向の幅よりも広いことにより、前記近縦位置導体の中央部の前記断面積が、前記遠縦位置導体の中央部の前記断面積よりも大きい電流センサ(150)
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism,
The combination of the plurality of conductors is a plurality of conductors (153 to 155) arranged at positions in a first direction perpendicular to the top and bottom surfaces of the detection element (151) and shifted from each other in the first direction,
a second direction is a direction perpendicular to the first direction and a direction in which current flows through each of the plurality of conductors;
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
The plurality of conductors have a width in the second direction at a center portion (153b, 154b, 155b) narrower than a width in the second direction at both ends (153a, 153c, 154a, 154c, 155a, 155c) in the current flow direction,
A current sensor (150) in which the width in the second direction of a central portion (153b) of a near-vertical conductor (153) among the plurality of conductors, which is close to the detection element in the first direction, is wider than the width in the second direction of central portions (154b, 155b) of far-vertical conductors (154, 155) which are farther from the detection element in the first direction than the near-vertical conductor, so that the cross-sectional area of the central portion of the near-vertical conductor is larger than the cross-sectional area of the central portion of the far- vertical conductor .
一端が駆動回路に導通接続され、他端が回転電機に導通接続された複数の導体(103~105,113~115,123~125,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)と、
前記複数の導体にそれぞれ流れる導体電流によってそれぞれ発生する導体磁束を感知して、前記複数の導体に流れる電流を一括して検出する1つの検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、を備え、
前記検出素子と、前記複数の導体のそれぞれとの位置関係に基づいて、前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように前記複数の導体のうちの少なくともいずれか1つについて導体磁束を補正する磁束補正機構(102a~102c,112a~112c,122a,122b,133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)を有し、
記検出素子(101,111,121,131,141,151,161,171,181,191,201,211,221,231)と、前記複数の導体のそれぞれとの位置関係に基づいて設計された前記複数の導体の組合せ(133~135,143~145,153~155,163~165,173~175,183~185,193~195,203~205,213~215,223~225,233~235)が前記磁束補正機構として機能し、
記複数の導体の組合せは、前記検出素子(211)の上下面に垂直な第1方向となる位置で、前記第1方向に互いにずらして配置された複数の導体(213~215)であり、
前記第1方向と、前記複数の導体それぞれの電流流通方向とに垂直な方向を第2方向とし、
前記第1方向及び前記第2方向に延びる平面で前記導体を切断する場合における前記導体の切断面の断面積を、前記導体の断面積とし、
前記複数の導体のそれぞれにおいて、前記導体電流と、前記検出素子が感知する前記導体磁束との対応関係が略等価となるように、前記位置関係に基づいて、前記複数の導体のそれぞれの前記断面積が調整されており、
前記複数の導体のうち、前記検出素子との前記第1方向の距離が近い近縦位置導体(213)の前記第1方向の幅が、前記近縦位置導体よりも前記検出素子との前記第1方向の距離が遠い遠縦位置導体(214,215)の前記第1方向の幅よりも広いことにより、前記近縦位置導体の前記断面積が、前記遠縦位置導体の前記断面積よりも大きい電流センサ(210)。
A plurality of conductors (103-105, 113-115, 123-125, 133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) each having one end conductively connected to a drive circuit and the other end conductively connected to a rotating electric machine;
and a detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) that senses conductor magnetic fluxes generated by conductor currents flowing through the plurality of conductors, and collectively detects the currents flowing through the plurality of conductors;
A magnetic flux correction mechanism (102a to 102c, 112a to 112c, 122a, 122b, 133 to 135, 143 to 145, 153 to 155, 163 to 165, 173 to 175, 183 to 185, 193 to 195, 203 to 205, 213 to 215, 223 to 225, 233 to 235) is provided that corrects a conductor magnetic flux for at least one of the plurality of conductors so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element becomes approximately equivalent in each of the plurality of conductors based on a positional relationship between the detection element and each of the plurality of conductors,
A combination of the plurality of conductors (133-135, 143-145, 153-155, 163-165, 173-175, 183-185, 193-195, 203-205, 213-215, 223-225, 233-235) designed based on a positional relationship between the detection element (101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231) and each of the plurality of conductors functions as the magnetic flux correction mechanism,
The combination of the plurality of conductors is a plurality of conductors ( 213 to 215) arranged at a position in a first direction perpendicular to the upper and lower surfaces of the detection element ( 211) and shifted from each other in the first direction,
a second direction is a direction perpendicular to the first direction and a direction in which current flows through each of the plurality of conductors;
a cross-sectional area of the conductor when the conductor is cut along a plane extending in the first direction and the second direction is defined as a cross-sectional area of the conductor;
the cross-sectional area of each of the plurality of conductors is adjusted based on the positional relationship so that a corresponding relationship between the conductor current and the conductor magnetic flux sensed by the detection element is approximately equivalent in each of the plurality of conductors;
A current sensor (210) in which the width in the first direction of a near vertical conductor (213) among the plurality of conductors, which is close to the detection element in the first direction , is wider than the width in the first direction of a far vertical conductor (214, 215) which is farther from the detection element in the first direction than the near vertical conductor, such that the cross-sectional area of the near vertical conductor is larger than the cross-sectional area of the far vertical conductor .
前記磁束補正機構は、前記位置関係に基づいて設計された磁性体の配置(102a~102c,112a~112c,122a,122b)を含み、
前記磁性体の配置は、前記複数の導体のうちの少なくともいずれか1つの前記導体磁束について、磁束密度と磁束の向きとの少なくともいずれか一方を補正し、
前記磁性体の配置は、前記複数の導体に対して第2方向となる位置に配置された導体横位置磁性体(122a,122b)を含む請求項8~10のいずれかに記載の電流センサ。
the magnetic flux compensation mechanism includes an arrangement of magnetic bodies (102a to 102c, 112a to 112c, 122a, 122b) designed based on the positional relationship,
The arrangement of the magnetic bodies corrects at least one of a magnetic flux density and a magnetic flux direction for the conductor magnetic flux of at least one of the plurality of conductors;
The current sensor according to any one of claims 8 to 10 , wherein the arrangement of the magnetic bodies includes conductor lateral position magnetic bodies (122a, 122b) arranged in a position that is in a second direction relative to the plurality of conductors.
JP2020125702A 2020-07-22 2020-07-22 Current Sensor Active JP7465169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125702A JP7465169B2 (en) 2020-07-22 2020-07-22 Current Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125702A JP7465169B2 (en) 2020-07-22 2020-07-22 Current Sensor

Publications (2)

Publication Number Publication Date
JP2022021850A JP2022021850A (en) 2022-02-03
JP7465169B2 true JP7465169B2 (en) 2024-04-10

Family

ID=80220663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125702A Active JP7465169B2 (en) 2020-07-22 2020-07-22 Current Sensor

Country Status (1)

Country Link
JP (1) JP7465169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248430A1 (en) * 2022-06-23 2023-12-28 新電元工業株式会社 Electric current detection device and electric current detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228176A (en) 2003-01-21 2004-08-12 Fuji Electric Holdings Co Ltd Zero-phase current transformer
JP3623407B2 (en) 1999-09-14 2005-02-23 三菱電機株式会社 Wiring board
JP6140264B1 (en) 2015-12-28 2017-05-31 中外炉工業株式会社 Industrial furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3623407B2 (en) 1999-09-14 2005-02-23 三菱電機株式会社 Wiring board
JP2004228176A (en) 2003-01-21 2004-08-12 Fuji Electric Holdings Co Ltd Zero-phase current transformer
JP6140264B1 (en) 2015-12-28 2017-05-31 中外炉工業株式会社 Industrial furnace

Also Published As

Publication number Publication date
JP2022021850A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20050001613A1 (en) Offset-reduced hall sensor
JP5153491B2 (en) Current detector
US8421450B2 (en) Current detection device
JP5153481B2 (en) Current detector
JP7465169B2 (en) Current Sensor
JP2019109126A (en) Current sensor
US20160146860A1 (en) Current detector and current detection method
WO2017168860A1 (en) Electric power conversion device
JP2017158407A (en) Current controller for power conversion system
JP2018096795A (en) Current sensor
CN112014615A (en) Bus bar and power module with bus bar
JP5884775B2 (en) Inverter device
JP6668938B2 (en) Inverter control board
JP6668937B2 (en) Inverter control board
JP2017017827A (en) Electronic device
US10295571B2 (en) Bus bar module
JP2020008419A (en) Power converter
JP4496896B2 (en) Power converter
JP2016121960A (en) Current sensor
WO2022065311A1 (en) Current detection device
JP2019184355A (en) Coreless current measuring device
JP2005094887A (en) Power transformer
JP2005278296A (en) Capacitor device and power supply system having the same
JP5994462B2 (en) Inverter device
JP2014079048A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7465169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150