JP7461708B2 - How to measure expansion strain - Google Patents

How to measure expansion strain Download PDF

Info

Publication number
JP7461708B2
JP7461708B2 JP2020060170A JP2020060170A JP7461708B2 JP 7461708 B2 JP7461708 B2 JP 7461708B2 JP 2020060170 A JP2020060170 A JP 2020060170A JP 2020060170 A JP2020060170 A JP 2020060170A JP 7461708 B2 JP7461708 B2 JP 7461708B2
Authority
JP
Japan
Prior art keywords
specimen
measuring
strain
expansion
laser displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060170A
Other languages
Japanese (ja)
Other versions
JP2021156843A (en
Inventor
拓也 大野
裕二 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020060170A priority Critical patent/JP7461708B2/en
Publication of JP2021156843A publication Critical patent/JP2021156843A/en
Application granted granted Critical
Publication of JP7461708B2 publication Critical patent/JP7461708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、ASR(アルカリシリカ反応)、およびDEF(エトリンガイトの遅延生成、Delayed Ettringite Formation)、コンクリート構造物の残存膨張量などのコンクリートの膨張ひずみを、簡易かつ効率的に測定できる膨張ひずみの測定方法と、膨張ひずみ測定装置に関する。 The present invention relates to an expansion strain measuring method and an expansion strain measuring device that can easily and efficiently measure the expansion strain of concrete, such as ASR (alkali silica reaction), DEF (delayed ettringite formation), and the residual expansion of concrete structures.

ASRは、反応性骨材中のシリカと、コンクリート中のアルカリ金属イオンが、高いpH条件下で反応して生成するアルカリシリカゲルが、吸水して膨張することにより、コンクリートにひび割れが生じる現象である。そして、このASRは、コンクリートの耐久性を低下させる主因の一つとして知られている。したがって、コンクリートの耐久性を確保するには、ひび割れの発生を予測して事前に補強等の対策をとる必要がある。 ASR is a phenomenon in which the silica in reactive aggregate reacts with the alkali metal ions in concrete under high pH conditions to produce alkaline silica gel, which then absorbs water and expands, causing cracks in the concrete. This ASR is known to be one of the main causes of reduced durability of concrete. Therefore, in order to ensure the durability of concrete, it is necessary to predict the occurrence of cracks and take measures such as reinforcement in advance.

また、DEFは、セメントが水和して生成するエトリンガイト(〔CaAl(OH)12・24HO〕(SO・2HO)が、数か月から数年後にコンクリート中で膨張して、コンクリートにひび割れを生じさせる現象である。DEFは、セメントペースト全体が膨張マトリックスであるため、反応性骨材が膨張マトリックスであるASRに比べ、膨張ひずみは数倍になる。 DEF is a phenomenon in which ettringite ([ Ca6Al2 (OH) 12.24H2O ]( SO4 ) 3.2H2O ), which is formed by hydration of cement, expands in concrete after several months to several years, causing cracks in the concrete. Since the entire cement paste is the expansion matrix in DEF, the expansion strain is several times larger than that in ASR, in which the reactive aggregate is the expansion matrix.

ここで、コンクリートのアルカリシリカ反応性を判定する方法は、JCI-S-101-2017「コンクリートのアルカリシリカ反応性試験方法」と、JASS 5N T-603「コンクリートの反応性試験」がある。そして、JCI-S-101-2017の方法は、アルカリ総量がNaO換算で5.5kg/コンクリート1mのコンクリートを打設した後、材齢24時間で脱型して、得られた100×100×400mmの供試体を40℃で湿潤養生し、脱型後1~6か月、9か月、および12か月の供試体の長さ変化を、ダイヤルゲージ法を用いて測定する方法である。また、JASS 5N T-603の方法は、アルカリ総量がNaO換算で1.2、1.8、および2.4kg/コンクリート1mのコンクリートをそれぞれ打設した後、前記JCI規準と同じ方法で、同じ大きさの供試体を作製して同様に養生し、脱型後6か月の長さ変化をダイヤルゲージ法を用いて測定して、膨張ひずみが0.1%となる臨界アルカリ量を算出し、この臨界アルカリ量に基づきコンクリートのアルカリシリカ反応性を判定する方法である。 Here, methods for determining the alkali-silica reactivity of concrete include JCI-S-101-2017 "Test method for alkali-silica reactivity of concrete" and JASS 5N T-603 "Test for reactivity of concrete." The method of JCI-S-101-2017 involves pouring concrete with a total alkali content of 5.5 kg/ m3 of concrete converted to Na2O , demolding it 24 hours after it is placed, and then moist curing the resulting 100 x 100 x 400 mm test specimen at 40°C, and measuring the change in length of the test specimen 1 to 6 months, 9 months, and 12 months after demolding using the dial gauge method. In addition, the method of JASS 5N T-603 involves pouring concrete with total alkali amounts of 1.2, 1.8, and 2.4 kg/ m3 of concrete calculated as Na2O , preparing test specimens of the same size in the same manner as in the JCI standard, curing them in the same manner, measuring the change in length six months after demolding using the dial gauge method, calculating the critical alkali amount at which the expansion strain is 0.1%, and judging the alkali-silica reactivity of the concrete based on this critical alkali amount.

しかし、JCI-S-101-2017の方法は、前記のとおり、供試体が大きく、専用の型枠、器具、および測定機器が必要であり、試験期間が最短でも1年と長期に亘る。また、JASS 5N T-603の方法は、前記のとおり、アルカリ量を3水準設定して、供試体を作製する必要がある。さらに、JCI-S-101-2017およびJASS 5N T-603の方法に共通する問題として、大きさが100×100×400mmの供試体は、ペシマム現象を伴うような膨張量が大きいコンクリートでは、骨材量やアルカリ溶脱の影響で供試体に捩れや歪みが生じて、個体差のばらつきが大きくなる可能性や、ダイヤルゲージによる測定が困難な場合がある。
一般的に、コンクリートの収縮ひずみは、比較的均一に生じ、長手方向の一次元的な長さの変位として捉えることができ、最大でも0.1%程度であるが、膨張ひずみでは、不均一な挙動を示し、無拘束の場合には膨張の際に、捩れや歪みが生じることがあり、これらの中には1~2%の膨張を引き起こす場合がある。したがって、ASRやDERなどの膨張は、個体間のばらつきが大きいため、膨張ひずみを正確に測定できないという課題があった。
However, as mentioned above, the JCI-S-101-2017 method requires large test specimens, dedicated formwork, tools, and measuring equipment, and the test period is long, at least one year. As mentioned above, the JASS 5N T-603 method requires three levels of alkali content to be set and test specimens to be prepared. Furthermore, a common problem with the JCI-S-101-2017 and JASS 5N T-603 methods is that for test specimens measuring 100 x 100 x 400 mm, in concrete with a large amount of expansion such as that accompanied by the pessimum phenomenon, the test specimens may twist or distort due to the aggregate amount or alkali leaching, resulting in large individual variation and making it difficult to measure using a dial gauge.
In general, shrinkage strain of concrete occurs relatively uniformly and can be regarded as a one-dimensional displacement in the longitudinal direction, with a maximum of about 0.1%, but expansion strain shows non-uniform behavior, and when unconstrained, twisting and distortion may occur during expansion, some of which may cause expansion of 1 to 2%. Therefore, there was a problem that expansion strain such as ASR and DER cannot be accurately measured because there is a large variation between individuals.

また、従来のDEF促進評価方法でも、ASRの判定方法と同じ100×100×400mm、またはφ100×200mmの大きさの供試体を用いるため、膨張ひずみのオーダーが数%と過大になることが多く、また、規準化された評価方法は存在しない。
また、ASRのおそれがある構造物は、今後どの程度膨張するかを推測する必要があり、前記残存膨張量とは、この「今後どの程度膨張するか」の推測値である。残存膨張量の試験方法の一つにJCI-DD2がある。この試験方法では、コアは原則として直径100mm、長さ約250mmと規定している。しかし、実際は、コンクリート中の鉄筋等により、この大きさのコアを採取するのは困難である。
Furthermore, the conventional DEF accelerated evaluation method also uses test specimens of the same size as the ASR judgment method, 100 x 100 x 400 mm or φ100 x 200 mm, so the expansion strain is often excessive, on the order of several percent, and no standardized evaluation method exists.
In addition, for structures that are at risk of ASR, it is necessary to estimate the future extent of expansion, and the aforementioned residual expansion amount is the estimated value of this "future extent of expansion." One of the methods for testing the residual expansion amount is JCI-DD2. In this test method, the core is specified to be, in principle, 100 mm in diameter and approximately 250 mm in length. However, in reality, it is difficult to extract a core of this size due to reinforcing bars in the concrete, etc.

そこで、ASRやDEFを継続的に追跡する方法や、早期に判定する方法が提案されている。例えば、
特許文献1に記載のASRによるひび割れを継続的に追跡する方法は、コンクリート構造物に小口径のモニタリングホールを削孔し、該ホールの壁面を第1センサーによりスキャニングし、画像解析によりASRの1次診断を行い、追跡調査が必要であれば、残存耐荷力の照査を行い、残存耐荷力が必要耐荷力以上であれば、さらに、ASRの進行性を確認するため、前記ホールの壁面に第2センサーを設置して、ひび割れの進行性をモニタリングするなどの方法である。しかし、該方法は、コンクリート構造物を削孔しなければならず、また追跡作業が煩雑である。
特許文献2に記載のDEFの判定方法は、高温養生を受ける前のセメント組成物から採取した水和試料中のエトリンガイトの粉末X線回折の相対強度と、高温養生を受けた後のセメント組成物から採取した水和試料中のエトリンガイトの粉末X線回折の相対強度との差が5%以下の場合に、DEFが発生しないと判定する方法である。しかし、該方法は、試料の採取時点での観察に基づく判定であって、高温養生後の膨張挙動の経時変化は観察できず、装置も高額である。
Therefore, methods for continuously tracking ASR and DEF and methods for early detection have been proposed. For example,
The method of continuously tracking cracks caused by ASR described in Patent Document 1 involves drilling a small-diameter monitoring hole in a concrete structure, scanning the wall surface of the hole with a first sensor, performing a primary diagnosis of ASR by image analysis, and if a follow-up investigation is necessary, inspecting the remaining load-bearing capacity, and if the remaining load-bearing capacity is equal to or greater than the required load-bearing capacity, further monitoring the progression of the cracks by installing a second sensor on the wall surface of the hole in order to confirm the progression of ASR, etc. However, this method requires drilling the concrete structure, and the tracking work is cumbersome.
The method for determining DEF described in Patent Document 2 is a method for determining that DEF does not occur when the difference between the relative intensity of powder X-ray diffraction of ettringite in a hydrated sample taken from a cement composition before high-temperature curing and the relative intensity of powder X-ray diffraction of ettringite in a hydrated sample taken from a cement composition after high-temperature curing is 5% or less. However, this method is based on observation at the time of sample collection, and cannot observe the change over time in expansion behavior after high-temperature curing, and the equipment is expensive.

特開2014-189961号公報JP 2014-189961 A 特開2010-223634号公報JP 2010-223634 A

そこで、本発明はASRやDEFなどにより生じるコンクリートの膨張ひずみを、簡易かつ効率的に測定できる方法と、膨張ひずみ測定装置を提供することを目的とする。 The present invention aims to provide a method for easily and efficiently measuring the expansive strain of concrete caused by ASR, DEF, etc., and an expansive strain measuring device.

本発明者は、前記目的にかなう膨張ひずみの測定方法を鋭意検討した結果、特定の形状の供試体の膨張を、レーザーを用いて測定すれば、前記目的を達成できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成を有する膨張ひずみの測定方法、および膨張ひずみ測定装置である。
As a result of extensive research into a method for measuring expansion strain that would achieve the above-mentioned objective, the inventors discovered that the above-mentioned objective could be achieved by using a laser to measure the expansion of a test specimen of a specific shape, and thus completed the present invention.
That is, the present invention provides an expansion strain measuring method and an expansion strain measuring device having the following configurations.

[1](A)1個以上のレーザー変位計、(B)膨張ひずみ測定用の供試体を載置するための台座、および、(C)該供試体の位置決め治具、を少なくとも有する、膨張ひずみ測定装置の台座上に、前記供試体を載置した後、
レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の膨張ひずみを測る、膨張ひずみの測定方法。
ただし、前記供試体は、コンクリート硬化体であって、該供試体の厚さが、粗骨材の最大寸法より大きい供試体である。
[2]前記膨張ひずみ測定装置の台座上に、前記供試体が、該供試体の周囲の側面が位置決め治具と接触するように載置される、前記[1]に記載の膨張ひずみの測定方法。
[3]前記供試体は円板状または多角形状である、前記[1]または[2]に記載の膨張ひずみの測定方法。
[4]前記供試体を時計回りまたは反時計回りに回転して、レーザー変位計と該供試体の周囲の側面の間の距離を複数回測り、これらの距離の平均値を該供試体の膨張ひずみとして求める、前記[1]~[3]のいずれかに記載の膨張ひずみの測定方法。
[5]前記供試体の厚さが15~25mmである、前記[1]~[4]のいずれかに記載の膨張ひずみの測定方法。
[6]所定の期間が経過する度に、供試体を台座上に載置して膨張ひずみを測る、前記[1]~[5]のいずれかに記載の膨張ひずみの測定方法。
[7]膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離(L)を測定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離(L)を測定し、LとLの差(L-L)を膨張ひずみとする、前記[1]~[6]のいずれかに記載の膨張ひずみの測定方法。
[8]膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離を測定し、該距離(の表示)をゼロに設定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離を測定して膨張ひずみとする、前記[1]~[]のいずれかに記載の膨張ひずみの測定方法。
[1] (A) one or more laser displacement meters, (B) a base for placing a specimen for measuring expansion strain, and (C) a positioning jig for the specimen. After placing the specimen on a base of an expansion strain measuring device,
A method for measuring expansive strain in which a laser displacement meter is used to irradiate a laser onto the peripheral side of a specimen and measure the distance between the laser displacement meter and the peripheral side of the specimen, thereby measuring the expansive strain of the specimen.
However, the test specimen is a hardened concrete body, and the thickness of the test specimen is greater than the maximum dimension of the coarse aggregate.
[2] A method for measuring expansion strain described in [1], in which the specimen is placed on a base of the expansion strain measuring device so that the peripheral side of the specimen is in contact with a positioning jig.
[3] The method for measuring expansive strain described in [1] or [2], wherein the specimen is disc-shaped or polygonal-shaped.
[4] The method for measuring expansive strain described in any one of [1] to [3], wherein the specimen is rotated clockwise or counterclockwise to measure the distance between the laser displacement meter and the peripheral side of the specimen multiple times, and the average value of these distances is calculated as the expansive strain of the specimen.
[5] The method for measuring expansive strain according to any one of [1] to [4], wherein the thickness of the specimen is 15 to 25 mm.
[6] The method for measuring expansive strain according to any one of [1] to [5] above, wherein the test specimen is placed on a pedestal and the expansive strain is measured every time a predetermined period of time has elapsed.
[7] The method for measuring expansive strain according to any one of [1] to [ 6 ] above, wherein a metal plate (base plate) having the same shape and dimensions as the specimen before expansion is placed on a base, the distance (L 1 ) between the laser displacement meter and the peripheral side of the metal plate is measured, and then the specimen is placed on the base in place of the metal plate, the distance (L 2 ) between the laser displacement meter and the peripheral side of the specimen is measured, and the difference between L 1 and L 2 (L 1 -L 2 ) is defined as the expansive strain.
[8] A method for measuring expansive strain described in any one of [1] to [6] above, comprising placing a metal plate (base plate) having the same shape and dimensions as the specimen before expansion on a base, measuring the distance between a laser displacement meter and the peripheral side of the metal plate, setting the distance (indicated as ) to zero, and then placing the specimen on the base in place of the metal plate, measuring the distance between the laser displacement meter and the peripheral side of the specimen, and determining the expansion strain.

本発明の膨張ひずみの測定方法および膨張ひずみ測定装置は、以下の効果を有する。
(i)ASRおよびDEFなどにより生じるコンクリートの膨張ひずみを、簡易かつ効率的に測定できる。
(ii)ゲージプラグや器具の設置は不要で、直接、供試体の長さを測定できるため、長さ変化の限界値がない。具体的には、従来のコンタクトゲージ法では、測定器の膨張ひずみの測定可能範囲が±0.5mm程度であり、これを超える膨張ひずみは測定できない。また、ゲージプラグを設置する方法では捩じれや歪みが生じると、ゲージプラグ同士が一直線上にならないので、測定できない。一方、本発明は、レーザー変位計の測定可能範囲は±5mm程度と大きく、捩じれや歪みが生じても、円板供試体の周囲の側面にレーザーを照射するだけで、膨張ひずみを簡易に測定できる。
(iii)本発明で用いる供試体は、JCI-S-101-2017、JASS 5N T-603、およびJCI-DD2の方法で用いる供試体に比べて小さくて軽く、供試体を動かすなどの作業が容易で、多くの試験水準を実施できるため、比較的短期間で試験が終わる。
The method and device for measuring expansion strain according to the present invention have the following advantages.
(i) The expansive strain of concrete caused by ASR, DEF, etc. can be measured simply and efficiently.
(ii) Since the installation of gauge plugs or instruments is not required and the length of the specimen can be measured directly, there is no limit to the change in length. Specifically, in the conventional contact gauge method, the measurable range of the expansion strain of the measuring device is about ±0.5 mm, and expansion strains exceeding this range cannot be measured. In addition, in the method of installing gauge plugs, if twisting or distortion occurs, the gauge plugs do not align with each other, so measurement is not possible. On the other hand, in the present invention, the measurable range of the laser displacement meter is as large as about ±5 mm, and even if twisting or distortion occurs, the expansion strain can be easily measured by simply irradiating a laser onto the side surface around the disk specimen.
(iii) The specimen used in the present invention is smaller and lighter than the specimens used in the JCI-S-101-2017, JASS 5N T-603, and JCI-DD2 methods, making it easier to move the specimen and perform other operations. Furthermore, many test levels can be performed, and the tests can be completed in a relatively short period of time.

1個のレーザー変位計を有する本発明の膨張ひずみ測定装置の上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。This is a schematic diagram showing an example of a state in which a test specimen is placed on an expansion strain measuring device of the present invention having one laser displacement meter, where the left figure is a plan view of the measuring device and the right figure is a side view of the measuring device. 2個のレーザー変位計を有する本発明の膨張ひずみ測定装置の上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。This is a schematic diagram showing an example of a state in which a test specimen is placed on an expansion strain measuring device of the present invention having two laser displacement meters, where the left figure is a plan view of the measuring device and the right figure is a side view of the measuring device. 支持部材の下部の一部を、台座に埋め込んだ状態で設置してなる支持部材の上に、供試体を載置した状態の一例を示す概略図であって、左の図は該測定装置の平面図、右の図は該測定装置の側面図である。ただし、図3では、レーザー変位計の記載は省略した。This is a schematic diagram showing an example of a state in which a test specimen is placed on a support member that is installed with a part of the lower part of the support member embedded in a pedestal, the left figure being a plan view of the measuring device, and the right figure being a side view of the measuring device. However, in Fig. 3, the laser displacement meter is omitted. 図2の膨張ひずみ測定装置を用いて測定した、保管期間182日における円板供試体の膨張ひずみである。3 shows the expansion strain of the disk specimens after a storage period of 182 days, measured using the expansion strain measuring device shown in FIG. 2.

本発明は、前記のとおりの膨張ひずみの測定方法、および膨張ひずみ測定装置である。以下、本発明について、膨張ひずみ測定装置、および膨張ひずみの測定方法の順に詳細に説明する。 The present invention is the method for measuring expansion strain and the expansion strain measuring device as described above. The present invention will be described in detail below in the order of the expansion strain measuring device and the method for measuring expansion strain.

1.膨張ひずみ測定装置
(A)レーザー変位計
本発明で用いるレーザー変位計4は、特に制限されず、反射型や透過型等の市販のレーザー変位計が挙げられる。
本発明では、レーザー変位計の数を増やせばデータ数が増え、その分、測定精度が向上するが、装置はコスト高になるため、レーザー変位計の数は、好ましくは1~4個、より好ましくは1~2個である。
前記レーザー変位計は、台座上に載置した円板状または四角板状の供試体1の中心に向けてレーザーを照射できるように設置する。レーザー変位計の設置位置は、例えば、図1や図2に示す位置が挙げられる。
1. Expansion Strain Measuring Device (A) Laser Displacement Gauge The laser displacement gauge 4 used in the present invention is not particularly limited, and examples thereof include commercially available laser displacement gauges of the reflection type and transmission type.
In the present invention, increasing the number of laser displacement meters increases the amount of data and improves the measurement accuracy accordingly; however, the cost of the device increases, so the number of laser displacement meters is preferably 1 to 4, and more preferably 1 to 2.
The laser displacement meter is installed so that a laser can be irradiated toward the center of a disk-shaped or square plate-shaped specimen 1 placed on a pedestal. The laser displacement meter can be installed at any of the positions shown in Figs. 1 and 2, for example.

(B)台座
本発明で用いる台座2は、膨張ひずみ測定用の供試体を載置するために用いる。台座の形状は、特に限定されず、例えば、図1や図2に示す正方形の板状や、円板状である。また、測定精度の向上のために、台座は水平に保たれていることが好ましい。
さらに、当該台座は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
(B) Pedestal The pedestal 2 used in the present invention is used to place a specimen for measuring expansive strain. The shape of the pedestal is not particularly limited, and may be, for example, a square plate or a disk as shown in Figures 1 and 2. In order to improve the measurement accuracy, it is preferable that the pedestal be kept horizontal.
Furthermore, the base is preferably manufactured using Invar steel to prevent deformation due to heat or impact.

さらに、台座は、膨張ひずみ測定用の供試体を支持するための支持部材5を設置してもよい。支持部材を設置すると、膨張ひずみ測定用の供試体と台座の間の熱の移動を低減できるため、膨張ひずみの測定精度が向上する。
支持部材の形状は、特に制限されず、図3に示すような球状(図3では、支持部材の下部の一部が、台座に埋め込まれている。)や、柱状等が挙げられる。なお、支持部材を柱状にする場合は、上部を半球状にすることが好ましい。
支持部材の数は、3点以上あれば供試体を安定して載置できるから好ましいが、支持部材を多くすると装置の製造に手間がかかる。そのため、支持部材の数は3~4が好ましい。また、前記支持部材は、供試体を安定して載置するためには、正三角形または正方形を形成するように設置するのが好ましい。図3は、支持部材が正方形を形成するように設置されている例である。
さらに、支持部材は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
Furthermore, the base may be provided with a support member 5 for supporting a specimen for measuring the expansive strain. By providing the support member, the transfer of heat between the specimen for measuring the expansive strain and the base can be reduced, thereby improving the measurement accuracy of the expansive strain.
The shape of the support member is not particularly limited, and examples thereof include a spherical shape as shown in Fig. 3 (in Fig. 3, a part of the lower part of the support member is embedded in the base), a columnar shape, etc. When the support member is columnar, it is preferable that the upper part is hemispherical.
The number of support members is preferably three or more because the specimen can be stably placed on the support member, but the number of support members increases the time and effort required to manufacture the device. Therefore, the number of support members is preferably three to four. In order to stably place the specimen on the support member, the support members are preferably arranged to form an equilateral triangle or a square. Figure 3 shows an example in which the support members are arranged to form a square.
Furthermore, the support member is preferably manufactured using Invar steel to prevent deformation due to heat or impact.

(C)位置決め治具
本発明で用いる位置決め治具3は、供試体の膨張ひずみを測定する際に、供試体の載置位置を決めて固定するために用いるもので、例えば、図1や図2に示すように、台座上に倒立した状態で設置してなる2本のピン等が挙げられる。図1や図2では、測定開始の時点で、円板状の供試体を台座に載置した場合、円板状の供試体の中心と台座の中心が一致するように、位置決め治具が円板状の供試体の周囲の側面と接触する位置に配置されている。この配置により、測定対象である供試体の周囲の側面の照射位置が、正確に固定できるため、膨張ひずみの膨張精度が向上する。
さらに、当該位置決め治具は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。
(C) Positioning jig The positioning jig 3 used in the present invention is used to determine and fix the placement position of the specimen when measuring the expansion strain of the specimen, and may be, for example, two pins installed in an inverted state on a pedestal as shown in Figures 1 and 2. In Figures 1 and 2, when a disk-shaped specimen is placed on the pedestal at the start of measurement, the positioning jig is placed in a position where it comes into contact with the peripheral side of the disk-shaped specimen so that the center of the disk-shaped specimen coincides with the center of the pedestal. This arrangement allows the irradiation position of the peripheral side of the specimen to be measured to be accurately fixed, improving the expansion accuracy of the expansion strain.
Furthermore, the positioning jig is preferably manufactured using Invar steel to prevent deformation due to heat or impact.

また、本発明の膨張ひずみ測定装置は、レーザー変位計、台座、および位置決め治具を、基盤を用いて一体化して構成することが好ましい。この場合、レーザー変位計、台座、および位置決め治具を設置するために用いる基盤は、熱や衝撃による変形を防止するため、好ましくはインバー鋼材を用いて製造する。 The expansion strain measuring device of the present invention is preferably constructed by integrating the laser displacement gauge, the base, and the positioning jig using a base. In this case, the base used to install the laser displacement gauge, the base, and the positioning jig is preferably manufactured using Invar steel to prevent deformation due to heat or impact.

2.膨張ひずみの測定方法
本発明の膨張ひずみの測定方法は、前記膨張ひずみ測定装置の台座上に、円板状または四角板状の供試体を、該供試体の周囲の側面が位置決め治具と接触するように載置した後、レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の膨張ひずみを測る方法である。
なお、前記供試体は、コンクリートまたはモルタルなどのセメント組成物の硬化体である。
供試体が円板状の場合、供試体の直径は、10~30cmであれば、供試体の製造は容易で好ましい。なお、供試体の直径は、より好ましくは10~20cmである。また、供試体の厚さは5mm以上であれば供試体は割れ難く、50mm以下であれば作業性がよく、好ましい。なお、供試体の厚さは、より好ましくは8~40mm、さらに好ましくは10~30mm、特に好ましくは15~25mmである。供試体がコンクリートの場合、その厚さは、JISで規定する粗骨材の最大寸法よりも大きいことが好ましい。供試体の厚さが、粗骨材の最大寸法より小さいと、ASRの膨張性のゲルが漏出し、膨張ひずみを正確に捉えられない場合がある。
また、供試体が四角板状の場合、四角板の1辺の長さは、好ましくは10~30cm、より好ましくは10~20cmであり、さらに好ましくは、1辺の長さが10~30cmの正方形、特に好ましくは、1辺の長さが10~20cmの正方形である。1辺の長さが10~30cmであれば、供試体の製造は容易である。また、四角板状の供試体の厚さは、好ましくは粗骨材の最大寸法程度であり、より好ましくは8~40mm、さらに好ましくは10~30mm、特に好ましくは15~25mmである。供試体の厚さが8mm以上であれば、供試体は割れ難く、40mm以下であれば作業性がよい。供試体の厚さが、粗骨材の最大寸法より小さいと、ASRの膨張性のゲルが漏出し、膨張ひずみを正確に捉えられない場合がある。
なお、本発明の膨張ひずみ測定装置の台座に支持部材が設置されている場合、該支持部材上に、円板状または四角板状の供試体の周囲の側面が位置決め治具と接触するように、該供試体を載置する。
2. Expansion strain measurement method of the present invention is a method for measuring the expansion strain of a specimen by placing a disk-shaped or square plate-shaped specimen on the base of the expansion strain measurement device so that the peripheral side surface of the specimen is in contact with a positioning jig, and then irradiating the peripheral side surface of the specimen with a laser using a laser displacement meter to measure the distance between the laser displacement meter and the peripheral side surface of the specimen.
The specimen is a hardened cement composition such as concrete or mortar.
In the case where the specimen is disc-shaped, the diameter of the specimen is preferably 10 to 30 cm, since the specimen can be easily manufactured. The diameter of the specimen is more preferably 10 to 20 cm. Furthermore, if the thickness of the specimen is 5 mm or more, the specimen is less likely to break, and if it is 50 mm or less, the workability is good, which is preferable. The thickness of the specimen is more preferably 8 to 40 mm, further preferably 10 to 30 mm, and particularly preferably 15 to 25 mm. In the case where the specimen is concrete, the thickness is preferably larger than the maximum dimension of the coarse aggregate specified by JIS. If the thickness of the specimen is smaller than the maximum dimension of the coarse aggregate, the expansive gel of the ASR may leak out, and the expansive strain may not be accurately captured.
In addition, when the specimen is a square plate, the length of one side of the square plate is preferably 10 to 30 cm, more preferably 10 to 20 cm, and even more preferably, the square has a side length of 10 to 30 cm, and particularly preferably, the square has a side length of 10 to 20 cm. If the length of one side is 10 to 30 cm, the specimen can be easily manufactured. In addition, the thickness of the square plate specimen is preferably about the maximum dimension of the coarse aggregate, more preferably 8 to 40 mm, even more preferably 10 to 30 mm, and particularly preferably 15 to 25 mm. If the thickness of the specimen is 8 mm or more, the specimen is less likely to crack, and if it is 40 mm or less, the workability is good. If the thickness of the specimen is smaller than the maximum dimension of the coarse aggregate, the expansive gel of the ASR may leak out, and the expansive strain may not be accurately captured.
In addition, when a support member is installed on the base of the expansion strain measuring device of the present invention, the disk-shaped or square plate-shaped specimen is placed on the support member so that the peripheral side of the specimen is in contact with the positioning jig.

本発明の測定方法では、所定の期間毎に、供試体を台座上に載置して膨張ひずみを測る。そして、膨張ひずみの測定精度を向上させるため、好ましくは、供試体は円板状であり、該供試体を時計回りまたは反時計回りに回転して、該供試体の周囲の側面が位置決め治具と接触した状態で、レーザー変位計と供試体の周囲の側面の間の距離を、複数回、好ましくは3~5回測る。例えば、図1に示す供試体の点aを測定した後、供試体を時計回りに90°回転して点bを測定し、さらに時計回りに90°回転して点cを測定して、3点の平均値を膨張ひずみとして求める。具体的には、円板供試体は全方向に比較的均一に膨張するものと考えられるが、不均一に膨張した場合でも、回転して測定することにより、異なる直径方向の長さを測定できるので、その平均値を用いれば測定値は安定し、精度が向上する。
本発明の測定方法では、膨張ひずみを測定する間隔は任意であるが、測定の手間を低減するためには、好ましくは1~10日毎、より好ましくは1~7日毎である。
In the measurement method of the present invention, the specimen is placed on a pedestal and the expansion strain is measured every predetermined period. In order to improve the measurement accuracy of the expansion strain, the specimen is preferably disk-shaped, and the specimen is rotated clockwise or counterclockwise to measure the distance between the laser displacement meter and the side surface of the specimen, with the side surface of the specimen in contact with the positioning jig, multiple times, preferably 3 to 5 times. For example, after measuring point a of the specimen shown in FIG. 1, the specimen is rotated 90° clockwise to measure point b, and then rotated 90° clockwise to measure point c, and the average value of the three points is obtained as the expansion strain. Specifically, the disk specimen is considered to expand relatively uniformly in all directions, but even if it expands non-uniformly, the length in different diameter directions can be measured by rotating and measuring, so that the measurement value is stable and the accuracy is improved by using the average value.
In the measurement method of the present invention, the interval for measuring the expansion strain is arbitrary, but in order to reduce the labor required for measurement, it is preferably every 1 to 10 days, more preferably every 1 to 7 days.

また、本発明の測定方法は、膨張ひずみをより正確に測定するために、膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離(L)を測定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離(L)を測定し、LとLの差(L-L)を膨張ひずみとする方法である。
また、前記測定した距離が画面上に表示される測定装置を用いる場合、本発明の測定方法は、膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離を測定し、該距離(の表示)をゼロに設定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離を測定して膨張ひずみとする方法である。具体的には、前記金属板(基長板)を用いることにより、装置を校正でき、前回の測定からの誤差を補正することができる。
基長板は温度や湿度、摩耗などの影響を受けにくい材質の金属が望ましく、熱や衝撃による変形を防止するため、好ましくはインバー鋼材である。
Furthermore, in order to measure the expansion strain more accurately, the measurement method of the present invention involves placing a metal plate (base plate) having the same shape and dimensions as the specimen before expansion on a pedestal, measuring the distance (L 1 ) between the laser displacement meter and the peripheral side of the metal plate, and then placing the specimen on the pedestal in place of the metal plate and measuring the distance (L 2 ) between the laser displacement meter and the peripheral side of the specimen, and the difference between L 1 and L 2 (L 1 -L 2 ) is the expansion strain.
In addition, when using a measuring device that displays the measured distance on a screen, the measuring method of the present invention is a method in which a metal plate (base plate) having the same shape and dimensions as the specimen before expansion is placed on a pedestal, the distance between the laser displacement meter and the peripheral side of the metal plate is measured, the distance (displayed) is set to zero, and then the specimen is placed on the pedestal in place of the metal plate, and the distance between the laser displacement meter and the peripheral side of the specimen is measured to obtain the expansion strain. Specifically, by using the metal plate (base plate), the device can be calibrated and errors from the previous measurement can be corrected.
The base plate is desirably made of a metal that is not easily affected by temperature, humidity, wear, etc., and is preferably made of Invar steel to prevent deformation due to heat or impact.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント(略号:C):普通ポルトランドセメントで、太平洋セメント社製である。
(2)細骨材(略号:S):山砂である。
(3)粗骨材(略号:G1):最大寸法が20mmの反応性骨材(安山岩)である。なお安山岩は反応性の高いシリカ鉱物(クリストバライト、トリジマイト、結晶の小さい石英、および非晶質の火山ガラス)などを多く含んでいる。
(4)粗骨材(略号:G2):最大寸法が20mmの砕石(硬質砂岩)である。
(5)水(略号:W):水道水である。
(6)AE減水剤(略号:AD):リグニンスルホン酸系AE減水剤で、商品名はポゾリスNo.70[登録商標](BASF社製)である。
(7)NaOH(略号:Na):水酸化ナトリウムの試薬である。
なお、反応性骨材とは、反応性の高い鉱物(シリカ鉱物等)を含んだ骨材であり、例えば、安山岩などの火山岩、チャートのような堆積岩などが挙げられる。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
1. Materials used (1) Cement (abbreviation: C): Ordinary Portland cement, manufactured by Taiheiyo Cement Corporation.
(2) Fine aggregate (abbreviation: S): mountain sand.
(3) Coarse aggregate (abbreviation: G1): Reactive aggregate (andesite) with a maximum dimension of 20 mm. Andesite contains a large amount of highly reactive silica minerals (cristobalite, tridymite, small crystal quartz, and amorphous volcanic glass).
(4) Coarse aggregate (abbreviation: G2): Crushed stone (hard sandstone) with a maximum dimension of 20 mm.
(5) Water (abbreviation: W): tap water.
(6) AE water reducing agent (abbreviation: AD): a lignin sulfonic acid-based AE water reducing agent, the product name of which is Pozzolith No. 70 [registered trademark] (manufactured by BASF Corporation).
(7) NaOH (abbreviation: Na): A reagent of sodium hydroxide.
The reactive aggregate is an aggregate containing highly reactive minerals (such as silica minerals), and examples thereof include volcanic rocks such as andesite and sedimentary rocks such as chert.

2.膨張ひずみ測定用の供試体の作製
表1に示す配合に従い、各配合のそれぞれについて、前記の各材料を容量50リッターのパン型ミキサに一括して投入し、2分間混練した後、混練物を円柱状の型枠に打設して成形し、直径10cm、高さ20cmで、アルカリ総量がNaO換算で5.5kg/コンクリート1mのコンクリートの供試体を得た。次に、該コンクリートを厚さ2cmにスライスして、膨張ひずみ測定用の円板供試体をそれぞれ3枚ずつ作製した。これら合計9枚について、それぞれ、配合毎に、供試体No1、No2、およびNo3の名称を付した。
2. Preparation of specimens for measuring expansive strain According to the formulations shown in Table 1, for each formulation, the above-mentioned materials were all charged into a 50-liter pan-type mixer, mixed for 2 minutes, and then cast into a cylindrical formwork to obtain a concrete specimen with a diameter of 10 cm, a height of 20 cm, and a total alkali content of 5.5 kg/ m3 of concrete in terms of Na2O . Next, the concrete was sliced to a thickness of 2 cm to prepare three disk specimens for measuring expansive strain. These nine specimens were named specimen No. 1, No. 2, and No. 3 for each formulation.

Figure 0007461708000001
Figure 0007461708000001

3.供試体の膨張ひずみの測定
前記円板供試体を、保管期間(材齢)56日まで20℃で湿潤養生した後、40℃の湿潤養生に切り替えて、7日おきに供試体の長さを測定して、膨張ひずみを算出した。具体的には、前記膨張ひずみ測定装置の台座上に、円板供試体を、該供試体の周囲の側面が位置決め治具と接触するように載置した後、レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定した。
また、参考のため、大きさが100×100×400mmの角柱供試体の膨張ひずみを、JCI-S-101-2017の方法に準拠して測定した。
これらの結果を表2と図4に示す。
3. Measurement of Expansion Strain of Specimen The disk specimen was wet cured at 20° C. for a storage period (material age) of 56 days, then switched to wet curing at 40° C., and the length of the specimen was measured every 7 days to calculate the expansion strain. Specifically, the disk specimen was placed on the base of the expansion strain measuring device so that the peripheral side of the specimen was in contact with the positioning jig, and then a laser was irradiated to the peripheral side of the specimen using a laser displacement meter to measure the distance between the laser displacement meter and the peripheral side of the specimen.
For reference, the expansion strain of a rectangular column specimen measuring 100 x 100 x 400 mm was measured in accordance with the method of JCI-S-101-2017.
The results are shown in Table 2 and FIG.

Figure 0007461708000002
Figure 0007461708000002

表2と図4に示すように、角柱供試体を用いたJCI法では配合1および配合3において大きな膨張ひずみが生じており、反応性骨材によるASRのゲルも観察された。一方、厚さ2cmの円板供試体の配合1および3における保管期間182日時点の膨張ひずみは、供試体No.1~3の平均で800~600×10-6程度であり、ばらつきも少なく、膨張ひずみを捉えることができている。
さらに本発明は、相対的に膨張ひずみを比較できるので、配合1と配合3の比較のように、反応性骨材の混合割合を変化させたペシマムの評価を簡易的に把握・比較することができ、他にも反応性骨材の種類の差、温度や湿度など環境の影響についても評価可能である。
なお、本発明はこれらのASRによる膨張ひずみに限定されず、DEFに起因する膨張ひずみにも適用できる。
As shown in Table 2 and Figure 4, when the JCI method was used with rectangular column specimens, large expansive strain occurred in mixes 1 and 3, and ASR gel due to reactive aggregate was also observed. On the other hand, the expansive strain after 182 days of storage for mixes 1 and 3 of 2 cm thick disk specimens was about 800 to 600 x 10-6 on average for specimens No. 1 to 3, with little variation, and the expansive strain was able to be captured.
Furthermore, since the present invention can compare expansion strains relatively, it is possible to easily grasp and compare the evaluation of pessimums with different mixing ratios of reactive aggregates, such as comparing Mix 1 and Mix 3. It is also possible to evaluate differences in the type of reactive aggregate and the influence of environments such as temperature and humidity.
The present invention is not limited to expansion strain caused by ASR, but can also be applied to expansion strain caused by DEF.

1 供試体
2 台座
3 位置決め治具
4 レーザー変位計(ただし、黒色の矢印はレーザーを示す。)
5 支持部材
1 Test specimen 2 Pedestal 3 Positioning jig 4 Laser displacement meter (note that the black arrow indicates the laser.)
5 Support member

Claims (8)

(A)1個以上のレーザー変位計、(B)膨張ひずみ測定用の供試体を載置するための台座、および、(C)該供試体の位置決め治具、を少なくとも有する、膨張ひずみ測定装置の台座上に、前記供試体を載置した後、
レーザー変位計を用いて供試体の周囲の側面にレーザーを照射して、レーザー変位計と供試体の周囲の側面の間の距離を測定することにより、供試体の膨張ひずみを測る、膨張ひずみの測定方法。
ただし、前記供試体は、コンクリート硬化体であって、該供試体の厚さが、粗骨材の最大寸法より大きい供試体である。
(A) one or more laser displacement meters, (B) a base for placing a specimen for measuring expansion strain, and (C) a positioning jig for the specimen. The specimen is placed on a base of an expansion strain measuring device,
A method for measuring expansive strain in which a laser displacement meter is used to irradiate a laser onto the peripheral side of a specimen and measure the distance between the laser displacement meter and the peripheral side of the specimen, thereby measuring the expansive strain of the specimen.
However, the test specimen is a hardened concrete body, and the thickness of the test specimen is greater than the maximum dimension of the coarse aggregate.
前記膨張ひずみ測定装置の台座上に、前記供試体が、該供試体の周囲の側面が位置決め治具と接触するように載置される、請求項1に記載の膨張ひずみの測定方法。 The method for measuring expansion strain according to claim 1, wherein the specimen is placed on the base of the expansion strain measuring device so that the peripheral side of the specimen is in contact with a positioning jig. 前記供試体は円板状または多角形状である、請求項1または2に記載の膨張ひずみの測定方法。 The method for measuring expansion strain according to claim 1 or 2, wherein the specimen is disc-shaped or polygonal-shaped. 前記供試体を時計回りまたは反時計回りに回転して、レーザー変位計と該供試体の周囲の側面の間の距離を複数回測り、これらの距離の平均値を該供試体の膨張ひずみとして求める、請求項1~3のいずれか1項に記載の膨張ひずみの測定方法。 The method for measuring expansive strain according to any one of claims 1 to 3, in which the specimen is rotated clockwise or counterclockwise to measure the distance between the laser displacement meter and the peripheral side of the specimen multiple times, and the average of these distances is calculated as the expansive strain of the specimen. 前記供試体の厚さが15~25mmである、請求項1~4のいずれか1項に記載の膨張ひずみの測定方法。 The method for measuring expansion strain according to any one of claims 1 to 4, wherein the thickness of the test specimen is 15 to 25 mm. 所定の期間が経過する度に、供試体を台座上に載置して膨張ひずみを測る、請求項1~5のいずれか1項に記載の膨張ひずみの測定方法。 A method for measuring expansion strain according to any one of claims 1 to 5, in which a test specimen is placed on a pedestal and the expansion strain is measured every time a predetermined period of time has elapsed. 膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離(L)を測定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離(L)を測定し、LとLの差(L-L)を膨張ひずみとする、請求項1~6のいずれか1項に記載の膨張ひずみの測定方法。 7. The method for measuring expansive strain according to claim 1, further comprising the steps of: placing a metal plate (base plate) having the same shape and dimensions as a specimen before expansion on a pedestal; measuring the distance (L 1 ) between a laser displacement meter and the peripheral side of the metal plate; placing the specimen on the pedestal in place of the metal plate; measuring the distance (L 2 ) between the laser displacement meter and the peripheral side of the specimen; and determining the difference (L 1 -L 2 ) between L 1 and L 2 as the expansive strain. 膨張前の供試体と同じ形状および寸法を有する金属板(基長板)を台座上に載置して、レーザー変位計と該金属板の周囲の側面の間の距離を測定し、該距離(の表示)をゼロに設定した後、該金属板に代えて前記供試体を台座上に載置して、レーザー変位計と供試体の周囲の側面の間の距離を測定して膨張ひずみとする、請求項1~のいずれか1項に記載の膨張ひずみの測定方法。
The method for measuring expansive strain according to any one of claims 1 to 6, comprising placing a metal plate (base plate) having the same shape and dimensions as the specimen before expansion on a base, measuring the distance between a laser displacement meter and the peripheral side of the metal plate, setting the distance (indicated as) to zero , and then placing the specimen on the base in place of the metal plate, and measuring the distance between the laser displacement meter and the peripheral side of the specimen to obtain the expansive strain.
JP2020060170A 2020-03-30 2020-03-30 How to measure expansion strain Active JP7461708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060170A JP7461708B2 (en) 2020-03-30 2020-03-30 How to measure expansion strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060170A JP7461708B2 (en) 2020-03-30 2020-03-30 How to measure expansion strain

Publications (2)

Publication Number Publication Date
JP2021156843A JP2021156843A (en) 2021-10-07
JP7461708B2 true JP7461708B2 (en) 2024-04-04

Family

ID=77918147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060170A Active JP7461708B2 (en) 2020-03-30 2020-03-30 How to measure expansion strain

Country Status (1)

Country Link
JP (1) JP7461708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034996B (en) * 2021-11-09 2023-05-05 广东电网有限责任公司电力科学研究院 Electrode laser monitoring device for gas discharge experiment
CN117092158A (en) * 2023-08-23 2023-11-21 佛山市陶瓷研究所检测有限公司 Thermal expansion coefficient detection equipment and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621041A (en) 2012-04-12 2012-08-01 北京工业大学 Method for testing calcium ion diffusion coefficient of concrete
JP2020001983A (en) 2018-06-29 2020-01-09 太平洋セメント株式会社 Prediction method for dry-shrinkage strain of concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621041A (en) 2012-04-12 2012-08-01 北京工业大学 Method for testing calcium ion diffusion coefficient of concrete
JP2020001983A (en) 2018-06-29 2020-01-09 太平洋セメント株式会社 Prediction method for dry-shrinkage strain of concrete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
平尾 宙 Hiroshi HIRAO,よくわかる非破壊検査 第5回,プレストレストコンクリート 第47巻第5号 JOURNAL OF PRESTRESSED CONCREAT, JAPAN ,第47巻,社団法人技術協会 渡邉 史夫,2005年

Also Published As

Publication number Publication date
JP2021156843A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Pujadas et al. Multidirectional double punch test to assess the post-cracking behaviour and fibre orientation of FRC
JP7461708B2 (en) How to measure expansion strain
Bazán et al. Study of the rust penetration and circumferential stresses in reinforced concrete at early stages of an accelerated corrosion test by means of combined SEM, EDS and strain gauges
Giannini Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation
JP7178225B2 (en) How to measure the coefficient of thermal expansion of concrete
WO2021036293A1 (en) Method for testing alkali reactivity of aggregate of concrete
JP2019007842A (en) Drying shrinkage distortion prediction method of concrete and prediction method of drying shrinkage stress of concrete
Zhang et al. Correlation of chloride diffusion coefficient and microstructure parameters in concrete: A comparative analysis using NMR, MIP, and X-CT
Diab et al. Changes in mechanical properties and durability indices of concrete undergoing ASR expansion
JP7226913B2 (en) Drying shrinkage strain estimation method
JP6893451B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
Al-Kadhimi et al. An accelerated carbonation procedure for studies on concrete
CN103162604B (en) Cubic deformation real-time test device and method after cement-base composite material hardening
Tang et al. Long-term performance of reinforced concrete under a de-icing road environment
Świt et al. Application of acoustic emission to monitoring the course of the alkali-silica reaction
Custódio et al. Evaluation of damage in concrete from structures affected by internal swelling reactions–a case study
Samouh et al. Viscoelastic properties of self-consolidating concrete: Influence of the sustainable approach
JP6933930B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
Vogt et al. Low pH self compacting concrete for deposition tunnel plugs
Dahlhoff et al. Investigations on the Experimental Setup for Testing the Centric Tensile Strength According to ASTM C307 of Mineral-based Materials
JP7106373B2 (en) Method for Predicting Drying Shrinkage Strain of Concrete
Achrafi et al. Electrical resistivity tomography results analyzed with two inversion methods to determine chloride profiles on BFS concrete having very high electrical resistivity
Di Bella et al. Volume stability and cracking potential of prebagged, cement-based nonshrink grouts for field-cast connections
JP7365127B2 (en) How to estimate drying shrinkage strain
Zahedi Rezaieh Evaluating ASR Physicochemical Process under Distinct Restraint Conditions for a Better Assessment of Affected Concrete Infrastructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240324

R150 Certificate of patent or registration of utility model

Ref document number: 7461708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150