JP7464204B1 - Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the compound - Google Patents

Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the compound Download PDF

Info

Publication number
JP7464204B1
JP7464204B1 JP2023569680A JP2023569680A JP7464204B1 JP 7464204 B1 JP7464204 B1 JP 7464204B1 JP 2023569680 A JP2023569680 A JP 2023569680A JP 2023569680 A JP2023569680 A JP 2023569680A JP 7464204 B1 JP7464204 B1 JP 7464204B1
Authority
JP
Japan
Prior art keywords
group
liquid crystal
formula
general formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023569680A
Other languages
Japanese (ja)
Inventor
正直 林
貴哉 池内
大樹 野呂
美花 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Application granted granted Critical
Publication of JP7464204B1 publication Critical patent/JP7464204B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、Δnが大きく、Δεrが大きく、低温又は室温における保存性が良好な液晶組成物を提供することができる化合物並びにこれを用いた液晶組成物、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナを提供することを課題とする。具体的には、所定のインデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物並びにこれを用いた液晶組成物、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナである。The present invention aims to provide a compound capable of providing a liquid crystal composition having large Δn and large Δεr and having good storage stability at low temperature or room temperature, and a liquid crystal composition, a liquid crystal display element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the same. Specifically, the present invention provides a compound represented by general formula (i) having a predetermined indene structure and a predetermined side chain structure including an isothiocyanate group (-NCS) group, and a liquid crystal composition, a liquid crystal display element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the same.

Description

本発明は、化合物並びにこれを用いた液晶組成物、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナに関する。The present invention relates to a compound and a liquid crystal composition, a liquid crystal display element, a sensor, a liquid crystal lens, an optical communication device and an antenna using the compound.

ディスプレイ用途に多く用いられている液晶の新規用途として、自動車等の移動体と通信衛星との間で、電波の送受信を行う液晶を用いたアンテナが注目されている。従来、衛星通信は、パラボラアンテナを用いているが、自動車等の移動体で用いる場合、随時パラボラアンテナを衛星方向へ向けなければならず、大きな可動部が必要であった。しかし液晶を用いたアンテナは、パネル内部の液晶が動作することにより電波の送受信方向を変える事が出来るため、アンテナ自体を動かす必要が無くアンテナの形状も平面にすることが出来る。また、グローバルな大容量かつ高速通信を実現するため、多数の低軌道衛星による低軌道衛星コンステレーションの検討が進んでいる。地上からでは常に移動しているように見える低軌道衛星を追従するには、電波の送受信方向を容易に変えることができる液晶アンテナは有用である。
一般に、自動車等の自動運転には、高精度3Dマップ情報の大量データダウンロードが必要である。しかし、液晶を用いたアンテナであれば、当該アンテナを自動車に組み込むことにより、通信衛星から大量データダウンロードが、機械的な可動部が無くても可能となる。衛星通信で用いられる周波数帯は、約13GHz帯であり、今までの液晶ディスプレイ用途で使用している周波数と大きく異なる。そのため、液晶への要求物性も大きく異なり、アンテナ用の液晶に要求されるΔnは例えば0.4程度、動作温度範囲は例えば-20~120℃となる。
また、自動車等の移動体の自動運転用センサとして、液晶を用いた赤外線レーザー画像認識・測距装置も注目されている。この用途の液晶に要求されるΔnは例えば0.3~0.6、動作温度範囲は例えば10~100℃となる。
更に、0.2以上の高いΔnを示す液晶組成物を構成する液晶性化合物は相溶性が低いものが多いことが知られている。したがって、相溶性の高い液晶性化合物を選択することも重要である。
これに対して、アンテナ用の液晶の技術としては、例えば、特許文献1が挙げられる。
また、非特許文献1では、高周波デバイスの構成成分として液晶材料の使用が提唱されている。
Liquid crystals are widely used in displays, but as a new application, liquid crystal antennas that transmit and receive radio waves between a mobile object such as a car and a communication satellite are attracting attention. Conventionally, satellite communication uses parabolic antennas, but when used in a mobile object such as a car, the parabolic antenna must be pointed toward the satellite at any time, which requires a large movable part. However, liquid crystal antennas can change the direction of radio waves by moving the liquid crystal inside the panel, so there is no need to move the antenna itself and the shape of the antenna can be made flat. In addition, in order to realize global high-capacity and high-speed communication, low-orbit satellite constellations using a large number of low-orbit satellites are being studied. Liquid crystal antennas, which can easily change the direction of radio waves, are useful for tracking low-orbit satellites that appear to be constantly moving from the ground.
Generally, automatic driving of automobiles and the like requires downloading a large amount of data of high-precision 3D map information. However, if an antenna using liquid crystal is incorporated into an automobile, it becomes possible to download a large amount of data from a communication satellite without any mechanical moving parts. The frequency band used in satellite communication is about 13 GHz, which is significantly different from the frequencies used for liquid crystal displays up to now. Therefore, the required physical properties of the liquid crystal are also significantly different, and the Δn required for the liquid crystal for the antenna is, for example, about 0.4, and the operating temperature range is, for example, from -20 to 120°C.
Infrared laser image recognition and distance measuring devices using liquid crystals are also attracting attention as sensors for automatic driving of moving objects such as automobiles. The Δn required for liquid crystals for this purpose is, for example, 0.3 to 0.6, and the operating temperature range is, for example, 10 to 100°C.
Furthermore, it is known that many liquid crystal compounds constituting a liquid crystal composition exhibiting a high Δn of 0.2 or more have low compatibility, and therefore it is also important to select a liquid crystal compound having high compatibility.
On the other hand, as a technique for liquid crystal for antennas, for example, Patent Document 1 can be mentioned.
Also, Non-Patent Document 1 proposes the use of liquid crystal materials as components of high frequency devices.

特開2016-37607号公報JP 2016-37607 A

ドルフィ(D.Dolfi),「エレクトロニクスレター(Electronics Letters)」,(英国),1993年,29巻,10号,p.926-928Dolfi, Electronics Letters, (UK), 1993, Vol. 29, No. 10, pp. 926-928

本発明は、Δnが大きく、Δεが大きく、低温又は室温における保存性が良好な液晶組成物を提供することができる化合物並びにこれを用いた液晶組成物、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナを提供することを課題とする。 An object of the present invention is to provide a compound capable of providing a liquid crystal composition having large Δn and large Δε r and having good storage stability at low temperature or room temperature, and a liquid crystal composition, a liquid crystal display element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the same.

本発明者らは、鋭意検討した結果、インデン構造とイソチオシアネート基(-NCS)をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物が、上記課題を解決できることを見出し、本発明を完成するに至った。
上記課題を解決する本発明の構成の一例としては、以下の通りである。
As a result of intensive investigations, the present inventors have found that a compound represented by general formula (i) having a specific side chain structure including an indene structure and an isothiocyanate group (-NCS) can solve the above problems, and have completed the present invention.
An example of the configuration of the present invention that solves the above problem is as follows.

項1.下記一般式(i)Item 1. The following general formula (i)

Figure 0007464204000001
(一般式(i)中、
i1は、水素原子又は炭素原子数1~20のアルキル基を表し、
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-、-NH-CO-、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
i1は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、チオイソシアノ基、イソチオシアネート基、イソシアネート基又は炭素原子数1~20のアルキル基を表し、
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-、-NH-CO-、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
i1及びAi2は、それぞれ独立して、炭素原子数3~16の炭化水素環又は炭素原子数3~16の複素環のいずれかを表し、
前記Ai1及びAi2中の1つ又は2つ以上の水素原子は、それぞれ独立して、置換基Si1によって置換されていてもよく、
置換基Si1は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、炭素原子数1~20のアルキル基のいずれかを表し、
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-及び/又は-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
置換基Si1が複数ある場合は、それらは同一であってもよく、異なっていてもよく、
i1及びLi2は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基又は炭素原子数1から20のアルキル基のいずれかを表し、
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
i1及びZi2は、それぞれ独立して、単結合、炭素原子数1~20のアルキレン基のいずれかを表し、
当該アルキレン基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-CF-及び/又は-CO-で置換されていてもよく、
当該アルキレン基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH-CH(CH)-、-CH(CH)-CH-、-CH=CH-、-CF=CF-、-CH=C(CH)-、-C(CH)=CH-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-CO-O-及び/又は-O-CO-で置換されてもよく、
酸素原子と酸素原子が直接結合することはなく、
i1は、0~3の整数を表すが、
i2又はZi2が複数存在する場合は、それらはそれぞれ同一であってもよく、異なっていてもよい。)
で表される化合物。
Figure 0007464204000001
(In the general formula (i),
R i1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms;
one or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH-, -NH-CO-, -CH=CH-, -CF=CF- and/or -C≡C-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
X i1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a thioisocyano group, an isothiocyanate group, an isocyanate group, or an alkyl group having 1 to 20 carbon atoms;
one or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH-, -NH-CO-, -CH=CH-, -CF=CF- and/or -C≡C-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
A i1 and A i2 each independently represent a hydrocarbon ring having 3 to 16 carbon atoms or a heterocycle having 3 to 16 carbon atoms;
One or more hydrogen atoms in A i1 and A i2 may each independently be substituted by a substituent S i1 ;
the substituent S i1 represents any one of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, and an alkyl group having 1 to 20 carbon atoms;
One or more -CH 2 - in the alkyl group may each independently be substituted with -O-, -S- and/or -CO-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
When there are a plurality of substituents S i1 , they may be the same or different.
L i1 and L i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, or an alkyl group having 1 to 20 carbon atoms;
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
Z i1 and Z i2 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms;
one or more -CH 2 - in the alkylene group may each independently be substituted by -O-, -CF 2 - and/or -CO-;
one or more -CH 2 -CH 2 - in the alkylene group may each independently be replaced by -CH 2 -CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH=CH-, -CF=CF-, -CH=C(CH 3 )-, -C(CH 3 )=CH-, -CH=N-, -N=CH-, -N=N-, -C≡C-, -CO-O- and/or -O-CO-;
Oxygen atoms do not bond directly to each other,
n i1 represents an integer of 0 to 3,
When a plurality of A i2 or Z i2 are present, they may be the same or different.
A compound represented by the formula:

項2.前記一般式(i)で表される化合物が、下記一般式(i-1)~(i-11)Item 2. The compound represented by the general formula (i) is represented by the following general formulas (i-1) to (i-11):

Figure 0007464204000002
Figure 0007464204000002

Figure 0007464204000003
(一般式(i-1)~(i-11)中、
i1、Li1、Li2、Ai1、Ai2及びXi1は、上記一般式(i)中のRi1、Li1、Li2、Ai1、Ai2及びXi1とそれぞれ同じ意味を表す。)
で表される化合物からなる群から選ばれる項1に記載の液晶組成物。
Figure 0007464204000003
(In general formulas (i-1) to (i-11),
R i1 , L i1 , L i2 , A i1 , A i2 and X i1 have the same meanings as R i1 , L i1 , L i2 , A i1 , A i2 and X i1 in the above general formula (i).
2. The liquid crystal composition according to item 1, wherein the compound is selected from the group consisting of compounds represented by the following formula:

項3.前記Xi1が、フッ素原子、シアノ基、イソチオシアネート基(-NCS)、炭素原子数1~6の直鎖状のアルキル基又は炭素原子数1~6の直鎖状のアルコキシ基を表す項1又は2に記載の化合物。 Item 3. The compound according to item 1 or 2, wherein X i1 represents a fluorine atom, a cyano group, an isothiocyanate group (-NCS), a linear alkyl group having 1 to 6 carbon atoms, or a linear alkoxy group having 1 to 6 carbon atoms.

項4.項1~3のいずれか1項に記載の化合物を1種又は2種以上含む液晶組成物。Item 4. A liquid crystal composition comprising one or more compounds according to any one of items 1 to 3.

項5.項4に記載の液晶組成物を用いた、液晶表示素子。Item 5. A liquid crystal display element using the liquid crystal composition described in item 4.

項6.項4に記載の液晶組成物を用いた、センサ。Item 6. A sensor using the liquid crystal composition described in item 4.

項7.項4に記載の液晶組成物を用いた、液晶レンズ。Item 7. A liquid crystal lens using the liquid crystal composition described in item 4.

項8.項4に記載の液晶組成物を用いた、光通信機器。Item 8. An optical communication device using the liquid crystal composition described in item 4.

項9.項4に記載の液晶組成物を用いた、アンテナ。Item 9. An antenna using the liquid crystal composition described in item 4.

項10.項9に記載のアンテナであって、
複数のスロットを備えた第1基板と、
前記第1基板と対向し、給電部が設けられた第2基板と、
前記第1基板と前記第2基板との間に設けられた第1誘電体層と、
前記複数のスロットに対応して配置される複数のパッチ電極と、
前記パッチ電極が設けられた第3基板と、
前記第1基板と前記第3基板との間に設けられた液晶層とを備え、
前記液晶層が、項4に記載の液晶組成物を含有するアンテナ。
Item 10. The antenna according to item 9,
a first substrate having a plurality of slots;
a second substrate facing the first substrate and provided with a power supply unit;
a first dielectric layer provided between the first substrate and the second substrate;
A plurality of patch electrodes arranged corresponding to the plurality of slots;
a third substrate on which the patch electrode is provided;
a liquid crystal layer provided between the first substrate and the third substrate;
Item 5. An antenna, wherein the liquid crystal layer contains the liquid crystal composition according to item 4.

本発明によれば、インデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物を用いることにより、Δnが大きく、Δεが大きく、低温又は室温における保存性が良好な液晶組成物を得ることができ、当該液晶組成物は、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナに有用である。 According to the present invention, by using a compound represented by general formula (i) having a predetermined side chain structure including an indene structure and an isothiocyanate group (-NCS) group, a liquid crystal composition having large Δn and large Δε r and having good storage stability at low temperature or room temperature can be obtained, and the liquid crystal composition is useful for liquid crystal display elements, sensors, liquid crystal lenses, optical communication devices and antennas.

(一般式(i)で表される化合物)
本発明に係る化合物は、インデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する下記一般式(i)で表される化合物である。
(Compound represented by general formula (i))
The compound according to the present invention is a compound represented by the following general formula (i) having a specific side chain structure including an indene structure and an isothiocyanate group (-NCS) group.

また、本発明に係る液晶組成物は、インデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物の1種又は2種以上含む。 In addition, the liquid crystal composition of the present invention contains one or more compounds represented by general formula (i) having a specific side chain structure including an indene structure and an isothiocyanate group (-NCS) group.

Figure 0007464204000004
Figure 0007464204000004

一般式(i)中、破線は二重結合の位置を表す。
インデン構造としては、具体的には、下記一般式(Aindene-1)~(Aindene-2)で表される基である。
In formula (i), the dashed line indicates the position of a double bond.
Specific examples of the indene structure include groups represented by the following general formulae (A indene -1) and (A indene -2).

Figure 0007464204000005
Figure 0007464204000005

一般式(Aindene-1)~(Aindene-2)中、*はLi1及びLi2への結合手を表し、白点はRi1への結合手を表し、黒点はZi1への結合手を表す。
また、一般式(Aindene-1)で表される基としては、下記構造式(Aindene-1-1)~(Aindene-1-4)で表される基が好ましい。
In the general formulae (A indene -1) to (A indene -2), * represents a bond to L i1 and L i2 , a white dot represents a bond to R i1 , and a black dot represents a bond to Z i1 .
As the group represented by the general formula (A indene -1), groups represented by the following structural formulae (A indene -1-1) to (A indene -1-4) are preferable.

Figure 0007464204000006
Figure 0007464204000006

構造式(Aindene-1-1)~(Aindene-4)中、白点はRi1への結合手を表し、黒点はZi1への結合手を表す。
また、一般式(Aindene-2)で表される基としては、下記構造式(Aindene-2-1)~(Aindene-2-4)で表される基が好ましい。
In the structural formulae (A indene -1-1) to (A indene -4), the white dots represent bonds to R i1 , and the black dots represent bonds to Z i1 .
As the group represented by the general formula (A indene -2), groups represented by the following structural formulae (A indene -2-1) to (A indene -2-4) are preferable.

Figure 0007464204000007
Figure 0007464204000007

構造式(Aindene-2-1)~(Aindene-2-4)中、白点はRi1への結合手を表し、黒点はZi1への結合手を表す。
一般式(i)で表される化合物は、インデン構造を有することから分子間相互作用が弱めつつもπ共役結合が広がり、Δnを高める。
一般式(i)中、Ri1は、水素原子又は炭素原子数1~20のアルキル基を表す。
当該アルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
当該アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-、-NH-CO-、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
例えば、Ri1は、当該アルキル基中の1つの-CH-が-O-に置換されることにより、炭素原子数1~19のアルコキシ基を表すことができる。
当該アルコキシ基は、直鎖状、分岐状又は環状のアルコキシ基であり、直鎖状のアルコキシ基であることが好ましい。
当該アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Ri1は、当該アルキル基中の1つの-CH-が-S-に置換されることにより、炭素原子数1~19のアルキルスルファニル基(アルキルチオ基)を表すことができる。
当該アルキルスルファニル基は、直鎖状、分岐状又は環状のアルキルスルファニル基であり、直鎖状のアルキルスルファニル基であることが好ましい。
当該アルキルスルファニル基における炭素原子数は、好ましくは1~10、好ましくは1~6である。
また、Ri1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~20のアルケニル基を表すことができる。
当該アルケニル基は、直鎖状、分岐状又は環状のアルケニル基であり、直鎖状のアルケニル基であることが好ましい。
当該アルケニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Ri1は、当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~20のハロゲン化アルキル基を表すことができる。
当該ハロゲン化アルキル基は、直鎖状、分岐状又は環状のハロゲン化アルキル基であり、直鎖状のハロゲン化アルキル基であることが好ましい。
当該ハロゲン化アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Ri1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~19のハロゲン化アルコキシ基を表すことができる。
当該ハロゲン化アルコキシ基は、直鎖状、分岐状又は環状のハロゲン化アルコキシ基であり、直鎖状のハロゲン化アルコキシ基であることが好ましい。
当該ハロゲン化アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
i1における炭素原子数1~20のアルキル基(置換されたものも含む)の具体例としては、式(Ri1-1)~(Ri1-39)で表される基等が挙げられる。
In the structural formulae (A indene -2-1) to (A indene -2-4), the white dots represent bonds to R i1 , and the black dots represent bonds to Z i1 .
The compound represented by the general formula (i) has an indene structure, and therefore while weakening the intermolecular interaction, the π-conjugated bonds are expanded, thereby increasing Δn.
In formula (i), R i1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
The alkyl group may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group preferably has 2 to 10, preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-.
In addition, one or more -CH 2 -CH 2 - in the alkyl group may be each independently substituted by -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH-, -NH-CO-, -CH=CH-, -CF=CF- and/or -C≡C-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
For example, R i1 can represent an alkoxy group having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --O--.
The alkoxy group is a linear, branched or cyclic alkoxy group, and is preferably a linear alkoxy group.
The alkoxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, R i1 can represent an alkylsulfanyl group (alkylthio group) having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --S--.
The alkylsulfanyl group is a linear, branched or cyclic alkylsulfanyl group, and is preferably a linear alkylsulfanyl group.
The alkylsulfanyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
Furthermore, R i1 can represent an alkenyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -CH=CH-.
The alkenyl group is a linear, branched or cyclic alkenyl group, and is preferably a linear alkenyl group.
The alkenyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, R i1 can represent a halogenated alkyl group having 1 to 20 carbon atoms, in which one or more hydrogen atoms in the alkyl group have been substituted with halogen atoms.
The halogenated alkyl group may be linear, branched or cyclic, and is preferably a linear halogenated alkyl group.
The halogenated alkyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
In addition, R i1 can represent a halogenated alkoxy group having 1 to 19 carbon atoms, in which one -CH 2 - in the alkyl group is replaced with -O-, and one or more hydrogen atoms in the alkyl group are replaced with halogen atoms.
The halogenated alkoxy group may be a linear, branched or cyclic halogenated alkoxy group, and is preferably a linear halogenated alkoxy group.
The halogenated alkoxy group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Specific examples of the alkyl group having 1 to 20 carbon atoms for R i1 (including substituted ones) include groups represented by formulae (R i1 -1) to (R i1 -39).

Figure 0007464204000008
Figure 0007464204000008

Figure 0007464204000009
Figure 0007464204000009

式(Ri1-1)~(Ri1-39)中、黒点はインデン構造への結合手を表す。
なお、Ri1としては、溶解性の観点から、炭素原子数1~6の直鎖状のアルキル基、炭素原子数1~6の直鎖状のアルコキシアルキル基又は炭素原子数2~6の直鎖状のアルケニル基が好ましい。
In the formulae (R i1 -1) to (R i1 -39), the black dots represent bonds to the indene structure.
From the viewpoint of solubility, R i1 is preferably a linear alkyl group having 1 to 6 carbon atoms, a linear alkoxyalkyl group having 1 to 6 carbon atoms, or a linear alkenyl group having 2 to 6 carbon atoms.

一般式(i)中、Xi1は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、チオイソシアノ基、イソチオシアネート基、イソシアネート基又は炭素原子数1~20のアルキル基を表す。
当該アルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
当該アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-、-NH-CO-、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
例えば、Xi1は、当該アルキル基中の1つの-CH-が-O-に置換されることにより、炭素原子数1~19のアルコキシ基を表すことができる。
当該アルコキシ基は、直鎖状、分岐状又は環状のアルコキシ基であり、直鎖状のアルコキシ基であることが好ましい。
当該アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Xi1は、当該アルキル基中の1つの-CH-が-S-に置換されることにより、炭素原子数1~19のアルキルスルファニル基(アルキルチオ基)を表すことができる。
当該アルキルスルファニル基は、直鎖状、分岐状又は環状のアルキルスルファニル基であり、直鎖状のアルキルスルファニル基であることが好ましい。
当該アルキルスルファニル基における炭素原子数は、好ましくは1~10、好ましくは1~6である。
また、Xi1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~20のアルケニル基を表すことができる。
当該アルケニル基は、直鎖状、分岐状又は環状のアルケニル基であり、直鎖状のアルケニル基であることが好ましい。
当該アルケニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Xi1は、当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~20のハロゲン化アルキル基を表すことができる。
当該ハロゲン化アルキル基は、直鎖状、分岐状又は環状のハロゲン化アルキル基であり、直鎖状のハロゲン化アルキル基であることが好ましい。
当該ハロゲン化アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Xi1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~19のハロゲン化アルコキシ基を表すことができる。
当該ハロゲン化アルコキシ基は、直鎖状、分岐状又は環状のハロゲン化アルコキシ基であり、直鎖状のハロゲン化アルコキシ基であることが好ましい。
当該ハロゲン化アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
i1における炭素原子数1~20のアルキル基(置換されたものも含む)の具体例としては、式(Xi1-1)~(Xi1-39)で表される基等が挙げられる。
In general formula (i), X i1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a thioisocyano group, an isothiocyanate group, an isocyanate group, or an alkyl group having 1 to 20 carbon atoms.
The alkyl group may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group preferably has 2 to 10, preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-.
In addition, one or more -CH 2 -CH 2 - in the alkyl group may be each independently substituted by -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH-, -NH-CO-, -CH=CH-, -CF=CF- and/or -C≡C-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
For example, X i1 can represent an alkoxy group having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --O--.
The alkoxy group is a linear, branched or cyclic alkoxy group, and is preferably a linear alkoxy group.
The alkoxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, X i1 can represent an alkylsulfanyl group (alkylthio group) having 1 to 19 carbon atoms by substituting one --CH 2 -- in the alkyl group with --S--.
The alkylsulfanyl group is a linear, branched or cyclic alkylsulfanyl group, and is preferably a linear alkylsulfanyl group.
The alkylsulfanyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
Furthermore, X i1 can represent an alkenyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -CH=CH-.
The alkenyl group is a linear, branched or cyclic alkenyl group, and is preferably a linear alkenyl group.
The alkenyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, X i1 can represent a halogenated alkyl group having 1 to 20 carbon atoms, in which one or more hydrogen atoms in the alkyl group have been substituted with halogen atoms.
The halogenated alkyl group may be linear, branched or cyclic, and is preferably a linear halogenated alkyl group.
The halogenated alkyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
In addition, X i1 can represent a halogenated alkoxy group having 1 to 19 carbon atoms, in which one -CH 2 - in the alkyl group is replaced with -O-, and one or more hydrogen atoms in the alkyl group are replaced with halogen atoms.
The halogenated alkoxy group may be a linear, branched or cyclic halogenated alkoxy group, and is preferably a linear halogenated alkoxy group.
The halogenated alkoxy group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Specific examples of the alkyl group having 1 to 20 carbon atoms for X i1 (including substituted ones) include groups represented by formulae (X i1 -1) to (X i1 -39).

Figure 0007464204000010
Figure 0007464204000010

Figure 0007464204000011
Figure 0007464204000011

式(Xi1-1)~(Xi1-39)中、黒点はAi1又はAi2への結合手を表す。
なお、長波長域、及び高周波域のΔnや、粘性の観点から、Xi1は、フッ素原子、シアノ基、イソチオシアネート基(-NCS)、炭素原子数1~6の直鎖状のアルキル基又は炭素原子数1~6の直鎖状のアルコキシ基を表すことが好ましい。
In formulae (X i1 -1) to (X i1 -39), the black dot represents a bond to A i1 or A i2 .
From the viewpoints of Δn and viscosity in the long wavelength and high frequency regions, it is preferable that X i1 represents a fluorine atom, a cyano group, an isothiocyanate group (-NCS), a linear alkyl group having 1 to 6 carbon atoms, or a linear alkoxy group having 1 to 6 carbon atoms.

一般式(i)中、Ai1及びAi2は、それぞれ独立して、炭素原子数3~16の炭化水素環又は炭素原子数3~16の複素環のいずれかを表す。
炭素原子数3~16の炭化水素環又は炭素原子数3~16の複素環は、より具体的には、以下の基(a)、基(b)基(c)及び基(d):
(a)1,4-シクロへキシレン基(この基中に存在する1つの-CH-又は隣接していない2つ以上の-CH-は-O-又は-S-に置き換えられても良い。)
(b)1,4-フェニレン基(この基中に存在する1つの-CH=又は隣接していない2つ以上の-CH=は-N=に置き換えられても良い。)
(c)1,4-シクロヘキセニレン基、ビシクロ[2.2.2]オクタン-1,4-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、5,6,7,8-テトラヒドロナフタレン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、アントラセン-9,10-ジイル基、フェナントレン-2,7-ジイル基(ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、5,6,7,8-テトラヒドロナフタレン-1,4-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、アントラセン-9,10-ジイル基又はフェナントレン-2,7-ジイル基中に存在する1つの-CH=又は2つ以上の-CH=は-N=に置き換えられても良い。)
(d)チオフェン-2,5-ジイル基、ベンゾチオフェン-2,5-ジイル基、ベンゾチオフェン-2,6-ジイル基、ジベンゾチオフェン-3,7-ジイル基、ジベンゾチオフェン-2,6-ジイル基、チエノ[3,2-b]チオフェン-2,5-ジイル基(この基中に存在する1つの-CH=又は隣接していない2つ以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表すことが好ましい。
In formula (i), A i1 and A i2 each independently represent a hydrocarbon ring having 3 to 16 carbon atoms or a heterocycle having 3 to 16 carbon atoms.
More specifically, the hydrocarbon ring having 3 to 16 carbon atoms or the heterocycle having 3 to 16 carbon atoms is the following group (a), group (b), group (c), and group (d):
(a) a 1,4-cyclohexylene group (in which one —CH 2 — or two or more non-adjacent —CH 2 — groups may be replaced by —O— or —S—).
(b) a 1,4-phenylene group (in which one -CH= or two or more non-adjacent -CH= groups may be replaced by -N=).
(c) 1,4-cyclohexenylene group, bicyclo[2.2.2]octane-1,4-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 5,6,7,8-tetrahydronaphthalene-1,4-diyl group, decahydronaphthalene-2,6-diyl group, anthracene-2,6-diyl group, anthracene-1,4-diyl group, anthracene-9,10-diyl group, phenanthracene-2,6-diyl group, anthracene-1,4-diyl group, anthracene-9,10-diyl group, a naphthalene-2,7-diyl group (one -CH= or two or more -CH= present in a naphthalene-2,6-diyl group, a naphthalene-1,4-diyl group, a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 5,6,7,8-tetrahydronaphthalene-1,4-diyl group, an anthracene-2,6-diyl group, an anthracene-1,4-diyl group, an anthracene-9,10-diyl group, or a phenanthrene-2,7-diyl group may be replaced by -N=);
(d) a thiophene-2,5-diyl group, a benzothiophene-2,5-diyl group, a benzothiophene-2,6-diyl group, a dibenzothiophene-3,7-diyl group, a dibenzothiophene-2,6-diyl group, or a thieno[3,2-b]thiophene-2,5-diyl group (one -CH= or two or more non-adjacent -CH= in this group may be replaced by -N=).
It is preferred that the aryl group represents a group selected from the group consisting of:

i1及びAi2中の1つ又は2つ以上の水素原子は、それぞれ独立して、置換基Si1によって置換されていてもよい。
置換基Si1は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、炭素原子数1~20のアルキル基のいずれかを表す。
当該アルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
当該アルキル基における炭素原子数は、好ましくは2~10、好ましくは3~6である。
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-及び/又は-CO-で置換されていてもよい。
また、当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されてもよい。
当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
置換基Si1としては、炭素原子数1~10の直鎖状のアルキル基、塩素原子、フッ素原子が好ましい。
また、Ai1及びAi2の少なくとも一つは少なくとも一つの置換基Si1で置換されていることが好ましい。
また、Ai2は、少なくとも一つの置換基Si1で置換されていることが好ましい。
なお、置換基Si1が複数ある場合は、それらは同一であってもよく、異なっていてもよい。
One or more hydrogen atoms in A i1 and A i2 may each independently be substituted with a substituent S i1 .
The substituent S i1 represents any one of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, and an alkyl group having 1 to 20 carbon atoms.
The alkyl group may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group preferably has 2 to 10, preferably 3 to 6, carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted with -O-, -S- and/or -CO-.
Furthermore, one or more -CH 2 -CH 2 - in the alkyl group may be each independently substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-.
One or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
The substituent S i1 is preferably a linear alkyl group having 1 to 10 carbon atoms, a chlorine atom, or a fluorine atom.
In addition, at least one of A i1 and A i2 is preferably substituted with at least one substituent S i1 .
Also, A i2 is preferably substituted with at least one substituent S i1 .
When there are a plurality of substituents S i1 , they may be the same or different.

i1における置換基Si1の置換位置としては、下記式(Ai1-SP-1)~(Ai1-SP-4)のいずれかであることが好ましい。 The substitution position of the substituent S i1 in A i1 is preferably any one of the following formulae (A i1 -SP-1) to (A i1 -SP-4).

Figure 0007464204000012
Figure 0007464204000012

式(Ai1-SP-1)~(Ai1-SP-4)中、白点はZi1への結合手を表し、黒点はZi2又はXi1への結合手を表す。
i2における置換基Si1の置換位置としては、下記式(Ai2-SP-1)~(Ai2-SP-4)のいずれかであることが好ましい。
In the formulae (A i1 -SP-1) to (A i1 -SP-4), a white dot represents a bond to Z i1 , and a black dot represents a bond to Z i2 or X i1 .
The substitution position of the substituent S i1 in A i2 is preferably any one of the following formulae (A i2 -SP-1) to (A i2 -SP-4).

Figure 0007464204000013
Figure 0007464204000013

式(Ai2-SP-1)~(Ai2-SP-4)中、白点はZi2への結合手を表し、黒点はZi2又はXi1への結合手を表す。
より具体的には、Ai1は、下記式(Ai1-1)~(Ai1-13)のいずれかを表すことが好ましい。
In the formulae (A i2 -SP-1) to (A i2 -SP-4), a white dot represents a bond to Z i2 , and a black dot represents a bond to Z i2 or X i1 .
More specifically, A i1 preferably represents any one of the following formulae (A i1 -1) to (A i1 -13).

Figure 0007464204000014
Figure 0007464204000014

式(Ai1-1)~(Ai1-13)中、白点はZi1への結合手を表し、黒点はZi2又はXi1への結合手を表す。
より具体的には、Ai2は、下記式(Ai2-1)~(Ai2-10)のいずれかを表すことが好ましい。
In the formulae (A i1 -1) to (A i1 -13), a white dot represents a bond to Z i1 , and a black dot represents a bond to Z i2 or X i1 .
More specifically, A i2 preferably represents any one of the following formulas (A i2 -1) to (A i2 -10).

Figure 0007464204000015
Figure 0007464204000015

式(Ai2-1)~(Ai2-10)中、白点はZi2への結合手を表し、黒点はZi2又はXi1への結合手を表す。 In the formulae (A i2 -1) to (A i2 -10), a white dot represents a bond to Z i2 , and a black dot represents a bond to Z i2 or X i1 .

一般式(i)中、Li1及びLi2は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基又は炭素原子数1から20のアルキル基のいずれかを表す。
炭素原子数1~20のアルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
炭素原子数1~20のアルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよい。
また、当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されてもよい。
また、当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子が挙げられる。
但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
例えば、Li1及びLi2は、当該アルキル基中の1つの-CH-が-O-に置換されることにより、炭素原子数1~19のアルコキシ基を表すことができる。
当該アルコキシ基は、直鎖状、分岐状又は環状のアルコキシ基であり、直鎖状のアルコキシ基であることが好ましい。
当該アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つの-CH-が-S-に置換されることにより、炭素原子数1~19のアルキルスルファニル基(アルキルチオ基)を表すことができる。
当該アルキルスルファニル基は、直鎖状、分岐状又は環状のアルキルスルファニル基であり、直鎖状のアルキルスルファニル基であることが好ましい。
当該アルキルスルファニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~20のアルケニル基を表すことができる。
当該アルケニル基は、直鎖状、分岐状又は環状のアルケニル基であり、直鎖状のアルケニル基であることが好ましい。
当該アルケニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-C≡C-に置換されることにより、炭素原子数2~20のアルキニル基を表すことができる。
当該アルキニル基は、直鎖状、分岐状又は環状のアルキニル基であり、直鎖状のアルキニル基であることが好ましい。
当該アルキニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ一つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~19のアルケニルオキシ基を表すことができる。
当該アルケニルオキシ基は、直鎖状、分岐状又は環状のアルケニルオキシ基であり、直鎖状のアルケニルオキシ基であることが好ましい。
当該アルケニルオキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~20のハロゲン化アルキル基を表すことができる。
当該ハロゲン化アルキル基は、直鎖状、分岐状又は環状のハロゲン化アルキル基であり、直鎖状のハロゲン化アルキル基であることが好ましい。
当該ハロゲン化アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Li1及びLi2は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~19のハロゲン化アルコキシ基を表すことができる。
当該ハロゲン化アルコキシ基は、直鎖状、分岐状又は環状のハロゲン化アルコキシ基であり、直鎖状のハロゲン化アルコキシ基であることが好ましい。
当該ハロゲン化アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
In general formula (i), L i1 and L i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, or an alkyl group having 1 to 20 carbon atoms.
The alkyl group having 1 to 20 carbon atoms may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group having 1 to 20 carbon atoms preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-.
Furthermore, one or more -CH 2 -CH 2 - in the alkyl group may be each independently substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
For example, L i1 and L i2 can represent an alkoxy group having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --O--.
The alkoxy group is a linear, branched or cyclic alkoxy group, and is preferably a linear alkoxy group.
The alkoxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, L i1 and L i2 can represent an alkylsulfanyl group (alkylthio group) having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --S--.
The alkylsulfanyl group is a linear, branched or cyclic alkylsulfanyl group, and is preferably a linear alkylsulfanyl group.
The alkylsulfanyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Furthermore, L i1 and L i2 can represent an alkenyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -CH=CH-.
The alkenyl group is a linear, branched or cyclic alkenyl group, and is preferably a linear alkenyl group.
The alkenyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, L i1 and L i2 can represent an alkynyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -C≡C-.
The alkynyl group may be a linear, branched or cyclic alkynyl group, and is preferably a linear alkynyl group.
The alkynyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
In addition, L i1 and L i2 can represent an alkenyloxy group having 2 to 19 carbon atoms in which one —CH 2 — in the alkyl group is replaced with —O— and one or more —CH 2 —CH 2 — are replaced with —CH═CH—.
The alkenyloxy group is a linear, branched or cyclic alkenyloxy group, and is preferably a linear alkenyloxy group.
The alkenyloxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, L i1 and L i2 can represent a halogenated alkyl group having 1 to 20 carbon atoms, in which one or more hydrogen atoms in the alkyl group have been substituted with halogen atoms.
The halogenated alkyl group may be linear, branched or cyclic, and is preferably a linear halogenated alkyl group.
The halogenated alkyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
In addition, L i1 and L i2 can represent a halogenated alkoxy group having 1 to 19 carbon atoms in which one -CH 2 - in the alkyl group is replaced with -O- and one or more hydrogen atoms in the alkyl group are replaced with halogen atoms.
The halogenated alkoxy group may be a linear, branched or cyclic halogenated alkoxy group, and is preferably a linear halogenated alkoxy group.
The halogenated alkoxy group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.

i1及びLi2における炭素原子数1~20のアルキル基(置換されたものも含む)の具体例としては、式(Li1/2-1)~(Li1/2-36)で表される基等が挙げられる。 Specific examples of the alkyl group having 1 to 20 carbon atoms (including substituted ones) in L i1 and L i2 include groups represented by the formulae (L i1/2 -1) to (L i1/2 -36).

Figure 0007464204000016
Figure 0007464204000016

式(Li1/2-1)~(Li1/2-36)中、黒点はインデン構造への結合手を表す。
溶解性、粘性の観点から、Li1及びLi2の少なくとも一つは、水素原子、フッ素原子又は炭素原子数1~6の直鎖状のアルキル基であることが好ましく、Li1及びLi2が水素原子又はフッ素原子であることがより好ましい。
In the formulae (L i1/2 -1) to (L i1/2 -36), the black dots represent bonds to the indene structure.
From the viewpoint of solubility and viscosity, at least one of L i1 and L i2 is preferably a hydrogen atom, a fluorine atom, or a linear alkyl group having 1 to 6 carbon atoms, and it is more preferable that L i1 and L i2 are a hydrogen atom or a fluorine atom.

一般式(i)中、Zi1及びZi2は、それぞれ独立して、単結合、炭素原子数1~20のアルキレン基のいずれかを表す。
当該アルキレン基は、直鎖状、分岐状又は環状のアルキレン基であり、直鎖状のアルキレン基であることが好ましい。
当該アルキレン基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキレン基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-CF-及び/又は-CO-で置換されていてもよい。
また、当該アルキレン基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH-CH(CH)-、-CH(CH)-CH-、-CH=CH-、-CF=CF-、-CH=C(CH)-、-C(CH)=CH-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-CO-O-及び/又は-O-CO-で置換されてもよい。
但し、当該アルキレン基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
炭素原子数2~20のアルキレン基の具体例(置換されたものも含む)としては、式(Zi1/2-1)~(Zi1/2-24)で表される基等が挙げられる。
In formula (i), Z i1 and Z i2 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms.
The alkylene group is a linear, branched or cyclic alkylene group, and is preferably a linear alkylene group.
The alkylene group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkylene group may each independently be substituted with -O-, -CF 2 - and/or -CO-.
Furthermore, one or more -CH 2 -CH 2 - in the alkylene group may each independently be substituted with -CH 2 -CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH=CH-, -CF=CF-, -CH=C(CH 3 )-, -C(CH 3 )=CH-, -CH=N-, -N=CH-, -N=N-, -C≡C-, -CO-O- and/or -O-CO-.
However, when the alkylene group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
Specific examples of the alkylene group having 2 to 20 carbon atoms (including substituted ones) include groups represented by the formulae (Z i1/2 -1) to (Z i1/2 -24).

Figure 0007464204000017
Figure 0007464204000017

式(Zi1/2-1)~(Zi1/2-24)中、白点はインデン構造、Ai1又はAi2への結合手を表し、黒点はAi1又はAi2への結合手を表す。
Δnの観点から、Zi1及びZi2は、それぞれ独立して、単結合、-CH-CH-、-CO-O-、-N=N-、-N=CH-、-CH=CH-又は-C≡C-であることが好ましい。
また、Δnの観点から、Zi1及びZi2の少なくとも一つが、-C≡C-であることが好ましい。
In the formulae (Z i1/2 -1) to (Z i1/2 -24), the white dots represent an indene structure, a bond to A i1 or A i2 , and the black dots represent a bond to A i1 or A i2 .
From the viewpoint of Δn, it is preferable that Z i1 and Z i2 each independently represent a single bond, —CH 2 —CH 2 —, —CO—O—, —N═N—, —N═CH—, —CH═CH— or —C≡C—.
From the viewpoint of Δn, it is preferable that at least one of Z i1 and Z i2 is -C≡C-.

一般式(i)中、ni1は、0~3の整数、好ましくは1~2の整数を表す。
i2又はZi2が複数存在する場合は、それらはそれぞれ同一であってもよく、異なっていてもよい。
In formula (i), n i1 represents an integer of 0 to 3, preferably an integer of 1 or 2.
When a plurality of A i2 or Z i2 are present, they may be the same or different.

一般式(i)で表される化合物としては、下記一般式(i-1)~(i-11)で表される化合物であることが好ましい。As the compound represented by general formula (i), it is preferable to use compounds represented by the following general formulas (i-1) to (i-11).

Figure 0007464204000018
Figure 0007464204000018

Figure 0007464204000019
Figure 0007464204000019

一般式(i-1)~(i-11)中、Ri1、Li1、Li2、Ai1、Ai2及びXi1は、上記一般式(i)中のRi1、Li1、Li2、Ai1、Ai2及びXi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulas (i-1) to (i-11), R i1 , L i1 , L i2 , A i1 , A i2 and X i1 have the same meanings as R i1 , L i1 , L i2 , A i1 , A i2 and X i1 in the general formula (i), respectively, and the preferred groups are also the same.

一般式(i-1)で表される化合物としては、下記一般式(i-1-1)~(i-1-19)で表される化合物であることが好ましい。As the compound represented by general formula (i-1), it is preferable to use compounds represented by the following general formulas (i-1-1) to (i-1-19).

Figure 0007464204000020
Figure 0007464204000020

Figure 0007464204000021
Figure 0007464204000021

Figure 0007464204000022
Figure 0007464204000022

Figure 0007464204000023
Figure 0007464204000023

一般式(i-1-1)~(i-1-19)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。
一般式(i-1-1)で表される化合物の具体例としては、下記構造式(i-1-1.1)~(i-1-1.10)で表される化合物等が挙げられる。
In formulae (i-1-1) to (i-1-19), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in formula (i), respectively, and the preferred groups are also the same.
Specific examples of the compound represented by general formula (i-1-1) include compounds represented by the following structural formulas (i-1-1.1) to (i-1-1.10).

Figure 0007464204000024
Figure 0007464204000024

Figure 0007464204000025
Figure 0007464204000025

一般式(i-1-2)で表される化合物の具体例としては、下記構造式(i-1-2.1)~(i-1-2.5)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-2) include the compounds represented by the following structural formulas (i-1-2.1) to (i-1-2.5).

Figure 0007464204000026
Figure 0007464204000026

一般式(i-1-3)で表される化合物の具体例としては、下記構造式(i-1-3.1)~(i-1-3.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-3) include the compounds represented by the following structural formulas (i-1-3.1) to (i-1-3.6).

Figure 0007464204000027
Figure 0007464204000027

一般式(i-1-4)で表される化合物の具体例としては、下記構造式(i-1-4.1)~(i-1-4.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-4) include the compounds represented by the following structural formulas (i-1-4.1) to (i-1-4.6).

Figure 0007464204000028
Figure 0007464204000028

一般式(i-1-5)で表される化合物の具体例としては、下記構造式(i-1-5.1)~(i-1-5.5)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-5) include compounds represented by the following structural formulas (i-1-5.1) to (i-1-5.5).

Figure 0007464204000029
Figure 0007464204000029

一般式(i-1-6)で表される化合物の具体例としては、下記構造式(i-1-6.1)~(i-1-6.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-6) include the compounds represented by the following structural formulas (i-1-6.1) to (i-1-6.6).

Figure 0007464204000030
Figure 0007464204000030

一般式(i-1-7)で表される化合物の具体例としては、下記構造式(i-1-7.1)~(i-1-7.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-7) include the compounds represented by the following structural formulas (i-1-7.1) to (i-1-7.4).

Figure 0007464204000031
Figure 0007464204000031

一般式(i-1-8)で表される化合物の具体例としては、下記構造式(i-1-8.1)~(i-1-8.5)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-8) include the compounds represented by the following structural formulas (i-1-8.1) to (i-1-8.5).

Figure 0007464204000032
Figure 0007464204000032

一般式(i-1-9)で表される化合物の具体例としては、下記構造式(i-1-9.1)~(i-1-9.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-9) include the compounds represented by the following structural formulas (i-1-9.1) to (i-1-9.4).

Figure 0007464204000033
Figure 0007464204000033

一般式(i-1-10)で表される化合物の具体例としては、下記構造式(i-1-10.1)~(i-1-10.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-10) include the compounds represented by the following structural formulas (i-1-10.1) to (i-1-10.2).

Figure 0007464204000034
Figure 0007464204000034

一般式(i-1-11)で表される化合物の具体例としては、下記構造式(i-1-11.1)~(i-1-11.6)で表される化合物等が挙げられる。 Specific examples of the compound represented by general formula (i-1-11) include the compounds represented by the following structural formulas (i-1-11.1) to (i-1-11.6).

Figure 0007464204000035
Figure 0007464204000035

一般式(i-1-12)で表される化合物の具体例としては、下記構造式(i-1-12.1)~(i-1-12.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-12) include the compounds represented by the following structural formulas (i-1-12.1) to (i-1-12.6).

Figure 0007464204000036
Figure 0007464204000036

一般式(i-1-13)で表される化合物の具体例としては、下記構造式(i-1-13.1)~(i-1-13.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-13) include the compounds represented by the following structural formulas (i-1-13.1) to (i-1-13.4).

Figure 0007464204000037
Figure 0007464204000037

一般式(i-1-14)で表される化合物の具体例としては、下記構造式(i-1-14.1)~(i-1-14.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-1-14) include the compounds represented by the following structural formulas (i-1-14.1) to (i-1-14.4).

Figure 0007464204000038
Figure 0007464204000038

一般式(i-1-15)で表される化合物の具体例としては、下記構造式(i-1-15.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-1-15) include compounds represented by the following structural formula (i-1-15.1).

Figure 0007464204000039
Figure 0007464204000039

一般式(i-1-16)で表される化合物の具体例としては、下記構造式(i-1-16.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-1-16) include compounds represented by the following structural formula (i-1-16.1).

Figure 0007464204000040
Figure 0007464204000040

一般式(i-1-17)で表される化合物の具体例としては、下記構造式(i-1-17.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-1-17) include compounds represented by the following structural formula (i-1-17.1).

Figure 0007464204000041
Figure 0007464204000041

一般式(i-1-18)で表される化合物の具体例としては、下記構造式(i-1-18.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-1-18) include compounds represented by the following structural formula (i-1-18.1).

Figure 0007464204000042
Figure 0007464204000042

一般式(i-1-19)で表される化合物の具体例としては、下記構造式(i-1-19.1)で表される化合物等が挙げられる。Specific examples of compounds represented by general formula (i-1-19) include compounds represented by the following structural formula (i-1-19.1).

Figure 0007464204000043
Figure 0007464204000043

一般式(i-2)で表される化合物としては、下記一般式(i-2-1)~(i-2-7)で表される化合物であることが好ましい。As the compound represented by general formula (i-2), it is preferable to use compounds represented by the following general formulas (i-2-1) to (i-2-7).

Figure 0007464204000044
Figure 0007464204000044

Figure 0007464204000045
Figure 0007464204000045

一般式(i-2-1)~(i-2-7)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。
一般式(i-2-1)で表される化合物の具体例としては、下記構造式(i-2-1.1)~(i-2-1.6)で表される化合物等が挙げられる。
In the general formulae (i-2-1) to (i-2-7), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.
Specific examples of the compound represented by general formula (i-2-1) include compounds represented by the following structural formulas (i-2-1.1) to (i-2-1.6).

Figure 0007464204000046
Figure 0007464204000046

一般式(i-2-2)で表される化合物の具体例としては、下記構造式(i-2-2.1)~(i-2-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-2) include the compounds represented by the following structural formulas (i-2-2.1) to (i-2-2.4).

Figure 0007464204000047
Figure 0007464204000047

一般式(i-2-3)で表される化合物の具体例としては、下記構造式(i-2-3.1)~(i-2-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-3) include the compounds represented by the following structural formulas (i-2-3.1) to (i-2-3.4).

Figure 0007464204000048
Figure 0007464204000048

一般式(i-2-4)で表される化合物の具体例としては、下記構造式(i-2-4.1)~(i-2-4.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-4) include the compounds represented by the following structural formulas (i-2-4.1) to (i-2-4.6).

Figure 0007464204000049
Figure 0007464204000049

一般式(i-2-5)で表される化合物の具体例としては、下記構造式(i-2-5.1)~(i-2-5.5)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-5) include compounds represented by the following structural formulas (i-2-5.1) to (i-2-5.5).

Figure 0007464204000050
Figure 0007464204000050

一般式(i-2-6)で表される化合物の具体例としては、下記構造式(i-2-6.1)~(i-2-6.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-6) include the compounds represented by the following structural formulas (i-2-6.1) to (i-2-6.4).

Figure 0007464204000051
Figure 0007464204000051

一般式(i-2-7)で表される化合物の具体例としては、下記構造式(i-2-7.1)~(i-2-7.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-2-7) include the compounds represented by the following structural formulas (i-2-7.1) to (i-2-7.4).

Figure 0007464204000052
Figure 0007464204000052

一般式(i-3)で表される化合物としては、下記一般式(i-3-1)~(i-3-10)で表される化合物であることが好ましい。As the compound represented by general formula (i-3), it is preferable to use compounds represented by the following general formulas (i-3-1) to (i-3-10).

Figure 0007464204000053
Figure 0007464204000053

Figure 0007464204000054
Figure 0007464204000054

一般式(i-3-1)~(i-3-10)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In formulae (i-3-1) to (i-3-10), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in formula (i), respectively, and the preferred groups are also the same.

一般式(i-3-1)で表される化合物の具体例としては、下記構造式(i-3-1.1)~(i-3-1.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-1) include the compounds represented by the following structural formulas (i-3-1.1) to (i-3-1.6).

Figure 0007464204000055
Figure 0007464204000055

一般式(i-3-2)で表される化合物の具体例としては、下記構造式(i-3-2.1)~(i-3-2.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-2) include the compounds represented by the following structural formulas (i-3-2.1) to (i-3-2.6).

Figure 0007464204000056
Figure 0007464204000056

一般式(i-3-3)で表される化合物の具体例としては、下記構造式(i-3-3.1)~(i-3-3.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-3) include the compounds represented by the following structural formulas (i-3-3.1) to (i-3-3.6).

Figure 0007464204000057
Figure 0007464204000057

一般式(i-3-4)で表される化合物の具体例としては、下記構造式(i-3-4.1)~(i-3-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-4) include compounds represented by the following structural formulas (i-3-4.1) to (i-3-4.4).

Figure 0007464204000058
Figure 0007464204000058

一般式(i-3-5)で表される化合物の具体例としては、下記構造式(i-3-5.1)~(i-3-5.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-5) include the compounds represented by the following structural formulas (i-3-5.1) to (i-3-5.4).

Figure 0007464204000059
Figure 0007464204000059

一般式(i-3-6)で表される化合物の具体例としては、下記構造式(i-3-6.1)~(i-3-6.6)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-6) include the compounds represented by the following structural formulas (i-3-6.1) to (i-3-6.6).

Figure 0007464204000060
Figure 0007464204000060

一般式(i-3-7)で表される化合物の具体例としては、下記構造式(i-3-7.1)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-3-7) include the compound represented by the following structural formula (i-3-7.1).

Figure 0007464204000061
Figure 0007464204000061

一般式(i-3-8)で表される化合物の具体例としては、下記構造式(i-3-8.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-3-8) include compounds represented by the following structural formula (i-3-8.1).

Figure 0007464204000062
Figure 0007464204000062

一般式(i-3-9)で表される化合物の具体例としては、下記構造式(i-3-9.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-3-9) include compounds represented by the following structural formula (i-3-9.1).

Figure 0007464204000063
Figure 0007464204000063

一般式(i-3-10)で表される化合物の具体例としては、下記構造式(i-3-10.1)で表される化合物等が挙げられる。 Specific examples of compounds represented by general formula (i-3-10) include compounds represented by the following structural formula (i-3-10.1).

Figure 0007464204000064
Figure 0007464204000064

一般式(i-4)で表される化合物としては、下記一般式(i-4-1)~(i-4-6)で表される化合物であることが好ましい。As the compound represented by general formula (i-4), it is preferable to use compounds represented by the following general formulas (i-4-1) to (i-4-6).

Figure 0007464204000065
Figure 0007464204000065

一般式(i-4-1)で表される化合物の具体例としては、下記構造式(i-4-1.1)~(i-4-1.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-4-1) include the compounds represented by the following structural formulas (i-4-1.1) to (i-4-1.4).

Figure 0007464204000066
Figure 0007464204000066

一般式(i-4-2)で表される化合物の具体例としては、下記構造式(i-4-2.1)~(i-4-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-4-2) include the compounds represented by the following structural formulas (i-4-2.1) to (i-4-2.4).

Figure 0007464204000067
Figure 0007464204000067

一般式(i-4-3)で表される化合物の具体例としては、下記構造式(i-4-3.1)~(i-4-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-4-3) include the compounds represented by the following structural formulas (i-4-3.1) to (i-4-3.4).

Figure 0007464204000068
Figure 0007464204000068

一般式(i-4-4)で表される化合物の具体例としては、下記構造式(i-4-4.1)~(i-4-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-4-4) include the compounds represented by the following structural formulas (i-4-4.1) to (i-4-4.4).

Figure 0007464204000069
Figure 0007464204000069

一般式(i-4-5)で表される化合物の具体例としては、下記構造式(i-4-5.1)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-4-5) include the compound represented by the following structural formula (i-4-5.1).

Figure 0007464204000070
Figure 0007464204000070

一般式(i-4-6)で表される化合物の具体例としては、下記構造式(i-4-6.1)で表される化合物等が挙げられる。Specific examples of compounds represented by general formula (i-4-6) include compounds represented by the following structural formula (i-4-6.1).

Figure 0007464204000071
Figure 0007464204000071

一般式(i-5)で表される化合物としては、下記一般式(i-5-1)~(i-5-4)で表される化合物であることが好ましい。As the compound represented by general formula (i-5), it is preferable to use compounds represented by the following general formulas (i-5-1) to (i-5-4).

Figure 0007464204000072
Figure 0007464204000072

一般式(i-5-1)~(i-5-4)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulae (i-5-1) to (i-5-4), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.

一般式(i-5-1)で表される化合物の具体例としては、下記構造式(i-5-1.1)~(i-5-1.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-5-1) include the compounds represented by the following structural formulas (i-5-1.1) to (i-5-1.4).

Figure 0007464204000073
Figure 0007464204000073

一般式(i-5-2)で表される化合物の具体例としては、下記構造式(i-5-2.1)~(i-5-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-5-2) include the compounds represented by the following structural formulas (i-5-2.1) to (i-5-2.4).

Figure 0007464204000074
Figure 0007464204000074

一般式(i-5-3)で表される化合物の具体例としては、下記構造式(i-5-3.1)~(i-5-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-5-3) include the compounds represented by the following structural formulas (i-5-3.1) to (i-5-3.4).

Figure 0007464204000075
Figure 0007464204000075

一般式(i-5-4)で表される化合物の具体例としては、下記構造式(i-5-4.1)~(i-5-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-5-4) include the compounds represented by the following structural formulas (i-5-4.1) to (i-5-4.4).

Figure 0007464204000076
Figure 0007464204000076

一般式(i-6)で表される化合物としては、下記一般式(i-6-1)~(i-6-4)で表される化合物であることが好ましい。As the compound represented by general formula (i-6), it is preferable to use compounds represented by the following general formulas (i-6-1) to (i-6-4).

Figure 0007464204000077
Figure 0007464204000077

一般式(i-6-1)~(i-6-4)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulae (i-6-1) to (i-6-4), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.

一般式(i-6-1)で表される化合物の具体例としては、下記構造式(i-6-1.1)~(i-6-1.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-6-1) include the compounds represented by the following structural formulas (i-6-1.1) to (i-6-1.4).

Figure 0007464204000078
Figure 0007464204000078

一般式(i-6-2)で表される化合物の具体例としては、下記構造式(i-6-2.1)~(i-6-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-6-2) include the compounds represented by the following structural formulas (i-6-2.1) to (i-6-2.4).

Figure 0007464204000079
Figure 0007464204000079

一般式(i-6-3)で表される化合物の具体例としては、下記構造式(i-6-3.1)~(i-6-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-6-3) include the compounds represented by the following structural formulas (i-6-3.1) to (i-6-3.4).

Figure 0007464204000080
Figure 0007464204000080

一般式(i-6-4)で表される化合物の具体例としては、下記構造式(i-6-4.1)~(i-6-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-6-4) include the compounds represented by the following structural formulas (i-6-4.1) to (i-6-4.4).

Figure 0007464204000081
Figure 0007464204000081

一般式(i-7)で表される化合物としては、下記一般式(i-7-1)~(i-7-4)で表される化合物であることが好ましい。As the compound represented by general formula (i-7), it is preferable to use compounds represented by the following general formulas (i-7-1) to (i-7-4).

Figure 0007464204000082
Figure 0007464204000082

一般式(i-7-1)~(i-7-4)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulae (i-7-1) to (i-7-4), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.

一般式(i-7-1)で表される化合物の具体例としては、下記構造式(i-7-1.1)~(i-7-1.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-7-1) include the compounds represented by the following structural formulas (i-7-1.1) to (i-7-1.4).

Figure 0007464204000083
Figure 0007464204000083

一般式(i-7-2)で表される化合物の具体例としては、下記構造式(i-7-2.1)~(i-7-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-7-2) include the compounds represented by the following structural formulas (i-7-2.1) to (i-7-2.4).

Figure 0007464204000084
Figure 0007464204000084

一般式(i-7-3)で表される化合物の具体例としては、下記構造式(i-7-3.1)~(i-7-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-7-3) include the compounds represented by the following structural formulas (i-7-3.1) to (i-7-3.4).

Figure 0007464204000085
Figure 0007464204000085

一般式(i-7-4)で表される化合物の具体例としては、下記構造式(i-7-4.1)~(i-7-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-7-4) include the compounds represented by the following structural formulas (i-7-4.1) to (i-7-4.4).

Figure 0007464204000086
Figure 0007464204000086

一般式(i-8)で表される化合物としては、下記一般式(i-8-1)~(i-8-2)で表される化合物であることが好ましい。As the compound represented by general formula (i-8), it is preferable to use the compounds represented by the following general formulas (i-8-1) to (i-8-2).

Figure 0007464204000087
Figure 0007464204000087

一般式(i-8-1)~(i-8-2)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulae (i-8-1) to (i-8-2), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.

一般式(i-8-1)で表される化合物の具体例としては、下記構造式(i-8-1.1)~(i-8-1.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-8-1) include compounds represented by the following structural formulas (i-8-1.1) to (i-8-1.2).

Figure 0007464204000088
Figure 0007464204000088

一般式(i-8-2)で表される化合物の具体例としては、下記構造式(i-8-2.1)~(i-8-2.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-8-2) include the compounds represented by the following structural formulas (i-8-2.1) to (i-8-2.2).

Figure 0007464204000089
Figure 0007464204000089

一般式(i-9)で表される化合物としては、下記一般式(i-9-1)~(i-9-4)で表される化合物であることが好ましい。As the compound represented by general formula (i-9), it is preferable to use compounds represented by the following general formulas (i-9-1) to (i-9-4).

Figure 0007464204000090
Figure 0007464204000090

一般式(i-9-1)~(i-9-4)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In the general formulae (i-9-1) to (i-9-4), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in the above general formula (i), respectively, and the preferred groups are also the same.

一般式(i-9-1)で表される化合物の具体例としては、下記構造式(i-9-1.1)~(i-9-1.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-9-1) include the compounds represented by the following structural formulas (i-9-1.1) to (i-9-1.4).

Figure 0007464204000091
Figure 0007464204000091

一般式(i-9-2)で表される化合物の具体例としては、下記構造式(i-9-2.1)~(i-9-2.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-9-2) include the compounds represented by the following structural formulas (i-9-2.1) to (i-9-2.4).

Figure 0007464204000092
Figure 0007464204000092

一般式(i-9-3)で表される化合物の具体例としては、下記構造式(i-9-3.1)~(i-9-3.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-9-3) include the compounds represented by the following structural formulas (i-9-3.1) to (i-9-3.4).

Figure 0007464204000093
Figure 0007464204000093

一般式(i-9-4)で表される化合物の具体例としては、下記構造式(i-9-4.1)~(i-9-4.4)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-9-4) include the compounds represented by the following structural formulas (i-9-4.1) to (i-9-4.4).

Figure 0007464204000094
Figure 0007464204000094

一般式(i-10)で表される化合物としては、下記一般式(i-10-1)~(i-10-2)で表される化合物であることが好ましい。As the compound represented by general formula (i-10), it is preferable to use compounds represented by the following general formulas (i-10-1) to (i-10-2).

Figure 0007464204000095
Figure 0007464204000095

一般式(i-10-1)~(i-10-2)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In formulae (i-10-1) to (i-10-2), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in formula (i), respectively, and the preferred groups are also the same.

一般式(i-10-1)で表される化合物の具体例としては、下記構造式(i-10-1.1)~(i-10-1.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-10-1) include compounds represented by the following structural formulas (i-10-1.1) to (i-10-1.2).

Figure 0007464204000096
Figure 0007464204000096

一般式(i-10-2)で表される化合物の具体例としては、下記構造式(i-10-2.1)~(i-10-2.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-10-2) include the compounds represented by the following structural formulas (i-10-2.1) to (i-10-2.2).

Figure 0007464204000097
Figure 0007464204000097

一般式(i-11)で表される化合物としては、下記一般式(i-11-1)~(i-11-2)で表される化合物であることが好ましい。As the compound represented by general formula (i-11), it is preferable to use the compounds represented by the following general formulas (i-11-1) to (i-11-2).

Figure 0007464204000098
Figure 0007464204000098

一般式(i-11-1)~(i-11-2)中、Ri1、Xi1及びSi1は、上記一般式(i)中のRi1、Xi1及びSi1とそれぞれ同じ意味を表し、好ましい基も同じものを表す。 In formulae (i-11-1) to (i-11-2), R i1 , X i1 and S i1 have the same meanings as R i1 , X i1 and S i1 in formula (i), respectively, and the preferred groups are also the same.

一般式(i-11-1)で表される化合物の具体例としては、下記構造式(i-11-1.1)~(i-11-1.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (i-11-1) include compounds represented by the following structural formulas (i-11-1.1) to (i-11-1.2).

Figure 0007464204000099
Figure 0007464204000099

一般式(i-11-2)で表される化合物の具体例としては、下記構造式(i-11-2.1)~(i-11-2.2)で表される化合物等が挙げられる。 Specific examples of the compound represented by general formula (i-11-2) include compounds represented by the following structural formulas (i-11-2.1) to (i-11-2.2).

Figure 0007464204000100
Figure 0007464204000100

一般式(i)、一般式(i-1)~(i-11)、一般式(i-1-1)~(i-1-19)、一般式(i-2-1)~(i-2-7)、一般式(i-3-1)~(i-3-10)、一般式(i-4-1)~(i-4-6)、一般式(i-5-1)~(i-5-4)、一般式(i-6-1)~(i-6-4)、一般式(i-7-1)~(i-7-4)、一般式(i-8-1)~(i-8-2)、一般式(i-9-1)~(i-9-4)、一般式(i-10-1)~(i-10-2)、一般式(i-11-1)~(i-11-2)、構造式(i-1-1.1)~(i-1-1.10)、構造式(i-1-2.1)~(i-1-2.5)、構造式(i-1-3.1)~(i-1-3.6)、構造式(i-1-4.1)~(i-1-4.6)、構造式(i-1-5.1)~(i-1-5.5)、構造式(i-1-6.1)~(i-1-6.6)、構造式(i-1-7.1)~(i-1-7.4)、構造式(i-1-8.1)~(i-1-8.5)、構造式(i-1-9.1)~(i-1-9.4)、構造式(i-1-10.1)~(i-1-10.2)、構造式(i-1-11.1)~(i-1-11.6)、構造式(i-1-12.1)~(i-1-12.6)、構造式(i-1-13.1)~(i-1-13.4)、構造式(i-1-14.1)~(i-1-14.4)、構造式(i-1-15.1)、構造式(i-1-16.1)、構造式(i-1-17.1)、構造式(i-1-18.1)、構造式(i-1-19.1)、構造式(i-2-1.1)~(i-2-1.6)、構造式(i-2-2.1)~(i-2-2.4)、構造式(i-2-3.1)~(i-2-3.4)、構造式(i-2-4.1)~(i-2-4.6)、構造式(i-2-5.1)~(i-2-5.5)、構造式(i-2-6.1)~(i-2-6.4)、構造式(i-2-7.1)~(i-2-7.4)、構造式(i-3-1.1)~(i-3-1.6)、構造式(i-3-2.1)~(i-3-2.6)、構造式(i-3-3.1)~(i-3-3.6)、構造式(i-3-4.1)~(i-3-4.4)、構造式(i-3-5.1)~(i-3-5.4)、構造式(i-3-6.1)~(i-3-6.6)、構造式(i-3-7.1)、構造式(i-3-8.1)、構造式(i-3-9.1)、構造式(i-3-10.1)、構造式(i-4-1.1)~(i-4-1.4)、構造式(i-4-2.1)~(i-4-2.4)、構造式(i-4-3.1)~(i-4-3.4)、構造式(i-4-4.1)~(i-4-4.4)、構造式(i-4-5.1)、構造式(i-4-6.1)、構造式(i-5-1.1)~(i-5-1.4)、構造式(i-5-2.1)~(i-5-2.4)、構造式(i-5-3.1)~(i-5-3.4)、構造式(i-5-4.1)~(i-5-4.4)、構造式(i-6-1.1)~(i-6-1.4)、構造式(i-6-2.1)~(i-6-2.4)、構造式(i-6-3.1)~(i-6-3.4)、構造式(i-6-4.1)~(i-6-4.4)、構造式(i-7-1.1)~(i-7-1.4)、構造式(i-7-2.1)~(i-7-2.4)、構造式(i-7-3.1)~(i-7-3.4)、構造式(i-7-4.1)~(i-7-4.4)、構造式(i-8-1.1)~(i-8-1.2)、構造式(i-8-2.1)~(i-8-2.2)、構造式(i-9-1.1)~(i-9-1.4)、構造式(i-9-2.1)~(i-9-2.4)、構造式(i-9-3.1)~(i-9-3.4)、構造式(i-9-4.1)~(i-9-4.4)、構造式(i-10-1.1)~(i-10-1.2)、構造式(i-10-2.1)~(i-10-2.2)、構造式(i-11-1.1)~(i-11-1.2)又は構造式(i-11-2.1)~(i-11-2.2)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~10種、好ましくは1~5種、好ましくは1~3種である。General formula (i), general formulas (i-1) to (i-11), general formulas (i-1-1) to (i-1-19), general formulas (i-2-1) to (i -2-7), general formulae (i-3-1) to (i-3-10), general formulae (i-4-1) to (i-4-6), general formula (i-5-1 ) to (i-5-4), general formulae (i-6-1) to (i-6-4), general formulae (i-7-1) to (i-7-4), general formula (i -8-1) to (i-8-2), general formulas (i-9-1) to (i-9-4), general formulas (i-10-1) to (i- 10-2), general formulas (i-11-1) to (i-11-2), structural formulas (i-1-1.1) to (i-1-1.10), structural formula (i- 1-2.1) to (i-1-2.5), structural formulas (i-1-3.1) to (i-1-3.6), structural formula (i-1-4.1) ~ (i-1-4.6), structural formulas (i-1-5.1) ~ (i-1-5.5), structural formulas (i-1-6.1) ~ (i-1- 6.6), structural formulas (i-1-7.1) to (i-1-7.4), structural formulas (i-1-8.1) to (i-1-8.5) , structural formulae (i-1-9.1) to (i-1-9.4), structural formulae (i-1-10.1) to (i-1-10.2), structural formulae (i- 1-11.1) to (i-1-11.6), structural formulas (i-1-12.1) to (i-1-12.6), structural formula (i-1-13.1) ~ (i-1-13.4), structural formula (i-1-14.1) ~ (i-1-14.4), structural formula (i-1-15.1), structural formula (i- 1-16.1), structural formula (i-1-17.1), structural formula (i-1-18.1), structural formula (i- 1-19.1), structural formulas (i-2-1.1) to (i-2-1.6), structural formulas (i-2-2.1) to (i-2-2.4) , structural formulae (i-2-3.1) to (i-2-3.4), structural formulae (i-2-4.1) to (i-2-4.6), structural formulae (i- 2-5.1) to (i-2-5.5), structural formulas (i-2-6.1) to (i-2-6.4), structural formula (i-2-7.1) ~ (i-2-7.4), structural formulas (i-3-1.1) ~ (i-3-1.6), structural formulas (i-3-2.1) ~ (i-3- 2. 6), structural formulae (i-3-3.1) to (i-3-3.6), structural formulae (i-3-4.1) to (i-3-4.4), structural formulae ( i-3-5.1) to (i-3-5.4), structural formulas (i-3-6.1) to (i-3-6.6), structural formula (i-3-7. 1), structural formula (i-3-8.1), structural formula (i-3-9.1), structural formula (i-3-10.1), structural formula (i-4-1.1) ~ (i-4-1.4), structural formulas (i-4-2.1) ~ (i-4-2.4), structural formulas (i-4-3.1) ~ (i-4 -3.4), structural formulas (i-4-4.1) to (i-4-4.4), structural formula (i-4-5.1), structural formula (i-4-6.1 ), structural formulae (i-5-1.1) to (i-5-1.4), structural formulae (i-5-2.1) to (i-5-2.4), structural formula (i -5-3.1) to (i-5-3.4), structural formulas (i-5-4.1) to (i-5-4.4), structural formula (i-6-1.1 ) to (i-6-1.4), structural formulas (i-6-2.1) to (i-6-2.4), structural formulas (i-6-3.1) to (i-6 - 3.4), structural formulas (i-6-4.1) to (i-6-4.4), structural formulas (i-7-1.1) to (i-7-1.4), structure Formulae (i-7-2.1) to (i-7-2.4), structural formulae (i-7-3.1) to (i-7-3.4), structural formula (i-7- 4.1) to (i-7-4.4), structural formulas (i-8-1.1) to (i-8-1.2), structural formulas (i-8-2.1) to ( i-8-2.2), structural formulas (i-9-1.1) to (i-9-1.4), structural formulas (i-9-2.1) to (i-9-2. 4) , structural formulae (i-9-3.1) to (i-9-3.4), structural formulae (i-9-4.1) to (i-9-4.4), structural formulae (i- 10-1.1) to (i-10-1.2), structural formulas (i-10-2.1) to (i-10-2.2), structural formula (i-11-1.1) The compounds represented by the structural formulae (i-11-1.2) to (i-11-2.1) and (i-11-2.2) may be used in the liquid crystal composition in one or two kinds. The number of species is preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.

一般式(i)、一般式(i-1)~(i-11)、一般式(i-1-1)~(i-1-19)、一般式(i-2-1)~(i-2-7)、一般式(i-3-1)~(i-3-10)、一般式(i-4-1)~(i-4-6)、一般式(i-5-1)~(i-5-4)、一般式(i-6-1)~(i-6-4)、一般式(i-7-1)~(i-7-4)、一般式(i-8-1)~(i-8-2)、一般式(i-9-1)~(i-9-4)、一般式(i-10-1)~(i-10-2)、一般式(i-11-1)~(i-11-2)、構造式(i-1-1.1)~(i-1-1.10)、構造式(i-1-2.1)~(i-1-2.5)、構造式(i-1-3.1)~(i-1-3.6)、構造式(i-1-4.1)~(i-1-4.6)、構造式(i-1-5.1)~(i-1-5.5)、構造式(i-1-6.1)~(i-1-6.6)、構造式(i-1-7.1)~(i-1-7.4)、構造式(i-1-8.1)~(i-1-8.5)、構造式(i-1-9.1)~(i-1-9.4)、構造式(i-1-10.1)~(i-1-10.2)、構造式(i-1-11.1)~(i-1-11.6)、構造式(i-1-12.1)~(i-1-12.6)、構造式(i-1-13.1)~(i-1-13.4)、構造式(i-1-14.1)~(i-1-14.4)、構造式(i-1-15.1)、構造式(i-1-16.1)、構造式(i-1-17.1)、構造式(i-1-18.1)、構造式(i-1-19.1)、構造式(i-2-1.1)~(i-2-1.6)、構造式(i-2-2.1)~(i-2-2.4)、構造式(i-2-3.1)~(i-2-3.4)、構造式(i-2-4.1)~(i-2-4.6)、構造式(i-2-5.1)~(i-2-5.5)、構造式(i-2-6.1)~(i-2-6.4)、構造式(i-2-7.1)~(i-2-7.4)、構造式(i-3-1.1)~(i-3-1.6)、構造式(i-3-2.1)~(i-3-2.6)、構造式(i-3-3.1)~(i-3-3.6)、構造式(i-3-4.1)~(i-3-4.4)、構造式(i-3-5.1)~(i-3-5.4)、構造式(i-3-6.1)~(i-3-6.6)、構造式(i-3-7.1)、構造式(i-3-8.1)、構造式(i-3-9.1)、構造式(i-3-10.1)、構造式(i-4-1.1)~(i-4-1.4)、構造式(i-4-2.1)~(i-4-2.4)、構造式(i-4-3.1)~(i-4-3.4)、構造式(i-4-4.1)~(i-4-4.4)、構造式(i-4-5.1)、構造式(i-4-6.1)、構造式(i-5-1.1)~(i-5-1.4)、構造式(i-5-2.1)~(i-5-2.4)、構造式(i-5-3.1)~(i-5-3.4)、構造式(i-5-4.1)~(i-5-4.4)、構造式(i-6-1.1)~(i-6-1.4)、構造式(i-6-2.1)~(i-6-2.4)、構造式(i-6-3.1)~(i-6-3.4)、構造式(i-6-4.1)~(i-6-4.4)、構造式(i-7-1.1)~(i-7-1.4)、構造式(i-7-2.1)~(i-7-2.4)、構造式(i-7-3.1)~(i-7-3.4)、構造式(i-7-4.1)~(i-7-4.4)、構造式(i-8-1.1)~(i-8-1.2)、構造式(i-8-2.1)~(i-8-2.2)、構造式(i-9-1.1)~(i-9-1.4)、構造式(i-9-2.1)~(i-9-2.4)、構造式(i-9-3.1)~(i-9-3.4)、構造式(i-9-4.1)~(i-9-4.4)、構造式(i-10-1.1)~(i-10-1.2)、構造式(i-10-2.1)~(i-10-2.2)、構造式(i-11-1.1)~(i-11-1.2)又は構造式(i-11-2.1)~(i-11-2.2)で表される化合物の液晶組成物100質量%中の合計含有量の下限値は、0.1質量%以上であることが好ましく、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、5質量%以上であることが好ましい。General formula (i), general formulas (i-1) to (i-11), general formulas (i-1-1) to (i-1-19), general formulas (i-2-1) to (i -2-7), general formulae (i-3-1) to (i-3-10), general formulae (i-4-1) to (i-4-6), general formula (i-5-1 ) to (i-5-4), general formulae (i-6-1) to (i-6-4), general formulae (i-7-1) to (i-7-4), general formula (i -8-1) to (i-8-2), general formulas (i-9-1) to (i-9-4), general formulas (i-10-1) to (i-10-2) , general formulae (i-11-1) to (i-11-2), structural formulae (i-1-1.1) to (i-1-1.10), structural formula (i-1-2. 1) to (i-1-2.5), structural formulas (i-1-3.1) to (i-1-3.6), structural formulas (i-1-4.1) to (i- 1-4.6), structural formulas (i-1-5.1) to (i-1-5.5), structural formulas (i-1-6.1) to (i-1-6.6) , structural formulae (i-1-7.1) to (i-1-7.4), structural formulae (i-1-8.1) to (i-1-8.5), structural formula (i- 1-9 . 1) to (i-1-9.4), structural formulas (i-1-10.1) to (i-1-10.2), structural formulas (i-1-11.1) to (i -1-11.6), structural formulas (i-1-12.1) to (i-1-12.6), structural formulas (i-1-13.1) to (i-1-13.4) ), structural formula (i-1-14.1) to (i-1-14.4), structural formula (i-1-15.1), structural formula (i-1-16.1), structural formula (i-1-17.1), structural formula (i-1-18.1), structural formula (i-1-19.1), structural formula (i-2 -1.1) to (i-2-1.6), structural formulas (i-2-2.1) to (i-2-2.4), structural formulas (i-2-3.1) to (i-2-3.4), structural formulas (i-2-4.1) to (i-2-4.6), structural formulas (i-2-5.1) to (i-2-5 .5), structural formulas (i-2-6.1) to (i-2-6.4), structural formulas (i-2-7.1) to (i-2-7.4), structural formula (i-3-1.1) to (i-3-1.6), structural formulas (i-3-2.1) to (i-3-2.6), structural formula (i-3-3 . 1) to (i-3 -3.6), structural formulas (i-3-4.1) to (i-3-4.4), structural formulas (i-3-5.1) to (i-3-5.4), Structural formulae (i-3-6.1) to (i-3-6.6), structural formula (i-3-7.1), structural formula (i-3-8.1), structural formula (i -3-9.1), structural formula (i-3-10.1), structural formula (i-4-1.1) to (i-4-1.4), structural formula (i-4-2 . 1) to (i-4-2.4), structural formulas (i-4-3.1) to (i-4-3.4), structural formulas (i-4-4.1) to (i -4-4 . 4), structural formula (i-4-5.1), structural formula (i-4-6.1), structural formula (i-5-1.1) to (i-5-1.4), Structural formulae (i-5-2.1) to (i-5-2.4), structural formulae (i-5-3.1) to (i-5-3.4), structural formula (i-5 -4.1) to (i-5-4.4), structural formulas (i-6-1.1) to (i-6-1.4), structural formulas (i-6-2.1) to (i-6-2.4), structural formulas (i-6-3.1) to (i-6-3.4), structural formulas (i-6-4.1) to (i-6-4 4) Structure Formulae (i-7-1.1) to (i-7-1.4), structural formulae (i-7-2.1) to (i-7-2.4), structural formula (i-7- 3.1) to (i-7-3.4), structural formulas (i-7-4.1) to (i-7-4.4), structural formulas (i-8-1.1) to ( i-8-1.2), structural formulas (i-8-2.1) to (i-8-2.2), structural formulas (i-9-1.1) to (i-9-1. 4), structural formulae (i-9-2.1) to (i-9-2.4), structural formulae (i-9-3.1) to (i-9-3.4), structural formulae (i-9-2.3) to (i-9-2.4), i-9-4.1 ) to (i-9-4.4), structural formulas (i-10-1.1) to (i-10-1.2), structural formulas (i-10-2.1) to (i-10 -2.2), structural formula (i-11-1.1) to (i-11-1.2) or structural formula (i-11-2.1) to (i-11-2.2) The lower limit of the total content of the compounds represented by the formula (I) in 100% by mass of the liquid crystal composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more. It is preferable that the content is 5% by mass or more.

一般式(i)、一般式(i-1)~(i-11)、一般式(i-1-1)~(i-1-19)、一般式(i-2-1)~(i-2-7)、一般式(i-3-1)~(i-3-10)、一般式(i-4-1)~(i-4-6)、一般式(i-5-1)~(i-5-4)、一般式(i-6-1)~(i-6-4)、一般式(i-7-1)~(i-7-4)、一般式(i-8-1)~(i-8-2)、一般式(i-9-1)~(i-9-4)、一般式(i-10-1)~(i-10-2)、一般式(i-11-1)~(i-11-2)、構造式(i-1-1.1)~(i-1-1.10)、構造式(i-1-2.1)~(i-1-2.5)、構造式(i-1-3.1)~(i-1-3.6)、構造式(i-1-4.1)~(i-1-4.6)、構造式(i-1-5.1)~(i-1-5.5)、構造式(i-1-6.1)~(i-1-6.6)、構造式(i-1-7.1)~(i-1-7.4)、構造式(i-1-8.1)~(i-1-8.5)、構造式(i-1-9.1)~(i-1-9.4)、構造式(i-1-10.1)~(i-1-10.2)、構造式(i-1-11.1)~(i-1-11.6)、構造式(i-1-12.1)~(i-1-12.6)、構造式(i-1-13.1)~(i-1-13.4)、構造式(i-1-14.1)~(i-1-14.4)、構造式(i-1-15.1)、構造式(i-1-16.1)、構造式(i-1-17.1)、構造式(i-1-18.1)、構造式(i-1-19.1)、構造式(i-2-1.1)~(i-2-1.6)、構造式(i-2-2.1)~(i-2-2.4)、構造式(i-2-3.1)~(i-2-3.4)、構造式(i-2-4.1)~(i-2-4.6)、構造式(i-2-5.1)~(i-2-5.5)、構造式(i-2-6.1)~(i-2-6.4)、構造式(i-2-7.1)~(i-2-7.4)、構造式(i-3-1.1)~(i-3-1.6)、構造式(i-3-2.1)~(i-3-2.6)、構造式(i-3-3.1)~(i-3-3.6)、構造式(i-3-4.1)~(i-3-4.4)、構造式(i-3-5.1)~(i-3-5.4)、構造式(i-3-6.1)~(i-3-6.6)、構造式(i-3-7.1)、構造式(i-3-8.1)、構造式(i-3-9.1)、構造式(i-3-10.1)、構造式(i-4-1.1)~(i-4-1.4)、構造式(i-4-2.1)~(i-4-2.4)、構造式(i-4-3.1)~(i-4-3.4)、構造式(i-4-4.1)~(i-4-4.4)、構造式(i-4-5.1)、構造式(i-4-6.1)、構造式(i-5-1.1)~(i-5-1.4)、構造式(i-5-2.1)~(i-5-2.4)、構造式(i-5-3.1)~(i-5-3.4)、構造式(i-5-4.1)~(i-5-4.4)、構造式(i-6-1.1)~(i-6-1.4)、構造式(i-6-2.1)~(i-6-2.4)、構造式(i-6-3.1)~(i-6-3.4)、構造式(i-6-4.1)~(i-6-4.4)、構造式(i-7-1.1)~(i-7-1.4)、構造式(i-7-2.1)~(i-7-2.4)、構造式(i-7-3.1)~(i-7-3.4)、構造式(i-7-4.1)~(i-7-4.4)、構造式(i-8-1.1)~(i-8-1.2)、構造式(i-8-2.1)~(i-8-2.2)、構造式(i-9-1.1)~(i-9-1.4)、構造式(i-9-2.1)~(i-9-2.4)、構造式(i-9-3.1)~(i-9-3.4)、構造式(i-9-4.1)~(i-9-4.4)、構造式(i-10-1.1)~(i-10-1.2)、構造式(i-10-2.1)~(i-10-2.2)、構造式(i-11-1.1)~(i-11-1.2)又は構造式(i-11-2.1)~(i-11-2.2)で表される化合物の液晶組成物100質量%中の合計含有量の上限値は、95質量%以下であることが好ましく、90質量%以下であることが好ましく、85質量%以下であることが好ましく、30質量%以下であることが好ましく、20質量%以下であることが好ましく、15質量%以下であることが好ましい。General formula (i), general formulas (i-1) to (i-11), general formulas (i-1-1) to (i-1-19), general formulas (i-2-1) to (i -2-7), general formulae (i-3-1) to (i-3-10), general formulae (i-4-1) to (i-4-6), general formula (i-5-1 ) to (i-5-4), general formulae (i-6-1) to (i-6-4), general formulae (i-7-1) to (i-7-4), general formula (i -8-1) to (i-8-2), general formulas (i-9-1) to (i-9-4), general formulas (i-10-1) to (i-10-2), General formula (i-11-1) to (i-11-2), structural formulas (i-1-1.1) to (i-1-1.10), structural formulas (i-1-2.1) to (i-1-2.5), structural formulas (i-1-3.1) to (i-1-3.6), structural formulas (i-1-4.1) to (i-1-4 .6), structural formulas (i-1-5.1) to (i-1-5.5), structural formulas (i-1-6.1) to (i-1-6.6), structural formula (i-1-7.1) to (i-1-7.4), structural formulas (i-1-8.1) to (i-1-8.5), structural formula (i-1-9 . 1) to (i-1- 9.4), structural formulas (i-1-10.1) to (i-1-10.2), structural formulas (i-1-11.1) to (i-1-11.6), structure Formulae (i-1-12.1) to (i-1-12.6), structural formulae (i-1-13.1) to (i-1-13.4), structural formula (i-1- 14.1) to (i-1-14.4), structural formula (i-1-15.1), structural formula (i-1-16.1), structural formula (i-1-17.1) , structural formula (i-1-18.1), structural formula (i-1-19.1), structural formula (i-2-1.1) to (i-2-1.6) ), structural formulae (i-2-2.1) to (i-2-2.4), structural formulae (i-2-3.1) to (i-2-3.4), structural formulae (i -2-4.1) to (i-2-4.6), structural formulas (i-2-5.1) to (i-2-5.5), structural formula (i-2-6.1) ) to (i-2-6.4), structural formulas (i-2-7.1) to (i-2-7.4), structural formulas (i-3-1.1) to (i-3 -1.6), structural formulas (i-3-2.1) to (i-3-2.6), structural formulas (i-3-3.1) to (i-3-3.6), Structural Formula (i-3-4.1) ~ (i-3-4.4), structural formulas (i-3-5.1) ~ (i-3-5.4), structural formulas (i-3-6.1) ~ (i-3- 6.6), structural formula (i-3-7.1), structural formula (i-3-8.1), structural formula (i-3-9.1), structural formula (i-3-10. 1), structural formulae (i-4-1.1) to (i-4-1.4), structural formulae (i-4-2.1) to (i-4-2.4), structural formulae ( i-4-3.1) to (i-4-3.4), structural formulas (i-4-4.1) to (i-4-4.4), structural formula (i-4-5. 1), structural formula (i -4-6.1), structural formulas (i-5-1.1) to (i-5-1.4), structural formulas (i-5-2.1) to (i-5-2.4) ), structural formulae (i-5-3.1) to (i-5-3.4), structural formulae (i-5-4.1) to (i-5-4.4), structural formula (i -6-1.1) to (i-6-1.4), structural formulas (i-6-2.1) to (i-6-2.4), structural formula (i-6-3.1 ) to (i-6-3.4), structural formulas (i-6-4.1) to (i-6-4.4), structural formulas (i-7-1.1) to (i-7 -1.4), structural formula (i- 7-2.1) to (i-7-2.4), structural formulas (i-7-3.1) to (i-7-3.4), structural formula (i-7-4.1) ~ (i-7-4.4), structural formulas (i-8-1.1) ~ (i-8-1.2), structural formulas (i-8-2.1) ~ (i-8- 2.2), structural formulas (i-9-1.1) to (i-9-1.4), structural formulas (i-9-2.1) to (i-9-2.4), structure Formulae (i-9-3.1) to (i-9-3.4), structural formulae (i-9-4.1) to (i-9-4.4), structural formula (i-10- 1.1) to (i-10- 1.2), structural formulae (i-10-2.1) to (i-10-2.2), structural formulae (i-11-1.1) to (i-11-1.2), or structure The upper limit of the total content of the compounds represented by formulae (i-11-2.1) to (i-11-2.2) in 100% by mass of the liquid crystal composition is 95% by mass or less. It is preferably 90% by mass or less, more preferably 85% by mass or less, more preferably 30% by mass or less, more preferably 20% by mass or less, and most preferably 15% by mass or less. preferable.

一般式(i)、一般式(i-1)~(i-11)、一般式(i-1-1)~(i-1-19)、一般式(i-2-1)~(i-2-7)、一般式(i-3-1)~(i-3-10)、一般式(i-4-1)~(i-4-6)、一般式(i-5-1)~(i-5-4)、一般式(i-6-1)~(i-6-4)、一般式(i-7-1)~(i-7-4)、一般式(i-8-1)~(i-8-2)、一般式(i-9-1)~(i-9-4)、一般式(i-10-1)~(i-10-2)、一般式(i-11-1)~(i-11-2)、構造式(i-1-1.1)~(i-1-1.10)、構造式(i-1-2.1)~(i-1-2.5)、構造式(i-1-3.1)~(i-1-3.6)、構造式(i-1-4.1)~(i-1-4.6)、構造式(i-1-5.1)~(i-1-5.5)、構造式(i-1-6.1)~(i-1-6.6)、構造式(i-1-7.1)~(i-1-7.4)、構造式(i-1-8.1)~(i-1-8.5)、構造式(i-1-9.1)~(i-1-9.4)、構造式(i-1-10.1)~(i-1-10.2)、構造式(i-1-11.1)~(i-1-11.6)、構造式(i-1-12.1)~(i-1-12.6)、構造式(i-1-13.1)~(i-1-13.4)、構造式(i-1-14.1)~(i-1-14.4)、構造式(i-1-15.1)、構造式(i-1-16.1)、構造式(i-1-17.1)、構造式(i-1-18.1)、構造式(i-1-19.1)、構造式(i-2-1.1)~(i-2-1.6)、構造式(i-2-2.1)~(i-2-2.4)、構造式(i-2-3.1)~(i-2-3.4)、構造式(i-2-4.1)~(i-2-4.6)、構造式(i-2-5.1)~(i-2-5.5)、構造式(i-2-6.1)~(i-2-6.4)、構造式(i-2-7.1)~(i-2-7.4)、構造式(i-3-1.1)~(i-3-1.6)、構造式(i-3-2.1)~(i-3-2.6)、構造式(i-3-3.1)~(i-3-3.6)、構造式(i-3-4.1)~(i-3-4.4)、構造式(i-3-5.1)~(i-3-5.4)、構造式(i-3-6.1)~(i-3-6.6)、構造式(i-3-7.1)、構造式(i-3-8.1)、構造式(i-3-9.1)、構造式(i-3-10.1)、構造式(i-4-1.1)~(i-4-1.4)、構造式(i-4-2.1)~(i-4-2.4)、構造式(i-4-3.1)~(i-4-3.4)、構造式(i-4-4.1)~(i-4-4.4)、構造式(i-4-5.1)、構造式(i-4-6.1)、構造式(i-5-1.1)~(i-5-1.4)、構造式(i-5-2.1)~(i-5-2.4)、構造式(i-5-3.1)~(i-5-3.4)、構造式(i-5-4.1)~(i-5-4.4)、構造式(i-6-1.1)~(i-6-1.4)、構造式(i-6-2.1)~(i-6-2.4)、構造式(i-6-3.1)~(i-6-3.4)、構造式(i-6-4.1)~(i-6-4.4)、構造式(i-7-1.1)~(i-7-1.4)、構造式(i-7-2.1)~(i-7-2.4)、構造式(i-7-3.1)~(i-7-3.4)、構造式(i-7-4.1)~(i-7-4.4)、構造式(i-8-1.1)~(i-8-1.2)、構造式(i-8-2.1)~(i-8-2.2)、構造式(i-9-1.1)~(i-9-1.4)、構造式(i-9-2.1)~(i-9-2.4)、構造式(i-9-3.1)~(i-9-3.4)、構造式(i-9-4.1)~(i-9-4.4)、構造式(i-10-1.1)~(i-10-1.2)、構造式(i-10-2.1)~(i-10-2.2)、構造式(i-11-1.1)~(i-11-1.2)又は構造式(i-11-2.1)~(i-11-2.2)で表される化合物の液晶組成物100質量%中の合計含有量は、溶解性、Δn及び/又はΔεの観点から、0.1~95質量%であることが好ましく、0.5~90質量%であることが好ましく、1~85質量%であることが好ましく、1~30質量%であることが好ましく、1~20質量%であることが好ましく、5~15質量%であることが好ましい。 General formula (i), general formula (i-1) to (i-11), general formula (i-1-1) to (i-1-19), general formula (i-2-1) to (i-2-7), general formula (i-3-1) to (i-3-10), general formula (i-4-1) to (i-4-6), general formula (i-5-1) to (i-5-4), general formula (i-6-1) to (i-6-4), general formula (i-7-1) to (i-7-4), general formula (i-8-1) to (i-8-2), general formula (i-9-1) to (i-9-4), general formula (i-10-1) to (i-10-2), general formula (i-11-1) to (i-11-2), structural formula (i-1-1.1) to (i-1-1.10), structural formula (i-1-2.1) to (i-1-2.5), structural formula (i-1-3.1) to (i-1-3.6), structural formula (i-1-4.1) to (i-1-4.6), structural formula (i-1-5.1) to (i-1-5.5), structural formula (i-1-6.1) to (i-1-6.6), structural formula (i-1-7.1) to (i-1-7.4), structural formula (i-1-8.1) to (i- 1-8.5), structural formula (i-1-9.1) to (i-1-9.4), structural formula (i-1-10.1) to (i-1-10.2), structural formula (i-1-11.1) to (i-1-11.6), structural formula (i-1-12.1) to (i-1-12.6), structural formula (i-1-13.1) to (i-1-13.4), structural formula (i-1-14.1) to (i-1-14.4), structural formula (i-1-15.1), structural formula (i-1-16.1), structural formula (i-1-17.1), structural formula (i-1-18. 1), structural formula (i-1-19.1), structural formula (i-2-1.1) to (i-2-1.6), structural formula (i-2-2.1) to (i-2-2.4), structural formula (i-2-3.1) to (i-2-3.4), structural formula (i-2-4.1) to (i-2-4.6), structural formula (i-2-5.1) to (i-2-5.5), structural formula (i-2-6.1) to (i-2-6.4), structural formula (i-2-7.1) to (i-2-7.4), structural formula (i-3-1.1) to (i-3-1.6), structural formula (i-3- 2.1) to (i-3-2.6), structural formula (i-3-3.1) to (i-3-3.6), structural formula (i-3-4.1) to (i-3-4.4), structural formula (i-3-5.1) to (i-3-5.4), structural formula (i-3-6.1) to (i-3-6.6), structural formula (i-3-7.1), structural formula (i-3-8.1), structural formula (i-3-9.1), structural formula (i-3-10.1), structural formula (i-4-1.1) to (i-4-1.4), structural formula (i-4-2.1) to (i-4-2.4), structural formula Formulae (i-4-3.1) to (i-4-3.4), structural formulae (i-4-4.1) to (i-4-4.4), structural formula (i-4-5.1), structural formula (i-4-6.1), structural formula (i-5-1.1) to (i-5-1.4), structural formula (i-5-2.1) to (i-5-2.4), structural formula (i-5-3.1) to (i-5-3.4), structural formula (i-5-4.1) to (i-5-4.4), structural formula (i-6-1.1) to (i-6-1.4), structural formula (i-6-2.1) to (i-6-2.4), structural formula Structural formula (i-6-3.1) to (i-6-3.4), structural formula (i-6-4.1) to (i-6-4.4), structural formula (i-7-1.1) to (i-7-1.4), structural formula (i-7-2.1) to (i-7-2.4), structural formula (i-7-3.1) to (i-7-3.4), structural formula (i-7-4.1) to (i-7-4.4), structural formula (i-8-1.1) to (i-8-1.2), structural formula (i-8-2.1) to (i-8-2.2), structural formula (i-9-1.1) to (i-9-1.4), structural formula The total content of the compounds represented by formulae (i-9-2.1) to (i-9-2.4), structural formulae (i-9-3.1) to (i-9-3.4), structural formulae (i-9-4.1) to (i-9-4.4), structural formulae (i-10-1.1) to (i-10-1.2), structural formulae (i-10-2.1) to (i-10-2.2), structural formulae (i-11-1.1) to (i-11-1.2), or structural formulae (i-11-2.1) to (i-11-2.2) in 100% by mass of the liquid crystal composition is preferably 0.1 to 95% by mass, more preferably 0.5 to 90% by mass, more preferably 1 to 85% by mass, more preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and more preferably 5 to 15% by mass, from the viewpoints of solubility, Δn, and/or Δε r.

一般式(i)で表される化合物(下位概念を含む)は、公知の合成方法を用いて合成することができ、以下、いくつか例示する。
本発明に係る化合物の合成中間体であるインデン誘導体(A-1)は、例えば下記に示す製造方法で得ることができる。
The compound represented by formula (i) (including its sub-concepts) can be synthesized by known synthesis methods, some of which are exemplified below.
The indene derivative (A-1), which is a synthetic intermediate for the compound according to the present invention, can be obtained, for example, by the production method shown below.

Figure 0007464204000101
Figure 0007464204000101

式中、Ri1、Li1及びLi2は、前記一般式(i)におけるRi1、Li1及びLi2と同じ意味を表す。
本発明に係る化合物の合成中間体であるインデン誘導体(A-2)は、例えば下記に示す製造方法で得ることができる。
In the formula, R i1 , L i1 and L i2 have the same meanings as R i1 , L i1 and L i2 in the general formula (i) above.
The indene derivative (A-2), which is a synthetic intermediate for the compound according to the present invention, can be obtained, for example, by the production method shown below.

Figure 0007464204000102
Figure 0007464204000102

式中、Ri1、Li1及びLi2は、前記一般式(i)におけるRi1、Li1及びLi2と同じ意味を表す。
本発明において、一般式(i)で表される化合物は、例えば、以下のようにして製造することができる。
(製法1)下記一般式(s-6)で表される化合物の製造
In the formula, R i1 , L i1 and L i2 have the same meanings as R i1 , L i1 and L i2 in the general formula (i) above.
In the present invention, the compound represented by the general formula (i) can be produced, for example, as follows.
(Production Method 1) Production of a compound represented by the following general formula (s-6):

Figure 0007464204000103
Figure 0007464204000103

式中、Ri1、Ai2、Li1、Li2、Si1及びXi1は、前記一般式(i)におけるRi1、Ai2、Li1、Li2、Si1及びXi1と同じ意味を表す。
一般式(s-1)で表される化合物にマグネシウムを反応させた後、トリイソプロピルボレート、次いで塩酸で処理することにより、一般式(s-2)で表される化合物であるホウ酸誘導体を得ることが出来る。
次に、一般式(s-2)で表される化合物と一般式(s-3)で表される化合物を反応させることにより、一般式(s-4)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒及び塩基を用いた鈴木カップリング反応が挙げられる。
パラジウム触媒の具体例としては[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、酢酸パラジウム(II)、ジクロロビス[ジ-tert-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)等が挙げられる。
塩基としては炭酸カリウム、炭酸ナトリウム、リン酸カリウム等が挙げられる。
次いで、一般式(s-4)で表される化合物を一般式(s-5)で表される化合物と反応させることにより、目的物である一般式(s-6)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒の具体例としては[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、酢酸パラジウム(II)、ジクロロビス[ジ-tert-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)等が挙げられる。
金属触媒として酢酸パラジウム(II)を使用する場合、トリフェニルホスフィン、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等の配位子を添加してもよい。
銅触媒の具体例としてはヨウ化銅(I)が挙げられる。
塩基の具体例としてはトリエチルアミン等が挙げられる。
(製法2)下記一般式(s-12)で表される化合物の製造
In the formula, R i1 , A i2 , L i1 , L i2 , S i1 and X i1 have the same meanings as R i1 , A i2 , L i1 , L i2 , S i1 and X i1 in the general formula (i) above.
The compound represented by the general formula (s-1) is reacted with magnesium, and then treated with triisopropyl borate and then with hydrochloric acid to obtain a boric acid derivative, which is a compound represented by the general formula (s-2).
Next, the compound represented by the general formula (s-2) is reacted with the compound represented by the general formula (s-3) to obtain the compound represented by the general formula (s-4).
The reaction method includes, for example, Suzuki coupling reaction using a palladium catalyst and a base.
Specific examples of palladium catalysts include [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride, palladium(II) acetate, dichlorobis[di-tert-butyl(p-dimethylaminophenyl)phosphino]palladium(II), dichlorobis(triphenylphosphine)palladium(II), tetrakis(triphenylphosphine)palladium(0), and the like.
Examples of the base include potassium carbonate, sodium carbonate, potassium phosphate, and the like.
Next, the compound represented by general formula (s-4) is reacted with the compound represented by general formula (s-5) to obtain the target compound represented by general formula (s-6).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of palladium catalysts include [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride, palladium(II) acetate, dichlorobis[di-tert-butyl(p-dimethylaminophenyl)phosphino]palladium(II), dichlorobis(triphenylphosphine)palladium(II), tetrakis(triphenylphosphine)palladium(0), and the like.
When palladium(II) acetate is used as the metal catalyst, a ligand such as triphenylphosphine or 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl may be added.
A specific example of the copper catalyst is copper(I) iodide.
A specific example of the base is triethylamine.
(Production Method 2) Production of a compound represented by the following general formula (s-12):

Figure 0007464204000104
Figure 0007464204000104

式中、Ri1、Ai2、Li1、Li2、Si1及びXi1は、前記一般式(i)におけるRi1、Ai2、Li1、Li2、Si1及びXi1と同じ意味を表す。
一般式(s-7)で表される化合物にトリメチルシリルアセチレンを反応させた後、アルコール溶媒中にて炭酸カリウムと反応させることにより、一般式(s-8)で表される化合物を得ることができる。
トリメチルシリルアセチレンと反応には、パラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
次いで、一般式(s-8)で表される化合物を一般式(s-9)で表される化合物と反応させることにより一般式(s-10)で表される化合物を得ることができる。
反応方法としては例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
一般式(s-10)で表される化合物と一般式(s-11)で表される化合物を反応させることにより、目的物である一般式(s-12)で表される化合物を得ることができる。
反応方法としては例えばパラジウム触媒及び塩基を用いた鈴木カップリング反応が挙げられる。
(製法3)下記一般式(s-17)で表される化合物の製造
In the formula, R i1 , A i2 , L i1 , L i2 , S i1 and X i1 have the same meanings as R i1 , A i2 , L i1 , L i2 , S i1 and X i1 in the general formula (i) above.
The compound represented by the general formula (s-7) can be reacted with trimethylsilylacetylene, and then reacted with potassium carbonate in an alcohol solvent to obtain the compound represented by the general formula (s-8).
Reactions with trimethylsilylacetylene include the Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
Next, the compound represented by general formula (s-8) is reacted with the compound represented by general formula (s-9) to obtain the compound represented by general formula (s-10).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
The target compound represented by general formula (s-12) can be obtained by reacting the compound represented by general formula (s-10) with the compound represented by general formula (s-11).
The reaction method includes, for example, Suzuki coupling reaction using a palladium catalyst and a base.
(Production Method 3) Production of a compound represented by the following general formula (s-17):

Figure 0007464204000105
Figure 0007464204000105

式中、Ri1、Ai2、Li1、Li2、Si1及びXi1は、前記一般式(i)におけるRi1、Ai2、Li1、Li2、Si1及びXi1と同じ意味を表す。
まず、一般式(s-13)で表される化合物と一般式(s-14)で表される化合物とを反応させることにより、一般式(s-15)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
更に、一般式(s-15)で表される化合物と一般式(s-16)で表される化合物とを反応させることにより、目的物である一般式(s-17)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
(製法4)下記一般式(s-21)で表される化合物の製造
In the formula, R i1 , A i2 , L i1 , L i2 , S i1 and X i1 have the same meanings as R i1 , A i2 , L i1 , L i2 , S i1 and X i1 in the general formula (i) above.
First, a compound represented by general formula (s-13) is reacted with a compound represented by general formula (s-14) to obtain a compound represented by general formula (s-15).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
Furthermore, the target compound represented by general formula (s-17) can be obtained by reacting the compound represented by general formula (s-15) with the compound represented by general formula (s-16).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
(Production Method 4) Production of a compound represented by the following general formula (s-21):

Figure 0007464204000106
Figure 0007464204000106

式中、Ri1、Li1、Li2及びXi1は、前記一般式(i)におけるRi1、Li1、Li2及びXi1と同じ意味を表す。
まず、一般式(s-18)で表される化合物をマグネシウムと反応させた後、トリイソプロピルボレート、次いで塩酸で処理することにより一般式(s-19)で表される化合物であるホウ酸誘導体を得ることが出来る。
次に、一般式(s-19)で表される化合物と一般式(s-20)で表される化合物を反応させることにより、目的物である一般式(s-21)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒及び塩基を用いた鈴木カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
(製法5)下記一般式(s-24)で表される化合物の製造
In the formula, R i1 , L i1 , L i2 and X i1 have the same meanings as R i1 , L i1 , L i2 and X i1 in the general formula (i) above.
First, a compound represented by general formula (s-18) is reacted with magnesium, and then treated with triisopropyl borate and then with hydrochloric acid to obtain a boric acid derivative, which is a compound represented by general formula (s-19).
Next, the compound represented by general formula (s-19) is reacted with the compound represented by general formula (s-20) to obtain the target compound represented by general formula (s-21).
The reaction method includes, for example, Suzuki coupling reaction using a palladium catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
(Production Method 5) Production of a compound represented by the following general formula (s-24):

Figure 0007464204000107
Figure 0007464204000107

式中、Ri1、Li1、Li2、Si1及びXi1は、前記一般式(i)におけるRi1、Li1、Li2、Si1及びXi1と同じ意味を表す。
一般式(s-22)で表される化合物と一般式(s-23)で表される化合物とを反応させることにより目的物である一般式(s-24)で表される化合物を得ることができる。
反応方法としては例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒及び塩基の具体例としては上記のものが挙げられる。
(製法6)下記一般式(s-30)で表される化合物の製造
In the formula, R i1 , L i1 , L i2 , S i1 and X i1 have the same meanings as R i1 , L i1 , L i2 , S i1 and X i1 in the general formula (i) above.
The target compound represented by general formula (s-24) can be obtained by reacting a compound represented by general formula (s-22) with a compound represented by general formula (s-23).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
(Production Method 6) Production of a compound represented by the following formula (s-30):

Figure 0007464204000108
Figure 0007464204000108

式中、Ri1、Ai2、Li1、Li2及びSi1は、前記一般式(i)におけるRi1、Ai2、Li1、Li2及びSi1と同じ意味を表す。
まず、一般式(s-25)で表される化合物を一般式(s-26)で表される化合物と反応させることにより、一般式(s-27)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒及び塩基を用いた鈴木カップリング反応が挙げられる。
パラジウム触媒、及び塩基の具体例としては上記のものが挙げられる。
次に、一般式(s-27)で表される化合物を一般式(s-28)で表される化合物と反応させることにより、一般式(s-29)で表される化合物を得ることができる。
反応方法としては、例えばウィッティヒ反応が挙げられる。
更に、鉄等により、一般式(s-29)で表される化合物のニトロ基をアミノ基に変換し、チオカルバメート化合物と反応させることにより目的物である一般式(s-30)で表される化合物を得ることが出来る。
(製法7)下記一般式(s-34)で表される化合物の製造
In the formula, R i1 , A i2 , L i1 , L i2 and S i1 have the same meanings as R i1 , A i2 , L i1 , L i2 and S i1 in the general formula (i) above.
First, a compound represented by general formula (s-27) can be obtained by reacting a compound represented by general formula (s-25) with a compound represented by general formula (s-26).
The reaction method includes, for example, Suzuki coupling reaction using a palladium catalyst and a base.
Specific examples of the palladium catalyst and the base include those mentioned above.
Next, the compound represented by general formula (s-27) is reacted with the compound represented by general formula (s-28) to obtain the compound represented by general formula (s-29).
An example of the reaction method is the Wittig reaction.
Furthermore, the nitro group of the compound represented by general formula (s-29) is converted to an amino group using iron or the like, and the amino group is reacted with a thiocarbamate compound to obtain the target compound represented by general formula (s-30).
(Production Method 7) Production of a compound represented by the following general formula (s-34):

Figure 0007464204000109
Figure 0007464204000109

式中、Ri1、Ai1、Ai2、Li1及びLi2は、前記一般式(i)におけるRi1、Ai1、Ai2、Li1及びLi2と同じ意味を表す。
まず、一般式(s-31)で表される化合物を一般式(s-32)で表される化合物と反応させることにより、一般式(s-33)で表される化合物を得ることができる。
反応方法としては、例えばパラジウム触媒、銅触媒及び塩基を用いた薗頭カップリング反応が挙げられる。
パラジウム触媒、銅触媒及び塩基の具体例としては上記のものが挙げられる。
次に、鉄等により、一般式(s-33)で表される化合物のニトロ基をアミノ基に変換し、チオフォスゲンと反応させることにより目的物である一般式(s-34)で表される化合物を得ることが出来る。
各工程において記載した以外の反応条件として、例えば実験化学講座(日本化学会編、丸善株式会社発行)、Organic Syntheses(A John Wiley & Sons,Inc.,Publication)、Beilstein Handbook of Organic Chemistry(Beilstein-Institut fuer Literatur der Organischen Chemie、Springer-Verlag Berlin and Heidelberg GmbH & Co.K)、Fiesers’ Reagents for Organic Synthesis(John Wiley & Sons,Inc.)等の文献に記載のもの又はSciFinder(Chemical Abstracts Service,American Chemical Society)、Reaxys(Elsevier Ltd.)等のデータベースに収載のものが挙げられる。
各工程において酸素及び/又は水分に不安定な物質を取り扱う際は、窒素ガス、アルゴンガス等の不活性ガス中で作業を行うことが好ましい。
各工程において必要に応じて官能基を保護することができる。
保護基としては、例えば、GREENE’S PROTECTIVE GROUPS IN ORGANIC SYNTHESIS((Fourth Edition)、PETER G.M.WUTS、THEODORA W.GREENE共著、A John Wiley & Sons,Inc.,Publication)等に記載の保護基が挙げられる。
また、各工程において必要に応じて精製を行ってもよい。
精製方法としてはクロマトグラフィー、再結晶、蒸留、昇華、再沈殿、吸着、分液処理等が挙げられる。
精製剤の具体例としてはシリカゲル、アルミナ、活性炭等が挙げられる。
In the formula, R i1 , A i1 , A i2 , L i1 and L i2 have the same meanings as R i1 , A i1 , A i2 , L i1 and L i2 in the general formula (i) above.
First, a compound represented by general formula (s-31) is reacted with a compound represented by general formula (s-32) to obtain a compound represented by general formula (s-33).
The reaction method includes, for example, Sonogashira coupling reaction using a palladium catalyst, a copper catalyst and a base.
Specific examples of the palladium catalyst, copper catalyst and base include those mentioned above.
Next, the nitro group of the compound represented by general formula (s-33) is converted to an amino group using iron or the like, and the resulting compound is reacted with thiophosgene to obtain the target compound represented by general formula (s-34).
Reaction conditions other than those described in each step may be those described in, for example, Jikken Kagaku Koza (edited by the Chemical Society of Japan, published by Maruzen Co., Ltd.), Organic Syntheses (A John Wiley & Sons, Inc., Publication), Beilstein Handbook of Organic Chemistry (Beilstein-Institut fur Literatur der Organischen Chemie, Springer-Verlag Berlin and Heidelberg GmbH & Co. K), Fiesers' Reagents for Organic Synthesis (John Wiley & Sons, Sons, Inc.) or those included in databases such as SciFinder (Chemical Abstracts Service, American Chemical Society) and Reaxis (Elsevier Ltd.).
When a substance that is unstable to oxygen and/or moisture is handled in each step, it is preferable to carry out the work in an inert gas such as nitrogen gas or argon gas.
In each step, functional groups can be protected as necessary.
Examples of the protecting group include those described in GREENE'S PROTECTIVE GROUPS IN ORGANIC SYNTHESIS ((Fourth Edition), co-authored by PETER GM WUTS and THEODORA W. GREENE, A John Wiley & Sons, Inc., Publication).
In addition, purification may be carried out in each step as necessary.
Purification methods include chromatography, recrystallization, distillation, sublimation, reprecipitation, adsorption, and liquid separation.
Specific examples of the purification agent include silica gel, alumina, and activated carbon.

<一般式(i)で表される化合物(下位概念を含む)の特性値>
一般式(i)で表される化合物(下位概念を含む)の特性値は、以下のようにして測定することができる。
まず、母体液晶に対して、一般式(i)で表される化合物(下位概念を含む)を添加し、液晶組成物100質量%中に一般式(i)で表される化合物(下位概念を含む)をそれぞれ0質量%、5質量%、10質量%含む液晶組成物を調製し、それぞれの液晶組成物のΔn(屈折率異方性)及びΔεを測定する。
そして、最小二乗法を用いて、一般式(i)で表される化合物(下位概念を含む)100質量%、すなわち一般式(i)で表される化合物(下位概念を含む)のΔn(屈折率異方性)及びΔεを外挿値より求める。
<Characteristic values of the compound represented by general formula (i) (including sub-concepts)>
The characteristic values of the compound represented by general formula (i) (including sub-concepts) can be measured as follows.
First, a compound represented by general formula (i) (including subordinate concepts) is added to a mother liquid crystal to prepare liquid crystal compositions containing 0 mass %, 5 mass %, and 10 mass % of the compound represented by general formula (i) (including subordinate concepts) per 100 mass % of the liquid crystal composition, and Δn (refractive index anisotropy) and Δεr of each liquid crystal composition are measured.
Then, using the least squares method, Δn (refractive index anisotropy) and Δε r of 100% by mass of the compound represented by general formula (i) (including subordinate concepts), that is, the compound represented by general formula (i) (including subordinate concepts), are determined from extrapolated values .

Δn(屈折率異方性)は、後述する光学センサで用いられる近赤外領域のΔnと相関する。
Δnが大きいほど対象とする波長の光の位相変調力が大きくなるため特に光学センサ類に好適である。
25℃、589nmにおけるΔnはアッベ屈折計を用いて液晶組成物の異常光屈折率(n)と常光屈折率(n)の差(n-n)から求める。
また、位相差測定装置から、Δnを求めることもできる。
位相差Re、液晶層の厚さd及びΔnとの間には、Δn=Re/dの関係が成り立つ。
セルギャップ(d)が約3.0μmで、アンチパラレルラビング処理を施したポリイミド配向膜付きガラスセルに液晶組成物を注入し、面内のReを位相差フィルム・光学材料検査装置RETS-100(大塚電子株式会社製)で測定する。
測定は温度25℃、589nmの条件で行い、単位はない。
本発明に係る一般式(i)で表される化合物(下位概念を含む)の25℃、589nmにおけるΔnは、波長の光の位相変調力の観点から、0.30以上であることが好ましく、0.35~0.60であることが好ましく、0.37~0.55であることが好ましく、0.40~0.55であることが好ましい。
Δn (refractive index anisotropy) correlates with Δn in the near-infrared region used in the optical sensor described below.
The larger Δn is, the greater the phase modulation power of light of the target wavelength is, and therefore, this is particularly suitable for optical sensors.
Δn at 25° C. and 589 nm is determined from the difference ( ne −no ) between the extraordinary refractive index ( ne ) and the ordinary refractive index (no) of the liquid crystal composition using an Abbe refractometer.
Also, Δn can be obtained from a phase difference measuring device.
The relationship between the retardation Re, the thickness d of the liquid crystal layer, and Δn is Δn=Re/d.
A liquid crystal composition is injected into a glass cell having a cell gap (d) of about 3.0 μm and a polyimide alignment film that has been subjected to anti-parallel rubbing treatment, and the in-plane Re is measured using a retardation film/optical material inspection device RETS-100 (manufactured by Otsuka Electronics Co., Ltd.).
The measurement was carried out at a temperature of 25° C. and at 589 nm, and the measurement was unitless.
The Δn at 25° C. and 589 nm of the compound (including subordinate concepts) represented by general formula (i) according to the present invention is preferably 0.30 or more, more preferably 0.35 to 0.60, more preferably 0.37 to 0.55, and even more preferably 0.40 to 0.55, from the viewpoint of the phase modulation power of light of the wavelength.

高周波数領域における誘電率異方性は、高いほど目的周波数帯の電波に対する位相変調力が大きくなるため、特にアンテナ用途に好適である。
また、アンテナ用途では高周波数領域における誘電正接が小さいほど目的周波数帯のエネルギー損失が小さくなるため好適である。
本発明に係る一般式(i)で表される化合物(下位概念を含む)においては、高周波数領域の特性を代表して10GHzにおける誘電率異方性Δεを測定した。
Δε=(εr∥-εr⊥)である。
ここで、「ε」は誘電定数であり、添え字の「∥」は液晶の配向方向に対して並行方向、「⊥」は液晶の配向方向に対して垂直方向の成分であることを表す。
The higher the dielectric anisotropy in the high frequency region, the greater the phase modulation power for radio waves in the target frequency band, and therefore the material is particularly suitable for use in antennas.
In addition, in antenna applications, the smaller the dielectric tangent in the high frequency range, the smaller the energy loss in the target frequency band, which is preferable.
In the compound (including sub-concepts) represented by the general formula (i) according to the present invention, the dielectric anisotropy Δε r at 10 GHz was measured as a representative characteristic in the high frequency range.
Δεr =( εr∥εr⊥ ).
Here, "ε r " is a dielectric constant, the subscript "∥" indicates a component parallel to the alignment direction of the liquid crystal, and "⊥" indicates a component perpendicular to the alignment direction of the liquid crystal.

Δεは以下の方法により測定することができる。
まず、液晶組成物を、ポリテトラフルオロエチレン(PTFE)製の毛細管へと導入する。
ここで用いた毛細管は0.80mmの内半径及び0.835mmの外半径を有し、有効長は4.0cmである。
液晶組成物を封入した毛細管を、10GHzの共鳴周波数を有する空洞共振器(EMラボ株式会社製)の中心へと導入する。
この空洞共振器は30mmの直径、26mm幅の外形を有する。
そして信号を入力し、出力された信号の結果を、ネットワーク・アナライザ(キーサイト・テクノロジー株式会社製)を用いて記録する。
液晶組成物を封入しないPTFE毛細管の共鳴周波数等と液晶組成物を封入したPTFE毛細管の共鳴周波数等の差を用いて、10GHzにおける誘電定数(ε)を決定する。
なお、液晶組成物を封入したPTFE毛細管を用いた共鳴周波数等は、液晶分子の配向制御により、液晶分子の配向方向に垂直な特性成分の値及び平行な特性成分の値として求める。
液晶分子をPTFE毛細管の垂直方向(有効長方向に対して垂直)に配列させたり、平行方向(有効長方向に対して平行)に配列させたりするために、永久磁石又は電磁石の磁界を用いる。
磁界は、例えば、磁極間距離45mm、中央付近の磁界の強さは0.23テスラである。
液晶組成物を封入したPTFE毛細管を磁界に対して並行又は垂直に回転させることで所望の特性成分を得る。
測定は温度25℃で行い、Δεに単位はない。
Δεr can be measured by the following method.
First, a liquid crystal composition is introduced into a capillary tube made of polytetrafluoroethylene (PTFE).
The capillary used here has an inner radius of 0.80 mm and an outer radius of 0.835 mm, with an effective length of 4.0 cm.
The capillary tube containing the liquid crystal composition is introduced into the center of a cavity resonator (manufactured by EM Lab Co., Ltd.) having a resonance frequency of 10 GHz.
The cavity has an outer diameter of 30 mm and a width of 26 mm.
A signal is then input, and the result of the output signal is recorded using a network analyzer (manufactured by Keysight Technologies, Inc.).
The dielectric constant (ε r ) at 10 GHz is determined using the difference between the resonance frequency of a PTFE capillary tube containing no liquid crystal composition and the resonance frequency of a PTFE capillary tube containing a liquid crystal composition.
The resonance frequency and the like using a PTFE capillary tube filled with a liquid crystal composition are determined as values of characteristic components perpendicular and parallel to the alignment direction of the liquid crystal molecules by controlling the alignment of the liquid crystal molecules.
The magnetic field of a permanent magnet or electromagnet is used to align the liquid crystal molecules in the vertical direction (perpendicular to the effective length direction) or in the parallel direction (parallel to the effective length direction) of the PTFE capillary tube.
The magnetic field has, for example, a pole-to-pole distance of 45 mm and a magnetic field strength of 0.23 Tesla near the center.
The PTFE capillary tube containing the liquid crystal composition is rotated parallel or perpendicular to the magnetic field to obtain the desired characteristic components.
The measurements were made at a temperature of 25° C., and Δε r has no unit.

本発明に係る一般式(i)で表される化合物(下位概念を含む)の25℃におけるΔεはより大きいことが好ましいが、GHz帯における位相変調力の観点から、0.33以上であることが好ましく、0.33~0.65であることが好ましく、0.34~0.60であることが好ましく、0.34~0.55であることが好ましく、0.35~0.50であることが好ましく、0.35~0.45であることが好ましく、0.35~0.40であることが好ましい。 The Δε r at 25° C. of the compound (including subordinate concepts) represented by general formula (i) according to the present invention is preferably larger, and from the viewpoint of phase modulation power in the GHz band, it is preferably 0.33 or more, preferably 0.33 to 0.65, preferably 0.34 to 0.60, preferably 0.34 to 0.55, preferably 0.35 to 0.50, preferably 0.35 to 0.45, and preferably 0.35 to 0.40.

(液晶組成物)
本発明に係る液晶組成物は、例えば、上述の一般式(i)で表される化合物(下位概念を含む)、必要に応じてその他の液晶化合物、添加物を混合することにより、製造することができる。
(Liquid Crystal Composition)
The liquid crystal composition according to the present invention can be produced, for example, by mixing the compound represented by the above general formula (i) (including sub-concepts) and, if necessary, other liquid crystal compounds and additives.

添加物としては、安定剤、色素化合物、重合性化合物、アゾトラン化合物等が挙げられる。 Additives include stabilizers, dye compounds, polymerizable compounds, azotolane compounds, etc.

安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物類、ヒンダードフェノール類、ヒンダードアミン類等が挙げられる。
ヒンダードフェノール類としては、下記の構造式(XX-1)~(XX-3)で表されるヒンダードフェノール系酸化防止剤等が挙げられる。
Examples of the stabilizer include hydroquinones, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols, nitroso compounds, hindered phenols, and hindered amines.
Examples of the hindered phenols include hindered phenol-based antioxidants represented by the following structural formulas (XX-1) to (XX-3).

Figure 0007464204000110
Figure 0007464204000110

ヒンダードアミン類としては、下記の構造式(YY-1)~(YY-2)で表されるヒンダードアミン系光安定剤等が挙げられる。Examples of hindered amines include hindered amine light stabilizers represented by the following structural formulas (YY-1) to (YY-2).

Figure 0007464204000111
Figure 0007464204000111

安定剤を使用する場合における安定剤の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~10種、好ましくは1~8種、好ましくは1~6種、好ましくは1~4種、好ましくは1~2種である。
安定剤を使用する場合における安定剤の液晶組成物100質量%中の合計含有量は、0.005~1質量%であることが好ましく、0.02~0.50質量%であることが好ましく、0.03~0.35質量%であることが好ましい。
When a stabilizer is used, the type of stabilizer used in the liquid crystal composition is one or more, preferably 1 to 10 types, preferably 1 to 8 types, preferably 1 to 6 types, preferably 1 to 4 types, preferably 1 to 2 types.
When a stabilizer is used, the total content of the stabilizer in 100% by mass of the liquid crystal composition is preferably 0.005 to 1% by mass, more preferably 0.02 to 0.50% by mass, and even more preferably 0.03 to 0.35% by mass.

液晶組成物は、その他の液晶化合物としては、溶解性、Δn及び/又はΔεrの観点から、下記一般式(ii)で表される化合物の1種又は2種以上を含むことが好ましい。As other liquid crystal compounds, it is preferable that the liquid crystal composition contains one or more compounds represented by the following general formula (ii) from the viewpoints of solubility, Δn and/or Δεr.

Figure 0007464204000112
Figure 0007464204000112

一般式(ii)中、Rii1は、炭素原子数1~20のアルキル基を表す。
当該アルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
当該アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキル基中の1つ又2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-NH-、-CO-及び/又は-CS-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の-CH-CH-は、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されてもよい。
また、当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子に置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
例えば、Rii1は、当該アルキル基中の1つの-CH-が-O-に置換されることにより、炭素原子数1~19のアルコキシ基を表すことができる。
当該アルコキシ基は、直鎖状、分岐状又は環状のアルコキシ基であり、直鎖状のアルコキシ基であることが好ましい。
当該アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Rii1は、当該アルキル基中の1つの-CH-が-S-に置換されることにより、炭素原子数1~19のアルキルスルファニル基(アルキルチオ基)を表すことができる。
当該アルキルスルファニル基は、直鎖状、分岐状又は環状のアルキルスルファニル基であり、直鎖状のアルキルスルファニル基であることが好ましい。
当該アルキルスルファニル基における炭素原子数は、好ましくは1~10、好ましくは1~6である。
また、Rii1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~20のアルケニル基を表すことができる。
当該アルケニル基は、直鎖状、分岐状又は環状のアルケニル基であり、直鎖状のアルケニル基であることが好ましい。
当該アルケニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Rii1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-C≡C-に置換されることにより、炭素原子数2~20のアルキニル基を表すことができる。
当該アルキニル基は、直鎖状、分岐状又は環状のアルキニル基であり、直鎖状のアルキニル基であることが好ましい。
当該アルキニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
アルキニル基としては、合成の容易さや共役系の伸長の観点から、下記式(Rii1-A)で表されるアルキニル基が好ましい。
In formula (ii), R ii1 represents an alkyl group having 1 to 20 carbon atoms.
The alkyl group may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group preferably has 2 to 10, preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -NH-, -CO- and/or -CS-.
In addition, one or more -CH 2 -CH 2 - in the alkyl group may be substituted with -CH=CH-, -CF=CF- and/or -C≡C-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
For example, R ii1 can represent an alkoxy group having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --O--.
The alkoxy group is a linear, branched or cyclic alkoxy group, and is preferably a linear alkoxy group.
The alkoxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, R ii1 can represent an alkylsulfanyl group (alkylthio group) having 1 to 19 carbon atoms by replacing one —CH 2 — in the alkyl group with —S—.
The alkylsulfanyl group is a linear, branched or cyclic alkylsulfanyl group, and is preferably a linear alkylsulfanyl group.
The alkylsulfanyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
Furthermore, R ii1 can represent an alkenyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -CH=CH-.
The alkenyl group is a linear, branched or cyclic alkenyl group, and is preferably a linear alkenyl group.
The alkenyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, R ii1 can represent an alkynyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -C≡C-.
The alkynyl group may be a linear, branched or cyclic alkynyl group, and is preferably a linear alkynyl group.
The alkynyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
As the alkynyl group, from the viewpoints of ease of synthesis and elongation of the conjugated system, an alkynyl group represented by the following formula (R ii1 -A) is preferred.

Figure 0007464204000113
Figure 0007464204000113

式(Rii1-A)中、Rii1Aは、炭素原子数1~18のアルキル基を表す。
炭素原子数1~18のアルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
炭素原子数1~18のアルキル基における炭素原子数は、好ましくは1~8である。
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-NH-、-CO-及び/又は-CS-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
また、式(Rii1-A)中、黒点はAii1への結合手を表す。
また、Rii1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ一つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~19のアルケニルオキシ基を表すことができる。
当該アルケニルオキシ基は、直鎖状、分岐状又は環状のアルケニルオキシ基であり、直鎖状のアルケニルオキシ基であることが好ましい。
当該アルケニルオキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Rii1は、当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~20のハロゲン化アルキル基を表すことができる。
当該ハロゲン化アルキル基は、直鎖状、分岐状又は環状のハロゲン化アルキル基であり、直鎖状のハロゲン化アルキル基であることが好ましい。
当該ハロゲン化アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、Rii1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~19のハロゲン化アルコキシ基を表すことができる。
当該ハロゲン化アルコキシ基は、直鎖状、分岐状又は環状のハロゲン化アルコキシ基であり、直鎖状のハロゲン化アルコキシ基であることが好ましい。
当該ハロゲン化アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
ii1における炭素原子数1~20のアルキル基(置換されたものも含む)の具体例としては、式(Rii1-1)~(Rii1-56)で表される基等が挙げられる。
In formula (R ii1 -A), R ii1A represents an alkyl group having 1 to 18 carbon atoms.
The alkyl group having 1 to 18 carbon atoms may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group having 1 to 18 carbon atoms preferably has 1 to 8 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -NH-, -CO- and/or -CS-.
Furthermore, one or more -CH 2 -CH 2 - groups in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF- and/or -C≡C-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
In addition, in formula (R ii1 -A), the black dot represents a bond to A ii1 .
Furthermore, R ii1 can represent an alkenyloxy group having 2 to 19 carbon atoms in which one —CH 2 — in the alkyl group is replaced with —O— and one or more —CH 2 —CH 2 — are replaced with —CH═CH—.
The alkenyloxy group is a linear, branched or cyclic alkenyloxy group, and is preferably a linear alkenyloxy group.
The alkenyloxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, R ii1 can represent a halogenated alkyl group having 1 to 20 carbon atoms, in which one or more hydrogen atoms in the alkyl group have been substituted with halogen atoms.
The halogenated alkyl group may be linear, branched or cyclic, and is preferably a linear halogenated alkyl group.
The halogenated alkyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
In addition, R ii1 can represent a halogenated alkoxy group having 1 to 19 carbon atoms, in which one —CH 2 — in the alkyl group is replaced with —O—, and one or more hydrogen atoms in the alkyl group are replaced with halogen atoms.
The halogenated alkoxy group may be a linear, branched or cyclic halogenated alkoxy group, and is preferably a linear halogenated alkoxy group.
The halogenated alkoxy group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Specific examples of the alkyl group having 1 to 20 carbon atoms for R ii1 (including substituted ones) include groups represented by formulae (R ii1 -1) to (R ii1 -56).

Figure 0007464204000114
Figure 0007464204000114

Figure 0007464204000115
Figure 0007464204000115

式(Rii1-1)~(Rii1-56)中、黒点はAii1への結合手を表す。
ii1が結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、Rii1が結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
また、Rii1としては、ネマチック相を安定化させるためには、炭素原子及び存在する場合の酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
なお、Rii1としては、溶解性の観点から、炭素原子数2~8の直鎖状又は分岐状のアルキル基、炭素原子数2~8の直鎖状のアルコキシ基、炭素原子数1~8の直鎖状のハロゲン化アルコキシ基、炭素原子数2~8の直鎖状のアルキニル基又は炭素原子数1~6の直鎖状のアルキルスルファニル基が好ましい。
In formulae (R ii1 -1) to (R ii1 -56), the black dot represents a bond to A ii1 .
When the ring structure to which R ii1 is bonded is a phenyl group (aromatic), a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and an alkenyl group having 4 to 5 carbon atoms are preferred; when the ring structure to which R ii1 is bonded is a saturated ring structure such as cyclohexane, pyran, and dioxane, a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms are preferred.
In order to stabilize the nematic phase, R ii1 preferably has a total of 5 or less carbon atoms and, if present, oxygen atoms, and is preferably linear.
From the viewpoint of solubility, R ii1 is preferably a linear or branched alkyl group having 2 to 8 carbon atoms, a linear alkoxy group having 2 to 8 carbon atoms, a linear halogenated alkoxy group having 1 to 8 carbon atoms, a linear alkynyl group having 2 to 8 carbon atoms, or a linear alkylsulfanyl group having 1 to 6 carbon atoms.

一般式(ii)中、Aii1及びAii2は、それぞれ独立して、以下の基(a)、基(b)、基(c)及び基(d):
(a) 1,4-シクロヘキシレン基(この基中に存在する1つの-CH-又は非隣接の2つ以上の-CH-は-O-及び/又は-S-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1つの-CH=又は2つ以上の-CH=は-N=に置き換えられてもよい。)
(c) 1,4-シクロヘキセニレン基、ビシクロ[2.2.2]オクタン-1,4-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、5,6,7,8-テトラヒドロナフタレン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、アントラセン-9,10-ジイル基、フェナントレン-2,7-ジイル基、2,3-ジヒドロインデン-2,5-ジイル基、2,3-ジヒドロインデン-1,5-ジイル基、2,3-ジヒドロインデン-3,5-ジイル基(ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、5,6,7,8-テトラヒドロナフタレン-1,4-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、アントラセン-9,10-ジイル基又はフェナントレン-2,7-ジイル基中に存在する1つの-CH=又は2つ以上の-CH=は-N=に置き換えられても良い。)
(d)チオフェン-2,5-ジイル基、ベンゾチオフェン-2,5-ジイル基、ベンゾチオフェン-2,6-ジイル基、ジベンゾチオフェン-3,7-ジイル基、ジベンゾチオフェン-2,6-ジイル基、チエノ[3,2-b]チオフェン-2,5-ジイル基、ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル基(この基中に存在する1つの-CH=又は2つ以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表す。
In the general formula (ii), A ii1 and A ii2 each independently represent the following group (a), group (b), group (c), and group (d):
(a) a 1,4-cyclohexylene group (in which one —CH 2 — or two or more non-adjacent —CH 2 — groups may be replaced by —O— and/or —S—).
(b) a 1,4-phenylene group (in which one -CH= or two or more -CH= groups may be replaced by -N=).
(c) 1,4-cyclohexenylene group, bicyclo[2.2.2]octane-1,4-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 5,6,7,8-tetrahydronaphthalene-1,4-diyl group, decahydronaphthalene-2,6-diyl group, anthracene-2,6-diyl group, anthracene-1,4-diyl group, anthracene-9,10-diyl group, phenanthrene-2,7-diyl group, 2,3-dihydroindene-2,5-diyl group, 2 ,3-dihydroindene-1,5-diyl group, 2,3-dihydroindene-3,5-diyl group (one -CH= or two or more -CH= present in a naphthalene-2,6-diyl group, a naphthalene-1,4-diyl group, a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 5,6,7,8-tetrahydronaphthalene-1,4-diyl group, an anthracene-2,6-diyl group, an anthracene-1,4-diyl group, an anthracene-9,10-diyl group, or a phenanthrene-2,7-diyl group may be replaced by -N=).
(d) thiophene-2,5-diyl group, benzothiophene-2,5-diyl group, benzothiophene-2,6-diyl group, dibenzothiophene-3,7-diyl group, dibenzothiophene-2,6-diyl group, thieno[3,2-b]thiophene-2,5-diyl group, benzo[1,2-b:4,5-b']dithiophene-2,6-diyl group (one -CH= or two or more -CH= present in this group may be replaced by -N=).
represents a group selected from the group consisting of:

ii1及びAii2中の一つ又は二つ以上の水素原子は、それぞれ独立して、置換基Sii1により置換されていてもよい。
置換基Sii1は、ハロゲン原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基又は炭素原子数1~20のアルキル基のいずれかを表す。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
炭素原子数1~20のアルキル基は、直鎖状、分岐状又は環状のアルキル基であり、直鎖状のアルキル基であることが好ましい。
炭素原子数1~20のアルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-NH-、-CO-及び/又-CS-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよい。
また、当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子に置換されていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
但し、当該アルキル基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
例えば、置換基Sii1は、当該アルキル基中の1つの-CH-が-O-に置換されることにより、炭素原子数1~19のアルコキシ基を表すことができる。
当該アルコキシ基は、直鎖状、分岐状又は環状のアルコキシ基であり、直鎖状のアルコキシ基であることが好ましい。
当該アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つの-CH-が-S-に置換されることにより、炭素原子数1~19のアルキルスルファニル基(アルキルチオ基)を表すことができる。
当該アルキルスルファニル基は、直鎖状、分岐状又は環状のアルキルスルファニル基であり、直鎖状のアルキルスルファニル基であることが好ましい。
当該アルキルスルファニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~20のアルケニル基を表すことができる。
当該アルケニル基は、直鎖状、分岐状又は環状のアルケニル基であり、直鎖状のアルケニル基であることが好ましい。
当該アルケニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つ又は2つ以上の-CH-CH-が、-C≡C-に置換されることにより、炭素原子数2~20のアルキニル基を表すことができる。
当該アルキニル基は、直鎖状、分岐状又は環状のアルキニル基であり、直鎖状のアルキニル基であることが好ましい。
当該アルキニル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ一つ又は2つ以上の-CH-CH-が、-CH=CH-に置換されることにより、炭素原子数2~19のアルケニルオキシ基を表すことができる。
当該アルケニルオキシ基は、直鎖状、分岐状又は環状のアルケニルオキシ基であり、直鎖状のアルケニルオキシ基であることが好ましい。
当該アルケニルオキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~20のハロゲン化アルキル基を表すことができる。
当該ハロゲン化アルキル基は、直鎖状、分岐状又は環状のハロゲン化アルキル基であり、直鎖状のハロゲン化アルキル基であることが好ましい。
当該ハロゲン化アルキル基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
また、置換基Sii1は、当該アルキル基中の1つの-CH-が-O-に置換され、且つ当該アルキル基中の1つ又は2つ以上の水素原子が、ハロゲン原子に置換されることにより、炭素原子数1~19のハロゲン化アルコキシ基を表すことができる。
当該ハロゲン化アルコキシ基は、直鎖状、分岐状又は環状のハロゲン化アルコキシ基であり、直鎖状のハロゲン化アルコキシ基であることが好ましい。
当該ハロゲン化アルコキシ基における炭素原子数は、好ましくは2~10、好ましくは2~6である。
置換基Sii1における炭素原子数1~20のアルキル基(置換されたものも含む)の具体例としては、式(Sii1R-1)~(Sii1R-36)で表される基等が挙げられる。
One or more hydrogen atoms in A ii1 and A ii2 may each independently be substituted with a substituent S ii1 .
The substituent S ii1 represents any one of a halogen atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, and an alkyl group having 1 to 20 carbon atoms.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group having 1 to 20 carbon atoms may be a straight-chain, branched or cyclic alkyl group, and is preferably a straight-chain alkyl group.
The alkyl group having 1 to 20 carbon atoms preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -NH-, -CO- and/or -CS-.
Furthermore, one or more -CH 2 -CH 2 - groups in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF- and/or -C≡C-.
Furthermore, one or more hydrogen atoms in the alkyl group may each independently be substituted with a halogen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
However, when the alkyl group is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
For example, the substituent S ii1 can represent an alkoxy group having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --O--.
The alkoxy group is a linear, branched or cyclic alkoxy group, and is preferably a linear alkoxy group.
The alkoxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, the substituent S ii1 can represent an alkylsulfanyl group (alkylthio group) having 1 to 19 carbon atoms by replacing one --CH 2 -- in the alkyl group with --S--.
The alkylsulfanyl group is a linear, branched or cyclic alkylsulfanyl group, and is preferably a linear alkylsulfanyl group.
The alkylsulfanyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Furthermore, the substituent S ii1 can represent an alkenyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -CH=CH-.
The alkenyl group is a linear, branched or cyclic alkenyl group, and is preferably a linear alkenyl group.
The alkenyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, the substituent S ii1 can represent an alkynyl group having 2 to 20 carbon atoms by replacing one or more -CH 2 -CH 2 - in the alkyl group with -C≡C-.
The alkynyl group may be a linear, branched or cyclic alkynyl group, and is preferably a linear alkynyl group.
The alkynyl group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
In addition, the substituent S ii1 can represent an alkenyloxy group having 2 to 19 carbon atoms by replacing one —CH 2 — in the alkyl group with —O— and one or more —CH 2 —CH 2 — groups with —CH═CH—.
The alkenyloxy group is a linear, branched or cyclic alkenyloxy group, and is preferably a linear alkenyloxy group.
The alkenyloxy group preferably has 2 to 10, more preferably 2 to 6, carbon atoms.
Furthermore, the substituent S ii1 can represent a halogenated alkyl group having 1 to 20 carbon atoms by substituting one or more hydrogen atoms in the alkyl group with halogen atoms.
The halogenated alkyl group may be linear, branched or cyclic, and is preferably a linear halogenated alkyl group.
The halogenated alkyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
In addition, the substituent S ii1 can represent a halogenated alkoxy group having 1 to 19 carbon atoms, in which one -CH 2 - in the alkyl group is replaced with -O-, and one or more hydrogen atoms in the alkyl group are replaced with halogen atoms.
The halogenated alkoxy group may be a linear, branched or cyclic halogenated alkoxy group, and is preferably a linear halogenated alkoxy group.
The halogenated alkoxy group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
Specific examples of the alkyl group having 1 to 20 carbon atoms (including substituted ones) in the substituent S ii1 include groups represented by the formulae (S ii1R -1) to (S ii1R -36).

Figure 0007464204000116
Figure 0007464204000116

式(Sii1R-1)~(Sii1R-36)中、黒点はAii1又はAii2への結合手を表す。
置換基Sii1としては、炭素原子数1~6の直鎖状のアルキル基、フッ素原子又は塩素原子が好ましい。
また、Aii1の少なくとも一つ又はAii2は、少なくとも一つの置換基Sii1で置換されていることが好ましく、ハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることが好ましい。
なお、置換基Sii1が複数ある場合は、それらは同一であってもよく、異なっていてもよい。
In formulae (S ii1R -1) to (S ii1R -36), the black dot represents a bond to A ii1 or A ii2 .
The substituent S ii1 is preferably a linear alkyl group having 1 to 6 carbon atoms, a fluorine atom or a chlorine atom.
Furthermore, at least one of A ii1 or A ii2 is preferably substituted with at least one substituent S ii1 , preferably with a halogen atom, and more preferably with a fluorine atom.
When there are a plurality of substituents S ii1 , they may be the same or different.

ii1における置換基Sii1の置換位置としては、下記式(Aii1-SP-1)~(Aii1-SP-12)のいずれかであることが好ましい。 The substitution position of the substituent S ii1 in A ii1 is preferably any one of the following formulae (A ii1 -SP-1) to (A ii1 -SP-12).

Figure 0007464204000117
Figure 0007464204000117

Figure 0007464204000118
Figure 0007464204000118

式(Aii1-SP-1)~(Aii1-SP-12)中、白点はRii1又はZii1への結合手を表し、黒点はZii1への結合手を表す。
ii2における置換基Sii1の置換位置としては、下記式(Aii2-SP-1)~(Aii2-SP-8)のいずれかであることが好ましい。
In formulae (A ii1 -SP-1) to (A ii1 -SP-12), a white dot represents a bond to R ii1 or Z ii1 , and a black dot represents a bond to Z ii1 .
The substitution position of the substituent S ii1 in A ii2 is preferably any one of the following formulae (A ii2 -SP-1) to (A ii2 -SP-8).

Figure 0007464204000119
Figure 0007464204000119

式(Aii2-SP-1)~(Aii2-SP-8)中、白点はZii1への結合手を表し、黒点はイソチオシアネート基(-NCS)への結合手を表す。
より具体的には、Aii1は、下記式(Aii1-1)~(Aii1-34)のいずれかを表すことが好ましい。
In the formulae (A ii2 -SP-1) to (A ii2 -SP-8), the white dots represent bonds to Z ii1 , and the black dots represent bonds to an isothiocyanate group (-NCS).
More specifically, A ii1 preferably represents any one of the following formulae (A ii1 -1) to (A ii1 -34).

Figure 0007464204000120
Figure 0007464204000120

Figure 0007464204000121
Figure 0007464204000121

式(Aii1-1)~(Aii1-34)中、白点はRii1又はZii1への結合手を表し、黒点はZii1への結合手を表す。
より具体的には、Aii2は、下記式(Aii2-1)~(Aii2-10)のいずれかを表ことが好ましい。
In formulae (A ii1 -1) to (A ii1 -34), a white dot represents a bond to R ii1 or Z ii1 , and a black dot represents a bond to Z ii1 .
More specifically, A ii2 preferably represents any one of the following formulas (A ii2 -1) to (A ii2 -10).

Figure 0007464204000122
Figure 0007464204000122

式(Aii2-1)~(Aii2-10)中、白点はZii1への結合手を表し、黒点はイソチオシアネート基(-NCS)への結合手を表す。 In formulae (A ii2 -1) to (A ii2 -10), white dots represent bonds to Z ii1 , and black dots represent bonds to an isothiocyanate group (--NCS).

一般式(ii)中、Zii1は、単結合、炭素原子数1~20のアルキレン基のいずれかを表す。
当該アルキレン基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-CF-及び/又は-CO-で置換されていてもよい。
また、当該アルキレン基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH-CH(CH)-、-CH(CH)-CH-、-CH=CH-、-CF=CF-、-CH=C(CH)-、-C(CH)=CH-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-CO-O-及び/又は-O-CO-で置換されてもよい。
但し、炭素原子数1~20のアルキレン基が所定の基により置換される場合においては、酸素原子と酸素原子が直接結合することはない。
また、化合物の安定性の観点から、硫黄原子と硫黄原子及び/又は酸素原子と硫黄原子が直接結合することはないことが好ましい。
炭素原子数1~20のアルキレン基の具体例(置換されたものも含む)としては、式(Zii1-1)~(Zii1-24)で表される基等が挙げられる。
In formula (ii), Z ii1 represents a single bond or an alkylene group having 1 to 20 carbon atoms.
One or more -CH 2 - in the alkylene group may each independently be substituted with -O-, -CF 2 - and/or -CO-.
Furthermore, one or more -CH 2 -CH 2 - in the alkylene group may each independently be substituted with -CH 2 -CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH=CH-, -CF=CF-, -CH=C(CH 3 )-, -C(CH 3 )=CH-, -CH=N-, -N=CH-, -N=N-, -C≡C-, -CO-O- and/or -O-CO-.
However, when the alkylene group having 1 to 20 carbon atoms is substituted with a specific group, the oxygen atoms are not directly bonded to each other.
From the viewpoint of the stability of the compound, it is preferable that sulfur atoms and/or oxygen atoms are not directly bonded to each other.
Specific examples of the alkylene group having 1 to 20 carbon atoms (including substituted ones) include groups represented by the formulae (Z ii1 -1) to (Z ii1 -24).

Figure 0007464204000123
Figure 0007464204000123

式(Zii1-1)~(Zii1-24)中、白点はAii1への結合手を表し、黒点はAii1又はAii2への結合手を表す。 In formulae (Z ii1 -1) to (Z ii1 -24), a white dot represents a bond to A ii1 , and a black dot represents a bond to A ii1 or A ii2 .

一般式(ii)中、nii1は、1~4、好ましくは1~2の整数を表す。
ii1が1である場合においては、Δn及び/又はΔεの観点から、Zii1は単結合又は-C≡C-を表すことが好ましい。
また、nii1が2である場合においては、Δn及び/又はΔεの観点から、Zii1は単結合又は-C≡C-を表すことが好ましい。
なお、一般式(ii)において、Aii1及びZii1が複数存在する場合は、それらはそれぞれ同一であってもよく、異なっていてもよい。
In formula (ii), n ii1 represents an integer of 1 to 4, preferably 1 or 2.
When n ii1 is 1, Z ii1 preferably represents a single bond or -C≡C- from the viewpoint of Δn and/or Δεr .
When n ii1 is 2, Z ii1 preferably represents a single bond or -C≡C- from the viewpoint of Δn and/or Δεr .
In addition, in general formula (ii), when a plurality of A ii1 and Z ii1 are present, they may be the same or different.

一般式(ii)で表される化合物としては、下記一般式(ii-1)~(ii-4)で表される化合物であることが好ましい。As the compound represented by general formula (ii), it is preferable to use compounds represented by the following general formulas (ii-1) to (ii-4).

Figure 0007464204000124
Figure 0007464204000124

一般式(ii-1)~(ii-4)中、Rii1、Aii1及びAii2は、上記一般式(ii)中のRii1、Aii1及びAii2とそれぞれ同じ意味を表す。
一般式(ii-3)~(ii-4)中、Aii1-2の定義は、それぞれ独立して、上記一般式(ii)中のAii1の定義に同じである。
In the general formulae (ii-1) to (ii-4), R ii1 , A ii1 and A ii2 have the same meanings as R ii1 , A ii1 and A ii2 in the above general formula (ii), respectively.
In formulae (ii-3) and (ii-4), the definitions of A ii1-2 are each independently the same as the definition of A ii1 in formula (ii) above.

一般式(ii-1)で表される化合物としては、下記一般式(ii-1-1)で表される化合物であることが好ましい。As the compound represented by general formula (ii-1), a compound represented by the following general formula (ii-1-1) is preferable.

Figure 0007464204000125
Figure 0007464204000125

一般式(ii-1-1)中、Rii1及びSii1は、それぞれ独立して、上記一般式(ii)中のRii1及びSii1とそれぞれ同じ意味を表す。
一般式(ii-1-1)で表される化合物の具体例としては、下記構造式(ii-1-1.1)~(ii-1-1.8)で表される化合物等が挙げられる。
In formula (ii-1-1), R ii1 and S ii1 each independently have the same meaning as R ii1 and S ii1 in formula (ii) above.
Specific examples of the compound represented by general formula (ii-1-1) include compounds represented by the following structural formulas (ii-1-1.1) to (ii-1-1.8).

Figure 0007464204000126
Figure 0007464204000126

一般式(ii-2)で表される化合物としては、下記一般式(ii-2-1)~(ii-2-4)で表される化合物であることが好ましい。As the compound represented by general formula (ii-2), it is preferable to use compounds represented by the following general formulas (ii-2-1) to (ii-2-4).

Figure 0007464204000127
Figure 0007464204000127

一般式(ii-2-1)~(ii-2-4)中、Rii1及びSii1は、それぞれ独立して、上記一般式(ii)中のRii1及びSii1とそれぞれ同じ意味を表す。 In the general formulae (ii-2-1) to (ii-2-4), R ii1 and S ii1 each independently represent the same meaning as R ii1 and S ii1 in the above general formula (ii), respectively.

一般式(ii-2-1)で表される化合物の具体例としては、下記構造式(ii-2-1.1)~(ii-2-1.2)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (ii-2-1) include compounds represented by the following structural formulas (ii-2-1.1) to (ii-2-1.2).

Figure 0007464204000128
Figure 0007464204000128

一般式(ii-2-2)で表される化合物の具体例としては、下記構造式(ii-2-2.1)~(ii-2-2.3)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (ii-2-2) include the compounds represented by the following structural formulas (ii-2-2.1) to (ii-2-2.3).

Figure 0007464204000129
Figure 0007464204000129

一般式(ii-2-3)で表される化合物の具体例としては、下記構造式(ii-2-3.1)~(ii-2-3.3)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (ii-2-3) include the compounds represented by the following structural formulas (ii-2-3.1) to (ii-2-3.3).

Figure 0007464204000130
Figure 0007464204000130

一般式(ii-2-4)で表される化合物の具体例としては、下記構造式(ii-2-4.1)~(ii-2-4.3)で表される化合物等が挙げられる。Specific examples of the compound represented by general formula (ii-2-4) include compounds represented by the following structural formulas (ii-2-4.1) to (ii-2-4.3).

Figure 0007464204000131
Figure 0007464204000131

一般式(ii-3)で表される化合物としては、下記一般式(ii-3-1)で表される化合物であることが好ましい。As the compound represented by general formula (ii-3), a compound represented by the following general formula (ii-3-1) is preferable.

Figure 0007464204000132
Figure 0007464204000132

一般式(ii-3-1)中、Rii1及びSii1は、それぞれ独立して、上記一般式(ii)中のRii1及びSii1とそれぞれ同じ意味を表す。
一般式(ii-3-1)で表される化合物の具体例としては、下記構造式(ii-3-1.1)~(ii-3-1.4)で表される化合物等が挙げられる。
In formula (ii-3-1), R ii1 and S ii1 each independently have the same meaning as R ii1 and S ii1 in formula (ii) above.
Specific examples of the compound represented by general formula (ii-3-1) include compounds represented by the following structural formulas (ii-3-1.1) to (ii-3-1.4).

Figure 0007464204000133
Figure 0007464204000133

一般式(ii-4)で表される化合物としては、下記一般式(ii-4-1)で表される化合物であることが好ましい。As the compound represented by general formula (ii-4), a compound represented by the following general formula (ii-4-1) is preferable.

Figure 0007464204000134
Figure 0007464204000134

一般式(ii-4-1)中、Rii1及びSii1は、それぞれ独立して、上記一般式(ii)中のRii1及びSii1とそれぞれ同じ意味を表す。 In formula (ii-4-1), R ii1 and S ii1 each independently have the same meaning as R ii1 and S ii1 in formula (ii) above.

Figure 0007464204000135
Figure 0007464204000135

一般式(ii)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~15種、好ましくは1~10種、好ましくは1~5種である。The type of compound represented by general formula (ii) used in the liquid crystal composition is one or more types, preferably 1 to 15 types, preferably 1 to 10 types, preferably 1 to 5 types.

一般式(ii)で表される化合物の液晶組成物100質量%中の合計含有量は、75~95質量%であることが好ましく、80~95質量%であることが好ましく、85~95質量%以上であることが好ましい。The total content of the compounds represented by general formula (ii) in 100% by mass of the liquid crystal composition is preferably 75 to 95% by mass, more preferably 80 to 95% by mass, and even more preferably 85 to 95% by mass or more.

一般式(ii-1)、一般式(ii-1-1)又は構造式(ii-1-1.1)~(ii-1-1.8)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~10種、好ましくは1~5種、好ましくは1~3種である。The types of compounds represented by general formula (ii-1), general formula (ii-1-1) or structural formulas (ii-1-1.1) to (ii-1-1.8) used in the liquid crystal composition are one or more types, preferably 1 to 10 types, preferably 1 to 5 types, and preferably 1 to 3 types.

一般式(ii-1)、一般式(ii-1-1)又は構造式(ii-1-1.1)~(ii-1-1.8)で表される化合物の液晶組成物100質量%中の合計含有量は、10~50質量%であることが好ましく、15~45質量%であることが好ましく、10~40質量%であることが好ましい。The total content of the compounds represented by general formula (ii-1), general formula (ii-1-1) or structural formulas (ii-1-1.1) to (ii-1-1.8) in 100% by mass of the liquid crystal composition is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and even more preferably 10 to 40% by mass.

一般式(ii-2)、一般式(ii-2-1)~(ii-2-4)、構造式(ii-2-1.1)~(ii-2-1.2)、構造式(ii-2-2.1)~(ii-2-2.3)、構造式(ii-2-3.1)~(ii-2-3.3)又は構造式(ii-2-4.1)~(ii-2-4.3)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~15種、好ましくは1~10種、好ましくは1~7種である。The types of compounds represented by general formula (ii-2), general formulas (ii-2-1) to (ii-2-4), structural formulas (ii-2-1.1) to (ii-2-1.2), structural formulas (ii-2-2.1) to (ii-2-2.3), structural formulas (ii-2-3.1) to (ii-2-3.3) or structural formulas (ii-2-4.1) to (ii-2-4.3) used in the liquid crystal composition are one or more types, preferably 1 to 15 types, preferably 1 to 10 types, and preferably 1 to 7 types.

一般式(ii-2)、一般式(ii-2-1)~(ii-2-4)、構造式(ii-2-1.1)~(ii-2-1.2)、構造式(ii-2-2.1)~(ii-2-2.3)、構造式(ii-2-3.1)~(ii-2-3.3)又は構造式(ii-2-4.1)~(ii-2-4.3)で表される化合物の液晶組成物100質量%中の合計含有量は、1~80質量%であることが好ましく、3~75質量%であることが好ましく、5~70質量%であることが好ましく、5~25質量%であることが好ましく、5~15質量%であることが好ましい。The total content of the compounds represented by general formula (ii-2), general formulas (ii-2-1) to (ii-2-4), structural formulas (ii-2-1.1) to (ii-2-1.2), structural formulas (ii-2-2.1) to (ii-2-2.3), structural formulas (ii-2-3.1) to (ii-2-3.3) or structural formulas (ii-2-4.1) to (ii-2-4.3) in 100% by mass of the liquid crystal composition is preferably 1 to 80% by mass, more preferably 3 to 75% by mass, more preferably 5 to 70% by mass, more preferably 5 to 25% by mass, and more preferably 5 to 15% by mass.

一般式(ii-3)、一般式(ii-3-1)又は構造式(ii-3-1.1)~(ii-3-1.4)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~10種、好ましくは1~5種、好ましくは1~3種である。The compounds represented by general formula (ii-3), general formula (ii-3-1) or structural formulas (ii-3-1.1) to (ii-3-1.4) used in the liquid crystal composition are one or more types, preferably 1 to 10 types, preferably 1 to 5 types, and preferably 1 to 3 types.

一般式(ii-3)、一般式(ii-3-1)又は構造式(ii-3-1.1)~(ii-3-1.4)で表される化合物の液晶組成物100質量%中の合計含有量は、1~80質量%であることが好ましく、1~20質量%であることが好ましく、1~15質量%であることが好ましく、1~10質量%であることが好ましい。The total content of the compounds represented by general formula (ii-3), general formula (ii-3-1) or structural formulas (ii-3-1.1) to (ii-3-1.4) in 100% by mass of the liquid crystal composition is preferably 1 to 80% by mass, more preferably 1 to 20% by mass, more preferably 1 to 15% by mass, and even more preferably 1 to 10% by mass.

一般式(ii-4)、一般式(ii-4-1)又は構造式(ii-4-1.1)~(ii-3-1.4)で表される化合物の液晶組成物に用いる種類は、1種又は2種以上、好ましくは1~10種、好ましくは1~5種、好ましくは1~3種である。The compounds represented by general formula (ii-4), general formula (ii-4-1) or structural formulas (ii-4-1.1) to (ii-3-1.4) used in the liquid crystal composition are one or more types, preferably 1 to 10 types, preferably 1 to 5 types, and preferably 1 to 3 types.

一般式(ii-4)、一般式(ii-4-1)又は構造式(ii-3-1.1)~(ii-3-1.4)で表される化合物の液晶組成物100質量%中の合計含有量は、1~25質量%であることが好ましく、1~20質量%であることが好ましく、5~15質量%であることが好ましい。The total content of the compounds represented by general formula (ii-4), general formula (ii-4-1) or structural formulas (ii-3-1.1) to (ii-3-1.4) in 100% by mass of the liquid crystal composition is preferably 1 to 25% by mass, more preferably 1 to 20% by mass, and even more preferably 5 to 15% by mass.

一般式(ii)で表される化合物(下位概念を含む)は、公知の合成方法を用いて合成することができる。The compound represented by general formula (ii) (including its sub-concepts) can be synthesized using known synthesis methods.

<液晶組成物の特性値>
液晶相上限温度(Tni)は、液晶組成物がネマチック相から等方相へ相転移する温度である。
niは、液晶組成物をスライドガラスとカバーガラスで挟持したプレパラートを作成し、ホットステージ上で加熱しながら偏光顕微鏡観察することで測定する。
また、示差走査熱量測定(DSC)により測定することもできる。
単位は「℃」を用いる。
niが高いほど高温でもネマチック相を維持することができ、駆動温度範囲を広く取ることができるが、製造時に加熱溶解させるため高温過ぎると液晶を加熱劣化させることや、高温溶解設備が必要なため好ましくない。またTniが高い程、低温での保存安定性が乏しくなる傾向であるため、高Tniと保存安定性の両立は難しい。

本発明に係る液晶組成物の液晶相上限温度(Tni)は、液晶表示素子の外温のコントロールが可能な屋内や自動車内などで使用する場合や屋外で使用する場合に応じて適宜設定することができるが、駆動温度範囲の観点から、100℃以上であることが好ましく、110~170℃であることが好ましく、115℃~165℃であることが好ましい。
<Characteristic values of liquid crystal composition>
The liquid crystal phase upper limit temperature (T ni ) is the temperature at which the liquid crystal composition undergoes phase transition from a nematic phase to an isotropic phase.
T ni is measured by preparing a preparation in which the liquid crystal composition is sandwiched between a slide glass and a cover glass, and observing the preparation under a polarizing microscope while heating the preparation on a hot stage.
It can also be measured by differential scanning calorimetry (DSC).
The unit used is "℃".
The higher the Tni , the more the nematic phase can be maintained even at high temperatures, and the wider the operating temperature range can be, but since the liquid crystal is heated and melted during production, if the temperature is too high, it is not preferable because the liquid crystal is thermally deteriorated and high-temperature melting equipment is required. Also, the higher the Tni , the poorer the storage stability at low temperatures tends to be, so it is difficult to achieve both high Tni and storage stability.
.
The upper limit temperature (T ni ) of the liquid crystal phase of the liquid crystal composition according to the present invention can be appropriately set depending on whether the liquid crystal display element is used indoors, in a car, or outdoors, where the external temperature can be controlled, and from the viewpoint of the driving temperature range, it is preferably 100° C. or higher, more preferably 110 to 170° C., and even more preferably 115 to 165° C.

液晶相下限温度(T→n)は、液晶組成物が他の相(ガラス相、スメクチック相、結晶相)からネマチック相へ相転移する温度である。
→nは、液晶組成物をガラスキャピラリーに充填し、-70℃の冷媒に浸漬させて液晶組成物を他の相に相転移させ、温度を上昇させながら観察することで測定する。
また、示差走査熱量測定(DSC)により測定することもできる。
単位は「℃」を用いる。
→nが低いほど低温でもネマチック相を維持することができるため、駆動温度範囲を広く取ることができる。
本発明に係る液晶組成物の液晶相下限温度(T→n)は、駆動温度の観点から、10℃以下であることが好ましく、-70~0℃であることが好ましく、-40~-5℃であることが好ましい。
The liquid crystal phase lower limit temperature (T →n ) is the temperature at which the liquid crystal composition undergoes phase transition from another phase (glass phase, smectic phase, crystalline phase) to the nematic phase.
T →n is measured by filling a glass capillary with the liquid crystal composition, immersing it in a refrigerant at −70° C. to cause the liquid crystal composition to undergo phase transition to another phase, and observing while increasing the temperature.
It can also be measured by differential scanning calorimetry (DSC).
The unit used is "℃".
The lower T →n is, the more the nematic phase can be maintained even at low temperatures, and therefore the wider the operating temperature range can be.
The liquid crystal phase lower limit temperature (T →n ) of the liquid crystal composition according to the present invention is preferably 10°C or lower, more preferably -70 to 0°C, and even more preferably -40 to -5°C, from the viewpoint of driving temperature.

Δn(屈折率異方性)は、後述する光学センサで用いられる近赤外領域のΔnと相関する。
Δnが大きいほど対象とする波長の光の位相変調力が大きくなるため特に光学センサ類に好適である。
25℃、589nmにおけるΔnはアッベ屈折計を用いて液晶組成物の異常光屈折率(n)と常光屈折率(n)の差(n-n)から求める。
また、位相差測定装置から、Δnを求めることもできる。
位相差Re、液晶層の厚さd及びΔnとの間には、Δn=Re/dの関係が成り立つ。
セルギャップ(d)が約3.0μmで、アンチパラレルラビング処理を施したポリイミド配向膜付きガラスセルに液晶組成物を注入し、面内のReを位相差フィルム・光学材料検査装置RETS-100(大塚電子株式会社製)で測定する。
測定は温度25℃、589nmの条件で行い、単位はない。Δnを大きくしようとするとπ共役が伸長した化合物を多用する手法があるが、同時に回転粘度(γ)も増大するので、応答速度の観点から多用することは難しい。
本発明に係る液晶組成物の25℃、589nmにおけるΔnは、波長の光の位相変調力の観点から、0.40以上であることが好ましく、0.40~0.55であることが好ましく、0.41~0.50であることが好ましく、0.43~0.48であることが好ましい。
Δn (refractive index anisotropy) correlates with Δn in the near-infrared region used in the optical sensor described below.
The larger Δn is, the greater the phase modulation power of light of the target wavelength is, and therefore, it is particularly suitable for optical sensors.
Δn at 25° C. and 589 nm is determined from the difference ( ne −no ) between the extraordinary refractive index ( ne ) and the ordinary refractive index (no) of the liquid crystal composition using an Abbe refractometer.
Also, Δn can be obtained from a phase difference measuring device.
The relationship between the retardation Re, the thickness d of the liquid crystal layer, and Δn is Δn=Re/d.
A liquid crystal composition is injected into a glass cell having a cell gap (d) of about 3.0 μm and a polyimide alignment film that has been subjected to anti-parallel rubbing treatment, and the in-plane Re is measured using a retardation film/optical material inspection device RETS-100 (manufactured by Otsuka Electronics Co., Ltd.).
The measurement was performed at 25° C. and 589 nm, and has no unit. In order to increase Δn, there is a method of using a compound with extended π-conjugation, but since the rotational viscosity (γ 1 ) also increases at the same time, it is difficult to use it frequently from the viewpoint of response speed.
The Δn at 25° C. and 589 nm of the liquid crystal composition according to the present invention is preferably 0.40 or more, more preferably 0.40 to 0.55, more preferably 0.41 to 0.50, and even more preferably 0.43 to 0.48, from the viewpoint of the phase modulation power of light of the wavelength.

回転粘度(γ)は、液晶分子の回転に関わる粘性率である。
γは、液晶組成物をセルギャップ約10μmのガラスセルに充填、電圧を50V印可し、LCM-2(東陽テクニカ製)を用いて測定することができる。
誘電率異方性が正の液晶組成物の場合は水平配向セル、誘電率異方性が負の液晶組成物の場合は垂直配向セルを使用する。
測定は温度25℃で行い、単位はmPa・sを用いる。
γが小さいほど液晶組成物の応答速度が速くなるためいずれの液晶表示素子においても好適である。
本発明に係る液晶組成物の25℃における液晶組成物の回転粘度(γ)は、応答速度の観点から、150~1200mPa・sであることが好ましく、200~900mPa・sであることが好ましく、250~700mPa・sであることが好ましい。
The rotational viscosity (γ 1 ) is the viscosity coefficient related to the rotation of the liquid crystal molecules.
γ 1 can be measured by filling the liquid crystal composition into a glass cell having a cell gap of about 10 μm, applying a voltage of 50 V, and using LCM-2 (manufactured by Toyo Corporation).
In the case of a liquid crystal composition having a positive dielectric anisotropy, a horizontally aligned cell is used, whereas in the case of a liquid crystal composition having a negative dielectric anisotropy, a vertically aligned cell is used.
The measurement is carried out at a temperature of 25° C., and the unit is mPa·s.
The smaller γ1 is, the faster the response speed of the liquid crystal composition becomes, and therefore, it is suitable for any liquid crystal display element.
The rotational viscosity (γ 1 ) of the liquid crystal composition according to the present invention at 25° C. is preferably from 150 to 1200 mPa·s, more preferably from 200 to 900 mPa·s, and even more preferably from 250 to 700 mPa·s, from the viewpoint of response speed.

高周波数領域における誘電率異方性は、高いほど目的周波数帯の電波に対する位相変調力が大きくなるため、特にアンテナ用途に好適である。
また、アンテナ用途では高周波数領域における誘電正接が小さいほど目的周波数帯のエネルギー損失が小さくなるため好適である。
本発明に係る液晶組成物においては、高周波数領域の特性を代表して10GHzにおける誘電率異方性Δε及び誘電正接の平均値tanδisoを測定した。
Δε=(εr∥-εr⊥)であり、tanδiso=(2εr⊥tanδ+εr∥tanδ)/(2εr⊥r∥)である。
ここで、「εr」は誘電定数、「tanδ」は誘電正接であり、添え字の「∥」は液晶の配向方向に対して並行方向、「⊥」は液晶の配向方向に対して垂直方向の成分であることを表す。
The higher the dielectric anisotropy in the high frequency region, the greater the phase modulation power for radio waves in the target frequency band, and therefore the material is particularly suitable for use in antennas.
In addition, in antenna applications, the smaller the dielectric tangent in the high frequency range, the smaller the energy loss in the target frequency band, which is preferable.
In the liquid crystal composition according to the present invention, the dielectric anisotropy Δε r and the average value tan δ iso of the dielectric tangent at 10 GHz were measured as representative characteristics in the high frequency range.
Δε r = (ε r∥ - ε r⊥ ) and tan δ iso = (2ε r⊥ tan δ + ε r∥ tan δ∥ )/(2ε r⊥ + ε r∥ ).
Here, "εr" is the dielectric constant, "tan δ" is the dielectric tangent, the subscript "∥" indicates the component parallel to the alignment direction of the liquid crystal, and "⊥" indicates the component perpendicular to the alignment direction of the liquid crystal.

Δε及びtanδisoは以下の方法により測定することができる。
まず、液晶組成物を、ポリテトラフルオロエチレン(PTFE)製の毛細管へと導入する。
ここで用いた毛細管は0.80mmの内半径及び0.835mmの外半径を有し、有効長は4.0cmである。
液晶組成物を封入した毛細管を、10GHzの共鳴周波数を有する空洞共振器(EMラボ株式会社製)の中心へと導入する。
この空洞共振器は30mmの直径、26mm幅の外形を有する。
そして信号を入力し、出力された信号の結果を、ネットワーク・アナライザ(キーサイト・テクノロジー株式会社製)を用いて記録する。
液晶組成物を封入しないPTFE毛細管の共鳴周波数等と液晶組成物を封入したPTFE毛細管の共鳴周波数等の差を用いて、10GHzにおける誘電定数(ε)及び損失角(δ)を決定する。
そして、得られたδの正接が誘電正接(tanδ)である。
なお、液晶組成物を封入したPTFE毛細管を用いた共鳴周波数等は、液晶分子の配向制御により、液晶分子の配向方向に垂直な特性成分の値及び平行な特性成分の値として求める。
液晶分子をPTFE毛細管の垂直方向(有効長方向に対して垂直)に配列させたり、平行方向(有効長方向に対して平行)に配列させたりするために、永久磁石又は電磁石の磁界を用いる。
磁界は、例えば、磁極間距離45mm、中央付近の磁界の強さは0.23テスラである。
液晶組成物を封入したPTFE毛細管を磁界に対して並行又は垂直に回転させることで所望の特性成分を得る。
測定は温度25℃で行い、Δε及びtanδiso共に単位はない。
Δε r and tan δ iso can be measured by the following method.
First, a liquid crystal composition is introduced into a capillary tube made of polytetrafluoroethylene (PTFE).
The capillary used here has an inner radius of 0.80 mm and an outer radius of 0.835 mm, with an effective length of 4.0 cm.
The capillary tube containing the liquid crystal composition is introduced into the center of a cavity resonator (manufactured by EM Lab Co., Ltd.) having a resonance frequency of 10 GHz.
The cavity has an outer diameter of 30 mm and a width of 26 mm.
A signal is then input, and the result of the output signal is recorded using a network analyzer (manufactured by Keysight Technologies, Inc.).
The dielectric constant (ε r ) and loss angle (δ) at 10 GHz are determined using the difference between the resonance frequency of a PTFE capillary tube containing no liquid crystal composition and the resonance frequency of a PTFE capillary tube containing a liquid crystal composition.
The tangent of the obtained δ is the dielectric tangent (tan δ).
The resonance frequency and the like using a PTFE capillary tube filled with a liquid crystal composition are determined as values of characteristic components perpendicular and parallel to the alignment direction of the liquid crystal molecules by controlling the alignment of the liquid crystal molecules.
The magnetic field of a permanent magnet or electromagnet is used to align the liquid crystal molecules in the vertical direction (perpendicular to the effective length direction) or in the parallel direction (parallel to the effective length direction) of the PTFE capillary tube.
The magnetic field has, for example, a pole-to-pole distance of 45 mm and a magnetic field strength of 0.23 Tesla near the center.
The PTFE capillary tube containing the liquid crystal composition is rotated parallel or perpendicular to the magnetic field to obtain the desired characteristic components.
The measurements were carried out at a temperature of 25° C., and both Δε r and tan δ iso have no unit.

本発明に係る液晶組成物の25℃におけるΔεはより大きいことが好ましいが、GHz帯における位相変調力の観点から、0.90以上であることが好ましく、0.90~1.50であることが好ましく、0.95~1.40であることが好ましく、1.00~1.35であることが好ましい。
本発明に係る液晶組成物の25℃におけるtanδisoはより小さいことが好ましいが、GHz帯における損失の観点から、0.025以下であることが好ましく、0.001~0.025であることが好ましく、0.003~0.020であることが好ましく、0.005~0.017であることが好ましく、0.007~0.015であることが好ましく、0.008~0.013であることが好ましく、0.009~0.012が好ましい。
The Δεr at 25° C. of the liquid crystal composition according to the present invention is preferably larger, and from the viewpoint of phase modulation power in the GHz band, it is preferably 0.90 or more, more preferably 0.90 to 1.50, more preferably 0.95 to 1.40, and even more preferably 1.00 to 1.35.
The tan δ iso at 25° C. of the liquid crystal composition according to the present invention is preferably smaller, and from the viewpoint of loss in the GHz band, it is preferably 0.025 or less, more preferably 0.001 to 0.025, more preferably 0.003 to 0.020, more preferably 0.005 to 0.017, more preferably 0.007 to 0.015, more preferably 0.008 to 0.013, and more preferably 0.009 to 0.012.

(液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナ)
以下、本発明に係る液晶組成物を用いた液晶表示素子、センサ、液晶レンズ、光通信機器、アンテナについて説明する。
(Liquid crystal display elements, sensors, liquid crystal lenses, optical communication devices and antennas)
A liquid crystal display element, a sensor, a liquid crystal lens, an optical communication device, and an antenna using the liquid crystal composition according to the present invention will be described below.

本発明に係る液晶表示素子は、上述の液晶組成物を用いたことを特徴とし、好ましくはアクティブマトリクス方式又はパッシブマトリクス方式で駆動する。
また、本発明に係る液晶表示素子は、上述の液晶組成物の液晶分子の配向方向を可逆的に変えることにより誘電率を可逆的にスイッチングする液晶表示素子であることが好ましい。
The liquid crystal display element according to the present invention is characterized by using the above-mentioned liquid crystal composition, and is preferably driven by an active matrix system or a passive matrix system.
The liquid crystal display element according to the present invention is preferably a liquid crystal display element in which the dielectric constant is reversibly switched by reversibly changing the alignment direction of the liquid crystal molecules of the above-mentioned liquid crystal composition.

本発明に係るセンサは、上述の液晶組成物を用いたことを特徴とし、例えば、その態様として、電磁波、可視光又は赤外光を利用する測距センサ、温度変化を利用する赤外線センサ、コレステリック液晶のピッチ変化による反射光波長変化を利用する温度センサ、反射光波長変化を利用する圧力センサ、組成変化による反射光波長変化を利用する紫外線センサ、電圧、電流による温度変化を利用する電気センサ、放射線粒子の飛跡に伴った温度変化を利用する放射線センサ、超音波の機械的振動による液晶分子配列変化を利用する超音波センサ、温度変化による反射光波長変化又は電界による液晶分子配列変化を利用する電磁界センサ等が挙げられる。
測距センサとしては、光源を用いるLiDAR(Light Detection And Ranging)用であることが好ましい。
LiDARとしては、人工衛星用、航空機用、無人航空機(ドローン)用、自動車用、鉄道用、船舶用が好ましい。
自動車用としては、自動運転自動車用が特に好ましい。
光源はLED又はレーザであることが好ましく、レーザであることが好ましい。
LiDARに用いられる光は赤外光であることが好ましく、波長は800~2000nmであることが好ましい。
特に、905nm又は1550nmの波長の赤外レーザが好ましい。
用いる光検出器のコストや全天候における感度を重視する場合は905nmの赤外レーザが好ましく、人間の視覚に関する安全性を重視する場合には1550nmの赤外レーザが好ましい。
本発明に係る液晶組成物は、高いΔnを示すことから、可視光、赤外光及び電磁波領域での位相変調力が大きく、検出感度に優れたセンサを提供できる。
The sensor according to the present invention is characterized by using the above-mentioned liquid crystal composition, and examples of its embodiments include a distance measuring sensor that uses electromagnetic waves, visible light or infrared light, an infrared sensor that uses a change in temperature, a temperature sensor that uses a change in the wavelength of reflected light due to a change in the pitch of a cholesteric liquid crystal, a pressure sensor that uses a change in the wavelength of reflected light, an ultraviolet sensor that uses a change in the wavelength of reflected light due to a change in composition, an electrical sensor that uses a change in temperature due to a voltage or current, a radiation sensor that uses a temperature change accompanying the track of a radiation particle, an ultrasonic sensor that uses a change in the arrangement of liquid crystal molecules due to mechanical vibration of ultrasonic waves, and an electromagnetic field sensor that uses a change in the wavelength of reflected light due to a change in temperature or a change in the arrangement of liquid crystal molecules due to an electric field.
The distance measurement sensor is preferably for use in LiDAR (Light Detection and Ranging) that uses a light source.
LiDAR is preferably used for artificial satellites, aircraft, unmanned aerial vehicles (drones), automobiles, railways, and ships.
For automobiles, self-driving automobiles are particularly preferred.
The light source is preferably an LED or a laser, preferably a laser.
The light used in LiDAR is preferably infrared light, and its wavelength is preferably 800 to 2000 nm.
In particular, an infrared laser with a wavelength of 905 nm or 1550 nm is preferred.
When the cost of the photodetector to be used and sensitivity in all weather conditions are important, a 905 nm infrared laser is preferred, whereas when safety regarding human vision is important, a 1550 nm infrared laser is preferred.
The liquid crystal composition according to the present invention exhibits a high Δn value, and therefore has a large phase modulation power in the visible light, infrared light and electromagnetic wave regions, and can provide a sensor with excellent detection sensitivity.

本発明に係る液晶レンズは、上述の液晶組成物を用いたことを特徴とし、例えば、その態様の一つとして、第1の透明電極層と、第2の透明電極層と、前記第1の透明電極層及び前記第2の透明電極層の間に設けられた上述の液晶組成物を含む液晶層と、前記第2の透明電極層及び前記液晶層の間に設けられた絶縁層と、前記絶縁層及び前記液晶層の間に設けられた高抵抗層とを有する。
本発明に係る液晶レンズは、例えば、2D、3Dの切り替えレンズ、カメラの焦点調節用のレンズなどとして利用される。
The liquid crystal lens according to the present invention is characterized by using the above-mentioned liquid crystal composition, and for example, in one embodiment thereof, has a first transparent electrode layer, a second transparent electrode layer, a liquid crystal layer containing the above-mentioned liquid crystal composition provided between the first transparent electrode layer and the second transparent electrode layer, an insulating layer provided between the second transparent electrode layer and the liquid crystal layer, and a high-resistance layer provided between the insulating layer and the liquid crystal layer.
The liquid crystal lens according to the present invention is used, for example, as a 2D/3D switching lens, a lens for adjusting the focus of a camera, and the like.

本発明に係る光通信機器は、上述の液晶組成物を用いたことを特徴とし、例えば、その態様の一つとして、反射層(電極)の上に、複数の画素の各々を構成する液晶が2次元状に配置された液晶層を有する構成のLCOS(Liquid crystal on silicon)が挙げられる。
本発明に係る光通信機器は、例えば、空間位相変調器として利用される。
The optical communication device according to the present invention is characterized by using the above-mentioned liquid crystal composition. For example, one of the embodiments of the optical communication device is a liquid crystal on silicon (LCOS) having a configuration in which a liquid crystal layer in which liquid crystals constituting each of a plurality of pixels are two-dimensionally arranged on a reflective layer (electrode).
The optical communication device according to the present invention is used, for example, as a spatial phase modulator.

本発明に係るアンテナは、上述の液晶組成物を用いたことを特徴とする。
本発明に係るアンテナは、より具体的には、複数のスロットを備えた第1基板と、前記第1基板と対向し、給電部が設けられた第2基板と、前記第1基板と前記第2基板との間に設けられた第1誘電体層と、前記複数のスロットに対応して配置される複数のパッチ電極と、前記パッチ電極が設けられた第3基板と、前記第1基板と前記第3基板との間に設けられた液晶層とを備え、前記液晶層が、上述の液晶組成物を含有する。
本発明に係る液晶組成物を用いることにより、熱等の外部刺激に対して高い信頼性を有するアンテナを提供できる。
これにより、マイクロ波又はミリ波の電磁波に対してより大きな位相制御を可能とするアンテナを提供できる。
本発明に係るアンテナは、衛星通信に使用されるKa帯周波数又はK帯周波数もしくはKu帯周波数において動作することが好ましい。
本発明に係るアンテナは、ラジアルラインスロットアレイと、パッチアンテナアレイとを組み合わせた構成であることが好ましい。
本発明に係るアンテナの構造としては、例えば国際公開第2021/157189号パンフレット等に記載されている事項等を参酌し、適用することができる。
The antenna according to the present invention is characterized by using the above-mentioned liquid crystal composition.
More specifically, the antenna of the present invention comprises a first substrate having a plurality of slots, a second substrate facing the first substrate and having a power supply section, a first dielectric layer provided between the first substrate and the second substrate, a plurality of patch electrodes arranged corresponding to the plurality of slots, a third substrate having the patch electrodes provided thereon, and a liquid crystal layer provided between the first substrate and the third substrate, wherein the liquid crystal layer contains the above-mentioned liquid crystal composition.
By using the liquid crystal composition according to the present invention, it is possible to provide an antenna that is highly reliable against external stimuli such as heat.
This makes it possible to provide an antenna that allows greater phase control for microwave or millimeter wave electromagnetic waves.
Preferably, the antenna according to the invention operates in the Ka or K or Ku band frequencies used for satellite communications.
The antenna according to the present invention preferably has a configuration in which a radial line slot array and a patch antenna array are combined.
The structure of the antenna according to the present invention can be applied by taking into consideration the matters described in, for example, International Publication No. 2021/157189.

以下、実施例を挙げて本発明を更に記述するが、本発明はこれらの実施例に限定されるものではない。
以下の実施例及び比較例の組成物は各化合物を表中の割合で含有し、含有量は「質量%」で記載した。
なお、シス体とトランス体を取りうる化合物は特に断りがない限りトランス体を表す。
(実施例1)式(I-1)で表される化合物の製造
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.
The compositions of the following Examples and Comparative Examples contained each compound in the proportions shown in the table, and the contents are shown in "mass %".
In addition, compounds which can take either cis or trans form will represent the trans form unless otherwise specified.
Example 1: Preparation of the compound represented by formula (I-1)

Figure 0007464204000136
Figure 0007464204000136

窒素雰囲気下、反応容器に式(I-1-1)で表される化合物30.0g、ヨウ化銅(I)0.75g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド1.5g、トリエチルアミン50mL、テトラヒドロフラン100mLを加えた。次に、室温で攪拌しながら、式(I-1-2)で表される化合物20gをテトラヒドロフラン100mLに溶解させた溶液を滴下し、室温で2時間攪拌した。そして、反応終了後、反応液に10質量%塩酸を注ぎ、トルエンで抽出した。有機層を食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=1/3)により精製を行うことによって、式(I-1-3)で表される化合物29.0gを得た。
次に、窒素雰囲気下、反応容器に式(I-1-3)で表される化合物29.0g、ヨウ化銅(I)0.7g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド1.25g、トリエチルアミン50mL、N,N-ジメチルホルムアミド150mLを加えた。そして、70℃で加熱しながら、トリメチルシリルアセチレン8.4gをN,N-ジメチルホルムアミド25mLに溶解させた溶液を滴下し、70℃で2時間攪拌した。反応終了後、反応液に10質量%塩酸を注ぎ、トルエンで抽出した。有機層を食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び溶媒留去を行った。更に炭酸カリウム10gを加え、メタノール200mlを加えた後、反応容器を50℃に加熱し2時間反応させた。そして、反応液をトルエンで抽出し、有機層を食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び媒留去を行った。ついで、この反応物に4-ブロモー2-フルオロアニリン16.5g、ヨウ化銅(I)0.65g、テトラキス(トリフェニルホスフィン)パラジウム2.0g、トリエチルアミン50mL、N,N-ジメチルホルムアミド150mLを加えた。反応容器を85℃に加熱し、更に3時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄した後、トルエンによる再結晶を行うことによって、式(I-1-4)で表される化合物9.3gを得た。
反応容器に式(I-1-4)で表される化合物27g、ジクロロメタン100ml、1,1-チオカルボニルジイミダゾール23g加え、2時間加熱還流行った。反応終了後、有機層を食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-1)で表される化合物25.5gを得た。
MS(EI):m/z=433
(実施例2)式(I-2)で表される化合物の製造
Under a nitrogen atmosphere, 30.0 g of the compound represented by formula (I-1-1), 0.75 g of copper iodide (I), 1.5 g of bis(triphenylphosphine)palladium (II) dichloride, 50 mL of triethylamine, and 100 mL of tetrahydrofuran were added to a reaction vessel. Next, while stirring at room temperature, a solution in which 20 g of the compound represented by formula (I-1-2) was dissolved in 100 mL of tetrahydrofuran was dropped and stirred at room temperature for 2 hours. After the reaction was completed, 10% by mass hydrochloric acid was poured into the reaction solution and extracted with toluene. The organic layer was washed with saline, and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane = 1/3) to obtain 29.0 g of the compound represented by formula (I-1-3).
Next, under a nitrogen atmosphere, 29.0 g of the compound represented by formula (I-1-3), 0.7 g of copper iodide (I), 1.25 g of bis(triphenylphosphine)palladium (II) dichloride, 50 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to the reaction vessel. Then, while heating at 70° C., a solution in which 8.4 g of trimethylsilylacetylene was dissolved in 25 mL of N,N-dimethylformamide was dropped, and the mixture was stirred at 70° C. for 2 hours. After the reaction was completed, 10% by mass hydrochloric acid was poured into the reaction liquid, and the mixture was extracted with toluene. The organic layer was washed with saline, and then column chromatography (silica gel, toluene) and solvent distillation were performed. Further, 10 g of potassium carbonate was added, and 200 ml of methanol was added, and the reaction vessel was heated to 50° C. and reacted for 2 hours. Then, the reaction liquid was extracted with toluene, and the organic layer was washed with saline, and then column chromatography (silica gel, toluene) and solvent distillation were performed. Next, 16.5 g of 4-bromo-2-fluoroaniline, 0.65 g of copper (I) iodide, 2.0 g of tetrakis (triphenylphosphine) palladium, 50 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to the reaction mixture. The reaction vessel was heated to 85°C and stirred for an additional 3 hours. After the reaction was completed, a saturated aqueous solution of ammonium chloride was poured into the reaction mixture, which was then extracted with ethyl acetate. The organic layer was washed with saline and then recrystallized from toluene to obtain 9.3 g of the compound represented by formula (I-1-4).
27 g of the compound represented by formula (I-1-4), 100 ml of dichloromethane, and 23 g of 1,1-thiocarbonyldiimidazole were added to a reaction vessel and heated under reflux for 2 hours. After completion of the reaction, the organic layer was washed with saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 25.5 g of the compound represented by formula (I-1).
MS (EI): m/z=433
Example 2: Preparation of the compound represented by formula (I-2)

Figure 0007464204000137
Figure 0007464204000137

窒素雰囲気下、反応容器に式(I-2-1)で表される化合物28.0g、ヨウ化銅(I)0.75g、テトラキス(トリフェニルホスフィン)パラジウム2.0g、トリエチルアミン50mL、N,N-ジメチルホルムアミド150mLを加えた。反応容器を85℃で加熱しながら、式(I-2-2)で表される化合物20.0gをN,N-ジメチルホルムアミド50mLに溶解させた溶液を滴下し、85℃で3時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=3/1)により、式(I-2-3)で表される化合物28gを得た。
次いで、反応容器に式(I-2-3)で表される化合物28g、ジクロロメタン100ml、1,1-チオカルボニルジイミダゾール18g加え、2時間加熱還流行った。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-2)で表される化合物28.5gを得た。
MS(EI):m/z=413
(実施例3)式(I-3)で表される化合物の製造
Under a nitrogen atmosphere, 28.0 g of the compound represented by formula (I-2-1), 0.75 g of copper (I) iodide, 2.0 g of tetrakis (triphenylphosphine) palladium, 50 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to a reaction vessel. While heating the reaction vessel at 85°C, a solution in which 20.0 g of the compound represented by formula (I-2-2) was dissolved in 50 mL of N,N-dimethylformamide was dropped and stirred at 85°C for 3 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then 28 g of the compound represented by formula (I-2-3) was obtained by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane = 3/1).
Next, 28 g of the compound represented by formula (I-2-3), 100 ml of dichloromethane, and 18 g of 1,1-thiocarbonyldiimidazole were added to a reaction vessel and heated under reflux for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 28.5 g of the compound represented by formula (I-2).
MS (EI): m/z=413
Example 3: Preparation of the compound represented by formula (I-3)

Figure 0007464204000138
Figure 0007464204000138

窒素雰囲気下、反応容器に式(I-3-1)で表される化合物22.0g、テトラキス(トリフェニルホスフィン)パラジウム1.1g、炭酸カリウム20g、p-ヒドロキシフェニルホウ酸14g、テトラヒドロフラン150mL、水25mLを加え、反応容器を70℃に加熱した。反応終了後、反応液に10質量%塩酸を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、溶媒を留去し、ヘキサンによる分散洗浄を行うことによって、式(I-3-2)で表される化合物20gを得た。
次に、窒素雰囲気下、反応容器に式(I-3-2)で表される化合物20g、ジクロロメタン150ml、ピリジン10gを加え、氷水バスにより10℃以下に冷却した。次いで、トリフルオロメタンスルホン酸無水物25gのジクロロメタン溶液50mLをゆっくり滴下した。滴下終了後、室温で2時間攪拌した。反応終了後、反応液に10質量%塩酸を注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄した後、溶媒を留去し、カラムクロマトグラフィー(シリカゲル、ヘキサン)により精製し、式(I-3-3)で表される化合物30.0gを得た。
更に、窒素雰囲気下、反応容器に式(I-3-3)で表される化合物30.0g、ヨウ化銅(I)0.6g、テトラキス(トリフェニルホスフィン)パラジウム1.5g、トリエチルアミン75mL、N,N-ジメチルホルムアミド150mLを加えた。反応容器を85℃で加熱しながら、式(I-3-4)で表される化合物14.7gをN,N-ジメチルホルムアミド50mLに溶解させた溶液を滴下し、85℃で3時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=3/1)により、式(I-3-5)で表される化合物23.7gを得た。
次いで、反応容器に式(I-3-5)で表される化合物23.7g、ジクロロメタン100ml、1,1-チオカルボニルジイミダゾール18g加え、2時間加熱還流行った。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-3)で表される化合物22.5gを得た。
MS(EI):m/z=427
(実施例4)式(I-4)で表される化合物の製造
Under a nitrogen atmosphere, 22.0 g of the compound represented by formula (I-3-1), 1.1 g of tetrakis(triphenylphosphine)palladium, 20 g of potassium carbonate, 14 g of p-hydroxyphenylboric acid, 150 mL of tetrahydrofuran, and 25 mL of water were added to a reaction vessel, and the reaction vessel was heated to 70° C. After completion of the reaction, 10% by mass hydrochloric acid was poured into the reaction liquid, and the liquid was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then the solvent was distilled off, and dispersion washing with hexane was performed to obtain 20 g of the compound represented by formula (I-3-2).
Next, in a nitrogen atmosphere, 20 g of the compound represented by formula (I-3-2), 150 ml of dichloromethane, and 10 g of pyridine were added to a reaction vessel, and the mixture was cooled to 10° C. or lower in an ice-water bath. Then, 50 mL of a dichloromethane solution containing 25 g of trifluoromethanesulfonic anhydride was slowly added dropwise. After the addition was completed, the mixture was stirred at room temperature for 2 hours. After the reaction was completed, 10% by mass hydrochloric acid was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saline, and then the solvent was distilled off, and the mixture was purified by column chromatography (silica gel, hexane) to obtain 30.0 g of the compound represented by formula (I-3-3).
Further, under a nitrogen atmosphere, 30.0 g of the compound represented by formula (I-3-3), 0.6 g of copper (I) iodide, 1.5 g of tetrakis (triphenylphosphine) palladium, 75 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to the reaction vessel. While heating the reaction vessel at 85°C, a solution in which 14.7 g of the compound represented by formula (I-3-4) was dissolved in 50 mL of N,N-dimethylformamide was dropped, and the mixture was stirred at 85°C for 3 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saline, and then 23.7 g of the compound represented by formula (I-3-5) was obtained by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane = 3/1).
Next, 23.7 g of the compound represented by formula (I-3-5), 100 ml of dichloromethane, and 18 g of 1,1-thiocarbonyldiimidazole were added to a reaction vessel and heated under reflux for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 22.5 g of the compound represented by formula (I-3).
MS (EI): m/z=427
Example 4: Preparation of compound represented by formula (I-4)

Figure 0007464204000139
Figure 0007464204000139

窒素雰囲気下、反応容器に式(I-4-1)で表される化合物10.0g、式(I-4-2)で表される化合物6.4g、テトラキス(トリフェニルホスフィン)パラジウム0.3g、炭酸カリウム5g、テトラヒドロフラン50mL、水10mLを加え、反応容器を70℃に加熱した。反応終了後、反応液に10質量%塩酸を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、溶媒を留去し、カラムクロマトグラフィー(シリカゲル、トルエン)、及び再結晶(トルエン/ヘキサン=1/1)を行うことによって、式(I-4-3)で表される化合物7.2gを得た。
次に、反応容器に式(I-4-3)で表される化合物7.2g、ジクロロメタン50ml、1,1-チオカルボニル-ジ2(1H)ピリドン5.4g加え、2時間室温で反応させた。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-4)で表される化合物6.6gを得た。
MS(EI):m/z=413
(実施例5)式(I-5)で表される化合物の製造
Under a nitrogen atmosphere, 10.0 g of the compound represented by formula (I-4-1), 6.4 g of the compound represented by formula (I-4-2), 0.3 g of tetrakis(triphenylphosphine)palladium, 5 g of potassium carbonate, 50 mL of tetrahydrofuran, and 10 mL of water were added to a reaction vessel, and the reaction vessel was heated to 70° C. After the reaction was completed, 10% by mass hydrochloric acid was poured into the reaction solution, and the solution was extracted with ethyl acetate. The organic layer was washed with saturated saline, and the solvent was distilled off, followed by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=1/1) to obtain 7.2 g of the compound represented by formula (I-4-3).
Next, 7.2 g of the compound represented by formula (I-4-3), 50 ml of dichloromethane, and 5.4 g of 1,1-thiocarbonyl-di-2(1H)pyridone were added to a reaction vessel and reacted at room temperature for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 6.6 g of the compound represented by formula (I-4).
MS (EI): m/z=413
(Example 5) Preparation of the compound represented by formula (I-5)

Figure 0007464204000140
Figure 0007464204000140

窒素雰囲気下、反応容器に式(I-5-1)で表される化合物15.0g、テトラキス(トリフェニルホスフィン)パラジウム0.6g、炭酸カリウム12g、4-(ホルミルフェニル)ホウ酸8g、テトラヒドロフラン100mL、水15mLを加え、反応容器を70℃に加熱した。反応終了後、反応液に10質量%塩酸を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、溶媒を留去し、ヘキサンによる分散洗浄を行うことによって、式(I-5-2)で表される化合物12.5gを得た。
次に、窒素雰囲気下、反応容器に式(I-5-3)で表される化合物57g、テトラヒドロフラン150mLを加え、反応液は0℃以下に冷却した。ターシャリーブトキシカリウム7gを加え、30分攪拌した。ジクロロメタン150ml、ピリジン10gを加え、氷水バスにより10℃以下に冷却した。次いで、式(I-5-2)で表される化合物12.5gを溶解性させたテトラヒドロフラン溶液50mLをゆっくり滴下した。滴下終了後、室温で2時間攪拌した。反応終了後、反応液に10質量%塩酸を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、溶媒を留去し、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により、式(I-5)で表される化合物15.5gを得た。
MS(EI):m/z=422
(実施例6)式(I-6)で表される化合物の製造
Under a nitrogen atmosphere, 15.0 g of the compound represented by formula (I-5-1), 0.6 g of tetrakis(triphenylphosphine)palladium, 12 g of potassium carbonate, 8 g of 4-(formylphenyl)boric acid, 100 mL of tetrahydrofuran, and 15 mL of water were added to a reaction vessel, and the reaction vessel was heated to 70° C. After completion of the reaction, 10% by mass hydrochloric acid was poured into the reaction liquid, and the liquid was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then the solvent was distilled off, and dispersion washing with hexane was performed to obtain 12.5 g of the compound represented by formula (I-5-2).
Next, in a nitrogen atmosphere, 57 g of the compound represented by formula (I-5-3) and 150 mL of tetrahydrofuran were added to a reaction vessel, and the reaction solution was cooled to 0° C. or lower. 7 g of potassium tertiary butoxide was added, and the mixture was stirred for 30 minutes. 150 ml of dichloromethane and 10 g of pyridine were added, and the mixture was cooled to 10° C. or lower in an ice-water bath. Then, 50 mL of a tetrahydrofuran solution in which 12.5 g of the compound represented by formula (I-5-2) was dissolved was slowly added dropwise. After the addition was completed, the mixture was stirred at room temperature for 2 hours. After the reaction was completed, 10% by mass hydrochloric acid was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, and the solvent was removed by distillation, and 15.5 g of the compound represented by formula (I-5) was obtained by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1).
MS (EI): m/z=422
(Example 6) Preparation of compound represented by formula (I-6)

Figure 0007464204000141
Figure 0007464204000141

実施例2において式(I-2-1)で表される化合物を4-ブロモ-3-フルオロアニリン、式(I-2-2)で表される化合物を式(I-6-1)で表される化合物に置き換えた以外は同様の方法によって、式(I-6)で表される化合物を製造した。
MS(EI):m/z=333
(実施例7)式(I-7)で表される化合物の製造
The compound represented by formula (I-6) was produced in the same manner as in Example 2, except that the compound represented by formula (I-2-1) was replaced by 4-bromo-3-fluoroaniline, and the compound represented by formula (I-2-2) was replaced by the compound represented by formula (I-6-1).
MS (EI): m/z=333
(Example 7) Preparation of compound represented by formula (I-7)

Figure 0007464204000142
Figure 0007464204000142

窒素雰囲気下、反応容器に式(I-7-1)で表される化合物10.0g、(I-7-2)で表される化合物6.6g、テトラキス(トリフェニルホスフィン)パラジウム300mg、炭酸カリウム5.5g、テトラヒドロフラン75mL、水10mLを加え、反応容器を70℃に加熱した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、トルエンによる再結晶を行うことによって、式(I-7-3)で表される化合物8.0gを得た。
次に、反応容器に式(I-7-3)で表される化合物8.0g、ジクロロメタン40ml、1,1-チオカルボニルジイミダゾール3.6g加え、2時間加熱還流行った。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=3/1)により精製を行うことによって、式(I-7)で表される化合物8.8gを得た。
MS(EI):m/z=453
(実施例8)式(I-8)で表される化合物の製造
Under a nitrogen atmosphere, 10.0 g of the compound represented by formula (I-7-1), 6.6 g of the compound represented by formula (I-7-2), 300 mg of tetrakis(triphenylphosphine)palladium, 5.5 g of potassium carbonate, 75 mL of tetrahydrofuran, and 10 mL of water were added to a reaction vessel, and the reaction vessel was heated to 70° C. After completion of the reaction, a saturated aqueous solution of ammonium chloride was poured into the reaction solution, and the solution was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then recrystallized from toluene to obtain 8.0 g of the compound represented by formula (I-7-3).
Next, 8.0 g of the compound represented by formula (I-7-3), 40 ml of dichloromethane, and 3.6 g of 1,1-thiocarbonyldiimidazole were added to a reaction vessel and heated under reflux for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=3/1) to obtain 8.8 g of the compound represented by formula (I-7).
MS (EI): m/z=453
(Example 8) Preparation of compound represented by formula (I-8)

Figure 0007464204000143
Figure 0007464204000143

窒素雰囲気下、反応容器に式(I-8-1)で表される化合物27.0g、ヨウ化銅(I)0.75g、テトラキス(トリフェニルホスフィン)パラジウム2.1g、トリエチルアミン75mL、N,N-ジメチルホルムアミド100mLを加えた。反応容器を85℃で加熱しながら、式(I-8-2)で表される化合物22.0gをN,N-ジメチルホルムアミド50mLに溶解させた溶液を滴下し、85℃で6時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-8)で表される化合物30.5gを得た。
MS(EI):m/z=391
(実施例9)式(I-9)で表される化合物の製造
Under a nitrogen atmosphere, 27.0 g of the compound represented by formula (I-8-1), 0.75 g of copper iodide (I), 2.1 g of tetrakis (triphenylphosphine) palladium, 75 mL of triethylamine, and 100 mL of N,N-dimethylformamide were added to a reaction vessel. While heating the reaction vessel at 85°C, a solution in which 22.0 g of the compound represented by formula (I-8-2) was dissolved in 50 mL of N,N-dimethylformamide was dropped and stirred at 85°C for 6 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane = 2/1) to obtain 30.5 g of the compound represented by formula (I-8).
MS (EI): m/z=391
(Example 9) Preparation of compound represented by formula (I-9)

Figure 0007464204000144
Figure 0007464204000144

窒素雰囲気下、反応容器に式(I-9-1)で表される化合物29.0g、ヨウ化銅(I)0.75g、テトラキス(トリフェニルホスフィン)パラジウム2.0g、トリエチルアミン50mL、N,N-ジメチルホルムアミド150mLを加えた。反応容器を85℃で加熱しながら、式(I-9-2)で表される化合物24.0gをN,N-ジメチルホルムアミド50mLに溶解させた溶液を滴下し、85℃で3時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=3/1)により、式(I-9-3)で表される化合物33gを得た。
次いで、反応容器に式(I-9-4)で表される化合物33g、ジクロロメタン120ml、1,1-チオカルボニル-ジ2(1H)ピリドン22g加え、2時間室温で反応させた。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-9)で表される化合物28gを得た。
MS(EI):m/z=463
(実施例10)式(I-10)で表される化合物の製造
Under a nitrogen atmosphere, 29.0 g of the compound represented by formula (I-9-1), 0.75 g of copper iodide (I), 2.0 g of tetrakis (triphenylphosphine) palladium, 50 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to a reaction vessel. While heating the reaction vessel at 85 ° C., a solution in which 24.0 g of the compound represented by formula (I-9-2) was dissolved in 50 mL of N,N-dimethylformamide was dropped, and the mixture was stirred at 85 ° C. for 3 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then 33 g of the compound represented by formula (I-9-3) was obtained by column chromatography (silica gel, toluene) and recrystallization (toluene / hexane = 3 / 1).
Next, 33 g of the compound represented by formula (I-9-4), 120 ml of dichloromethane, and 22 g of 1,1-thiocarbonyl-di-2(1H)pyridone were added to a reaction vessel and reacted at room temperature for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 28 g of the compound represented by formula (I-9).
MS (EI): m/z=463
(Example 10) Preparation of compound represented by formula (I-10)

Figure 0007464204000145
Figure 0007464204000145

窒素雰囲気下、反応容器に式(I-10-1)で表される化合物29.0g、ヨウ化銅(I)0.75g、テトラキス(トリフェニルホスフィン)パラジウム2.0g、トリエチルアミン50mL、N,N-ジメチルホルムアミド150mLを加えた。反応容器を85℃で加熱しながら、式(I-10-2)で表される化合物20.0gをN,N-ジメチルホルムアミド50mLに溶解させた溶液を滴下し、85℃で3時間攪拌した。反応終了後、反応液に飽和塩化アンモニウム水溶液を注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=3/1)により、式(I-10-3)で表される化合物31gを得た。
次いで、反応容器に式(I-10-3)で表される化合物33g、ジクロロメタン120ml、1,1-チオカルボニル-ジ2(1H)ピリドン21g加え、2時間室温で反応させた。反応終了後、有機層を飽和食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル、トルエン)及び再結晶(トルエン/ヘキサン=2/1)により精製を行うことによって、式(I-10)で表される化合物23gを得た。
MS(EI):m/z=445
Under a nitrogen atmosphere, 29.0 g of the compound represented by formula (I-10-1), 0.75 g of copper iodide (I), 2.0 g of tetrakis (triphenylphosphine) palladium, 50 mL of triethylamine, and 150 mL of N,N-dimethylformamide were added to a reaction vessel. While heating the reaction vessel at 85 ° C., a solution in which 20.0 g of the compound represented by formula (I-10-2) was dissolved in 50 mL of N,N-dimethylformamide was dropped, and the mixture was stirred at 85 ° C. for 3 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was poured into the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline, and then 31 g of the compound represented by formula (I-10-3) was obtained by column chromatography (silica gel, toluene) and recrystallization (toluene / hexane = 3 / 1).
Next, 33 g of the compound represented by formula (I-10-3), 120 ml of dichloromethane, and 21 g of 1,1-thiocarbonyl-di-2(1H)pyridone were added to a reaction vessel and reacted at room temperature for 2 hours. After completion of the reaction, the organic layer was washed with saturated saline and then purified by column chromatography (silica gel, toluene) and recrystallization (toluene/hexane=2/1) to obtain 23 g of the compound represented by formula (I-10).
MS (EI): m/z=445

(液晶組成物の調製と評価)
以下の物性値を示す母体液晶(LC-1)を調製した。値はいずれも実測値である。
n-i(ネマチック相-等方性液体相転移温度):74.0℃
Δε(25℃、1kHzにおける誘電率異方性) :5.11
Δn(25℃、589nmにおける屈折率異方性):0.141
γ(25℃における回転粘性係数) :107mPa・s
(Preparation and Evaluation of Liquid Crystal Composition)
A base liquid crystal (LC-1) was prepared, which exhibited the following physical properties. All values were actually measured.
T n-i (nematic phase-isotropic liquid phase transition temperature): 74.0° C.
Δε (dielectric anisotropy at 25 ° C. and 1 kHz): 5.11
Δn (refractive index anisotropy at 25° C. and 589 nm): 0.141
γ 1 (rotational viscosity coefficient at 25° C.): 107 mPa·s

母体液晶(LC-1)に対して、実施例で得た化合物(I-1)~(I-10)及びインデン構造を採用しない式(C-1)~(C-2)で表される化合物を添加し、液晶組成物100質量%中に各化合物をそれぞれ0質量%、5質量%、10質量%含む液晶組成物を調製した。
そして、最小二乗法を用いて各化合物100質量%におけるΔn及びΔεの外挿値を求めた。結果を表1に示す。
Compounds (I-1) to (I-10) obtained in the Examples and compounds represented by formulas (C-1) to (C-2) not adopting an indene structure were added to a base liquid crystal (LC-1) to prepare liquid crystal compositions containing each compound in an amount of 0 mass %, 5 mass %, or 10 mass % based on 100 mass % of the liquid crystal composition.
The least squares method was used to determine the extrapolated values of Δn and Δεr at 100% by mass of each compound. The results are shown in Table 1.

(保存安定性試験)
母体液晶(LC-1)に対して、実施例で得た化合物(I-1)~(I-10)及びインデン構造を採用しない式(C-1)~(C-2)で表される化合物を添加し、液晶組成物100質量%中に各化合物をそれぞれ5質量%含む液晶組成物を調整した。
1mLのサンプル瓶(マルエム社製)に調整した液晶組成物を0.5g秤量し、150℃、250Paで10分間脱気による脱泡を実施した。その後乾燥窒素を用いてパージし、備え付けの蓋をした。これを0℃の温度制御式恒温槽(エスペック社製、SH-241)の中で2週間にわたって保存し、1週間ごとに目視にて液晶組成物の結晶化の発生を確認した。1週目の目視にて結晶化が確認されなかったものを「〇」、結晶化が確認されたものを「×」とした。結果を表1に示す。
(Storage stability test)
Compounds (I-1) to (I-10) obtained in the Examples and compounds represented by formulas (C-1) to (C-2) not adopting an indene structure were added to a base liquid crystal (LC-1) to prepare liquid crystal compositions containing 5% by mass of each compound in 100% by mass of the liquid crystal composition.
0.5 g of the prepared liquid crystal composition was weighed into a 1 mL sample bottle (manufactured by Maruemu Co., Ltd.) and degassed for 10 minutes at 150°C and 250 Pa. The bottle was then purged with dry nitrogen and the attached lid was placed on. This was stored in a temperature-controlled thermostatic chamber (SH-241, manufactured by Espec Corp.) at 0°C for two weeks, and the occurrence of crystallization of the liquid crystal composition was visually confirmed every week. Those in which no crystallization was visually confirmed after the first week were marked with "◯", and those in which crystallization was confirmed were marked with "X". The results are shown in Table 1.

Figure 0007464204000146
Figure 0007464204000146

Figure 0007464204000147
Figure 0007464204000147

実施例13及び比較例1、実施例16及び比較例2より、インデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物は、Δn及びΔεが大きいことが確認された。
とりわけ、イソチオシアネート基(-NCS)を有する化合物は、Δnとして0.35以上を示した。
また、インデン構造とイソチオシアネート基(-NCS)基をはじめとする所定の側鎖構造を有する一般式(i)で表される化合物は、低温での保存性が良好であることも確認された。
From Example 13, Comparative Example 1, Example 16 and Comparative Example 2, it was confirmed that the compound represented by general formula (i) having a specific side chain structure including an indene structure and an isothiocyanate group (-NCS) group has large Δn and Δε r .
In particular, the compounds having an isothiocyanate group (-NCS) exhibited a Δn of 0.35 or more.
It was also confirmed that the compound represented by general formula (i) having a specific side chain structure including an indene structure and an isothiocyanate group (-NCS) group has good storage stability at low temperatures.

また、一般式(i)で表される化合物を用いて表4に記載のLC-01~02を調製した。
なお、化合物の記載は以下の略号を用い、シス体とトランス体を取りうる化合物は特に断りがない限りトランス体を表す。
<環構造>
In addition, LC-01 to LC-02 shown in Table 4 were prepared using the compound represented by general formula (i).
The compounds are described using the following abbreviations, and compounds which can take either cis or trans form are represented as trans forms unless otherwise specified.
<Ring structure>

Figure 0007464204000148
Figure 0007464204000148

<末端構造> <Terminal structure>

Figure 0007464204000149

(ただし、表中のnは自然数である。)
Figure 0007464204000149

(However, n in the table is a natural number.)

<連結構造> <Interlocking structure>

Figure 0007464204000150
(ただし、表中のnは自然数である。)
Figure 0007464204000150
(However, n in the table is a natural number.)

(ヒンダードフェノール系酸化防止剤) (Hindered phenol antioxidant)

Figure 0007464204000151
Figure 0007464204000151

(ヒンダードアミン系光安定剤) (Hindered amine light stabilizer)

Figure 0007464204000152
Figure 0007464204000152

Figure 0007464204000153
Figure 0007464204000153

(実施例18~31)
LC-01~02と、ヒンダードフェノール系酸化防止剤(XX-1)~(XX-3)と、ヒンダードアミン系光安定剤(YY-1)~(YY-2)とを用いて表5~7に記載された液晶組成物を調製し、その物性値を測定し、<保存性試験>を行った。結果を表5~7に示す。
<保存性試験>
1mLのサンプル瓶(マルエム社製)に液晶組成物を0.5g秤量し150~250Paで10分間脱気による脱泡を実施した。その後乾燥窒素を用いてパージし、備え付けの蓋をした。これを25℃の温度制御式恒温槽(エスペック社製、SH-241)の中で2週間にわたって保存し、1週間ごとに目視にて液晶組成物の結晶化の発生を確認した。
(Examples 18 to 31)
Liquid crystal compositions shown in Tables 5 to 7 were prepared using LC-01 to 02, hindered phenol antioxidants (XX-1) to (XX-3), and hindered amine light stabilizers (YY-1) to (YY-2), and the physical properties of the compositions were measured and a storage stability test was performed. The results are shown in Tables 5 to 7.
<Storage test>
0.5 g of the liquid crystal composition was weighed into a 1 mL sample bottle (manufactured by Maruemu Co., Ltd.), and degassed for 10 minutes at 150 to 250 Pa. After that, the bottle was purged with dry nitrogen and the attached lid was placed on the bottle. This was stored in a temperature-controlled thermostatic chamber (SH-241, manufactured by Espec Corp.) at 25°C for two weeks, and the occurrence of crystallization of the liquid crystal composition was visually confirmed every week.

Figure 0007464204000154
Figure 0007464204000154

Figure 0007464204000155
Figure 0007464204000155

Figure 0007464204000156
Figure 0007464204000156

実施例18~19より、一般式(i)で表される化合物を用いた液晶組成物は、Tniが高く、Δnが大きく、Δεが大きく、tanδisoが小さく、室温での保存性が良好な液晶組成物であった。
更に、実施例20~31より、ヒンダードフェノール系酸化防止剤やヒンダードアミン系光安定剤を併用した場合においても、Tniが高く、Δnが大きく、Δεが大きく、tanδisoが小さく、室温での保存性が良好であることが確認された。
From Examples 18 to 19, the liquid crystal compositions using the compound represented by general formula (i) had high T ni , large Δn, large Δε r , small tan δ iso , and good storage stability at room temperature.
Furthermore, from Examples 20 to 31, it was confirmed that even when a hindered phenol-based antioxidant or a hindered amine-based light stabilizer was used in combination, T ni was high, Δn was large, Δε r was large, tan δ iso was small, and storage stability at room temperature was good.

本発明の化合物は、液晶組成物、液晶表示素子、センサ、液晶レンズ、光通信機器及びアンテナに利用することができる。The compounds of the present invention can be used in liquid crystal compositions, liquid crystal display elements, sensors, liquid crystal lenses, optical communication devices and antennas.

Claims (9)

下記一般式(i)
Figure 0007464204000157
(一般式(i)中、
破線は二重結合の位置を表し、
i1は、炭素原子数1~20のアルキル基を表し、
当該アルキル基中の1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-、-NH-CO-、-CH=CH-、-CF=CF-及び/又は-C≡C-で置換されていてもよく、
当該アルキル基中の1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
i1は、フッ素原子、シアノ基又はイソチオシアネート基を表し、
i1 は、1,4-フェニレン基(この基中に存在する1つの-CH=又は隣接していない2つ以上の-CH=は-N=に置き換えられても良い。)又はナフタレン-2,6-ジイル基を表し、
i2 は、1,4-フェニレン基を表し、
前記Ai1及びAi2中の1つ又は2つ以上の水素原子は、それぞれ独立して、置換基Si1によって置換されていてもよく、
置換基Si1は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、炭素原子数1~20のアルキル基のいずれかを表し、
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-及び/又は-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
置換基Si1が複数ある場合は、それらは同一であってもよく、異なっていてもよく、
i1及びLi2は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルファニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基又は炭素原子数1から20のアルキル基のいずれかを表し、
当該アルキル基における1つ又は2つ以上の-CH-は、それぞれ独立して、-O-、-S-、-CO-及び/又は-CS-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の-CH-CH-は、それぞれ独立して、-CH=CH-、-CF=CF-、-C≡C-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-CO-NH-及び/又は-NH-CO-で置換されていてもよく、
当該アルキル基における1つ又は2つ以上の水素原子は、それぞれ独立して、ハロゲン原子で置換されていてもよいが、
酸素原子と酸素原子が直接結合することはなく、
i1及びZi2は、それぞれ独立して、単結合、-CH=CH-、-C≡C-、式(Z i1/2 -5)で表される基、式(Z i1/2 -6)で表される基、式(Z i1/2 -11)で表される基、式(Z i1/2 -12)で表される基又は式(Z i1/2 -13)で表される基のいずれかを表し、
Figure 0007464204000158
(式(Z i1/2 -5)、式(Z i1/2 -6)、式(Z i1/2 -11)、式(Z i1/2 -12)又は式(Z i1/2 -13)中、
白点はインデン構造、A i1 又はA i2 への結合手を表し、
黒点はA i1 又はA i2 への結合手を表す。)
i1は、0~3の整数を表すが、
i2又はZi2が複数存在する場合は、それらはそれぞれ同一であってもよく、異なっていてもよい。)
で表される化合物。
The following general formula (i)
Figure 0007464204000157
(In the general formula (i),
The dashed lines represent the positions of the double bonds.
R i1 represents an alkyl group having 1 to 20 carbon atoms;
one or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH-, -NH-CO-, -CH=CH-, -CF=CF- and/or -C≡C-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
X i1 represents a fluorine atom, a cyano group, or an isothiocyanate group;
A i1 represents a 1,4-phenylene group (in which one -CH= or two or more non-adjacent -CH= groups may be replaced by -N=) or a naphthalene-2,6-diyl group;
A i2 represents a 1,4-phenylene group;
One or more hydrogen atoms in A i1 and A i2 may each independently be substituted by a substituent S i1 ;
the substituent S i1 represents any one of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, and an alkyl group having 1 to 20 carbon atoms;
One or more -CH 2 - in the alkyl group may each independently be substituted with -O-, -S- and/or -CO-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
When there are a plurality of substituents S i1 , they may be the same or different.
L i1 and L i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfanyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyano group, or an alkyl group having 1 to 20 carbon atoms;
One or more -CH 2 - in the alkyl group may each independently be substituted by -O-, -S-, -CO- and/or -CS-;
one or more -CH 2 -CH 2 - in the alkyl group may each independently be substituted by -CH=CH-, -CF=CF-, -C≡C-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -CO-NH- and/or -NH-CO-;
One or more hydrogen atoms in the alkyl group may be independently substituted with a halogen atom.
Oxygen atoms do not bond directly to each other,
Z i1 and Z i2 each independently represent a single bond, -CH=CH-, -C≡C-, a group represented by formula (Z i1/2 -5), a group represented by formula (Z i1/2 -6), a group represented by formula (Z i1/2 -11), a group represented by formula (Z i1/2 -12), or a group represented by formula (Z i1/2 -13);
Figure 0007464204000158
( In formula (Z i1/2 -5), formula (Z i1/2 -6), formula (Z i1/2 -11), formula (Z i1/2 -12) or formula (Z i1/2 -13),
The white dots represent bonds to the indene structure, A i1 or A i2 .
The black dots represent bonds to A i1 or A i2 .
n i1 represents an integer of 0 to 3,
When a plurality of A i2 or Z i2 are present, they may be the same or different.
A compound represented by the formula:
前記一般式(i)で表される化合物が、下記一般式(i-1)、(i-2)、(i-3)、(i-4)、(i-5)、(i-6)、(i-8)、(i-9)、(i-10)及び(i-11)
Figure 0007464204000159
Figure 0007464204000160
(一般式(i-1)、(i-2)、(i-3)、(i-4)、(i-5)、(i-6)、(i-8)、(i-9)、(i-10)及び(i-11)中、
破線、Ri1、Li1、Li2、Ai1、Ai2及びXi1は、上記一般式(i)中のRi1、Li1、Li2、Ai1、Ai2及びXi1とそれぞれ同じ意味を表す。)
で表される化合物からなる群から選ばれる請求項1に記載の液晶組成物。
The compound represented by the general formula (i) is represented by the following general formulas (i-1) , (i-2), (i-3), (i-4), (i-5), (i-6), (i-8), (i-9), (i-10) and (i-11):
Figure 0007464204000159
Figure 0007464204000160
(In general formulas (i-1) , (i-2), (i-3), (i-4), (i-5), (i-6), (i-8), (i-9), (i-10) and (i-11),
The dashed line, R i1 , L i1 , L i2 , A i1 , A i2 and X i1 have the same meanings as R i1 , L i1 , L i2 , A i1 , A i2 and X i1 in the general formula (i) above.
2. The liquid crystal composition according to claim 1, wherein the compound is selected from the group consisting of compounds represented by the following formula:
請求項1又は2に記載の化合物を1種又は2種以上含む液晶組成物。 A liquid crystal composition comprising one or more compounds according to claim 1 or 2. 請求項に記載の液晶組成物を用いた、液晶表示素子。 A liquid crystal display device using the liquid crystal composition according to claim 3 . 請求項に記載の液晶組成物を用いた、センサ。 A sensor using the liquid crystal composition according to claim 3 . 請求項に記載の液晶組成物を用いた、液晶レンズ。 A liquid crystal lens using the liquid crystal composition according to claim 3 . 請求項に記載の液晶組成物を用いた、光通信機器。 An optical communication device using the liquid crystal composition according to claim 3 . 請求項に記載の液晶組成物を用いた、アンテナ。 An antenna using the liquid crystal composition according to claim 3 . 請求項に記載のアンテナであって、
複数のスロットを備えた第1基板と、
前記第1基板と対向し、給電部が設けられた第2基板と、
前記第1基板と前記第2基板との間に設けられた第1誘電体層と、
前記複数のスロットに対応して配置される複数のパッチ電極と、
前記パッチ電極が設けられた第3基板と、
前記第1基板と前記第3基板との間に設けられた液晶層とを備え、
前記液晶層が、請求項に記載の液晶組成物を含有するアンテナ。
9. An antenna as claimed in claim 8 ,
a first substrate having a plurality of slots;
a second substrate facing the first substrate and provided with a power supply unit;
a first dielectric layer provided between the first substrate and the second substrate;
A plurality of patch electrodes arranged corresponding to the plurality of slots;
a third substrate on which the patch electrode is provided;
a liquid crystal layer provided between the first substrate and the third substrate;
An antenna, wherein the liquid crystal layer contains the liquid crystal composition according to claim 3 .
JP2023569680A 2022-12-20 2023-08-17 Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the compound Active JP7464204B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022203105 2022-12-20
JP2022203105 2022-12-20
JP2023029660 2023-08-17

Publications (1)

Publication Number Publication Date
JP7464204B1 true JP7464204B1 (en) 2024-04-09

Family

ID=90606815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023569680A Active JP7464204B1 (en) 2022-12-20 2023-08-17 Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the compound

Country Status (1)

Country Link
JP (1) JP7464204B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026403A1 (en) 2010-08-23 2012-03-01 日本曹達株式会社 Condensed ring compound
CN103361074A (en) 2013-07-01 2013-10-23 江苏和成新材料有限公司 Liquid-crystal compound containing polyfluorinated unsaturated indene ring as well as composite and application thereof
JP2017528429A (en) 2014-07-17 2017-09-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Bimesogenic compounds and mesogenic media
WO2022030343A1 (en) 2020-08-06 2022-02-10 Dic株式会社 Compound, composition, liquid crystal composition, and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026403A1 (en) 2010-08-23 2012-03-01 日本曹達株式会社 Condensed ring compound
CN103361074A (en) 2013-07-01 2013-10-23 江苏和成新材料有限公司 Liquid-crystal compound containing polyfluorinated unsaturated indene ring as well as composite and application thereof
JP2017528429A (en) 2014-07-17 2017-09-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Bimesogenic compounds and mesogenic media
WO2022030343A1 (en) 2020-08-06 2022-02-10 Dic株式会社 Compound, composition, liquid crystal composition, and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEHMANN,R.B. et al,Lifetime, fluorescence efficiency, and scintillation studies on some trans-1,2-diarylethylenes,Org. Scintill. Liquid Scintill. Counting, Proc. Int. Conf,1971年,441-57

Similar Documents

Publication Publication Date Title
US11639471B2 (en) Compound, liquid crystal composition and high-frequency phase shifter
JP7006862B1 (en) Compounds, compositions, liquid crystal compositions and devices
JP2023088282A (en) Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication apparatus and antenna using the same
US11613701B2 (en) Compound, liquid-crystal composition, and radio frequency phase shifter
JP7464204B1 (en) Compound, and liquid crystal composition, liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the compound
WO2021079743A1 (en) Compound, liquid crystal composition and high-frequency phase shifter
TW202219251A (en) Liquid crystal composition and liquid crystal display element, sensor, liquid crystal lens, optical communication machine and antenna using the same having a liquid crystal phase having a wide temperature range, high refractive index anisotropy, and good room temperature stability
TW202206576A (en) Liquid crystal composition, and liquid crystal display element, sensor, liquid crystal lens, optical communication equipment, and antenna using same
JP7235189B1 (en) Compounds, liquid crystal compositions, and liquid crystal display elements, sensors, liquid crystal lenses, optical communication devices and antennas using the same
JP7460040B1 (en) Compound, liquid crystal composition, and liquid crystal display element, sensor, liquid crystal lens, optical communication device, and antenna using the same
WO2024090213A1 (en) Compound, liquid crystal composition, and liquid crystal display element, sensor, liquid crystal lens, optical communication equipment and antenna each using same
JP7428302B1 (en) Compounds, liquid crystal compositions, liquid crystal display elements, sensors, liquid crystal lenses, optical communication equipment, and antennas using the same
JP2023091998A (en) Compounds, liquid crystal compositions, liquid crystal display elements using these, sensors, liquid crystal lenses, optical communication devices, and antennas
JP7243930B1 (en) Liquid crystal composition and liquid crystal display element, sensor, liquid crystal lens, optical communication device and antenna using the same
JP7484991B2 (en) Compound and liquid crystal composition
EP4314194A2 (en) Aromatic isothiocyanates
CN112779023B (en) Liquid crystal compound for high-frequency device
JPWO2020121823A1 (en) Liquid crystal compositions and display devices, and compounds
WO2022198557A1 (en) Compound, liquid crystal composition and high-frequency phase shifter
TW202336009A (en) Isothiocyanatoethynylbenzene derivatives
CN117624076A (en) Heterocyclic compounds for liquid crystals

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311